Under review as a conference paper at ICLR 2026

BEZIERFLOW: LEARNING BEZIER STOCHASTIC IN-
TERPOLANT SCHEDULERS FOR FEW-STEP GENERA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce BézierFlow, a lightweight training approach for few-step generation
with pretrained diffusion and flow models. BézierFlow achieves a 2-3x perfor-
mance improvement for sampling with < 10 NFEs while requiring only 15 min-
utes of training. Recent lightweight training approaches have shown promise by
learning optimal timesteps, but their scope remains restricted to ODE discretiza-
tions. To broaden this scope, we propose learning the optimal transformation
of the sampling trajectory by parameterizing stochastic interpolant (SI) sched-
ulers. The main challenge lies in designing a parameterization that satisfies criti-
cal desiderata, including boundary conditions, differentiability, and monotonicity
of the SNR. To effectively meet these requirements, we represent scheduler func-
tions as Bézier functions, where control points naturally enforce these properties.
This reduces the problem to learning an ordered set of points in the time range,
while the interpretation of the points changes from ODE timesteps to Bézier con-
trol points. Across a range of pretrained diffusion and flow models, BézierFlow
consistently outperforms prior timestep-learning methods, demonstrating the ef-
fectiveness of expanding the search space from discrete timesteps to Bézier-based
trajectory transformations.

1 INTRODUCTION

Diffusion and flow models have achieved state-of-the-art performance, but at the cost of high com-
putation due to their iterative generative processes. A large body of recent work (Lu et al., [2022;
Song et al.,2023; [Liu et al., [2023} Tong et al., 2025) has aimed to accelerate generation to just a few
steps. For diffusion models, many dedicated solvers (Lu et al., 2022; 2023} [Zhang & Chenl 2023}
Zhao et al.| |2023)) tailored to their ODE formulations have been proposed. Although these methods
substantially reduce the number of iterations from hundreds to tens, they are often insufficient to
bring the steps down to only a few. More recent distillation techniques, such as consistency mod-
els (Song et al.| 2023)) and variants (Kim et al., 2024} Berthelot et al.l [2023; [Zhou et al., [2025) for
diffusion and ReFlow (Liu et al., 2023) for flow models, can reduce the number of steps to as few
as one, but they require substantial fine-tuning, often hundreds to thousands of GPU hours, even for
small datasets.

A notable line of recent work is the lightweight training approach, which learns only a few param-
eters with a pretrained model to improve output quality for a small number of function evaluations
(NFEs). Compared to the distillation techniques, such approaches require only tens of GPU minutes
for training while achieving considerable improvements. The key questions for lightweight training
are: (1) what to optimize, and (2) how to parameterize the variables. For the former, most previous
work (Tong et al., 2025} |Chen et al.l 2024} Xue et al.| [2024) has focused on learning the optimal
sequence of timesteps for ODE solves, treating a nondecreasing sequence of timesteps as learnable
variables. Most notably, a recent teacher-forcing approach (Tong et al., [2025) that uses the outputs
of a multistep adaptive solver as the teacher has demonstrated the effectiveness of learned ODE
timesteps.

Broadening our scope, we explore variables beyond ODE timesteps that can be learned with
lightweight training. As our first key contribution, we propose optimizing the sampling trajecto-
ries themselves. The Stochastic Interpolant (SI) framework (Albergo et al.,[2023)) provides a unified

Under review as a conference paper at ICLR 2026

view of modern ODE-based generative models. In this framework, the state at any time is written
as a linear interpolation between two endpoint samples: one drawn from the source (e.g., latent)
distribution and the other from the target data distribution. The interpolation is governed by a pair of
time-dependent coefficient functions, referred to as the SI scheduler. The scheduler fully specifies
the geometry of the sampling trajectory. Different models adopt different schedulers, yet interchang-
ing one scheduler for another at inference time does not change the endpoint marginal distributions.
Inspired by this, we propose a lightweight training framework for learning an SI scheduler, which is
equivalent to sampling path transformations that preserve the endpoints.

Our second key contribution lies in the parameterization of SI schedulers. The 1D continuous func-
tions for SI schedulers must satisfy the following properties: (i) boundary conditions, ensuring that
the endpoints of the coefficients are fixed, (ii) monotonicity, which guarantees a strictly nondecreas-
ing signal-to-noise ratio (SNR) along the sampling path, and (iii) differentiability, which ensures
that a velocity field can be derived in the ODEs governed by the learned scheduler. To effectively
parameterize the space of such functions, while restricting the scope to polynomials, we propose a
Bézier-based parameterization, termed the Bézier SI Scheduler, which forms the core of our overall
lightweight training framework, BézierFlow. A 1D Bézier function naturally satisfies all of these
properties: the boundary conditions can be enforced by simply setting the two end control points to
the time range boundaries; the function is smooth and differentiable by the definition of polynomial
Bézier curves; and monotonicity can be achieved by enforcing a nondecreasing order of control
points, making the learning process identical to learning the ODE timesteps in previous work (Tong
et al., 2025)).

In our experiments, we evaluate both diffusion and flow models across diverse datasets and ODE
solvers. BézierFlow consistently outperforms existing acceleration techniques while requiring only
lightweight training, taking around 15 minutes on a single GPU. Extensive results further demon-
strate the effectiveness of optimizing the sampling trajectories directly, rather than ODE timesteps,
when coupled with our continuous Bézier-based parameterization.

2 RELATED WORK

There have been various attempts to improve few-step generation in ODE-based generative models.
One major line of work focuses on designing dedicated ODE solvers tailored to the dynamics of the
models (Lu et al.| 2022} 2023; |Zhao et al.|, |2023} Zhang & Chen, 2023). Although these methods
require no additional training, they are unable to achieve high-fidelity generation with only a few
steps. Another line is distillation-based approaches (Song et al., [2023}; [Salimans & Ho, 2022; |Liu
et al.| [2023), which have demonstrated impressive gains in the very low-NFE regime, but incur
substantial computational cost in training. Despite these diverse strategies, our lightweight training
approach is most closely related to the methods listed below, which we now discuss in more detail.

Learning ODE Solving Timesteps. Several methods aim to achieve high-fidelity generation with
few NFEs by optimizing the ODE timesteps in a lightweight manner. |Chen et al.| (2024) frame
ODE timestep learning as a selection problem under a fixed NFE budget. Based on statistics col-
lected from multiple sampling trajectories, they allocate more steps to regions of high curvature
and fewer to flatter regions. |Xue et al.| (2024)) optimize timesteps from the perspective of numeri-
cal integration: given a specific ODE solver, they minimize the accumulated local integration error
along the trajectory. [Tong et al.| (2025) learn optimal timesteps through a data-driven distillation
framework, where a high-NFE sampler serves as the teacher and a low-NFE sampler as the student.
The timesteps are optimized by minimizing the discrepancy between their outputs starting from the
same initial noise. Compared to these methods that learn optimal ODE timesteps, we learn optimal
stochastic interpolant schedulers and demonstrate superior performance over these approaches.

Learning Sampling Trajectories. Several works (Karras et al., 2022} |Lipman et al., 2024; Pokle
et al., [2024; |[Kim et al.,|2025) have explored changing sampling trajectories at inference time to im-
prove generation quality and diversity, while selecting from a few predefined stochastic interpolant
schedulers (e.g., linear, VP, VE), rather than parameterizing the function space and finding the best
scheduler through optimization. To our knowledge, Bespoke Solver (Shaul et al., [2024)) is the only
approach that learns an optimal sampling trajectory. Unlike our method, however, it relies on a dis-
crete parameterization, which prevents direct derivation of first-order derivatives. These derivatives
must instead be represented through auxiliary variables, introducing redundancy that can lead to

Under review as a conference paper at ICLR 2026

inconsistencies between zeroth-order and first-order representations, and thus often fail to capture a
truly differentiable function.

3 BACKGROUND: STOCHASTIC INTERPOLANT FRAMEWORK

Stochastic Interpolant (SI) (Albergo et al, [2023)) is a unified framework for generative modeling,
encompassing both ODE-based and SDE-based models (Song et al., 2021bj; Ho et al., 2020; |Song
et al., 2021a; |[Lipman et al., 2023). Given two marginal probability densities pg, p1 : R? — R>g,a
stochastic interpolant x(¢) is defined by the following stochastic process:

(B(t) = Ol(t):L’l + U(t)l‘o + ’V(t)zv le [07 1}’ (D

where a(t) and o (t) are interpolation coefficients between xg ~ pg and 1 ~ p1,and z ~ N(0,I) is
a latent variable introducing stochasticitiy. The process satisfies the boundary conditions z(0) = x
and z(1) = z; by enforcing «(0) = o(1) = 0, a(1) = 0(0) = 1, and y(0) = (1) = 0.

While the general formulation written in Eq. [I] is broad, many important generative models—
including diffusion (Song et al.l 2021a; |Ho et al., [2020; |[Karras et al., 2022)), flow (Lipman et al.,
2023} [2024)), and score-based (Song et al., [2021b) models—can be expressed in a more specific
form, referred to as one-sided interpolants:

z(t) = a(t)zy + o(t)xo, 2)

where, as a common practice, po = N (0, I) and p; = pyau, thereby the latent variable z is absorbed
into the initial state xy. By differentiating both sides of Eq.[2] it can be expressed in the following
ODE form:
dx(t)
dt

where we denote a time derivative by the dot. For these dynamics to be well defined, «(t) and o ()
must be twice continuously differentiable (C?) to ensure that the divergence terms in the associated
Fokker-Planck equation are well-defined.

= &(t)z1 + a(t)zo, (3)

Based on Eq. 2] within the SI framework, different ODE-based generative models, including diffu-
sion, flow, score-based models, learn different but interchangeable quantities. Along the sampling
path (z,t), flow models vy(z,t) approximate the velocity field u;(x) = E[¢, | 2, = z], while dif-
fusion models e4(x, t) approximate the expected initial random noise state 7 (z) = E[zo | z; = x].
Finally, score-based models s, (z,t) estimate the score function, which is equivalent to the scaled
version of the expected initial state: V log p;(z) = —o~1(t)n;(z). Thus, different types of gen-
erative models are mathematically linked, and under the SI framework, a pretrained model of one
type can be reinterpreted as another at inference. For convenience, we collectively refer to these
ODE-based generative models as the SI model, denoted by Sy (z, t), throughout the paper.

4 BEZIERFLOW

4.1 PROBLEM DEFINITION

The objective of our work is to learn an optimal sampling trajectory that enables high-quality gen-
eration with a few NFEs (e.g., < 10), while using a pretrained diffusion or flow model.

We consider two sampling trajectories that share the same endpoints g and 1. The source path
refers to the trajectory used during model training, while the target path is a newly optimized trajec-
tory for inference. Although both trajectories share the same endpoints, we assume their intermedi-
ate geometry matters: due to discretization error in ODE solving, output quality would depend on
the path geometry. Given this assumption, we therefore aim to optimize the target path such that,
even with only a few of NFEs, its geometry produces sampling results comparable to those obtained
along the source path with many steps.

Formally, given a pretrained SI model S, let &(xo, {t;};-,; S¢) denote a multistep ODE solver
along the source path (the teacher), and &p(xo, {s:}M ; S4) a few-step ODE solver along the target
path (the student), where {t;}~ , and {s;}}, are the respective timestep sets with M < N. Al-

though both solvers start from the same initial state zg ~ pg, they differ in the number of NFEs and

Under review as a conference paper at ICLR 2026

Teacher Trajectory Initial Trajectory BézierFlow Bézier Functions with
(NFE=50) (NFE=3) (NFE=3) Varying Control Points

=i

S o (v g -

06 by 1

—_

B
Q

@ Target @ Prior

Figure 1: Illustration of Sampling Trajectories and Bézier Functions. On the left, we visual-
ize different sampling trajectories. While initial trajectories deviate from the target distribution,
BézierFlow aligns them with those of the teacher using only NFE=3. On the right, we present ex-
amples of §-degree Bézier functions with different arrangements of control points.

the sampling path. Let g(x1) denote the distribution induced by the teacher, and pg(x1) the student’s
output distribution. Our objective is formulated as the following teacher-forcing KL. minimization:

meinDKL (q(z1)||po(x1)) - “4)

In practice, we optimize Eq. 4] using the following tractable surrogate objective (Tong et al.| 2025),
which enforces the outputs of the two solvers to align with each other:

meln[’(e) = E$0~Po [d(€($0, {ti}il\il; Sd’)’ 59('7307 {SZ}iZl? Sd’))]’ &)

where d(-, -) is a distance metric such as LPIPS (Zhang et al.| |2018). This lightweight optimization
adjusts only the target scheduler coefficients while using the pretrained model, thereby improving
few-step generation at minimal training cost. See the left of Fig. [T} which compares sampling tra-
jectories from the prior distribution to the target distribution: (i) the teacher’s trajectories with many
steps (NFE=50), (ii) the student’s initial trajectories, and (iii) trajectories optimized by BézierFlow.
While the student’s initial trajectories deviate from the target distribution at NFE=3, after training
with BézierFlow, they closely follow those of the teacher despite the much smaller NFE.

4.2 SAMPLING PATH TRANSFORMATION

As discussed in Sec. [A.1] in order to define two trajectories that share the same endpoints, we
view this as a transformation of the source path via the path reparameterization following prior
works (Karras et al.,[2022; |Shaul et al., {2024} [Pokle et al., [2024; |Kim et al., [2025)).

In the SI framework, a sampling path is governed by a pair of interpolation coefficients in Eq. 2
which we refer to as a scheduler. We denote the coefficients of the source path as the source sched-
uler (o, o), and those of the target path as the target scheduler (@, 7). Specifically, to relate the
two schedulers, we adopt a scaling reparameterization trick (Karras et al. [2022), where the target
state T, is defined from the source state x; as T, = csx+,. Here, ¢, can be arbitrary scalar functions
and ¢, any invertible mapping from s, but we define them as

a(s) _ a(s)
Ccs = {U(ts) ~ alts)? 0<s <1, ©
L, otherwise,
t —
to=t(s)=p ' (p(s), p(t) = 38 pls) = ‘;‘23 Q)

where both p and p are invertible as the signal-to-noise ratio (SNR) increases monotonically over

time.

Applying the change-of-variables to Eq.|3] the velocity in the target path @4(Z) is expressed as
dxs

n(e) = 5 = (0loge) o+ e 58 e (22). ®)

We note that replacing the source scheduler with the target scheduler based on Eq. [6] at inference
is valid for two reasons: (i) the endpoint marginal distributions are preserved, and (ii) the training
objective of a SI model is invariant to the choice of schedule as long as the SNR endpoints (minimum
and maximum values) are the same. Thus, learning (&, ds) only changes the geometry of the
sampling path, and hence the few-step discretization behavior, without altering the underlying target
distributions or requiring a different pretrained SI model. See App.[A]for more details.

Under review as a conference paper at ICLR 2026

4.3 BEZIER STOCHASTIC INTERPOLANT SCHEDULER

In Sec. we discussed what to optimize, namely the sampling path determined by the SI scheduler
(s, 7). The next crucial question is how to parameterize these 1D continuous functions effectively.
Since the space of arbitrary 1D functions is prohibitively large, we employ 1D Bézier parameteriza-
tion, which offers strong expressiveness with a compact number of parameters—the control points.
Moreover, Bézier functions naturally satisfy the three key requirements of the SI scheduler: (i)
boundary conditions, as described in Sec. [3] (ii) monotonicity to ensure a strictly nondecreasing
signal-to-noise ratio (SNR), and (iii) differentiability to compute the transformed velocity in Eq.

An n-degree Bézier curve is defined as a weighted linear combination of n + 1 control points
{C;}_,, where the weights are given by Bernstein basis polynomials b;

n s

)(1 = A", A e o,1].)

7

B(\) = Zbi,n(/\)()i, bim(\) = (
i=0

As shown in Eq.[9] with only n control points, it can represent a wide range of trajectories. Unlike
arbitrary 1D polynomial functions, Bézier functions always pass through their control points in
order, making it straightforward to enforce boundary conditions and monotonicity. See the right
of Fig. |1} which illustrates how 1D Bézier functions B(\), A € [0, 1] can represent diverse shapes
under different control point arrangements while keeping the endpoints fixed.

Moreover, they are inherently smooth and infinitely differentiable (C'*°), with a closed-form deriva-
tive:

n—1
B(A)=n_ bin1(N)(Cip1 — C), (10)
1=0

which allows us to directly compute the transformed velocity in Eq. [8| at any time s. Specifically,
we parameterize a(s) and &(s) as n-degree 1D Bézier functions, each defined by a set of control
points:

a’(s) = (o1 — a0) D _bin(s) O\ +an, 5%(s) = (01— 00) D bin(s) O + 00, (11)
=0 =0
For the boundary conditions, we fix the end control points (Céa) = C’é") =0, C’f{l) = C’ff) =1
and treat only the n — 1 interior control points as parameters. Concretely, with learnable parameters
(@), §() ¢ R™~1, the control points are given by

C(a) = [07 ’(/}(9(0())1:7’7,717 1]7 C(J) = [07 1/)(9(0))1:71717 1]7 (12)
where ¢(0); = Z:f’i 77 is a softmax function, and (0); = Zj‘:l ¢(0); is a cumulative soft-
j=1¢

max function that ensures monotonicity. This monotonic parameterization ensures that p(s) =
a(s)/a(s) is strictly nondecreasing on [0, 1), resulting in p~! exists.

4.4 CONNECTION TO PRIOR WORK

LD3 (Tong et al., 2025). From a parameterization perspective, both LD3 and ours optimize the
same type of parameter: a nondecreasing sequence of timesteps. However, their interpretations
differ: LD3’s parameters correspond directly to discrete ODE solver timesteps, whereas ours corre-
spond to Bézier control points that form a continuous sampling path. Interpreting these parameters
as an SI scheduler allows our approach to explore a much broader search space compared to LD3.
See App. [B]for the proof.

Bespoke Solver (Shaul et al., [2024). Bespoke solver similarly optimizes a new, target sampling
path, but the key difference from our approach lies in the parameterization. Their parameterization
is discrete: they learn per-step variables ¢, and ¢, in Eq.[6} Such a discrete parameterization requires
separately modeling the derivatives ,, ¢, thereby breaking the intrinsic connection between the
values and their derivatives. This can yield mismatches between the predicted next value from
numerical integration and the actual learned value, ultimately causing unstable optimization.

In contrast, our Bézier parameterization ensures that the resulting scheduler (a&%,5%) is smooth

and, in particular, satisfies the C? condition required for the SI scheduler as discussed in Sec.

Under review as a conference paper at ICLR 2026

Consequently, the time-derivative terms in the transformed velocity can be computed directly rather
than learned separately, and the learned ODE trajectories are well-defined, thereby leading to more
stable optimization.

Beyond the parameterization, Bespoke Solver also differs in its training objective: it relies on step-
wise error minimization, whereas our method optimizes a global trajectory-level loss. See App.
for the results comparing with Bespoke Solver trained under our loss, which isolate and highlight
the benefit of our Bézier-based continuous parameterization.

5 EXPERIMENTS

Experiment Setup. We evaluate our BézierFlow (BF) on both diffusion and flow models across
diverse datasets for image generation. For diffusion models, we adopt EDM (Karras et al., [2022)
with pretrained checkpoints on CIFAR-10 (32 x 32) (Krizhevsky, 2009), FFHQ (64 x 64) (Karras
et al.l [2019), and AFHQv2 (64 x 64) (Choi et al.| [2020). For flow models, we use pretrained
ReFlow (Liu et al.| 2023) on CIFAR-10 (32 x 32) (Krizhevskyl 2009), FlowDCN (Wang et al.,
2024) on ImageNet (256 x 256) (Deng et al., 2009), and Stable Diffusion v3.5 (SD) (Esser et al.,
2024) on MS-COCO (512 x 512) (Lin et al.} 2014). All pretrained models are from their official
implementations.

Each model is paired with its dedicated ODE solver: UniPC (Zhao et al.,|2023) and iPNDM (Zhang
& Chen, 2023) for diffusion models, and Runge—Kutta integrators, RK1 (Euler) and RK2 (Mid-
point), for flow models. We consider the following learning-based acceleration methods as baselines
for comparisons with ours: DMN (Xue et al.,|2024)), GITS (Chen et al.|[2024), and LD3 (Tong et al.,
20235)). For flow models, we additionally include Bespoke Solver (Shaul et al., 2024) as a baseline,
which was specifically designed for RK1 and RK2 solvers. The results of the base ODE solvers,
without additional learning, are reported as reference. All baselines are evaluated using their official
implementations, except for Bespoke Solver, whose official code is not publicly available.

Implementation Details. Methods based on the teacher-forcing framework, including LD3, Be-
spoke Solver, and our BézierFlow, are trained and validated with the same number of samples for
both training and validation: 250 each for CIFAR-10, 50 each for FFHQ, AFHQv2, and ImageNet,
and 25 each for Stable Diffusion v3.5, following the experiment setup used in LD3 (Tong et al.,
2025). Training is performed for 8 epochs on CIFAR-10, FFHQ, AFHQv2 and 5 epochs on the
others. For GITS (Chen et al.,[2024), we precompute statistics using 256 sampling trajectories. For
the training of BézierFlow, we use 32 control points for the Bézier parameterization unless stated
otherwise. For all models, we initialize the target scheduler as the linear SI scheduler, i.e., a(s) = s
and 7(s) = 1 — s. We set the timesteps uniformly in SNR p(s) for diffusion models and uniformly
in time s for flow models. Following LD3 (Tong et al., 2025), we also feed the learned decoupled
timesteps (L1 et al.,|2024) to the neural network. See App.[D|for more details.

Quantitative Results. We report Fréchet Inception Distance (FID) (Heusel et al., [2017) scores
across diverse datasets for diffusion models in Tab.[T]and for flow models in Tab. 2| FID is computed
between the reference set and SOK generated samples, where the test set for each dataset serves as
the reference. For SD, both the reference and generated sets are constructed from disjoint subsets of
30K text prompts from MS-COCO, following the setup used in LD3 (Tong et al |2025). Refer to
App. for a more comprehensive comparison of SD, including text-image alignment metrics.

As shown in Tab. [I] for few-step generation with pretrained diffusion models, BézierFlow consis-
tently achieves the best FID on CIFAR-10 across different NFEs, with especially large margins over
the second-best at small NFEs (e.g., at NFE=4, BézierFlow: 9.55 vs. LD3: 12.04 with UniPC, and
BézierFlow: 6.93 vs. LD3: 9.97 with iPNDM). On FFHQ and AFHQv2, BézierFlow outperforms
or remains comparable to the baselines. The improvements are particularly strong at small NFEs,
for example, BézierFlow: 17.05 vs. LD3 (the second-best): 22.48 at NFE=4 with UniPC.

When it comes to flow models, as shown in Tab. 2| BézierFlow achieves state-of-the-art results on
CIFAR-10 with both RK1 and RK2, outperforming the others by clear margins. For example, we
surpass the second-best LD3 by 18.31 at NFE=4 with RK1, and the second-best GITS by 9.66 at
NFE=4 with RK2. On ImageNet, we consistently obtain the best results across most NFEs, except
at NFE=4, again by large margins. On MS-COCO evaluated with Stable Diffusion v3.5, BézierFlow
outperforms the baselines at most NFEs, demonstrating generalizability to large-scale models.

Under review as a conference paper at ICLR 2026

Table 1: FID comparison of few-step generation with diffusion models. Results of the base
ODE solvers are reported on each top rows, highlighted in gray. Bold indicates the best results, and
underline marks the second best.

Method \ NFE=4 NFE=6 NFE=8 NFE=10 \ Method \ NFE=4 NFE=6 NFE=38 NFE=10
CIFAR-10 32 x 32 with EDM (Karras et al.|[2022) (Teacher FID: 2.08)
UniPC 50.30 19.33 9.64 6.16 iPNDM 29.53 9.84 5.30 3.75
+ DMN 26.42 8.11 4.22 2.79 + DMN 28.29 9.33 4.82 3.52
+ GITS 24.83 11.02 6.68 5.02 + GITS 16.20 6.80 4.07 3.30
+LD3 12.04 3.56 243 2.62 +LD3 9.97 4.42 293 2.44
+ BézierFlow 9.55 313 2.40 2.09 + BézierFlow 6.93 3.35 2.81 243
FFHQ 64 x 64 with EDM (Karras et al.|[2022) (Teacher FID: 2.86)
UniPC 47.62 14.96 7.76 8.93 iPNDM 28.75 11.15 6.68 4.80
+ DMN 25.87 9.44 5.06 4.06 + DMN 30.89 11.93 7.33 6.20
+ GITS 22.99 12.12 8.90 4.40 + GITS 18.51 9.21 5.58 4.37
+LD3 22.48 6.16 4.25 2.92 +LD3 15.55 5.89 3.74 3.03
+ BézierFlow 17.05 7.43 3.82 3.13 + BézierFlow 15.39 7.84 5.56 3.75
AFHQvV2 64 x 64 with EDM (Karras et al.||2022) (Teacher FID: 2.04)
UniPC 23.59 10.15 7.76 6.38 iPNDM 15.14 6.12 3.80 3.01
+ DMN 30.39 14.40 3.98 3.69 + DMN 3321 15.95 5.99 5.29
+ GITS 13.20 7.50 3.89 3.94 + GITS 14.31 5.81 3.88 3.57
+LD3 18.17 4.95 2.68 3.02 +LD3 11.85 3.11 245 2.18
+ BézierFlow 12.27 4.46 2.75 2.67 + BézierFlow 14.44 4.69 2.63 2.16

Table 2: FID comparison of few-step generation with flow-based models. Results of the base
ODE solvers are reported on each top rows, highlighted in gray. Bold indicates the best results, and
underline marks the second best.

Method | NFE=4 NFE=6 NFE=8 NFE=10 | Method | NFE=4 NFE=6 NFE=8 NFE=10
CIFAR-10 32 x 32 with ReFlow (Liu et al.}|2023) (Teacher FID: 2.70)
RK1 52.78 26.30 17.40 13.30 RK2 25.36 12.12 9.17 7.89
+ DMN 180.03 104.23 30.94 21.58 + DMN 82.41 51.99 21.43 18.62
+ Bespoke 45.31 18.08 11.88 9.25 + Bespoke 39.45 64.87 16.67 13.34
+ GITS 47.42 26.11 19.89 15.34 + GITS 22.84 11.84 8.77 6.58
+LD3 38.95 20.10 12.54 9.64 +LD3 29.45 13.82 6.26 3.86
+ BézierFlow 20.64 9.67 7.30 5.51 + BézierFlow 13.18 6.00 4.31 3.74
ImageNet 256 x 256 with FlowDCN (Wang et al.| 2024) (Teacher FID: 15.89)
RK1 12.03 12.04 13.55 14.43 RK2 791 10.54 12.97 14.08
+ DMN 142.79 28.56 10.61 11.69 + DMN 7.96 10.23 9.42 7.86
+ Bespoke 11.85 11.81 13.39 14.31 + Bespoke 7.66 10.05 13.02 14.23
+ GITS 13.20 1091 11.91 12.93 + GITS 8.18 9.80 12.30 13.27
+LD3 11.62 11.94 13.36 14.12 +L1LD3 7.59 10.17 12.75 14.04
+ BézierFlow 15.60 6.85 7.77 8.11 + BézierFlow 9.50 5.94 6.22 7.56
MS-COCO 512 x 512 with Stable Diffusion (Esser et al.| |2024) (Teacher FID: 12.13)
RK1 57.93 30.96 21.50 17.19 RK2 34.95 17.89 13.33 11.61
+ DMN 113.24 46.02 31.58 24.41 + DMN 36.33 16.45 27.09 17.36
+ Bespoke 134.21 52.51 23.70 20.69 + Bespoke 4523 40.87 20.18 13.26
+ GITS 70.01 42.44 31.89 25.47 + GITS 31.09 21.21 15.58 14.65
+LD3 55.31 36.85 20.37 19.76 +LD3 39.03 18.04 12.30 11.54
+ BézierFlow 54.05 33.43 19.69 16.52 + BézierFlow 33.94 16.41 12.20 11.02

Overall, these results demonstrate that BézierFlow attains the best or comparable performance to
existing acceleration approaches across diverse experiment setups, including both diffusion and flow
models, different NFEs, ODE solvers, and datasets.

Qualitative Results. We present qualitative results for accelerated sampling of diffusion models in
Fig.2]and flow models in Fig.[3] Across both model classes, BézierFlow (BF) consistently produces
sharper details and fewer artifacts at low NFEs. Notably, in the last row of Fig.[2|(right), the baselines
fail to generate a plausible animal face, whereas our method produces a clear and realistic cat face.
See App. [F for more qualitative results.

Under review as a conference paper at ICLR 2026

NFE| UniPC DMN GITS LD3 BF NFE| UniPC DMN GITS LD3 BF
FFHQ 64 X 64 with EDM (Karras et al |m AFHQv2 64 x 64 with EDM (Karras et al} [2022)

Figure 2: Qualitative comparisons of samples generated using NFEs 6 and 8 on FFHQ and
AFHQv2 datasets. We use UniPC solver as the base solver for both cases.

NFE| RK2 DMN GITS Bespoke LD3 BF NFE| RK2 DMN GITS Bespoke LD3 BF
CIFAR-10 32 x 32 with ReFlow (Liu et al} 2023) ImageNet 256 x 256 with FlowDCN (Wang et al} [2024)

REREAE A
eis s s
R EE LR E
W e EEE S

Figure 3: Qualitative comparisons of samples generated using NFEs 6 and 8 on CIFAR-10 and
ImageNet datasets. We use RK2 solver as the base solver for both cases.

Table 3: Generalizability of BézierFlow to unseen Table 4: Comparison with distillation
NFEs. Each column corresponds to the inference methods on CIFAR-10. The middle column
NFE. Baselines are trained with the same NFE used at reports FID and NFE. Our training time is
inference, whereas ours is trained once with NFE=10 measured on an NVIDIA A6000, while dis-
and directly applied to unseen NFEs. Reported results tillation times are directly from the original
are FID scores on CIFAR-10 (lower is better; best in papers on NVIDIA A100s. Best in bold.

bold).

Method FID (})/ NFE Training Time

Method RK1 RK2 CIFAR-10 32 x 32 — Diffusion
6 8 10 6 8 10 op 2.93 / NFE=2 8 days

GITS 26.11 19.89 15.34 11.84 8.77 6.58 BF w/UniPC 2.09 / NFE=10 15 minutes
Bespoke 18.08 11.88 9.25 64.87 16.67 13.34 CIFAR-10 32 X 32 — Flow
LD3 20.10 12.54 9.64 13.82 6.26 3.86

2-RF 3.85/NFE=2 8 days
BF (NFE=10) 18.50 9.02 6.01 9.57 5.32 3.71 BF w/ RK2 374/ NFE=10 15 minutes

Effect of the Degree of Bézier Functions. Fig.[4]shows the effect of the degree of Bézier functions
by varying the number of control points from 4 to 32. Across different datasets, NFEs, and base ODE
solvers, increasing the number of control points consistently improves FID, indicating that higher-
degree Bézier functions provide greater expressiveness for learning optimal sampling trajectories.

Under review as a conference paper at ICLR 2026

CIFAR-10
——n=4
n=8
——n=16
\\\—:njz
i 6 8 10
NFE NFE NFE
(a) UniPC (b) iPNDM (d) RK2

Figure 4: Effect of the degree of Bézier functions. Each line reports FID scores on CIFAR-10
across Bézier function degrees n from 4 to 32. Higher degrees yield lower FID, with convergence
around n = 32.

Empirically, we observe that the additional gains between n = 16 and n = 32 become marginal, so
we adopt n = 32 as our default. Note that the training time overhead from increasing n is negligible,
with only a few seconds difference between n = 4 and n = 32.

Generalizability to Unseen NFEs. As discussed in Sec. unlike prior works (Xue et al.
2024} |Chen et al.l 2024} Tong et al.l 2025} |Shaul et al.l |2024)) that learn discrete per-step vari-
ables, BézierFlow learns the sampling trajectory with continuous functions, enabling generalization
to NFEs unseen during training. As shown in Tab. 3] BézierFlow trained with NFE=10 also per-
forms well at NFE=6 and NFE=8, achieving outperforming FID scores against the baselines trained
directly at those NFEs.

Training Efficiency. In Tab. |4} we compare BézierFlow on CIFAR-10 (Krizhevskyl|2009) against
representative distillation-based approaches: Consistency Distillation (CD) (Song et al., [2023)) for
diffusion models and 2-Rectified Flow (2-RF) (Liu et al., [2023) for flow models. While BézierFlow
achieves better FID scores with a larger inference NFE, its fraining cost is significantly lower, re-
quiring only 15 minutes compared to 8 days for distillation, which corresponds to approximately
0.13% of the training time. A more comprehensive comparison of training time is provided in

App.

Combination with LD3. Since LD3 optimizes discrete timesteps while BézierFlow learns contin-
uous sampling paths, it is natural to ask whether combining the two yields complementary improve-
ments. We therefore optimize both the target timesteps and the scheduler in a unified framework. As
shown in Tab. [5]of the Appendix, however, the combination does not offer clear advantages over us-
ing BézierFlow alone. This suggests that although LD3 and BézierFlow address orthogonal aspects
of the problem, their benefits do not simply accumulate when applied together.

6 CONCLUSION

We introduce BézierFlow, a lightweight training framework for few-step generation. By combining
the optimization of sampling trajectories, rather than discrete ODE timesteps, with a Bézier-based
continuous parameterization, BézierFlow achieves consistent improvements across diffusion and
flow models with only minutes of training, surpassing existing lightweight training approaches. For
future work, we plan to explore alternative basis functions for Bézier functions, which may enable
richer expressiveness with fewer control points.

Ethics Statement. We affirm adherence to the ICLR Code of Ethics. This work relies only on
publicly available models and datasets and does not involve human subjects, user data, or personally
identifiable information. We acknowledge the potential for misuse of generative Al and encourage
responsible deployment and use of our method.

Reproducibility Statement. We plan to release the code upon publication. Details of the exper-
imental implementation are provided in Sec. [5] and App. [D] Theoretical analyses of the scheduler
reparameterization are also included in App. [Al

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic Interpolants: A Unifying Frame-
work for Flows and Diffusions. arXiv, 2023.

Michael S. Albergo, Nicholas M. Boffi, Michael Lindsey, and Eric Vanden-Eijnden. Multimarginal generative
modeling with stochastic interpolants. In /CLR, 2024.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel Zheng, Walter
Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure time-distillation. arXiv
preprint arXiv:2303.04248, 2023.

J.C. Butcher. A history of runge-kutta methods. Applied Numerical Mathematics, 1996.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An
information-rich 3d model repository. In International Conference on 3D Vision, 2015.

Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory regularity of ode-
based diffusion sampling. In ICML, 2024.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple
domains. In CVPR, 2020.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols, and
Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design applications. In Proceedings of
the 30th Annual ACM Symposium on User Interface Software and Technology, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam Levi, Do-
minik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, and Robin Rom-
bach. Scaling rectified flow transformers for high-resolution image synthesis. In ICML, 2024.

Julian Jorge Andrade Guerreiro, Naoto Inoue, Kento Masui, Mayu Otani, and Hideki Nakayama. Layoutflow:
Flow matching for layout generation. In ECCV, 2024.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free
evaluation metric for image captioning. In EMNLP, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In NeurlPS, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In CVPR, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. 2022. URL https://arxiv.org/abs/2206.00364.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong He,
Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode trajectory
of diffusion. In ICLR, 2024.

Jaihoon Kim, Taehoon Yoon, Jisung Hwang, and Minhyuk Sung. Inference-time scaling for flow models via
stochastic generation and rollover budget forcing. In NeurIPS, 2025.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In NeurIPS,
2023.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-pic: An
open dataset of user preferences for text-to-image generation. In NeurlPS, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Mingxiao Li, Tingyu Qu, Ruicong Yao, Wei Sun, and Marie-Francine Moens. Alleviating exposure bias in
diffusion models through sampling with shifted time steps. In /CLR, 2024.

10

https://arxiv.org/abs/2206.00364

Under review as a conference paper at ICLR 2026

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
generative modeling. In ICLR, 2023.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q. Chen, David
Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. 2024. URL https://arxiv.
org/abs/2412.06264,

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In ICLR, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver
for diffusion probabilistic model sampling in around 10 steps. In NeurIPS, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver for
guided sampling of diffusion probabilistic models. In /CLR, 2023.

Ashwini Pokle, Matthew J Muckley, Ricky TQ Chen, and Brian Karrer. Training-free linear image inverses via
flows. TMLR, 2024.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In /CLR, 2022.

Neta Shaul, Juan Perez, Ricky T. Q. Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Bespoke solvers
for generative flow models. In /CLR, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In /CLR, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In /CLR, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.

Vinh Tong, Trung-Dung Hoang, Anji Liu, Guy Van den Broeck, and Mathias Niepert. Learning to discretize
denoising diffusion odes. In ICLR, 2025.

Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, and Limin Wang. Flowdcn: Explor-
ing dcn-like architectures for fast image generation with arbitrary resolution, 2024.

Shuchen Xue, Zhaogiang Liu, Fei Chen, Shifeng Zhang, Tianyang Hu, Enze Xie, and Zhenguo Li. Accelerating
diffusion sampling with optimized time steps. In CVPR, 2024.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator. In /CLR,
2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In CVPR, 2018.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-corrector
framework for fast sampling of diffusion models. In NeurIPS, 2023.

Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion: Control-
lable diffusion model for layout-to-image generation. In CVPR, 2023.

Linqgi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel diffusion. In
ICCV, 2021.

Lingi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In /ICML, 2025.

11

https://arxiv.org/abs/2412.06264
https://arxiv.org/abs/2412.06264

Under review as a conference paper at ICLR 2026

A VALIDITY OF SCHEDULER REPARAMETERIZATION

We provide a detailed exposition of two key properties discussed in Sec.[4.2} (i) the preservation of
endpoint marginals, and (ii) the invaraince of the SI training objective with respect to the choice of
schedule, provided that the SNR endpoints are identical.

Proposition A.1. (Endpoint marginals equivalence) Let py and p1 denote the endpoint marginals of
xy governed by a scheduler (o, o), po and p1 denote those of another stochastic interpolant T . If
Ty = coxy, with cs and ts defined in Eq. [0 then the endpoint marginals are preserved, i.e., po = po
and p1 = 1.

Proof. By the boundary conditions discussed in Sec. [3] any SI scheduler satisfies
a(0)=0,a(l)=1,0(0)=1, 0(1) =0. (13)

From Eq.[6] ¢, = 1 atboth s = 0 and s = 1. By the definition of t; = p~*(p(s)), we also have
ts—o = 0andt,—1 = 1. Hence, Ts—¢ = T;—¢ and Ts—1 = x¢—1. Since the pair of endpoints (z¢, x1)
does not change under the sampling path transformation, the endpoint marginals also coincide: py =
Po and p1 = p1. O

Proposition A.2. (Training objective invariance) For any two schedulers (v, o) and (&g, 5) with
matching SNR endpoints, training an SI model Sy under either scheduler minimizes the same train-
ing objective, hence yields equivalent optima.

Proof. As noted in Sec. |3} different SI models (noise, velocity, or score predictors) learn different
but interchangeable quantities, and can all be expressed in the denoiser form 4. For convenience,
we therefore recall the continuous-time SI objective in the denoiser form (Eq. 18 from|Kingma et al.
(2023)): for a schedule (ay, o) with p(t) = a(t)/o(t) strictly increasing, define v = p* and

T, =+ o0, o i=ofp (VV)), op=0a(p T (VV)), (14)

with Vmin = p(0)2, Vmax = p(1)2. Then,

L,[¢; (o, 0¢)] = %/ Ez; ~paata, zo~po [”xl - §:¢(x,,,1/)||§] dv. (15)

Now consider another schedule (&, d,) with the same SNR endpoints. Since p(t) = o) and

o(t)
p(s) = ggg are strictly increasing, the maps t + v = p(t)? and s — v = p(s)? are bijections onto

the common interval [Vin, ¥max]- Now, for each fixed v, we have

_a®)? _ als)?

= = 16
oW 7P 1o

which implies 0, = % and 5, = 5\‘5 Therefore, the interpolants satisfy
Ty = Oél,<$1 + %Sﬂo), Ty = C_Vv(l'l + %lb)y (17)

so that z,, = 2~ 7. This shows that the two interpolants differ only by a scalar rescaling factor, and
since the integration limits are the same, we conclude

ﬁu [¢1 (at; Ut)] = 'CV[¢a (dsv 63)]~ (18)
O

B THEORETICAL ANALYSIS OF SAMPLING TRAJECTORY SPACES

In this section, we formally show that the family of sampling trajectories realizable by BézierFlow
is a super set of that of LD3 (Tong et al.,|2025), offering better optimization advantages.

12

Under review as a conference paper at ICLR 2026

Theorem B.1 (Inclusion of LD3 in the BézierFlow Trajectory Space). Let M and D denote the num-
ber of sampling steps and the dimension of the state x, respectively. Let Xi,pz, Xgp C RM+1XD pe
the sets of sampling trajectories over discrete timesteps realizable by LD3 and BézierFlow (parame-
terized by Bézier curves of degree n > M). Assuming the source sampling path defines a non-linear
geometry, the trajectory space of LD3 is a subset of that of BézierFlow:

A1p3 C ABF. (19)

Proof. Let {t; }* and {s; }*L ;) denote the timesteps on the source scheduler and on the trajectory
induced by the Bézier SI scheduler, respectively, with

0:t0<t1<...<tM:1’ O=sp<s1<---<sy=1.
Define
ap = a(tk), O = J(tk)7 Ty, = QX1 + 0o, k=0,...,M. (20)
With this notation, any LD3 sampling trajectory over M timesteps can be written as x =
(xto, C ,CL‘tM) € X1ps.

Since a Bézier curve of degree n > M can interpolate any M + 1 distinct values, there exists 0*
such that
ags (sK) = ay, Go+(sk) = Ok, Vk. 2D
Hence
_ ag-(sK) oy,
g+ (s) i= ———= = — = p(tx), (22)
Por(sn) =20 = 5~ P)

and therefore

ts, =0~ (Po-(s1)) =te, cs = =—=1 (23)
Using the sampling transformation in Eq. 8]
Tsy, = C5,Tt,, = Tty vk, (24)
so every x € Apps is also realizable by BézierFlow, and thus

X1.p3 € ABF. (25)

For strictness, fix {t;}#L and consider a target scheduler ¢ such that

po(sk) = p(te), gy(sx) # o, for at least one k. (26)
Then
ts, = p " (Po(sk)) = ti Co = To(sk) = To(sk) £ 1 for at least one k (27)
k) k O'(tsk) o 9

and the resulting trajectory satisfies
Ts), = Cop Ty, s, # 1 for some k. (28)

Since LD3 is constrained to the fixed source scheduler, which corresponds to sampling via Eq. [§]
with

Sk = tk, cs, =1, (29)
so any trajectory with ¢, # 1 for some k cannot be realized by LD3. Thus
xp € Xgr and xp ¢ Xips, (30)
which implies
XLp3 & ABF. (31)
U

13

Under review as a conference paper at ICLR 2026

Table 5: FID comparison of BézierFlow, LD3 and their combination, denoted as Both. The best
results are highlighted in bold and the second best results are underlined. Gray cells indicate the
base ODE solvers.

Method \ NFE=4 NFE=6 NFE=8 NFE=10 \ Method \ NFE=4 NFE=6 NFE=8 NFE=10
UniPC \ CIFAR-10 with EDM (Teacher FID: 2.08) | UniPC \ FFHQ with EDM (Teacher FID: 2.86)
+LD3 12.04 3.56 2.43 2.62 +LD3 22.48 6.16 4.25 2.92

+ BézierFlow 9.55 3.13 240 2.09 + BézierFlow 17.05 743 3.82 3.13

+ Both 9.32 3.37 2.44 2.71 + Both 20.77 6.24 4.13 3.04
RK2 \ CIFAR-10 with ReFlow (Teacher FID: 2.70) \ RK2 \ ImageNet with FlowDCN (Teacher FID: 15.89)
+LD3 29.45 13.82 6.26 3.86 +LD3 7.59 10.17 12.75 14.04
+ BézierFlow 13.18 6.00 4.31 3.74 + BézierFlow 9.50 5.94 6.22 7.56
+ Both 12.23 5.50 3.74 317 + Both 9.11 6.64 9.38 10.88

Table 6: FID comparison of BézierFlow, Bespoke Solver and Bespoke Solver trained with our
training loss, denoted as Bespoke*. Results for the base solvers are reported on each top rows. The
best results are highlighted in bold and the second best results are underlined. Gray cells indicate
the base ODE solvers.

Method | NFE=4 NFE=6 NFE=8 NFE=10 | Method | NFE=4 NFE=6 NFE=8 NFE=10

CIFAR-10 32 x 32 with ReFlow (Liu et al.}|2023) (Teacher FID: 2.70)

RK1 52.78 26.30 17.40 13.30 RK2 25.36 12.12 9.17 7.89
+ Bespoke 4531 18.08 11.88 9.25 + Bespoke 39.45 64.87 16.67 13.34
+ Bespoke* 38.34 17.28 10.34 7.65 + Bespoke* 19.44 49.65 4.40 3.70
+ BézierFlow 20.64 9.67 7.30 5.51 + BézierFlow 13.18 6.00 4.31 3.74

Proposition B.2 (Better Optima under Larger Trajectory Spaces). Let Xip3, Xgr C RMH1XD pe
the trajectory spaces of LD3 and BézierFlow, respectively, and suppose

Aip3 C Xr (32)

as in Theorem[B1| Let L : X — R be any real-valued objective functional (e.g., a distillation loss
to a teacher). Define the optimal objective values

ips = inf L(x), Lip = inf L(x). (33)

i
xEXLD3 xXEAXBF

Then, the following inequality holds:
pr < Lips- (34

Proof. Recall that for any two sets .4 C 5 and an objective function f, the infimum over the superset
is less than or equal to the infimum over the subset, i.e.,

inf < inf . 35
inf f(z) < inf f(2) 35)
Since A1,ps C ABr, applying this property directly yields:

Lip= inf L < inf L(x) = Lips- 36
BF xelg.’gp (x) < xelf\}wa (x) LD3 (36)

Moreover, if there exists x’ € App \ A1,p3 such that £L(x') < L] 5, then
Lhe < Lips. (37)
O

C COMPARISON OF PARAMETERIZATION AGAINST BESPOKE SOLVER

As discussed in Sec@ both Bespoke Solver (Shaul et al., 2024} and BézierFlow aim to learn sam-
pling trajectories, but differ in (i) parameterization and (ii) training objective. Bespoke Solver (Shaul
et al., 2024) employs discrete per-step parameterization and minimizes step-wise /> errors against

14

Under review as a conference paper at ICLR 2026

teacher outputs, whereas BézierFlow adopts a Bézier-based continuous parameterization and is
trained with a global truncation loss, computed along the full trajectory from xy to xy, with
LPIPS (Zhang et al.| 2018).

To ablate the effect of different training objectives and focus solely on parameterization, we report
additional quantitative results in Tab. [} where Bespoke* retains Bespoke Solver’s parameterization
but adopts the same training objective as ours. While Bespoke* improves over the original Be-
spoke Solver, BézierFlow remains superior, with especially large gains at low NFEs, such as +17.7
FID improvement at NFE=4 with RK1, underscoring the advantage of our Bézier-based continuous
parameterization.

D IMPLEMENTATION DETAILS

We first describe the shared experimental setup for the methods based on teacher-forcing framework
(Bespoke solver, LD3, and BézierFlow) and method-specific configurations for BézierFlow and the
baselines.

D.1 SHARED SETUP

Teacher Data Generation. We generate teacher samples using the high-order adaptive solver
RK45 (Butcher], [1996)), except for Stable Diffusion v3.5 (Esser et al.| [2024), where we adopt RK2
with 30 NFEs. The same teacher samples are used for all baselines that rely on the teacher-forcing
framework (e.g., Bespoke Solver, LD3).

Training. We train for 8 epochs on CIFAR-10 (Krizhevskyl 2009), FFHQ (Karras et al., 2019)), and
AFHQV2 (Choi et al.,[2020), and for 5 epochs on ImageNet (Deng et al.,[2009) and Stable Diffusion
v3.5 (Esser et al., 2024). At the end of each epoch, we perform validation and select the checkpoint
with the best validation score for final evaluation. We use LPIPS (Zhang et al., 2018)) as the distance
metric for LD3 (Tong et al., [2025) and BézierFlow, and RMSE for Bespoke Solver (Shaul et al.,
2024]).

Evaluation. We report Fréchet Inception Distance (FID) (Heusel et al., 2017) scores computed
against the reference set using 50K randomly generated samples. On ImageNet, generated sam-
ples are drawn to match the class distribution of the reference set. For SD3.5, both reference and
generated samples are constructed from disjoint subsets of 30K text prompts from the MS-COCO
validation set, following the setup of LD3 (Tong et al., [2025).

D.2 BEZIERFLOW TRAINING DETAILS

Target Timesteps. For diffusion models, the timesteps {s; }NYE are initialized to be uniformly
spaced in terms of the signal-to-noise ratio (SNR). For flow models, they are initialized to be uni-
formly spaced in the time domain.

Initialization. We initialize the Bézier scheduler with a linear SI scheduler, i.e., @(s) = s and
a(s) = 1 — s. Under the 1D Bézier parameterization, this corresponds to

01 =1, 69 =1, i=01,...,n, (38)
which places the n — 1 interior control points uniformly between the two endpoints. We use 32

control points in all experiments. For decoupled timesteps s§ that are fed into the model, we set
s¢ = s; + 6\, with 6'°) initialized to zero, following LD3 (Tong et al., 2025).

Optimizer. We optimize the Bézier scheduler parameters 6(*), 8(°) using RMSprop, and the de-
coupled timesteps 91(6) using SGD. For RMSprop, we set the momentum to 0.9 and weight decay to
0. The learning rate is 5 x 10~3 for CIFAR-10, FFHQ, and AFHQv2, and 1 x 10~3 for ImageNet and
Stable Diffusion v3.5. For the decoupled timesteps, we use SGD with a learning rate of 1 x 10~ for
all datasets, except for Stable Diffusion v3.5, where we use 1 x 1075, We apply gradient clipping
with a global norm threshold of 1.0 to all parameters.

15

Under review as a conference paper at ICLR 2026

Table 7: FID comparison of few-step generation with diffusion models at extremely low NFEs.
Results of the base ODE solvers are reported on each top rows. Bold indicates the best results, and
underline marks the second best. Gray cells indicate the base ODE solvers.

| CIFAR-1032 x 32 with EDM | FFHQ 64 X 64 with EDM | AFHQv2 64 x 64 with EDM
Method | NFE=1 NFE=2 NFE=3 | NFE=1 NFE=2 NFE=3 | NFE=I NFE=2 NFE=3
UniPC 371.15 168.35 57.45 280.61 104.57 59.54 312.37 64.62 44.52
+DMN - 160.65 66.03 - 142.57 64.99 - 141.99 70.01
+GITS - 168.29 53.21 - 107.71 42.38 - 73.95 25.13
+LD3 - 187.42 39.56 - 120.87 48.30 - 107.77 30.53
+BézierFlow | 125.03 50.41 55.07 121.94 72.03 33.72 159.58 39.86 2631
iPNDM 377.15 153.31 47.68 280.61 102.50 45.70 312.37 79.32 38.16
+DMN - 146.40 58.98 - 112.55 61.54 - 128.36 76.28
+GITS - 15333 43.71 - 105.78 32.33 - 95.47 26.40
+LD3 - 145.03 32.19 - 97.62 38.14 - 91.10 23.85
+BézierFlow | 125.03 41.58 22.20 121.94 60.45 35.10 159.58 34.70 36.26

Table 8: FID comparison of few-step generation with flow models at extremely low NFEs.
Results of the base ODE solvers are reported on each top rows. Bold indicates the best results, and
underline marks the second best. Gray cells indicate the base ODE solvers.

| CIFAR-10 32 x 32 with ReFlow | ImageNet 256 x 256 with FlowDCN | MS-COCO 512 x 512 with SDv3.5

Method ‘ NFE=1 NFE=2 NFE=3 ‘ NFE=1 NFE=2 NFE=3 ‘ NFE=1 NFE=2 NFE=3
RK1 379.22 171.48 89.00 263.54 113.27 27.69 328.02 214.03 103.97
+DMN - 170.53 79.54 - 115.89 42.78 - 218.20 82.68
+ GITS - 183.40 81.46 - 130.81 31.70 - 166.06 94.94
+ Bespoke 471.18 405.94 265.77 264.81 114.66 28.27 324.94 212.16 98.91
+LD3 - 182.40 81.35 - 126.29 85.16 - 150.21 85.16
+ BézierFlow 314.52 67.63 30.40 261.79 94.64 44.60 320.67 156.20 83.55
RK2 - 128.80 - - 90.26 - - 163.35 -
+DMN - - - - - - - - -

+ GITS - - - - - - - - -

+ Bespoke - 309.60 - - 86.58 - - 162.40 -
+LD3 - - - - - - - - -

+ BézierFlow - 70.87 - - 83.97 - - 146.20 -

D.3 BASELINES

GITS (Chen et al., 2024). We adopt the official implementation code and follow the default num-
ber of sampling trajectories, which is 256.

Bespoke Solver (Shaul et al.,[2024). Since no official implementation code is publicly available,
we re-implemented the method based on the descriptions in the original paper. We employ Adam
optimizer with a learning rate of 1 x 10~%, as we observed that the learning rate reported in the paper
(2 x 1073) caused divergence and very high FID scores when training on relatively small datasets.

LD3 (Tong et al.,|2025). We adopt the official implementation code and follow the default training
configurations. For timestep parameters, we use the same optimizer and match their learning rate to
that of our scheduler. For the decoupled timesteps, we follow the original parameterization and use
SGD with a learning rate of 0.1.

E MORE QUANTITATIVE RESULTS

E.1 PROBING BEZIERFLOW AT EXTREMELY Low NFES

To stress-test BézierFlow in the extreme low-NFE regime and identify where quality collapse begins,
we conduct additional experiments in the very low-NFE range (NFE < 3), which is even lower than
the NFEs used in Sec.[5] Except for the NFEs, all other experiment setups follow those used in
Sec.

16

Under review as a conference paper at ICLR 2026

Table 9: Quantitative comparison of few-step generation on text—image alignment with Stable
Diffusion (Esser et al.,2024). Results for the base solvers are reported on each top rows. Bold
indicates the best results, and underline marks the second best. Gray cells indicate the base ODE
solvers.

Method NFE=4 NFE=6 NFE=8 NFE=10
CLIP 7t PickScore 1 CLIP 1 PickScore 1 CLIP 1 PickScore 1 CLIP 1 PickScore 1

MS-COCO 512 x 512 with Stable Diffusion (Esser et al.l 2024)

RK1 0.240 0.206 0.252 0.212 0.257 0.215 0.260 0.217
+ DMN 0.225 0.199 0.246 0.209 0.253 0.213 0.256 0.215
+ Bespoke 0.241 0.206 0.243 0.212 0.251 0.214 0.252 0.216
+ GITS 0.234 0.204 0.247 0.210 0.252 0.213 0.255 0.214
+LD3 0.244 0.208 0.249 0.212 0.258 0.217 0.258 0.217
+ BézierFlow 0.245 0.209 0.253 0.214 0.256 0.217 0.258 0.217
RK2 0.244 0.208 0.255 0.214 0.259 0.216 0.260 0.217
+DMN 0.243 0.208 0.257 0.216 0.252 0.213 0.259 0.217
+ Bespoke 0.244 0.208 0.225 0.200 0.253 0.215 0.257 0.217
+ GITS 0.251 0.211 0.255 0.214 0.257 0.216 0.258 0.216
+LD3 0.241 0.208 0.255 0.215 0.260 0.218 0.261 0.218
+ BézierFlow 0.248 0.210 0.258 0.215 0.260 0.217 0.263 0.219

Table 10: Quantitative comparison on training efficiency in few-step generation for diffusion
and flow models on CIFAR-10. All experiments are conducted on A6000 GPUs, except for the last
row of distillation methods, which reports the performance of pretrained model from their official
implementations (Song et al, 2023} [Liu et all 2023). “Time” denotes wall-clock training time,
where s/m/d denote seconds/minutes/days, respectively.

Method NFE=6 NFE=8 Method NFE=6 NFE=8
FID | Time | FID | Time | FID | Time | FID | Time J
(1) Non-distillation Methods
iPNDM ‘ CIFAR-10 with EDM (Teacher FID: 2.08) ‘ RK2 ‘ CIFAR-10 with ReFlow (Teacher FID: 2.70)
+ DMN 9.33 Ss 4.82 Ss + DMN 51.99 Ss 21.43 Ss
+ GITS 6.80 30s 4.07 30s + GITS 11.84 30s 8.77 30s
+ Bespoke - - - - + Bespoke 64.87 30m 16.67 30m
+LD3 442 10m 2.93 13m +LD3 13.82 10m 6.26 13m
+ BézierFlow 3.35 10m 2.81 13m + BézierFlow 6.00 10m 4.31 13m
(2) Distillation Methods
CD 359.59 15m 343.59 15m +2-RF 12.12 15m 9.17 15m
CD 4.24 6d 3.95 6d + 2-RF 5.69 2d 545 2d
CD 2.82 8d (A100) 2.79 8d (A100) | +2-RF 3.74 8d (A100) 3.68 8d (A100)

As summarized in Tab.[7]and Tab.[8] BézierFlow remains effective even at extremely low NFEs for
both diffusion and flow models, improving over the base solvers by a substantial margin. Note that
blank entries for RK2 simply reflect that RK2 only supports even numbers of function evaluations
and has no timestep to learn in NFE=2. Furthermore, for NFE=1, timestep-learning methods cannot

be applied, whereas scheduler-learning approaches such as Bespoke Solver 2024) and
BézierFlow remain applicable.

E.2 TEXT-IMAGE ALIGNMENT FOR FOUNDATIONAL MODEL

To complement the zero-shot MS-COCO FID results of Stable Diffusion v3.5 (Esser et al, [2024)
in Tab. 2] we provide additional evaluation results for a more comprehensive assessment. We report
CLIP score (Hessel et al.l [2021)) and PickScore (Kirstain et al., 2023)), both of which measure the
alignment between the given text prompt and the generated image.

As shown in Tab. [9] BézierFlow achieves the best or second-best performance across various NFEs,
solvers, and evaluation metrics except for the CLIP Score at NFE=8 with the RK1 solver. These
additional results further corroborate the superiority of BézierFlow even with the large-scale 2.5B

pretrained stochastic interpolant model (Esser et al.,2024).

17

Under review as a conference paper at ICLR 2026

NFE ‘ UniPC DMN GITS LD3 BF NFE ‘ UniPC DMN GITS LD3 BF
FFHQ 64 x 64 with EDM (Karras et al.l 2022) AFHQV2 64 x 64 with EDM (Karras et al.l 2022)

D
_
__

Figure 5: Qualitative comparisons of samples generated using NFEs 6 and 8 on FFHQ and
AFHQv2 datasets. We use UniPC solver as the base solver for both cases.

L

NFE| RK2 DMN GITS Bespoke LD3 BF NFE| RK2 DMN GITS Bespoke LD3 BF
CIFAR-10 32 x 32 with ReFlow (Liu et al.l 2023) ImageNet 256 x 256 with FlowDCN (Wang et al lm

pepeSS llllll

. P P P . W I SO 31T

TXCECECEETY
o go e oo e o B

Figure 6: Qualitative comparisons of samples generated using NFEs 6 and 8 on CIFAR-10 and
ImageNet datasets. We use RK2 solver as the base solver for both cases.

E.3 COMPARISON ON TRAINING EFFICIENCY WITH FEW-STEP GENERATION METHODS

For a more comprehensive and fair comparison of training efficiency beyond the Tab. 4] we report
additional results at matched NFEs with varying training budgets in Tab. As shown, under
the same NFEs, distillation-based approaches (Consistency Distillation (CD) (Song et al.| [2023))
and 2-Rectified Flow (2-RF) 2023)) yield notably worse FID under the same lightweight
training budget (15 minutes) and require substantially longer training time (2-6 days) to achieve FID
comparable to BézierFlow, corresponding to roughly 200-600x more training time. These results
underscore BézierFlow’s highly training-efficient acceleration, achieving in just a few minutes the
performance that prior distillation-based approaches require several days of training to reach. Note
that the 15-minute performance of 2-RF is identical to that of the base pretrained model as this
budget is fully spent on the data creation stage for ReFlow.

We also include training time comparisons against non-distillation baselines that accelerate genera-
tion with lightweight training, including DMN, GITS, Bespoke Solver and LD3 2024;
[Chen et al} 2024} [Shaul et al 2024} [Tong et al, 2025). Among these lightweight acceleration
methods, BézierFlow achieves the best FID, even outperforming LD3 under the same training bud-
get. This demonstrates that BézierFlow offers a more favorable trade-off between training efficiency
and sample quality.

18

Under review as a conference paper at ICLR 2026

NFE ‘ RK1 DMN GITS Bespoke LD3 BézierFlow
MS-COCO 512 x 512 with Stable Diffusion (Esser et al.l 2024)

Yy

“A man standing up against a wall with his hands clasped together.”

“A laptop computer sitting on top of a wooden table.”

8 “Computer on the desk at nighttime in front of a window.”
“A brown dog hanging it’s head out of a car window.”
NFE RK2 DMN GITS Bespoke LD3 BézierFlow

“A young lady riding skis on a snow covered slope.”

Figure 7: Qualitative comparisons of samples generated using NFEs 6 and 8 with Stable Diffu-
sion v3.5 Esser et al.[(2024). We use RK1 and RK2 as the base solver.

19

Under review as a conference paper at ICLR 2026

Table 11: Quantitative comparison on unconditional 3D point cloud generation with Point
Voxel Diffusion (PVD) (Zhou et al/,2021). Lower is better for CD-MMD (denoted as MMD) and
JSD and higher is better for CD-COV (denoted as COV). CD-MMD is multiplied by 10%. Results
for the base solvers are reported on each top rows. Bold indicates the best results, and underline
marks the second best. Gray cells indicate the base ODE solvers.

Method \ NFE=4 NFE=6 NFE=8§ NFE=10

| MMD| COVt JSD) MMDJ, COVt IJSD, MMDJ| COVt JSDL MMD] COV+ ISDJ
UniPC 2.50 321 0.46 1.25 8.89 0.30 0.95 17.03 0.25 0.79 20.25 0.22
+DMN 1.10 16.79 0.27 0.68 26.42 0.23 1.50 15.06 0.32 0.67 1951 0.27
+GITS 532 9.52 0.56 9.14 0.74 0.63 1.20 2025 031 0.90 1630 0.23
+LD3 1.20 21.23 0.24 1.16 20.74 024 0.80 21.48 0.25 091 21.23 0.23
+ BézierFlow 0.88 18.77 0.29 0.59 2.72 0.23 0.58 2345 0.24 0.53 2370 0.21
iPNDM 117 14.81 0.27 091 16.54 0.23 0.78 23.46 0.21 0.67 26.67 0.20
+DMN 118 19.26 0.29 0.63 24.69 0.22 1.74 6.17 035 0.65 20.49 0.22
+GITS 3.22 7.65 0.44 359 321 0.48 3.99 1.73 0.49 273 3.95 0.41
+LD3 2.40 13.33 0.34 0.89 18.52 0.25 0.77 19.01 0.25 0.70 2.72 0.22
+ BézierFlow 0.85 18.52 0.29 0.58 273 0.23 0.57 24.44 0.23 0.56 24.52 021

F MORE QUALITATIVE RESULTS

We provide more qualitative results for accelerated sampling of diffusion models in Fig.[5|and flow
models in Fig. [f|and Fig.[7] Across both model classes, BézierFlow (BF) consistently yields clearer
structures and more faithful details compared to baselines under low NFEs.

G EXTENSION TO OTHER DOMAINS

BézierFlow is a generic framework applicable not only to image synthesis but also to various gener-
ative tasks within the stochastic interpolant framework. To demonstrate the versatility of our method
and its robustness to different distance metrics beyond LPIPS, we conduct additional experiments
on two distinct domains: 3D point cloud generation and layout generation.

G.1 UNCONDITIONAL 3D POINT CLOUD GENERATION

3D Point cloud generation involves creating 3D representations of objects using discrete points,
a task essential for applications in robotics, autonomous driving, and 3D modeling. We evaluate
BézierFlow using the Point-Voxel Diffusion (PVD) model (Zhou et al., 2021)), trained on the air-

plane category of the ShapeNet dataset (Chang et al,[2015).

Experiment Setup. We adopt a simple mean squared error (MSE) loss for both training and vali-
dation. We generate 32 noise—data pairs for both the training and validation sets using DPM-Solver
2022) with 64 NFEs, and train the model for 5 epochs. We compare our method against
the same set of baselines reported in Tab. [T}

Evaluation Metrics. Following the evaluation protocol of PVD (Zhou et all, [2021)), we assess
the quality of generated samples using three metrics based on the Chamfer Distance (CD): Mini-
mum Matching Distance (CD-MMD), Coverage Score (CD-COV), and Jensen-Shannon Divergence
(JSD).

Results. Tab. 11| presents the quantitative results. BézierFlow consistently achieves the best or
second-best performance on CD-MMD, CD-COV across all NFEs, substantially improving over
the base solvers and timestep-learning baselines (Xue et all, 2024} [Chen et al. 2024} [Tong et al}
[2025). Fig. [§] provides qualitative comparisons of generated 3D point clouds, where BézierFlow
better preserves both the global shape and coverage of the target distribution.

G.2 UNCONDITIONAL LAYOUT GENERATION

Layout generation aims to synthesize structural arrangements of elements (e.g., Ul components,
document blocks), which is a critical step in graphic design automation. We evaluate our method on

20

Under review as a conference paper at ICLR 2026

NFE ‘ iPNDM DMN GITS LD3 BézierFlow

ShapeNet airplane with PVD 1IZhou et al.l 2021)

Figure 8: Qualitative comparisons of 3D point cloud samples generated using NFEs 6 and 8
with PVD (Zhou et al., 2021). We use iPNDM as the base solver.

Table 12: Quantitative comparison on unconditional layout generation with Layout-
Flow (Guerreiro et all,[2024). Lower is better for FID, Alignment (denoted as Align.), Overlap.
Results for the base solvers are reported on each top rows. Bold indicates the best results, and
underline marks the second best. Gray cells indicate the base ODE solvers.

Method | NFE=4 NFE=6 NFE=8 NFE=10
‘ FID | Align. | Overlap | FID | Align. | Overlap | FID | Align. | Overlap | FID | Align. | Overlap |

RK1 55.88 0.40 0.60 22.75 0.35 0.56 11.66 0.30 0.54 7.93 0.27 0.52
+DMN 178.35 0.55 1.08 88.40 0.69 0.70 26.27 0.37 0.46 10.96 0.33 0.46
+ GITS 41.08 0.37 0.57 12.84 0.35 0.47 7.32 0.29 0.45 5.90 0.27 0.46
+ Bespoke 213.61 0.92 1.01 201.20 0.88 0.67 168.49 0.63 0.59 171.11 0.63 0.56
+LD3 19.51 0.32 0.54 8.36 0.28 0.51 5.03 0.23 0.48 3.70 0.23 047
+ BézierFlow 32.78 0.35 0.53 7.10 0.26 0.47 3.86 0.25 0.49 2.96 0.22 0.50
RK2 143.90 0.67 0.65 73.91 0.47 0.49 35.84 0.38 0.51 20.80 0.34 0.51
+ DMN 142.40 0.66 0.35 88.15 0.49 0.46 63.57 0.37 0.42 56.23 0.35 0.43
+ GITS 102.11 0.49 0.42 51.62 0.37 0.48 27.84 0.32 0.50 8.25 0.22 047
+ Bespoke 126.80 0.61 0.47 187.62 0.86 0.37 32,99 0.38 0.54 21.54 0.36 0.50
+LD3 162.98 0.62 0.47 42.82 0.37 0.48 12.57 0.26 0.48 8.39 0.27 0.48
+ BézierFlow 142.34 0.63 0.57 39.17 0.35 0.52 25.51 0.37 0.50 7.18 0.26 0.49

unconditional layout generation using LayoutFlow (Guerreiro et all [2024)), pretrained on the RICO
dataset 2017).

Experiment Setup. We adopt negative mean Intersection over Union (mloU) between the teacher
and student layouts as the objective for both training and validation. We generate 50 noise—data
pairs for both the training and validation sets using an RK45 [1996) solver, and train the
model for 5 epochs. We compare our method against the same set of baselines reported in Tab. 2]

Evaluation Metrics. Following the evaluation protocol of LayoutFlow (Guerreiro et al., [2024),
we assess generation quality using Fréchet Inception Distance (FID) adapted for layouts, alongside

21

Under review as a conference paper at ICLR 2026

NFE RK1 DMN GITS Bespoke LD3 BézierFlow ‘ Teacher

RICO with LayoutFlow (Guerreiro et al.l 2024)

Figure 9: Qualitative comparisons of layout samples generated using NFEs 6 and 8 with Lay-
outFlow (Guerreiro et al),2024). We use RK1 as the base solver. The rightmost column shows
teacher samples from RK45 solver.

Table 13: FID comparison of VDM, Multi-marginal SI (denoted as MMSI), and BézierFlow
on CIFAR-10. Results for the base solvers are reported on each top rows. Bold indicates the best
results, and underline marks the second best. Gray cells indicate the base ODE solvers.

Method ‘ NFE=4 NFE=6 NFE=8 NFE=10 ‘ Method ‘ NFE=4 NFE=6 NFE=8 NFE=10
CIFAR-10 32 x 32 with ReFlow (Liu et al.l 2023) (Teacher FID: 2.70)

RK1 52.78 26.30 17.40 13.30 RK2 25.36 12.12 9.17 7.89

+ VDM 54.72 22.06 19.10 19.00 + VDM 36.24 25.74 16.37 12.39

+ MMSI 22.89 12.06 7.59 5.86 + MMSI 20.82 9.03 7.57 7.79

+ BézierFlow 20.64 9.67 7.30 5.51 + BézierFlow 13.18 6.00 4.31 3.74

Alignment and Overlap scores. For FID calculation, we employ the feature extractor from Layout-

Diffusion (Zheng et al.} 2023).

Results. As shown in Table[I12} BézierFlow shows better performance than other baselines in terms
of FID and Alignment. Interestingly, it consistently outperforms the base solvers (RK1 and RK2) on
all metrics at the same NFE settings. We provide a qualitative comparison of the generated layouts
in Fig. 0] BézierFlow produces layouts that most closely follow the teacher trajectory, preserving
the spatial arrangement and aspect ratios of objects.

22

Under review as a conference paper at ICLR 2026

H COMPARISON WITH OTHER SCHEDULER PARAMETERIZATIONS

In this section, we discuss prior work (Kingma et al., 2023}, [Albergo et al.,[2024)) that also learns op-

timal SI schedulers and compare them against BézierFlow. We first clarify how these methods differ
in their scheduler parameterizations, and then experimentally show that BézierFlow achieves supe-
rior performance due to its compact parameterization that explicitly satisfies the core SI scheduler
requirements: boundary conditions, monotonicity, and differentiability.

Varitional Diffusion Models (Kingma et al.), 2023). Variational Diffusion Models (VDMs)
model the signal-to-noise ratio function SNR(¢) with a monotone neural network to satisfy mono-
tonicity, aiming primarily to improve generative performance rather than sampling acceleration.
However, this neural network contains more than 1024 parameters, and thus is not parameter-
efficient. In contrast, BézierFlow uses a much more compact parameterization with only n = 32
control points in our experiments by leveraging 1-D Bézier functions, reducing the number of sched-
uler parameters by roughly an order of magnitude.

Multi-Marginal Stochastic Interpolant (Albergo et al),2024). Multi-Marginal Stochastic In-
terpolant (Multi-Marginal SI) also learns a stochastic interpolant scheduler to improve generative
performance. In the 2-marginal case, the (unnormalized) scheduler is parameterized as

K 2 K 2
a(s)=1-—s+ (Z a sin (gt)) , o(s)=s+ (Z by, sin (gt)) , (39)
k=1 k=1

with learnable coefficients a; and by, which are then normalized via

a(s)
a(s)+a(s)’

)

(Y = o(s) = 7(
a(s) = () a(s)+a(s) “0)

While this parameterization enforces the boundary conditions @(0) = 0, 5(1) = 0, @(1) = 1, and
a(0) = 1, the induced SNR schedule p(s) = @(s)/a(s) is not guaranteed to be monotonically
increasing. In contrast, our Bézier-based parameterization explicitly satisfies the three core require-

ments of an SI scheduler: (1) boundary conditions, (2) monotonicity, and (3) differentiability. This
advantage is reflected in the quantitative comparison reported below.

Results. We report few-step generation FIDs on CIFAR-10 with ReFlow for
VDM (Kingma et al}, 2023)), Multi-Marginal SI (Albergo et al., [2024), and BézierFlow. For VDM,
we parameterize the SNR neural network as a 3-layer MLP with hidden size 1024, following the
original configuration in the paper, and set the trigonometric order of Multi-Marginal SI to K = 32
so that its number of scheduler degrees of freedom matches our n = 32 Bézier parameterization. As
shown in Tab. T3] BézierFlow consistently achieves the best FID across all NFEs and base solvers,
outperforming VDM and Multi-Marginal SI under the same training setup. This highlights that our
Bézier-based parameterization, which satisfies the key requirements of an SI scheduler, provides a
more effective and stable way to learn SI schedulers for few-step generation than existing neural or
trigonometric alternatives.

I CROSS-DATASET TRANSFER OF BEZIER SCHEDULER

We investigate whether a BézierFlow trained on one dataset can be reused on other datasets without
retraining. Specifically, we train BézierFlow on CIFAR-10 with pretrained diffusion models
and then evaluate on two different datasets, FFHQ and AFHQV2. In Tab. [I4] we report
FIDs for the base ODE solvers, the dataset-specific scheduler (denoted as “BézierFlow”) and the
CIFAR-10-trained scheduler reused on the target datasets (denoted as “Transferred”).

As shown, although the scheduler is trained only on CIFAR-10, its performance on out-of-domain
datasets still outperforms the base solvers and remains competitive with a scheduler trained directly
on the target dataset. This demonstrates that BézierFlow provides a generally effective acceleration
scheme even under domain shift.

23

Under review as a conference paper at ICLR 2026

Table 14: Cross-dataset transfer of Bézier stochastic interpolant schedulers. Results for the
base solvers are reported on each top rows. Bold indicates the best results, and underline marks the
second best. Gray cells indicate the base ODE solvers.

Method \ NFE=4 NFE=6 NFE=8 NFE=10 \ Method \ NFE=4 NFE=6 NFE=8 NFE=10
CIFAR-10 32 x 32 with EDM — FFHQ 64 x 64 with EDM
UniPC 47.62 14.96 7.76 8.93 iPNDM 28.75 11.15 6.68 4.80
+ BézierFlow 17.05 743 3.82 313 + BézierFlow 15.39 7.84 5.56 3.75
+ Transferred 22.35 9.05 4.93 4.50 + Transferred 2341 9.87 547 3.79
CIFAR-10 32 x 32 with EDM — AFHQV2 64 x 64 with EDM
UniPC 23.59 10.15 7.76 6.38 iPNDM 15.14 6.12 3.80 3.01
+ BézierFlow 12.27 4.46 2.75 2.67 + BézierFlow 14.44 4.69 2.63 2.16
+ Transferred 11.58 447 2.98 271 + Transferred 9.52 3.95 2.96 2.30

Table 15: Training time and peak GPU memory usage of BézierFlow for diffusion and flow
models at NFEs 4 and 10 on a single A6000 GPU.

NFE=4 NFE=10
Dataset / Model ‘ Training Time VRAM Training Time VRAM
(1) Diffusion Models
CIFAR-10 32x 32 with EDM (Karras et al., 2022, 8 minutes 4GB 15 minutes 8 GB
FFHQ 64 x 64 with EDM (Karras et al.}[2022) 11 minutes 3GB 18 minutes 7GB
AFHQvV?2 64 x 64 with EDM (Karras et al. M) 11 minutes 3GB 18 minutes 7GB
(2) Flow Models
CIFAR-10 32 x 32 with ReFlow l 2023) 8 minutes 3GB 15 minutes 7GB
ImageNet 256 x 256 with FlowDCN (Wang et al.|[2024) 25 minutes 5GB 45 minutes 8 GB
MS-COCO 512512 with Stable Diffusion (Esser et al.|[2024) 60 minutes 21 GB 100 minutes 22 GB

J COMPUTATIONAL COSTS

We report wall-clock training time and peak GPU memory for BézierFlow across all datasets and
both diffusion and flow models, evaluated at NFE=4 and NFE=10 on a single A6000 GPU. As shown
in Tab. [I5] BézierFlow trains in at most 1 hour even for a 2.5B large-scale pretrained model
at 512 x 512 resolution, while requiring only 22 GB of GPU memory. This makes the
method practical even on a single commodity GPU commonly available in research labs. Despite
this low training and memory cost, BézierFlow improves FID by large margins over the base model,
e.g., from 50.30 to 9.55 (=81 % relative improvement) at NFE=4 on CIFAR-10 and from 8.93 to
3.13 (~64% relative improvement) at NFE=10 on FFHQ, as shown in Tab.][T]

The increase in training time from NFE=4 to NFE=10 is always less than 2x, and peak GPU mem-
ory grows only mildly with NFE. This is because we apply gradient checkpointing over the student
trajectory, so activation memory scales only weakly with the number of steps, even for Stable Diffu-
sion v3.5. These results indicate that BézierFlow scales to high-resolution, large models with modest
computational overhead, making it practical as a plug-and-play scheduler even for large-scale gen-
erative models.

K LLM USAGE STATEMENT

We used large language models solely for text polishing (e.g., grammar and clairity). The technical
content, experiments, and analyses remain entirely the work of the authors.

24

	Introduction
	Related Work
	Background: Stochastic Interpolant Framework
	BézierFlow
	Problem Definition
	Sampling Path Transformation
	Bézier Stochastic Interpolant Scheduler
	Connection to Prior Work

	Experiments
	Conclusion
	Validity of Scheduler Reparameterization
	Theoretical Analysis of Sampling Trajectory Spaces
	Comparison of Parameterization against Bespoke Solver
	Implementation Details
	Shared Setup
	BézierFlow Training Details
	Baselines

	More Quantitative Results
	Probing BézierFlow at Extremely Low NFEs
	Text–Image Alignment for Foundational Model
	Comparison on Training Efficiency with Few-Step Generation Methods

	More Qualitative Results
	Extension to Other Domains
	Unconditional 3D Point Cloud Generation
	Unconditional Layout Generation

	Comparison with Other Scheduler Parameterizations
	Cross-Dataset Transfer of Bézier Scheduler
	Computational Costs
	LLM Usage Statement

