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ABSTRACT

In contrast to vision transformers, which model long-range dependencies through
global self-attention, large kernel convolutions provide a more efficient and scalable
alternative, particularly in high-resolution 3D volumetric settings. However, naı̈vely
increasing kernel size often leads to optimization instability and degradation in
performance. Motivated by the spatial bias observed in effective receptive fields
(ERFs), we hypothesize that different kernel elements converge at variable rates
during training. To support this, we derive a theoretical connection between
element-wise gradients and first-order optimization, showing that structurally re-
parameterized convolution blocks inherently induce spatially varying learning rates.
Building on this insight, we introduce Rep3D, a 3D convolutional framework that
incorporates a learnable spatial prior into large kernel training. A lightweight two-
stage modulation network generates a receptive-biased scaling mask, adaptively
re-weighting kernel updates and enabling local-to-global convergence behavior.
Rep3D adopts a plain encoder design with large depthwise convolutions, avoiding
the architectural complexity of multi-branch compositions. We evaluate Rep3D
on five challenging 3D segmentation benchmarks and demonstrate consistent
improvements over state-of-the-art baselines, including transformer-based and
fixed-prior re-parameterization methods. By unifying spatial inductive bias with
optimization-aware learning, Rep3D offers an interpretable, and scalable solution
for 3D medical image analysis. The source code is publicly available at ****.

1 INTRODUCTION

The landscape of medical vision models has evolved rapidly, expanding from early convolutional
architectures to modern transformer-based designs. In particular, Vision Transformers (ViTs) have
gained traction for their ability to model long-range dependencies using multi-head self-attention and
minimal inductive bias Dosovitskiy et al. (2020). In parallel, the community has revisited large kernel
convolutions as a scalable alternative to attention mechanisms, particularly in the context of high-
resolution 3D volumetric data Liu et al. (2022b); Lee et al. (2022). Despite architectural differences,
both ViTs and large-kernel CNNs share a central goal: expanding the effective receptive field (ERF)
to enable rich spatial context aggregation. However, simply increasing kernel size does not guarantee
improved performance. Prior work has shown that naı̈ve enlargement of convolutional filters can
result in saturated or degraded accuracy across various segmentation tasks Ding et al. (2022b); Lee
et al. (2023). Unlike ViTs, which adaptively attend to spatial content, standard convolutions rely on
static, weight-shared kernels and lack the ability to modulate importance across spatial positions.
This limitation prompts our first research question: Can we incorporate spatial priors into large
kernel convolutions to improve learning effectiveness?

Recent advances in structural re-parameterization offer a promising direction. Methods such as
RepLKNet Ding et al. (2022b), SLaK Liu et al. (2022a), and PELK Chen et al. (2024) scale kernels to
extreme sizes (e.g., 31× 31, 51× 51, 101× 101) by combining parallel branches of “large + small”
convolutions into what is referred to as a Constant-Scale Linear Addition (CSLA) block. These
parallel paths are merged into a single kernel at inference time, enabling efficient deployment while
capturing multi-scale features during training. Interestingly, we observe that CSLA blocks naturally
encode spatial learning bias: elements near the kernel center tend to converge faster than those on
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Figure 1: (a) Traditional structural re-parameterization methods (e.g., CSLA blocks) re-parameterize
small and large kernel convolutions to improve representational capacity, but apply linear optimization
with same learning rate across the kernels, demonstrating a faster convergence in local then global. (b)
In contrast, Rep3D introduces a learnable spatial bias via a generator network fθ, which modulates
each element in the large kernel using a prior based on distance decay. This adaptive modulation
enables local-to-global update dynamics aligned with ERF behavior, enhancing both training stability
and model performance for 3D volumetric tasks.

the periphery. This mirrors diffusion-like gradient propagation in ERFs starting from the center and
expanding outward. These observations suggest that convergence dynamics are not uniform across
the kernel, but instead spatially structured. This leads to our second question: Can we explicitly
model this diffusion pattern as a learnable spatial prior to re-weight kernel element updates
during training?

To address this, we first provide a theoretical analysis of the optimization dynamics in CSLA-
based re-parameterized convolutions. We show that each branch (e.g., small vs. large kernels) can
implicitly operates under a distinct learning rate, leading to element-wise differences in convergence
speed. These dynamics correlate with ERF visualizations and share characteristics with spatial
frequency patterns in human visual perception Kulikowski et al. (1982). Inspired by this, we propose
a novel receptive bias re-parameterization strategy that encodes spatial distance from the kernel
center as a spatial bias prior on learning convergence. We implement this as a low-rank modulation
mechanism that generates spatial scaling factors for kernel weights, allowing the optimizer to
emphasize local versus global regions adaptively for gradient back-propagation. Building on this
insight, we present Rep3D, a 3D convolutional architecture that integrates large kernel convolutions
(e.g., 21×21×21) with our proposed re-parameterization approach. Unlike prior approaches that rely
on multi-branch structures, Rep3D employs a plain and efficient encoder to reduce complexity while
preserving representational capacity. We evaluate Rep3D across five challenging volumetric medical
segmentation benchmarks and show that it consistently outperforms state-of-the-art transformer- and
CNN-based models.Our key contributions are as follows:

• We propose Rep3D, a 3D CNN with large kernel convolutions and a streamlined encoder
design that achieves state-of-the-art (SOTA) performance on multi-scale (i.e. from or-
gans/tissues to tumors) segmentation benchmarks.

• We propose a novel and theoretically grounded re-parameterization approach that models
ERF diffusion as a learnable spatial bias prior, enabling element-wise modulation of gradient
convergence for training.

• We validate our method on five challenging 3D medical imaging benchmarks under direct
training settings, achieving consistent and significant improvements across all datasets.

2 RELATED WORK

CNN-based 3D Models: Foundational architectures such as 3D U-Net Çiçek et al. (2016), V-Net
Milletari et al. (2016), and nnU-Net Isensee et al. (2021) have played a pivotal role in establishing the
standard for volumetric medical image segmentation. These models rely on encoder-decoder designs
with dense skip connections, offering a strong balance between spatial resolution and semantic
representation. Due to their stability, interpretability, and effectiveness without requiring large-scale
pre-training, they remain widely used in clinical and research benchmarks. However, their inherently
local receptive fields limit their ability to capture long-range dependencies, motivating subsequent
architectural innovations aimed at expanding the effective receptive field (ERF).
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Vision Transformer-based and Hybrid Models: To overcome the locality constraints of CNNs,
transformer-based architectures such as UNETR Hatamizadeh et al. (2022b) and SwinUNETR
Hatamizadeh et al. (2022a) introduce global self-attention mechanisms that model distant spatial
dependencies more effectively (i.e. Follow-up models like nnFormer Zhou et al. (2021), Swin-Unet
Cao et al. (2021), and SwinBTS Jiang et al. (2022)). These models encode context across entire
volumes through hierarchical token representations, marking a major shift in design philosophy.
However, they typically require large-scale pre-training and introduce significant computational
complexity due to the quadratic scaling of attention, particularly problematic in 3D volumetric
settings. Additionally, their reliance on patch-based tokenization can compromise fine-grained spatial
precision—crucial in dense prediction tasks like medical segmentation.

Large Kernel Convolution Networks: A more recent and efficient alternative to transformers
involves expanding the ERF through large kernel convolutions, as demonstrated by models such as
ConvNeXt Liu et al. (2022b), 3D UX-Net Lee et al. (2022), and MedNeXt Roy et al. (2023). These
architectures leverage depth-wise or separable convolutions to approximate global context modeling
while preserving the simplicity and inductive biases of convolutional designs. However, studies in 2D
vision backbone(e.g., RepLKNet Ding et al. (2022b) (kernel size: 31× 31), SLaK Liu et al. (2022a)
(kernel size: 51× 51)) reveal that naively scaling up kernel size leads to saturation or performance
degradation in the absence of additional structural guidance. This key insight motivates the design
of Rep3D, which augments large 3D kernels with a learnable spatial prior inspired by ERF theory.
By explicitly guiding convergence dynamics across kernel elements, Rep3D enables more effective
utilization of large kernels, bridging the gap between CNN efficiency and transformer-like contextual
modeling.

The integration of Weight Re-parameterization. Structural re-parameterization (SR) has emerged
as a powerful paradigm to enhance CNN training without altering inference-time complexity. Models
like RepVGG Ding et al. (2021) and OREPA Hu et al. (2022) employ additional convolution branches
(e.g., 1× 1 or identity paths) during training to improve gradient flow and feature diversity. These
branches are merged into a single convolution kernel post-training, allowing for efficient inference.
RepLKNet Ding et al. (2022b) and SLaK Liu et al. (2022a) extend this approach to large 2D kernels
(e.g., 31 × 31 and 51 × 51), increasing the receptive field while maintaining tractable inference
cost via kernel decomposition or sparse groups. A complementary line of work focuses on gradient
re-parameterization instead of modifying model weights directly. RepOptimizer Ding et al. (2022a),
for example, modifies the back-propagation process by applying learnable scaling to gradient updates,
enabling effective training of plain CNNs. These techniques reduce reliance on complex architectural
design and have been shown to match or exceed the performance of more intricate networks. While
much of the re-parameterization research has focused on 2D natural images, extending these methods
to 3D medical imaging presents unique challenges. Volumetric kernels require significantly more
parameters, and naive kernel expansion leads to high computational costs and optimization instability.
3D RepUX-Net Lee et al. (2023) demonstrate the inital attempt of adapting weight re-parameterization
to 3D medical imaging and scale large depthwise kernels with fixed prior context, but still lacks of
flexibility on adapting dynamic variation in fine-grained semantics for learning convergence. To
bridge this gap, there is growing interest in using spatial priors or effective receptive field modeling
to guide re-parameterization for large kernel learning in the 3D setting.

3 REP3D

Rep3D rethinks the training dynamics of large-kernel convolution by explicitly embedding spatial
bias, derived from effective receptive fields (ERFs), into the optimization process. Motivated by
structural reparameterization (SR) and the distinctive gradient behavior observed in ERFs, Rep3D
introduces a low-rank, learnable reparameterization that adapts element-wise update behavior across
the kernel. We first derive the theoretical equivalence between parallel convolution branches and their
single-operator counterparts, showing that a “large + small” convolution block (as in RepLKNet Ding
et al. (2022b)) implicitly assigns spatially varying learning rates. We then translate this insight
into a unified formulation and construct a lightweight generator that outputs a convergence-aware
modulation mask, as shown in Figure 1. The output modulated mask models fine-grained learning
dynamics during training, improving both scalability and performance in 3D tasks with large kernel
convolution.
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Figure 2: In contrast to (a) structural or (b) gradient-based re-parameterization, Rep3D introduces a
novel re-parameterization strategy that injects a learnable spatial bias into large kernel convolutions
for optimization. During training, a lightweight generator network produces a modulation mask
conditioned on a distance-based prior, which adaptively scales gradient updates across the kernel.
This enables spatially-aware learning dynamics that reflect local-to-global variations in the effective
receptive field (ERF).

3.1 VARIABLE LEARNING CONVERGENCE IN PARALLEL BRANCH

From previous studies that is shown in Figure 2a and 2b, the learning convergence of the large kernel
convolution can be improved by either adding up the encoded outputs of parallel branches weighted by
diverse scales with SR (RepLKNet Ding et al. (2022b)) or performing Gradient Reparameterization
(GR) by multiplying with constant values (RepOptimizer Ding et al. (2022a)) in a Single Operator
(SO). Inspired by the concepts of structural re-parameterization (SR) and gradient re-parameterization,
we extend the theoretical derivation from RepOptimizer and observe the variable learning rate across
branches. We begin by analyzing the CSLA block, a basic two-branch design used in structural
reparameterization (SR)-based networks (e.g., RepLKNet Ding et al. (2022b)). Let X denote the
input feature map, and let WL,WS be large and small 3D convolution kernels, scaled by fixed positive
scalars αL and αS , respectively. The output of the CSLA module is:

YCSLA = αL(X ∗WL) + αS(X ∗WS), (1)

where ∗ denotes 3D convolution. To unify the branches into a single equivalent convolution for
efficient inference, we define a single-operator (SO) form:

YSO = X ∗W ′, (2)

where the equivalent kernel W ′ is a linear combination of the two branches:

W ′ = αLWL + αSWS . (3)

During training with first-order optimization (i.e. SGD, AdamW) and step size λ, we apply the
stochastic gradient descent rule and update the gradients for the parallel branches as follow:

W ′
t+1 = W ′

t − λ
∂L
∂W ′

t

. (4)

As the parallel branch architecture updates WL and WS independently:

WL(t+1) = WL(t) − λL
∂L

∂WL(t)
, WS(t+1) = WS(t) − λS

∂L
∂WS(t)

. (5)
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where λL and λS are the learning rate for corresponding branch respectively. Substituting these into
the equivalent kernel formulation yields:

W ′
t+1 = αLWL(t+1) + αSWS(t+1) (6)

= αL

(
WL(t) − λL

∂L
∂WL(t)

)
+ αS

(
WS(t) − λS

∂L
∂WS(t)

)
(7)

= αLWL(t) + αSWS(t) − λLαL
∂L

∂WL(t)
− λSαS

∂L
∂WS(t)

(8)

= W ′
t − λLαL

∂L
∂WL(t)

− λSαS
∂L

∂WS(t)
(9)

From the equation 9, we observe that each branch can be optimized differently with different learning
rates toward each kernel and derive with two distinctive scenarios as follow:

W ′
t+1 =

{
W ′

t − λ
(
αL

∂L
∂WL(t)

+ αS
∂L

∂WS(t)

)
, if λL = λS

W ′
t − λLαL

∂L
∂WL(t)

− λSαS
∂L

∂WS(t)
, if λL ̸= λS

(10)

By the chain rule, we further derive:

∂L
∂WL(t)

=
∂L

∂YCSLA
· ∂YCSLA

∂WL(t)
= αL · ∂L

∂YCSLA
· ∂(X ∗WL)

∂WL(t)
, (11)

∂L
∂WS(t)

=
∂L

∂YCSLA
· ∂YCSLA

∂WS(t)
= αS · ∂L

∂YCSLA
· ∂(X ∗WS)

∂WS(t)
. (12)

To validate the above theoretical derivation, we perform ablation studies and found out that variable
learning rate of each branch (i.e. λS = 0.0006, λL = 0.0002) demonstrates the best performance
with stochastic gradient descent. Since WS has a smaller receptive field than WL, and WS primarily
contributes to the central region of the equivalent kernel W ′, we argue that:

• Central region of W ′: receives gradient contributions from both WL and WS , resulting in
faster convergence and stronger local learning.

• Peripheral region of W ′: receives gradients only from WL, leading to slower convergence
but maintaining global contextual awareness.

Both the coefficients αL and αS modulate spatially distinct regions (large kernel contributions
dominate the periphery, small kernel contributions dominate the central region), the two–branch
block demonstrates a learning-rate field of:

λeff(∆x) =

{
αL λL, peripheral offsets,

αL λL + αS λS , central offsets,
(13)

where λeff is the effective element-wise learning rate inherited from the two branch-specific updates.

3.2 LOW-RANK RECEPTIVE BIAS MODELING (LRBM)

As the above theory further validates the correlation between variable learning with the local-to-global
gradient dynamics in ERF, we argue that such receptive bias can enhance the efficiency of learning
large convolution kernels. We model the diffusion behavior of ERF with a reciprocal distance decay
function fd and generate a prior mapping P ∈ RC×1×K×K×K for weight re-parameterization as
follow:

fd(x, y, z, c) =

√
(x− c)

2
+ (y − c)

2
+ (z − c)

2

P =
β

d(xk, yk, zk, c) + β

(14)

where k and c are the element and central index of the kernel weight, β is a learnable parameter to
control the weight distribution of the distance mapping and initialize as 0. However, such a fixed prior
mapping lacks of flexibility to adapt the weighting importance dynamically across the fine-grained

5
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semantic variations in medical imaging. To address this, we propose to adapt learnable spatial bias
by co-training a light-weight 2-layer generator network fθ : RC×1×K×K×K → RC×1×K×K×K .
We generate an adaptive mask M for depthwise convolution kernels with low computation cost as
follows:

M = P + fθ(P ) (15)

fθ(P ) = Norm2(DConv2 (σ (Norm1(DConv1(P ))))) (16)

where DConv1 and DConv2 are 3D depthwise convolutions with kernel size of 7 and padding of 3,
both Norm1 Norm2 are the layer normalizations, and σ is a non-linear sigmoid activation to ensure
all scaling value between 0 and 1. Such learnable function aims to capture the dynamic weighting of
each kernel elements across local to global, while preserving computational efficiency. The resulting
modulation mask M is then used to reparameterize the kernel weights:

Weff = W ⊙M (17)

where W is the original convolution kernel and ⊙ denotes element-wise multiplication. Importantly,
the mask is applied during training only and the learned generator can be removed during inference
for efficiency.

3.3 NETWORK ARCHITECTURE

The overall network architecture to validate Rep3D builds upon the encoder–decoder structure of 3D
UX-Net Lee et al. (2022), which processes volumetric data through hierarchical resolution stages
with skip connections to preserve fine-grained spatial features. Unlike prior transformer-based models
or heavily modular CNNs, our design favors plain convolution blocks to minimize computational
burden while preserving capacity for large-scale context modeling. Following the insights from prior
work Ding et al. (2022b), we adopt a 21× 21× 21 depthwise convolution (DWC-21) as the kernel
backbone, which we empirically identify as the best trade-off between expressiveness and efficiency
in 3D. Each encoder block consists of batch normalization, followed by the depthwise convolution
and GeLU activation. The feature propagation from layer ℓ− 1 to ℓ and then to ℓ+ 1 is defined as:

ẑℓ = GELU (DWC-21(BN(zℓ−1))) , ẑℓ+1 = GELU (DWC-21(BN(ẑℓ))) (18)

where zℓ−1 is the input from the previous layer, ẑℓ and ẑℓ+ 1 are intermediate representations, BN
denotes batch normalization, and DWC-21 represents depthwise convolution with a 213 kernel. This
architectural choice allows the network to efficiently encode both local and global context, while
enabling seamless integration of our re-parameterized learning framework (as detailed in section
3.1 and 3.2). The simplicity of the block ensures compatibility with the spatial modulation mask
described in the next section and avoids unnecessary overhead during both training and inference.

4 EXPERIMENTAL SETUP

Datasets and Implementation Details. We evaluate Rep3D on four publicly available volumetric
segmentation datasets, covering a wide range of anatomical structures across different spatial scales,
from large organs (e.g., liver, stomach) to smaller and more challenging targets (e.g., tumors, vessels).
We report results using the Dice Similarity Coefficient (DSC) as the primary evaluation metric,
quantifying spatial overlap between predicted segmentations and ground truth labels. Additional
details, including dataset resolution normalization, voxel spacing, and pre-processing pipelines and
experimental details are provided in the appendix.

5 RESULTS

5.1 EVALUATION ON TISSUE & TUMOR SEGMENTATION

To assess the generalization and scalability of Rep3D across diverse anatomical structures and
clinical targets, we evaluate performance on three representative volumetric segmentation tasks
using the KiTS, MSD Pancreas, and MSD Hepatic Vessel datasets. As shown in Table 3, Rep3D
achieves state-of-the-art performance across all settings, consistently outperforming both convolution-
and transformer-based baselines. On the KiTS dataset, which includes kidney, tumor, and cyst
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Table 1: Comparison of SOTA approaches on the three different testing datasets. (*: p < 0.01, with
Paired Wilcoxon signed-rank test to all baseline networks)

KiTS MSD

Methods #Params FLOPs Kidney Tumor Cyst Mean Pancreas Tumor Mean Hepatic Tumor Mean

3D U-Net Çiçek et al. (2016) 4.81M 135.9G 0.918 0.657 0.361 0.645 0.711 0.584 0.648 0.569 0.609 0.589
SegResNet Myronenko (2018) 1.18M 15.6G 0.935 0.713 0.401 0.683 0.740 0.613 0.677 0.620 0.656 0.638
RAP-Net Lee et al. (2021) 38.2M 101.2G 0.931 0.710 0.427 0.689 0.742 0.621 0.682 0.610 0.643 0.627
nn-UNet Isensee et al. (2021) 31.2M 743.3G 0.943 0.732 0.443 0.706 0.775 0.630 0.703 0.623 0.695 0.660

TransBTS Wang et al. (2021) 31.6M 110.3G 0.932 0.691 0.384 0.669 0.749 0.610 0.679 0.589 0.636 0.613
UNETR Hatamizadeh et al. (2022b) 92.8M 82.5G 0.921 0.669 0.354 0.648 0.735 0.598 0.667 0.567 0.612 0.590
nnFormer Zhou et al. (2021) 149.3M 213.0G 0.930 0.687 0.376 0.664 0.769 0.603 0.686 0.591 0.635 0.613
SwinUNETR Hatamizadeh et al. (2022a) 62.2M 328.1G 0.939 0.702 0.400 0.680 0.785 0.632 0.708 0.622 0.647 0.635
3D UX-Net (k=7) Lee et al. (2022) 53.0M 639.4G 0.942 0.724 0.425 0.697 0.737 0.614 0.676 0.625 0.678 0.652
UNesT-B Yu et al. (2023) 87.2M 258.4G 0.943 0.746 0.451 0.710 0.778 0.601 0.690 0.611 0.645 0.640

Rep3D (Fixed Prior) 65.8M 757.4G 0.950 0.757 0.473 0.727 0.789 0.640 0.715 0.635 0.681 0.658
Rep3D 66.0M 757.6G 0.955 0.763 0.490 0.736* 0.793 0.653 0.723* 0.650 0.697 0.674*

Table 2: Evaluations on the AMOS testing split in different scenarios.(*: p < 0.01, with Paired
Wilcoxon signed-rank test to all baseline networks)

AMOS CT (Train From Scratch Scenario)

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet (350 Epochs) 0.951 0.919 0.930 0.845 0.797 0.975 0.863 0.941 0.898 0.813 0.730 0.677 0.772 0.797 0.815 0.850
nn-UNet (1000 Epochs) 0.967 0.958 0.945 0.890 0.818 0.979 0.914 0.953 0.920 0.824 0.799 0.743 0.823 0.900 0.867 0.887

TransBTS 0.930 0.921 0.909 0.798 0.722 0.966 0.801 0.900 0.820 0.702 0.641 0.550 0.684 0.730 0.679 0.783
UNETR 0.925 0.923 0.903 0.777 0.701 0.964 0.759 0.887 0.821 0.687 0.688 0.543 0.629 0.710 0.707 0.740
nnFormer 0.932 0.928 0.914 0.831 0.743 0.968 0.820 0.905 0.838 0.725 0.678 0.578 0.677 0.737 0.596 0.785
SwinUNETR 0.956 0.957 0.949 0.891 0.820 0.978 0.880 0.939 0.894 0.818 0.800 0.730 0.803 0.849 0.819 0.871
3D UX-Net (k=7) 0.966 0.959 0.951 0.903 0.833 0.980 0.910 0.950 0.913 0.830 0.805 0.756 0.846 0.897 0.863 0.890
3D UX-Net (k=21) 0.963 0.959 0.953 0.921 0.848 0.981 0.903 0.953 0.910 0.828 0.815 0.754 0.824 0.900 0.878 0.891
UNesT-B 0.966 0.961 0.956 0.903 0.840 0.980 0.914 0.947 0.912 0.838 0.803 0.758 0.846 0.895 0.854 0.891
RepOptimizer 0.968 0.964 0.953 0.903 0.857 0.981 0.915 0.950 0.915 0.826 0.802 0.756 0.813 0.906 0.867 0.892

Rep3D (Fixed Prior) 0.972 0.963 0.964 0.911 0.861 0.982 0.921 0.956 0.924 0.837 0.818 0.777 0.831 0.916 0.879 0.902
Rep3D (LRBM) 0.978 0.970 0.964 0.928 0.871 0.984 0.927 0.960 0.930 0.851 0.828 0.784 0.850 0.920 0.881 0.910*

AMOS MRI (Train From Scratch Scenario)

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet (350 Epochs) 0.967 0.855 0.958 0.663 0.736 0.973 0.888 0.956 0.907 0.793 0.533 0.572 0.668 - - 0.805
nn-UNet (1000 Epochs) 0.973 0.940 0.965 0.681 0.810 0.980 0.893 0.967 0.917 0.834 0.667 0.689 0.701 - - 0.847

TransBTS 0.956 0.957 0.955 0.619 0.770 0.974 0.867 0.958 0.852 0.836 0.591 0.630 0.648 - - 0.816
UNETR 0.942 0.956 0.930 0.552 0.741 0.967 0.836 0.947 0.829 0.815 0.564 0.621 0.624 - - 0.794
nnFormer 0.949 0.952 0.950 0.601 0.758 0.972 0.859 0.960 0.843 0.832 0.569 0.618 0.637 - - 0.808
SwinUNETR 0.972 0.961 0.961 0.649 0.814 0.978 0.889 0.961 0.862 0.854 0.659 0.649 0.664 - - 0.836
3D UX-Net (k=7) 0.971 0.965 0.966 0.603 0.828 0.978 0.869 0.962 0.878 0.837 0.696 0.689 0.696 - - 0.841
3D UX-Net (k=21) 0.968 0.962 0.967 0.610 0.830 0.977 0.858 0.954 0.880 0.829 0.701 0.697 0.700 - - 0.840
UNesT-B 0.971 0.965 0.967 0.615 0.831 0.980 0.865 0.949 0.883 0.845 0.691 0.700 0.697 - - 0.843
RepOptimizer 0.970 0.967 0.971 0.635 0.823 0.978 0.875 0.963 0.882 0.850 0.689 0.691 0.711 - - 0.847

Rep3D (Fixed Prior) 0.972 0.965 0.970 0.644 0.838 0.980 0.883 0.965 0.893 0.861 0.714 0.701 0.725 - - 0.855
Rep3D (LRBM) 0.975 0.969 0.975 0.657 0.845 0.984 0.891 0.970 0.901 0.879 0.718 0.721 0.750 - - 0.864*

segmentation, Rep3D achieves the highest average Dice score of 0.736, with strong individual scores
of 0.955 (kidney), 0.763 (tumor), and 0.490 (cyst). Notably, Rep3D improves tumor segmentation
performance by 2.28% Dice over UNesT-B and 5.39% Dice over 3D UX-Net, demonstrating its
ability to adapt to complex local variations in pathological regions. On the MSD Pancreas task, which
is particularly challenging due to the pancreas’s low contrast and irregular boundaries, Rep3D sets a
new benchmark with an average Dice score of 0.723, outperforming SwinUNETR (0.708), nnUNet
(0.703), and UNesT-B (0.690). Tumor segmentation also benefits from our re-parameterization
design, improving by 3.32% Dice compared to 3D UX-Net and 2,03% Dice compared to the fixed-
prior variant. On the MSD Hepatic Vessel dataset, Rep3D continues to lead with a mean Dice
of 0.674, outperforming the previous best model (UNesT-B, 0.640) and demonstrating superior
vessel and tumor localization. The results also highlight the effectiveness of Rep3D’s spatially
adaptive learning dynamics, especially in sparse and small-structure segmentation where traditional
large-kernel convolutions or global self-attention tend to underperform.

5.2 EVALUATION ON MULTI-ORGAN SEGMENTATION

Beyond the ability to segment anatomical structures across scales, we furtehr evaluate Rep3D on
the AMOS benchmark under the ”train-from-scratch” setting for both CT and MRI modalities. On
AMOS-CT, Rep3D achieves the best performance across all 15 evaluated anatomical structures,
surpassing strong baselines including SwinUNETR, UNesT, and 3D UX-Net. Notably, Rep3D
outperforms UNesT-B by 2.13% and RepOptimizer by 2.02% of average Dice score, while operating
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Table 3: Ablation Studies on bias generator’s convolutional layers and LRBM 3D adaptability

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

Kernel=1× 1× 1 0.972 0.968 0.965 0.926 0.863 0.984 0.917 0.956 0.922 0.851 0.816 0.779 0.863 0.912 0.894 0.905
Kernel=3× 3× 3 0.970 0.966 0.960 0.930 0.863 0.984 0.935 0.958 0.924 0.859 0.827 0.758 0.862 0.908 0.892 0.906
Kernel=5× 5× 5 0.974 0.967 0.964 0.925 0.833 0.984 0.924 0.956 0.910 0.850 0.829 0.786 0.843 0.921 0.884 0.903
Kernel=7× 7× 7 0.978 0.970 0.964 0.928 0.871 0.984 0.927 0.960 0.930 0.851 0.828 0.784 0.850 0.920 0.881 0.910
3D UX-Net (k=7) 0.966 0.959 0.951 0.903 0.833 0.980 0.910 0.950 0.913 0.830 0.805 0.756 0.846 0.897 0.863 0.890
3D UX-Net + LRBM 0.968 0.963 0.952 0.911 0.841 0.981 0.915 0.959 0.920 0.835 0.811 0.770 0.851 0.901 0.872 0.897

3D UX-Net (Kernel=3) 3D UX-Net (Kernel=7) 3D UX-Net + LRBM 3D UX-Net (Kernel=21) Rep3D

Figure 3: As kernel size increases, depthwise convolutions in 3D UX-Net exhibit increasingly diffuse
ERFs, gradually expanding the gradient dynamics from local to broader spatial regions. Incorporating
LRBM further enhances weighting toward global areas by modulating the spatial contribution of
distant elements. In contrast, Rep3D produces a well-distributed ERF that preserves strong central
activation while extending contextual influence across the full kernel.

with fewer parameters than UNesT. On AMOS-MRI, a more challenging modality due to the variable
range of contrast intensity and anatomical ambiguity, Rep3D maintains its superior performance,
achieving an average Dice of 0.864, again outperforming all competing approaches. Compared to
the best-performing transformer baseline (UNesT-B, 0.854) and convolutional baseline (3D UX-Net
(k=21), 0.840), Rep3D delivers consistent improvements across nearly all organ classes, particularly
in difficult regions such as the pancreas, gallbladder, and adrenal glands. These gains underscore the
effectiveness of our spatially adaptive re-parameterization strategy in enhancing convergence and
feature expressivity without increasing model complexity.

5.3 ABLATION STUDIES

Effect of Network Depth for LRBM. To investigate the impact of architectural depth in the
spatial modulation generator, we conduct an ablation study by varying the number of layers in the
generator network used to produce the element-wise modulation mask in Rep3D (in supplementart
material). Specifically, we compare shallow configurations (1-layer depthwise convolution) with
deeper variants (2-layer and 3-layer depthwise convolution stacks), while keeping the total parameter
count approximately constant. Our results show that the 2-layer design provides the best trade-
off between representation flexibility and training stability. While the 1-layer generator lacks
sufficient capacity to capture nuanced spatial priors, resulting in under-modulated gradient flow.
The 3-layer version demonstrates a slight decrease of performance (from 0.910 to 0.899 Dice) and
instability during training. This suggests that a lightweight, moderately deep generator is optimal
for learning spatially adaptive convergence patterns without incurring additional complexity or
over-parameterization.

Effect of Kernel Size in Spatial Bias Modeling. To further understand how kernel size affects seg-
mentation performance across different anatomical structures, we analyzed organ-wise performance
under varying kernel configurations: 1× 1× 1, 3× 3× 3, 5× 5× 5, and 7× 7× 7 used in Rep3D.
All configurations share the same training protocol and re-parameterization setup, isolating the effect
of kernel size alone. As shown in Table 3, the impact of kernel size varies across organs. While the
7× 7× 7 kernel achieves the highest overall mean Dice score (0.910), smaller or boundary-sensitive
organs (e.g., bladder, adrenal glands) benefit from small- or mid-size kernels such as 1× 1× 1 or
5 × 5 × 5. In contrast, large organs with strong spatial continuity (e.g., liver, spleen, aorta) show
clear improvements with larger receptive fields. These results suggest that optimal kernel size is
organ-dependent, influenced by factors such as spatial extent, anatomical context, and structural
complexity. The superior performance of the 7 × 7 × 7 variant reflects its ability to balance local
detail and global context.
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Effect of LRBM towards Other Network Architectures. To isolate the contribution of our proposed
Low-Rank Bias Modeling (LRBM) module, we integrate it into a standard 3D UX-Net architecture
(with fixed 7× 7× 7 kernels) and compare its performance to the original baseline. As reported in
Table 3, incorporating LRBM improves the average Dice score from 0.890 to 0.897, with consistent
gains across multiple organs including pancreas, bladder, and adrenal glands. While the improvement
may appear modest in aggregate, it is particularly noteworthy in anatomically challenging regions
where gradient convergence is often unstable. For example, performance on the left adrenal gland
increases from 0.756 to 0.770, and the duodenum improves from 0.846 to 0.851, suggesting that
the learnable spatial bias improves optimization dynamics in fine-scale structures. These results
confirm that our LRBM module offers a generalizable and plug-and-play mechanism for enhancing
3D segmentation backbones, even outside the full Rep3D framework.

6 DISCUSSIONS & LIMITATIONS

In this work, we introduced Rep3D, a re-parameterization framework that explicitly models spatial
convergence dynamics in large kernel 3D convolutions. By linking effective receptive field (ERF)
behavior with first-order optimization theory, we demonstrated that large convolution kernels naturally
exhibit non-uniform learning dynamics, where central elements converge faster than peripheral ones.
To address this, Rep3D integrates a learnable spatial prior via low-rank modulation, allowing the
optimizer to differentially emphasize kernel regions with the distinctive characteristics of ERF
during training. Our experiments across five diverse 3D segmentation benchmarks, confirm that
Rep3D consistently improves performance over both transformer-based and convolution-based
SOTA approaches, while maintaining a plain and efficient encoder design. The success of Rep3D
reinforces several broader insights. First, spatially adaptive optimization is a promising direction for
bridging inductive biases in CNNs with the dynamic learning capacity of attention-based models.
Second, incorporating explicit ERF modeling into kernel design enables more efficient parameter
usage, particularly in data-limited medical imaging scenarios. Moreover, our framework enhance
network interpretability: the modulation masks can be visualized and aligned with ERF pattern as
demonstrated in Figure 3, offering insights into how spatial understanding guides the learning of
convolution kernels.

While Rep3D demonstrates strong empirical performance across diverse 3D medical segmentation
tasks, several limitations remain. First, although our learnable modulation mechanism introduces
minimal architectural overhead, the training cost associated with large 3D kernels (e.g., 21× 21× 21)
remains nontrivial, particularly in memory-constrained GPU environments. Unlike 2D convolution
kernels (i.e. MegEngine packages for 2D depthwise kernels), limited packages and approaches
has been proposed to optimize the large kernel mechanism in 3D. This limits the batch size and
input resolution during training, which can affect convergence and generalization. Future work
could explore progressive training strategies, multi-resolution optimization, or low-resolution proxy
supervision to alleviate this constraint while maintaining segmentation fidelity. Second, while our
distance decay prior effectively guides spatial re-parameterization, its performance is inherently tied
to the input volume resolution. In our experiments, we downsample 3D volumes to specific resolution
(e.g., 1.5× 1.5× 2.0 mm) to balance computation and efficency. However, we observe saturation
effects when training at higher resolutions, where further improvements in image quality do not yield
proportional gains in segmentation accuracy. This may be due to the spatial prior losing precision
at finer scales. Adapting fine-grained spatial learnable prior could be another potential direction for
future work.

7 CONCLUSION

In this paper, we introduced Rep3D, a receptive-biased re-parameterization framework for large kernel
3D convolutions. By modeling effective receptive field (ERF) behavior as a learnable spatial prior,
Rep3D enables adaptive element-wise learning dynamics during training, bridging the gap between
convolutional inductive bias and optimization-aware design. Implemented via a lightweight modu-
lation network, our approach avoids complex multi-branch architectures while improving training
efficiency and segmentation accuracy. Extensive experiments across five volumetric medical imaging
benchmarks demonstrate consistent improvements over SOTA transformer and CNN approaches,
establishing Rep3D as a scalable and effective solution for 3D medical image analysis.
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A APPENDIX

A.1 REP3D MOTIVATIONS FROM EXPERIMENTS: NAIVELY SCALING 3D CONVOLUTION
KERNELS

Recent advances in medical image segmentation have highlighted the importance of large receptive
fields for capturing long-range spatial dependencies in volumetric data. Motivated by this, there has
been a growing trend toward enlarging convolutional kernel sizes in 3D CNN architectures, such as
3D UX-Net Lee et al. (2022) and RepUX-Net Lee et al. (2023), which attempt to mimic the global
context modeling capabilities of transformers while retaining the inductive biases of CNNs.

However, the straightforward enlargement of kernel size introduces several practical and theoretical
challenges:

• Optimization Instability: Large convolutional kernels suffer from slow or uneven conver-
gence, particularly in the outer kernel regions, which are rarely activated in early training.
This leads to ineffective utilization of capacity and suboptimal learning behavior.

• Degrading Performance: Empirically, simply increasing the kernel size does not guarantee
improved performance. Beyond a certain scale, performance tends to saturate or even
degrade.

• Inefficient Parameter Usage: Naı̈ve kernel scaling introduces a quadratic (especially in 3D)
growth in the number of parameters, making training inefficient and difficult to regularize.

To illustrate these effects empirically, we conduct a systematic ablation study on the AMOS dataset
using the 3D UX-Net encoder as a backbone. 3D UX-Net is an ideal starting point because it already
leverages larger kernels (7 × 7 × 7) in its baseline. We vary the convolutional kernel size from
3 × 3 × 3 to 21 × 21 × 21, keeping all other architectural and training settings fixed. The results,
shown in Table 4 , confirm our hypothesis.

Table 4: Impact of kernel size on segmentation performance using 3D UX-Net encoder on the AMOS
dataset.

Kernel Size Avg. Dice Score
3× 3× 3 0.881
5× 5× 5 0.885
7× 7× 7 0.890
9× 9× 9 0.891

11× 11× 11 0.893
13× 13× 13 0.894
15× 15× 15 0.895
17× 17× 17 0.893
19× 19× 19 0.893
21× 21× 21 0.891

As seen in Table 4, performance initially improves with increasing kernel size, peaking at 15× 15×
15. However, further enlargements yield diminishing or even negative returns, despite increased
computational cost. These findings reveal a key limitation of naı̈ve kernel enlargement: Although
it increases theoretical receptive field, it fails to translate into meaningful gains due to the lack of
spatially adaptive optimization.

A.2 THEORETICAL EXTENSION FROM SGD TO ADAM/ADAMW

While our primary derivation (Equation (13)) assumes a first-order optimizer with a fixed learning
rate (e.g., SGD), the key insight of Rep3D that spatially distributed kernel elements receive dis-
tinct effective learning rates through a low-rank re-parameterization, remains valid under adaptive
optimizers such as Adam and AdamW.
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In Adam, the parameter update rule is defined as:

wt = wt−1 − η · mt√
vt + ϵ

(19)

where mt and vt denote the first and second moment estimates of the gradient, respectively. When
applied to our low-rank spatial re-parameterization, the convolutional kernel weights are split into
two branches:

W = λ ·WL + (1− λ) ·WS (20)
Each branch is updated independently and maintains separate moment statistics, resulting in branch-
specific normalized gradients:

∆WL ∝ mL
t√

vLt + ϵ
, ∆WS ∝ mS

t√
vSt + ϵ

(21)

Although the global learning rate η and the modulation coefficient λ are shared, the effective update
magnitude for each spatial location differs depending on its branch contribution. Specifically, due to
their differing receptive field properties, the outer kernel regions are primarily influenced by the large
branch, while the central kernel positions are governed by the small branch. This design induces
position-sensitive learning dynamics even when using global optimizers like Adam. The adaptive
normalization in Adam (via the second moment estimate) amplifies or attenuates updates differently
across spatial positions, preserving the spatial bias induced by our re-parameterization structure.

In summary, although adaptive optimizers modify how gradients are scaled, the core Rep3D mecha-
nism, independent per-branch update trajectories and element-wise optimization guided by spatial
priors, remains intact and effective. We will provide the full derivation and corresponding results
with AdamW in the final version for completeness.

A.3 DATA PREPROCESSING & TRAINING DETAILS

Table 5: Hyperparameters for direction training scenario on four public datasets

Hyperparameters Direct Training
Encoder Stage 4
Layer-wise Channel 48, 96, 192, 384
Hidden Dimensions 768
Patch Size 96× 96× 96
No. of Sub-volumes Cropped 2

Training Steps 60000
Batch Size 2
AdamW ϵ 1e− 8
AdamW β (0.9, 0.999)
Peak Learning Rate 1e− 4
Learning Rate Scheduler ReduceLROnPlateau
Factor & Patience 0.9, 10

Dropout X
Weight Decay 0.08

Data Augmentation Intensity Shift, Rotation, Scaling
Cropped Foreground ✓
Intensity Offset 0.1
Rotation Degree −30◦ to +30◦

Scaling Factor x: 0.1, y: 0.1, z: 0.1

We apply hierarchical steps for data preprocessing: 1) intensity clipping is applied to further enhance
the contrast of soft tissue (AMOS CT, KiTS, MSD Pancreas:{min:-175, max:250}; MSD Hepatic
Vessel:{min:0, max:230}); AMOS MRI:{min:0, max:1000}. 2) Intensity normalization is performed
after clipping for each volume and use min-max normalization: (X −X1)/(X99 −X1) to normalize
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the intensity value between 0 and 1, where Xp denote as the pth percentile of intensity in X . We
then perform downsampling to certain voxel spacing (i.e. AMOS CT, MSD hepatic vessels, MSD
Pancreas and KiTS: 1.5× 1.5× 2.0, AMOS MRI: 1.0× 1.0× 1.0) randomly crop sub-volumes with
size 96× 96× 96 at the foreground and perform data augmentations, including rotations, intensity
shifting, and scaling (scaling factor: 0.1). All training processes with Rep3D are optimized with
either Stochastic Gradient Descent (SGD) or AdamW optimizer. We trained all models for 60000
steps using a learning rate of 0.0001 on an NVIDIA A100 GPU across all datasets. One epoch takes
approximately about 9 minute for KiTS, 5 minutes for MSD Pancreas, 12 minutes for MSD hepatic
vessels, 7 minutes for AMOS CT and 1 minute for AMOS MRI, respectively.

All experiments are conducted under a direct supervised learning setting. For the KiTS and MSD
datasets, we employ a 5-fold cross-validation strategy using an 80%/10%/10% split for training,
validation, and testing, respectively. For the AMOS dataset, we use a fixed single split with the same
partitioning ratio. Details on training procedures and preprocessing protocols are provided in the
supplementary material. Our proposed re-parameterization approach Rep3D, is benchmarked against
both convolutional and transformer-based state-of-the-art (SOTA) methods for 3D medical image
segmentation. For nnUNet Isensee et al. (2021), we evaluate performance across two different training
schedules to account for fairness, since Rep3D is trained with 60,000 iterations (approximately
equivalent to 350 epochs). Therefore, we have provided performance with partial scheduled (350
epochs) and full scheduled (1000 epochs) to demonstrate our model generalizability.

A.4 DATASETS DETAILS

We have leverage four challenging public datasets across different scales: 1) AMOS22 (MICCAI
2022 Abdominal Multi-organ Segmentation Challenge) Ji et al. (2022): Comprises 200 multi-contrast
abdominal CT scans with 15 organ-level anatomical labels and 33 MRI scans with 13 organ-level
anatomical labels for comprehensive abdominal segmentation, 2) KiTS21 (MICCAI 2021 Kidney
Tumor Segmentation Challenge) Heller et al. (2019): Includes 210 contrast-enhanced abdominal CT
scans from the University of Minnesota Medical Center (2010–2018), with manual annotations for
kidney, tumor, and cyst, 3) MSD Pancreas (Medical Segmentation Decathlon) Antonelli et al. (2022):
Contains 282 abdominal contrast-enhanced CT scans annotated for both pancreas and pancreatic
tumor segmentation, and 4) MSD Hepatic Vessel (Medical Segmentation Decathlon) Antonelli
et al. (2022): Contains 303 abdominal CT scans annotated for hepatic vessel and associated tumor
segmentation.

Table 6: Complete overview of Four public datasets

Challenge AMOS CT AMOS MR MSD Pancreas MSD Hepatic Vessels KiTS

Imaging Modality Multi-Contrast CT Multi-Contrast MRI Venous CT Arterial CT
Anatomical Region Abdomen Pancreas Liver Kidney
Sample Size 200 33 282 303 300

Anatomical Label

Spleen, Left & Right Kidney, Gall Bladder,

Pancreas, Tumor Hepatic Vessels, Tumor Kidney, TumorEsophagus, Liver, Stomach, Aorta, Inferior Vena Cava (IVC)
Pancreas, Left & Right Adrenal Gland (AG), Duodenum

Bladder (CT only), Prostate/Uterus (CT only)

Data Splits 1-Fold (Internal) 5-Fold Cross-Validation
Train: 160 / Validation: 20 / Test: 20 Train: 22 / Validation: 4/ Test: 7 Train: 225 / Validation: 27 / Testing: 30 Training: 242, Validation: 30 / Testing: 31 Training: 240, Validation: 30 / Testing: 30

5-Fold Ensembling N/A N/A X ✓ X

A.5 NETWORK ARCHITECTURE

We adopt a 3D encoder-decoder architecture from both 3D UX-Net Lee et al. (2022) and SwinUNETR
Hatamizadeh et al. (2022a) as the backbone of Rep3D. Instead of using encoder block with feed
forward layer, we simply using a plain convolutional design with depthwise separable convolutions in
parallel with LRBM. The encoder consists of 4 hierarchical stages with increasing feature dimensions
and depthwise convolutions of large kernel size (21× 21× 21), followed by a symmetric decoder for
volumetric segmentation. The encoder includes:

• An initial input projection block with a 7× 7× 7 convolution (stride 2, padding 3) followed by a
residual block with two 3× 3× 3 convolutions and GELU activations.

• Stage 1: 2 Rep3D blocks with 48 channels followed by a strided 2 × 2 × 2 convolution for
downsampling.

• Stage 2: 2 Rep3D blocks with 96 channels, followed by a strided 2 × 2 × 2 convolution for
downsampling.
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• Stage 3: 2 Rep3D blocks with 192 channels, followed by a strided 2 × 2 × 2 convolution for
downsampling.

• Stage 4: 2 Rep3D blocks with 384 channels, followed by a strided 2 × 2 × 2 convolution for
downsampling.

Each stage modulates large kernel weights using a learnable re-parameterization mask computed via
a lightweight 2-layer generator network within each Rep3D block. For each Rep3D block, it includes:

• A single depthwise 3D convolution with a large kernel size of 21× 21× 21 and padding size of 10,
followed by a layer normalization and a GELU activation.

• A 2-stage lightweight generator network including:
– First layer: a depthwise 7× 7× 7 convolution followed by layer normalization and a sigmoid

activation.
– Second layer: another depthwise 7× 7× 7 convolution followed by layer normalization.

The decoder mirrors the encoder and consists of:

• 4 upsampling modules (UnetrUpBlock from MONAI), each with a transpose convolution (stride 2),
skip connection, and a residual block with two 3× 3× 3 convolutions and GELU activations.

• 1 output projection block (UnetOutBlock from MONAI) consisting of a 1× 1× 1 convolution to
map to the number of target classes.

A.6 TRAINING EFFICIENCY COMPARISON

To further validate our claims around improved convergence behavior and training efficiency, we
conducted an additional ablation study focusing on runtime and performance dynamics across
different configurations of Rep3D on the AMOS dataset. While our primary goal is to improve
segmentation accuracy and spatial convergence, it is equally important that such gains are achieved
with minimal training overhead. In this study, we compare three architectural variants:

(a) Vanilla Rep: Rep3D with parallel convolutional branches, but without any spatial prior
modulation.

(b) Fixed Prior: Rep3D with a non-learnable reciprocal distance mask acting as a fixed spatial
prior.

(c) Full LRBM: Rep3D with a learnable low-rank bias module (LRBM), modulating the spatial
prior adaptively via a generator network.

All models were trained under identical conditions: using a single NVIDIA A100 GPU, batch size of
2, and AdamW optimizer. We report the validation Dice scores at key training checkpoints (10k, 20k,
40k, and 60k iterations), as well as the total training time to convergence.

Table 7: Training efficiency and convergence comparison of different Rep3D variants on AMOS
dataset.

Method Time (hrs) 10k Iter 20k Iter 40k Iter 60k Iter
Vanilla Rep 17.3 0.853 0.868 0.886 0.892
Fixed Prior 15.5 0.864 0.875 0.892 0.902
Full LRBM 17.5 0.871 0.885 0.897 0.910

As observed in Table 7, the full LRBM variant consistently achieves the best segmentation accuracy at
every checkpoint, demonstrating accelerated convergence. The introduction of the learnable low-rank
generator yields a modest increase in training time (+0.2 hours compared to Vanilla Rep), but this is
substantially outweighed by the observed performance gains. The Fixed Prior variant also performs
competitively, suggesting the benefit of incorporating even a static spatial prior.
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A.7 VALIDATION EXPERIMENTS ON VARIABLE BRANCH LEARNING RATE

Table 8: Quantitative Evaluation on Variable Learning Rates in Parallel Branches

Optimizer Main Branch Para. Branch Train Steps Main LR Para. LR Mean Dice

SGD 21× 21× 21 × 60000 0.0005 × 0.849
SGD 21× 21× 21 × 60000 0.0004 × 0.852
SGD 21× 21× 21 × 60000 0.0003 × 0.856
SGD 21× 21× 21 × 60000 0.0002 × 0.859
SGD 21× 21× 21 × 60000 0.0001 × 0.854

AdamW 21× 21× 21 × 60000 0.0005 × 0.855
AdamW 21× 21× 21 × 60000 0.0004 × 0.859
AdamW 21× 21× 21 × 60000 0.0003 × 0.861
AdamW 21× 21× 21 × 60000 0.0002 × 0.862
AdamW 21× 21× 21 × 60000 0.0001 × 0.860

SGD 21× 21× 21 3× 3× 3 60000 0.0002 0.0006 0.872
SGD 21× 21× 21 3× 3× 3 60000 0.0002 0.0005 0.869
SGD 21× 21× 21 3× 3× 3 60000 0.0002 0.0004 0.867
SGD 21× 21× 21 3× 3× 3 60000 0.0002 0.0003 0.870
SGD 21× 21× 21 3× 3× 3 60000 0.0002 0.0001 0.865

AdamW 21× 21× 21 3× 3× 3 60000 0.0002 0.0006 0.887
AdamW 21× 21× 21 3× 3× 3 60000 0.0002 0.0005 0.886
AdamW 21× 21× 21 3× 3× 3 60000 0.0002 0.0004 0.887
AdamW 21× 21× 21 3× 3× 3 60000 0.0002 0.0003 0.889
AdamW 21× 21× 21 3× 3× 3 60000 0.0002 0.0001 0.886

To empirically validate the theoretical insight of the spatially varying convergence dynamics in
parallel-branched re-parameterization, we initially perform experiments using the CSLA block with
Rep3D network architecture, composing of a main large kernel branch (21× 21× 21) and a parallel
small kernel branch (3× 3× 3), with separate learning rates applied to each. As shown in Table 3,
the single-branch design (no parallel branch) performance improved moderately with lower learning
rates with both SGD and AdamW. The Dice score peaks at 0.859 with a learning rate of 0.0002
using SGD, and AdamW achieves its best performance of 0.862 at 0.0002 as well. However, with
the addition of a small kernel parallel branch and using a higher learning rate for the small kernel
(e.g., λS > λL), we observed consistent improvements across all configurations. Specifically, the
best result with SGD reached 0.872 when using λL = 0.0002 and λS = 0.0006. Similarly, AdamW
attained a maximum Dice score of 0.889 with λL = 0.0002 and λS = 0.0003. These results validate
our hypothesis that assigning higher learning rates to the small kernel branch accelerates convergence
of central kernel regions, while maintaining stability in peripheral regions with a lower learning
rate for the large kernel. Moreover, such results further confirm that spatially varying convergence
behavior can be approximated through differentiated learning rates, supporting the design principle
behind our learnable re-parameterization in Rep3D.

B ABLATION STUDY ON NETWORK DEPTH FOR LRBM

Table 9: Ablation Study on Network Depth for LRBM with the AMOS testing split

Number of Layers Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

1 Layer 0.974 0.965 0.964 0.925 0.859 0.982 0.926 0.956 0.920 0.842 0.824 0.781 0.842 0.915 0.879 0.904
2 Layers 0.978 0.970 0.964 0.928 0.871 0.984 0.927 0.960 0.930 0.851 0.828 0.784 0.850 0.920 0.881 0.910
3 Layers 0.971 0.964 0.965 0.924 0.841 0.983 0.920 0.952 0.910 0.839 0.819 0.779 0.837 0.910 0.870 0.899

B.1 ADDITIONAL COMPARISONS WITH NNU-NET VARIANTS: RESENC NNU-NET, STU-NET,
MEDNEXT

we conducted further comparisons with recent state-of-the-art (SOTA) 3D medical image segmenta-
tion architectures, including ResEnc nnU-Net Isensee et al. (2021), STU-Net-H Huang et al. (2023),
and MedNeXt Roy et al. (2023). These models have demonstrated strong performance across various
benchmarks and provide important context for positioning Rep3D among contemporary architectures.
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All baseline methods were trained under their official recommended training schedules (typically
1000 epochs), using the same computational resources and training splits for fair comparison.

Method AMOS CT AMOS MRI KiTS Pancreas Hepatic
nnU-Net (1000 epochs) 0.887 0.847 0.706 0.703 0.660
ResEnc nnU-Net 0.892 0.850 0.711 0.706 0.661
STU-Net-H 0.900 0.848 0.707 0.712 0.648
MedNeXt 0.897 0.856 0.720 0.713 0.663
Rep3D (Ours) 0.910 0.864 0.736 0.723 0.674

Table 10: Average Dice scores across five segmentation benchmarks under full training schedules.
Rep3D consistently outperforms strong baselines across datasets.

These comparisons further validate the strong and consistent performance of Rep3D across multiple
challenging 3D segmentation benchmarks. Even under extensive training schedules (1000 epochs),
Rep3D outperforms the SOTA alternatives, demonstrating its robustness and generalizability.
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