
On end-to-end 6DOF object pose estimation and robustness to
object scale

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

This report contains a set of experiments that seek to reproduce the claims of two recent works related to keypoint3

estimation, one specific to 6DOF object pose estimation, and the other presenting a generic architectural improvement4

for keypoint estimation but demonstrated in human pose estimation. More specifically, in the backpropagatable PnP [1],5

the authors claim that incorporating geometric optimization in a deep-learning pipeline and predicting an object’s pose6

in an end-to-end manner yields improved performance. On the other hand, HigherHRNet [2] introduces a novel heatmap7

aggregation method that allows for scale-aware pose estimations, offering higher keypoint localization accuracy for8

small scale objects.9

Methodology10

We used the publicly provided code where available, adapting it to fit into a model development kit to facilitate our11

experiments. We used a dataset fit for validating both claims simultaneously, and designed a set of experiments based12

on the published methodologies, but also went beyond seeking to validate the higher level concepts. Our experiments13

were conducted on a Nvidia 2080 12 GB GPU with an average training time of 14 hours.14

Results15

We reproduce the claims of both papers by conducting several experiments in the UAVA dataset [3]. The integration of16

a differentiable geometric module within an keypoint-based object pose estimation model improved its performance in17

metrics. We additionally verify that this is the case for other differentiable PnP implementations (i.e. EPnP). Further,18

our results indicate that indeed HigherHRNet improves keypoint localisation performance on small scale objects.19

What was easy20

Both papers provided publicly available implementations. In addition, many different variations were also found online.21

Finally, the papers themselves were very clearly written, offering insights on various important details.22

What was difficult23

The main issue that required more effort was identifying the appropriate weights for BPnP [1] in order to balance the24

different optimization objectives. As expected, this varies for the context that it is applied (task, dataset) and the values25

presented in the paper did not work in our case. Sub-optimal selection of weights leads to convergence issues.26

Communication with original authors27

We communicated with the authors of [1] through GitHub, and we would like to thank them as they provided a fast28

and detailed response. Furthermore, their responsiveness to past issues had already provided a nice knowledge base29

regarding reproduction.30

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

1 Introduction31

Object pose estimation seeks to determines the 3D position and orientation of an object in camera-centred coordinates.32

During the last years, two main directions have been emerged for data-driven 6DOF object pose estimation; direct33

pose regression which predict pose in an end-to-end manner, and indirect that learns the surrogate task of keypoint34

localisation and then solves a Perspective-n-Point (PnP) problem to estimate the resulting pose. Even though it has been35

shown [4] that the latter methods better approach the problem, there are still open challenges that need to be solved.36

One issue is the splitting between the actual task at hand, and the surrogate task that they learn. The other has to do37

with the spatial nature of keypoint localisation and smaller scale objects. Recently, two works have been presented that38

seek to address these issues, BPnP [1] and HigherHRNet [2]. In this work, we seek to reproduce and verify their claims39

in a task that is relevant for both of these works, drone pose estimation. While BPnP’s relation has to do with the task at40

hand, HigherHRNet is also relevant because commodity drones are usually small form objects, and when flying around41

the further distance themselves from the operator, effectively reducing their scale in the camera’s image domain.42

2 Scope of reproducibility43

Consequently, we opt for reproducing the claims of both of these two relevant papers addressing the aforementioned44

challenges. In more details, the authors of BPnP [1] propose a novel differentiable module which calculates the45

derivatives of a PnP solver through implicit differentiation, enabling the backpropagation of its gradients to the46

network parameters, and as such allowing for end-to-end optimization and learning. On the other hand, the authors47

of HigherHRNet [2] focus on improving the 2d landmarks’ localization performance for smaller-scale humans by48

proposing a novel multi-scale supervision scheme for training and a heatmap aggregation module for inference.49

The main claims of both papers can be summarised below:50

• BPnP: An end-to-end trainable pipeline for object pose estimation, can achieve greater accuracy by combing51

the reprojection losses (Table 3).52

• HigherHRNet: A novel method for learning scale-aware representations using high-resolution feature pyra-53

mids, eventually achieving greater results for small scale objects1 (Table 4).54

3 Methodology55

We implemented our experiments by re-using the publicly available implementation for BPnP, and implementing56

HigherHRNet after styding the paper, the original publicly available implementation, as well as other implementations.57

In both cases we integrated the code base in a modular framework that facilitates reproducible experiments [5], which58

generally required slight modifications of the original code provided by the authors to fit its requirements. The overall59

methodology for our experiments is depicted in Figure 1. On the left, a traditional monocular heatmap-based keypoint60

localisation pipeline is presented, whereas on the right, the BPnP required components are illustrated.61

BPnP: BPnP focuses on the Pose Retrieval stage, and following [1] we trained our model under the 3 different schemes62

used in the original work as well:63

• heatmap loss (lh),64

• mixture loss lm = lh + β ∗ lproj ,65

• and pose loss lp = lreg + lproj ,66

where lproj = ‖π(z|y,K) − x∗‖22 and lreg = ‖x − π(z|y,K)‖22. Also, π is the projection function employing the67

predicted pose(y) from the PnP solver, the corresponding object’s 3D points z and K the camera intrinsic matrix. Apart68

from these experiments presented also in the original paper, we conducted an extra set of experiments that aimed at69

validation the concept of end-to-end 6DOF pose estimation via differentiable PnP. We used another openly available70

differentiable PnP implementation, and additionally, also tested the faster counterpart of BPnP. We present results71

across many established object pose estimation metrics, as well as computational performance metrics for all the72

aforementioned experiments.73

HigherHRNet: On the other hand, for HigherHRNet we focused on the Heatmap regression part by using different74

models for the decoder part of the architecture, with details following in Section 3.1.75

1We apply the proposed module in the object pose estimation task, while authors originally demonstrated it for the human-pose
estimation task, but its concept still applies in our case as well.

2

All the code and its documentation are submitted and published along with this report.76

Figure 1: Indirect object pose estimation approach consisting of the Heatmap Regression part where HigherHRNet
paper focuses on, and Pose Retrieval part where BPnP focuses, alongside the supervision signals.

3.1 Model descriptions77

The following models were used as our backbone for regressing the heatmaps and the corresponding coordinate spatial78

distributions (the decoder part in Figure 1):79

• HRNet [6] with feature maps of width 48 and 3 stages. The 2nd, and 3rd, stages contain 1, 4 exchange blocks,80

respectively, and each exchange block contains 4 residual units.81

• HigherHRNet [2] with feature maps of width 48 and 3 stages. The 2nd, and 3rd, stages contain 1, 4 exchange82

blocks, respectively, and each exchange block contains 4 residual units.83

• Stacked Hourglass [7] with depth 2 and feature maps of width 12884

Following the heatmap predictions, we apply a decoding operation (i.e. center of mass specifically) in order to extract85

the keypoints from the heatmaps, which are later driven to the PnP algorithm for retrieving the 6D pose.86

In addition, we integrated the EPnP [8] algorithm, using the available implementation in Pytorch3D [9] instead of87

BPnP to assess whether other – similar in concept – implementations can verify the claim and quantify the differences88

between these approaches. As a side-note, it should be mentioned that our models’ configuration slightly differs from89

the ones described in the original works in order to comply with the working resolution of the dataset we used.90

3.2 Datasets91

3.2.1 UAVA92

As aforementioned, our experiments were conducted on a dataset that allowed for the validation of both works93

simultaneously. This also better helps in deducing whether the claims are reproducible as the context (task or dataset)94

can vary. We used the UAVA dataset2 for object pose estimation. UAVA targets human-robot cooperative Unmanned95

Aerial Vehicle(UAV) applications and offers two different drone models, namely DJI M2ED3 and Ryze Tello4. The96

UAVA dataset provides the 3D models of both drones accompanied by ground-truth annotations such as 3D bounding97

boxes, 6D pose, and at the same time multi-modal data. More importantly, the difference in size between the two drone98

models allows for the validation of scale-invariant pose estimation.99

2https://vcl3d.github.io/UAVA/
3https://www.dji.com/gr/mavic-2-enterprise
4https://www.ryzerobotics.com/tello

3

https://vcl3d.github.io/UAVA/
https://www.dji.com/gr/mavic-2-enterprise
https://www.ryzerobotics.com/tello

3.2.2 Preprocessing100

We processed the original dataset in order to keep only the samples where all the 2D keypoints are within the image,101

given that BPnP relies on softly approximating the coordinate, and that would fail in the case of out of field-of-view102

keypoints. However, we should mention that we did not apply any other filtering (i.e. visibility of all the keypoints,103

boundary cases, etc.).104

3.3 Hyperparameters105

We train all the models for 44 epochs and select the best performing model for testing. We used the Adam optimizer106

with a learning rate of 1e− 4, betas of values 0.9 and 0.999 and no weight decay, and a seed value of 1989 for ensuring107

reproducibility. Albeit, we experimented with different losses (i.e. KL, MSE) for lh, we found that L1 loss works the108

best, offering the best results and faster convergence. This could be attributed to the different resolution of the heatmaps109

grid (in our case is lower) as well as the different configuration of the heatmap decoder model (we used 3 stages instead110

of 4). It is worth mentioning that we also tried a bigger heatmap resolution (e.g. 160× 120) although we decided to111

conduct our final experiments in the lower resolution for two main reasons. First, most heatmaps regression decoders112

used in the literature make their prediction in the 1/4 of the original image, and second, this higher heatmap resolution113

would enforce us to further reduce the depth of the decoder model. Specifically, for BPnP we set β value to 1e− 5 after114

conducting a greedy heuristic search, with values ranging from 0.001 to 1e− 9, as the proposed value for β coefficient,115

did not work for our case. The selection of a non-appropriate β coefficient value can lead to stability issues as noted in116

Section 5.2.117

3.4 Experimental setup and code118

As mentioned above, we integrated the authors’ code (BPnP) or our own re-implementations (HigherHRNet) in [5]119

which is a PyTorch framework for modular and reproducible workflows5. Each model is implemented in a configuration120

file that defines the different components (optimizer, datasets, model architecture, pre-/post-processing graphs, etc.) and121

logs all hyperparameters. For each experiment we report the standard metrics below:122

NPE: is the magnitude (L2-norm) of difference between the ground-truth and estimated position vectors from the origin123

of the camera reference frame to that of the drone body frame, normalised with ground-truth vector.124

AD: is the angular distance between the predicted, rotation matrix, and ground-truth,or in other words, the magnitude of125

the rotation that aligns the drone body frame with the camera reference frame.126

ACC: considers an estimated pose to be correct if its rotation error is within k◦ and the translation error is below k cm.127

ADD: is the average distance metric to compute the averaged distance between points transformed using the estimated128

pose and the ground truth pose. Eventually, a pose estimation is considered to be correct if the computed average129

distance is within k% of the model diagonal.130

Proj: is the mean distance between 2D keypoints projected with the estimated pose and those projected with ground131

truth pose. An estimated pose is considered correct if this distance is within a threshold k.132

3.5 Computational requirements133

Table 1 showcases the total duration of each experiment (with a 24 batch size) as well as some other useful statistics134

such as the mean duration time for a forward pass, a backward pass, an optimizer step, as well as the total test duration135

with batch size 1. It is clear, that the introduction of the differentiable PnP modules in the training procedure increases136

the total training time significantly, as the backward and step operation require more time. We ran our experiments on a137

machine with the specifications presented in Table 2.138

4 Results139

Our results support the claims presented by both authors in [1] and [2] respectively. As is demonstrated in Table 3, the140

model trained with lp achieved better results in most of the metrics for both drone models. Similarly, Table 4 indicates141

that HigherHRNet yields better results for the small-scale drone in most of the metrics, although its performance for the142

bigger M2ED drone is worse compared to the standard HRNet model.143

5www.github.com/ai-in-motion/moai

4

https://github.com/ai-in-motion/moai

Table 1: Time statistics for each experiment. Red and orange colors indicate the two (worst, and second worst
respectively) most time-consuming experiment per drone model.

Drone
Total

Training
Duration (hrs)

Mean
Model Fwd
Duration(s)

Mean
Model Bwd
Duration(s)

Mean
Optimizer

Step (s)

Total
Test

Duration (min)
lm 14.14 0.13 2.73 2.89 23.75
lp 14.13 0.13 2.73 2.90 19.30
EPnP 17.33 0.19 1.49 1.74 24.37
HRNet 11.19 0.06 0.003 0.21 19.87
Hourglass 6.99 0.14 0.019 0.22 15.85

M2ED

HigherHRNet 10.54 0.11 0.033 0.36 23.63
lm 20.78 0.13 2.72 2.9 23.82
lp 20.38 0.13 2.68 2.85 19.95
EPnP 21.80 0.28 3.80 4.14 19.13
HRNet 9.69 0.13 0.029 0.38 19.88
Hourglass 10.13 0.14 0.020 0.22 15.62

Tello

HigherHRNet 16.10 0.14 0.032 0.4 20.50

Table 2: Hardware Components

OS Windows Microsoft Pro (x64)
Storage 3TB Toshiba HDD
CPU Intel i9-7900X (4.30 GHz)
GPU GeForce RTX 2080 Ti (12 GB)
RAM 4 x 16 GB Kingston (2666 MHz)

4.1 Results reproducing original papers144

4.1.1 BPnP145

With these experiments we show that the addition of a differentiable PnP module improves the performance in object146

pose estimation task. We provide qualitative results in Figure 3. It is worth highlighting that training with lp does not147

restrict the shape of the distribution the way that it is constrained when relying on heatmap supervision (i.e. Gaussian148

distribution approximation). Instead, the model freely localizes the keypoints, which results in more focused predictions.149

This is illustrated in Figure 2 where qualitative results display the heatmaps on top of the color images.

Table 3: BPnP results on the UAVA dataset. We trained all models for 44 epochs and select the best among them for
inference. Light green with bold and light blue indicate the best and second best performers.

Drone NPE↓ AD↓ ACC2↑ ACC5↑ ADD2↑ ADD5↑ Proj2↑ Proj5↑
lm 0.014 0.027 92.13 98.07 81.31 93.34 99.45 99.58
lp 0.012 0.026 95.20 98.36 90.29 96.81 98.05 99.14M2ED
lh 0.011 0.020 90.75 98.04 80.52 91.37 97.56 99.49
lm 0.071 0.189 43.38 82.11 14.88 41.47 93.97 96.08
lp 0.063 0.223 55.31 85.34 20.04 50.53 93.19 94.49Tello
lh 0.091 0.252 36.36 74.99 18.27 43.31 89.25 94.00

150

4.1.2 HigherHRNet151

These experiments showcase that the addition of the aggregation module improves the keypoint localization performance152

when targeting smaller-scale objects. Specifically, the HigherHRNet architecture gives better results in most of the153

metrics for the small form drone (Tello). On the other hand though, this is not the case for the larger drone, where the154

HigherHRNet performance is slightly worse than the standard HRNet’s one.155

4.2 Results beyond the BPnP paper156

Apart from the experiments conducted by the authors in [1] we provide additional to further support the main claims.157

Particularly, we compared BPnP versus an alternative differentiable PnP algorithm (i.e. EPnP) and the results are158

5

Figure 2: Qualitative heatmap results on random samples from the test-set. The first two columns depicts the M2ED
drone while the last two the Tello drone; with heatmaps predicted by models trained with lp and lh respectively.
Evidently, heatmaps by the lh model (second and fourth columns tend to keep the 2D Gaussian shape distribution,
while the lp ones (first and third columns) freely approximate the (x, y) position enforced by the regularizer term(lreg)
of the lp loss, eventually allowing for more distinguishable 2D keypoints estimations.

Table 4: HigherHRNet results on the UAVA dataset. We trained all models for 44 epochs and select the best among
them for inference. Light green with bold and light blue indicate the best and second best performers.

drone NPE↓ AD↓ ACC2↑ ACC5↑ ADD2↑ ADD5↑ Proj2↑ Proj5↑
Hourglass 0.015 0.028 89.43 96.94 78.20 90.42 96.56 99.02
HRNet 0.011 0.020 90.75 98.04 80.52 91.37 97.56 99.49M2ED
HigherHRNet 0.011 0.020 89.92 97.75 79.58 90.99 97.50 99.44
Hourglass 0.094 0.214 32.19 75.47 14.76 38.26 92.23 96.25
HRNet 0.091 0.252 36.36 74.99 18.27 43.31 89.25 94.00Tello
HigherHRNet 0.095 0.264 42.98 75.69 20.19 46.69 89.54 93.63

demonstrated in Table 5. We also provide extra experiments of a BPnP implementation in which the calculation of the159

higher-order derivatives is ignored from the coefficient’s graph as presented in Table 6.160

6

4.2.1 BPnP vs EPnP161

For this experiment we utilised the same backbone (i.e. HRNet) but we changed the BPnP module with the EPnP. We162

followed the exact same training procedure, hyperparameters, as well as the same loss lm. Results are summarized in163

Table 5. It is evident that EPnP and BPnP offers comparable results in most of the metrics.

Table 5: BPnP vs EPnP. Following the same approach we trained the decoder part only with lh for 30 epochs and then
continue with lm for 14 epochs. Light green with bold indicates the best performer.

Drone NPE↓ AD↓ ACC2↑ ACC5↑ ADD2↑ ADD5↑ Proj2↑ Proj5↑
BPnP 0.014 0.027 92.13 98.07 81.31 93.34 99.45 99.58M2ED EPnP 0.014 0.027 92.89 98.19 80.50 93.64 99.52 99.61
BPnP 0.071 0.189 43.38 82.11 14.88 41.47 93.97 96.08Tello EPnP 0.074 0.192 46.77 81.64 21.07 49.59 93.77 96.13

164

4.2.2 BPnPfaster165

Authors in [1] provided an alternative method for calculating the gradients through the PnP layer, which essentially is166

the same method as the original, although ignoring the higher-order derivatives from the coefficients graph. Therefore,167

we provide results using this faster BPnP method in Table 6, comparing the two different versions, as well as their168

training times in Table 7. It seems that the original version outmatches the faster one, albeit there is no significant169

performance drop. On the other hand, Table 7 indicates how the second implementation justifies its name. So, it is in170

users’ fluency whether they need to sacrifice gradient accuracy and some performance drop in exchange for efficient171

training times.

Table 6: BPnPfaster results on the UAVA dataset, following the exact training approach as original BPnP. Here we
present results with models trained with lp. Light green with bold indicates the best performer.

Drone NPE↓ AD↓ ACC2↑ ACC5↑ ADD2↑ ADD5↑ Proj2↑ Proj5↑
BPnPfaster 0.013 0.029 94.79 98.06 89.38 96.66 97.83 98.98M2ED BPnP 0.012 0.026 95.20 98.36 90.29 96.81 98.05 99.14
BPnPfaster 0.055 0.167 55.42 87.03 26.43 58.99 94.91 96.12Tello BPnP 0.063 0.223 55.31 85.34 20.04 50.53 93.19 94.49

Table 7: BPnPfaster time statistics. Light green with bold indicates quicker performance.

Drone
Total

Training
Duration (hrs)

Mean
Model Fwd
Duration(s)

Mean
Model Bwd
Duration(s)

Mean
Optimizer

Step (s)

Total
Test

Duration (min)
BPnPfaster 6.80 0.089 0.53 0.66 17.15M2ED BPnP 14.13 0.13 2.73 2.90 19.30
BPnPfaster 10.39 0.09 0.54 0.69 18.85Tello BPnP 20.38 0.13 2.68 2.85 19.95

172

5 Discussion173

After conducting several experiments on the UAVA dataset, the central claims of [1] and [2] stand true; as they both174

outperform other methods. Particularly, for validating BPnP we conducted the same experiments as the original paper,175

and further, we compare it with another differentiable PnP method (i.e. EPnP). The inclusion of 2D-3D geometry176

constraints through differentiable geometric optimization, improves the performance. Extending the experiments of177

the original paper, we compare another implementation of the BPnP module which ignores the high order derivatives178

from the coefficient graph. This module achieves comparable results as its counterpart apart it is much faster. It is179

worth noting, that both BPnP, and EPnP are quite time-consuming as demonstrated in Table 1. Finally, we study the180

performance of the HigherHRNet [1] in a very challenging small scale object. Indeed, the performance of the proposed181

heatmap aggregation module achieves better results when compared with other well-established methods.182

7

Figure 3: Qualitative results on random samples from the UAVA dataset from three different models. The red mask
indicates predictions by lp trained model, purple by lm and finally cyan by HRNet. The drone masks are rendered
by employing the predicted pose(i.e. output of the BPnP) and then blended with the original color image. The first
three columns depicts M2ED drone model while the rest three the Tello drone. The Tello samples are cropped and
zoomed-in due to its small form factor.

5.1 What was easy183

Implementing most of the code was straightforward as authors of both papers provide source code. GitHub issues were184

another source of retrieving information, clarifying parts of the papers when needed. Additionally, both of the original185

papers are quite complete, well-written making it easy to follow.186

5.2 What was difficult187

Our major difficulty was related to finding the appropriate value for balancing the terms of mixture loss lm, aka the β188

value. Even though, authors in [1] provided the value that they used for their experiments this did not work for us, as189

this is a case specific parameter. It is worth noting that a non-appropriate selection of the balancing term can lead to190

convergence issues and negative results. Even though, not related with the code of both of the papers, we feel that it191

would be constitutive to mention that we faced the same difficulties when trying to incorporate EPnP in our workflow.192

5.3 Communication with original authors193

Authors of [1] did not specify the configuration of the used network in the pose estimation task, nor the hyperparameters.194

Thus, we contacted them through GitHub where they provided a detailed answer, available now to the research195

community. We did not contact HigherHRNet authors [2] as the online implementations and the text and figures in their196

paper were a good enough guide to understand and implement it.197

References198

[1] Bo Chen, Alvaro Parra, Jiewei Cao, Nan Li, and Tat-Jun Chin. End-to-end learnable geometric vision by199

backpropagating pnp optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern200

Recognition, pages 8100–8109, 2020.201

8

[2] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S Huang, and Lei Zhang. Higherhrnet: Scale-aware202

representation learning for bottom-up human pose estimation. In Proceedings of the IEEE/CVF Conference on203

Computer Vision and Pattern Recognition, pages 5386–5395, 2020.204

[3] Georgios Albanis, Nikolaos Zioulis, Anastasios Dimou, Dimitrios Zarpalas, and Petros Daras. Dronepose:205

Photorealistic uav-assistant dataset synthesis for 3d pose estimation via a smooth silhouette loss. In European206

Conference on Computer Vision, pages 663–681. Springer, 2020.207

[4] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura Leal-Taixe. Understanding the limitations of cnn-based208

absolute camera pose regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern209

Recognition, pages 3302–3312, 2019.210

[5] moai: Accelerating modern data-driven workflows. https://github.com/ai-in-motion/moai, 2021.211

[6] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning for human pose212

estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages213

5693–5703, 2019.214

[7] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation. In European215

conference on computer vision, pages 483–499. Springer, 2016.216

[8] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o (n) solution to the pnp problem.217

International journal of computer vision, 81(2):155, 2009.218

[9] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia219

Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501, 2020.220

9

https://github.com/ai-in-motion/moai

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	UAVA
	Preprocessing

	Hyperparameters
	Experimental setup and code
	Computational requirements

	Results
	Results reproducing original papers
	BPnP
	HigherHRNet

	Results beyond the BPnP paper
	BPnP vs EPnP
	BPnPfaster

	Discussion
	What was easy
	What was difficult
	Communication with original authors

