

000 001 BÉZIERFLOW: LEARNING BÉZIER STOCHASTIC IN- 002 TERPOLANT SCHEDULERS FOR FEW-STEP GENERA- 003 TION 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011

ABSTRACT

012 We introduce BézierFlow, a lightweight training approach for few-step generation
013 with pretrained diffusion and flow models. BézierFlow achieves a 2–3× perfor-
014 mance improvement for sampling with ≤ 10 NFEs while requiring only 15 min-
015 utes of training. Recent lightweight training approaches have shown promise by
016 learning optimal timesteps, but their scope remains restricted to ODE discretiza-
017 tions. To broaden this scope, we propose learning the optimal transformation
018 of the sampling trajectory by parameterizing stochastic interpolant (SI) sched-
019 ulers. The main challenge lies in designing a parameterization that satisfies criti-
020 cal desiderata, including boundary conditions, differentiability, and monotonicity
021 of the SNR. To effectively meet these requirements, we represent scheduler func-
022 tions as Bézier functions, where control points naturally enforce these properties.
023 This reduces the problem to learning an ordered set of points in the time range,
024 while the interpretation of the points changes from ODE timesteps to Bézier con-
025 trol points. Across a range of pretrained diffusion and flow models, BézierFlow
026 consistently outperforms prior timestep-learning methods, demonstrating the ef-
027 fectiveness of expanding the search space from discrete timesteps to Bézier-based
028 trajectory transformations.
029

030 1 INTRODUCTION

031 Diffusion and flow models have achieved state-of-the-art performance, but at the cost of high com-
032 putation due to their iterative generative processes. A large body of recent work (Lu et al., 2022;
033 Song et al., 2023; Liu et al., 2023; Tong et al., 2025) has aimed to accelerate generation to just a few
034 steps. For diffusion models, many dedicated solvers (Lu et al., 2022; 2023; Zhang & Chen, 2023;
035 Zhao et al., 2023) tailored to their ODE formulations have been proposed. Although these methods
036 substantially reduce the number of iterations from hundreds to tens, they are often insufficient to
037 bring the steps down to only a few. More recent distillation techniques, such as consistency mod-
038 els (Song et al., 2023) and variants (Kim et al., 2024; Berthelot et al., 2023; Zhou et al., 2025) for
039 diffusion and ReFlow (Liu et al., 2023) for flow models, can reduce the number of steps to as few
040 as one, but they require substantial fine-tuning, often hundreds to thousands of GPU hours, even for
041 small datasets.

042 A notable line of recent work is the lightweight training approach, which learns only a few param-
043 eters with a pretrained model to improve output quality for a small number of function evalua-
044 tions (NFEs). Compared to the distillation techniques, such approaches require only tens of GPU minutes
045 for training while achieving considerable improvements. The key questions for lightweight training
046 are: (1) what to optimize, and (2) how to parameterize the variables. For the former, most previous
047 work (Tong et al., 2025; Chen et al., 2024; Xue et al., 2024) has focused on learning the optimal
048 sequence of timesteps for ODE solves, treating a nondecreasing sequence of timesteps as learnable
049 variables. Most notably, a recent teacher-forcing approach (Tong et al., 2025) that uses the outputs
050 of a multistep adaptive solver as the teacher has demonstrated the effectiveness of learned ODE
051 timesteps.

052 Broadening our scope, we explore variables beyond ODE timesteps that can be learned with
053 lightweight training. As our first key contribution, we propose optimizing the sampling trajec-
054 tories themselves. The Stochastic Interpolant (SI) framework (Albergo et al., 2023) provides a unified

view of modern ODE-based generative models. In this framework, the state at any time is written as a linear interpolation between two endpoint samples: one drawn from the source (e.g., latent) distribution and the other from the target data distribution. The interpolation is governed by a pair of time-dependent coefficient functions, referred to as the SI scheduler. The scheduler fully specifies the geometry of the sampling trajectory. Different models adopt different schedulers, yet interchanging one scheduler for another at inference time does not change the endpoint marginal distributions. Inspired by this, we propose a lightweight training framework for learning an SI scheduler, which is equivalent to sampling path transformations that preserve the endpoints.

Our second key contribution lies in the parameterization of SI schedulers. The 1D continuous functions for SI schedulers must satisfy the following properties: (i) *boundary conditions*, ensuring that the endpoints of the coefficients are fixed, (ii) *monotonicity*, which guarantees a strictly nondecreasing signal-to-noise ratio (SNR) along the sampling path, and (iii) *differentiability*, which ensures that a velocity field can be derived in the ODEs governed by the learned scheduler. To effectively parameterize the space of such functions, while restricting the scope to polynomials, we propose a *Bézier*-based parameterization, termed the *Bézier* SI Scheduler, which forms the core of our overall lightweight training framework, *BézierFlow*. A 1D *Bézier* function naturally satisfies all of these properties: the boundary conditions can be enforced by simply setting the two end control points to the time range boundaries; the function is smooth and differentiable by the definition of polynomial *Bézier* curves; and monotonicity can be achieved by enforcing a nondecreasing order of control points, making the learning process identical to learning the ODE timesteps in previous work (Tong et al., 2025).

In our experiments, we evaluate both diffusion and flow models across diverse datasets and ODE solvers. *BézierFlow* consistently outperforms existing acceleration techniques while requiring only lightweight training, taking around 15 minutes on a single GPU. Extensive results further demonstrate the effectiveness of optimizing the sampling trajectories directly, rather than ODE timesteps, when coupled with our continuous *Bézier*-based parameterization.

2 RELATED WORK

There have been various attempts to improve few-step generation in ODE-based generative models. One major line of work focuses on designing dedicated ODE solvers tailored to the dynamics of the models (Lu et al., 2022; 2023; Zhao et al., 2023; Zhang & Chen, 2023). Although these methods require no additional training, they are unable to achieve high-fidelity generation with only a few steps. Another line is distillation-based approaches (Song et al., 2023; Salimans & Ho, 2022; Liu et al., 2023), which have demonstrated impressive gains in the very low-NFE regime, but incur substantial computational cost in training. Despite these diverse strategies, our lightweight training approach is most closely related to the methods listed below, which we now discuss in more detail.

Learning ODE Solving Timesteps. Several methods aim to achieve high-fidelity generation with few NFEs by optimizing the ODE timesteps in a lightweight manner. Chen et al. (2024) frame ODE timestep learning as a selection problem under a fixed NFE budget. Based on statistics collected from multiple sampling trajectories, they allocate more steps to regions of high curvature and fewer to flatter regions. Xue et al. (2024) optimize timesteps from the perspective of numerical integration: given a specific ODE solver, they minimize the accumulated local integration error along the trajectory. Tong et al. (2025) learn optimal timesteps through a data-driven distillation framework, where a high-NFE sampler serves as the teacher and a low-NFE sampler as the student. The timesteps are optimized by minimizing the discrepancy between their outputs starting from the same initial noise. Compared to these methods that learn optimal ODE timesteps, we learn optimal stochastic interpolant schedulers and demonstrate superior performance over these approaches.

Learning Sampling Trajectories. Several works (Karras et al., 2022; Lipman et al., 2024; Pokle et al., 2024; Kim et al., 2025) have explored changing sampling trajectories at inference time to improve generation quality and diversity, while selecting from a few predefined stochastic interpolant schedulers (e.g., linear, VP, VE), rather than parameterizing the function space and finding the best scheduler through optimization. To our knowledge, Bespoke Solver (Shaul et al., 2024) is the only approach that learns an optimal sampling trajectory. Unlike our method, however, it relies on a discrete parameterization, which prevents direct derivation of first-order derivatives. These derivatives must instead be represented through auxiliary variables, introducing redundancy that can lead to

108 inconsistencies between zeroth-order and first-order representations, and thus often fail to capture a
 109 truly differentiable function.
 110

111 3 BACKGROUND: STOCHASTIC INTERPOLANT FRAMEWORK

113 Stochastic Interpolant (SI) (Albergo et al., 2023) is a unified framework for generative modeling,
 114 encompassing both ODE-based and SDE-based models (Song et al., 2021b; Ho et al., 2020; Song
 115 et al., 2021a; Lipman et al., 2023). Given two marginal probability densities $p_0, p_1 : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$, a
 116 stochastic interpolant $x(t)$ is defined by the following stochastic process:

$$117 \quad x(t) = \alpha(t)x_1 + \sigma(t)x_0 + \gamma(t)z, \quad t \in [0, 1], \quad (1)$$

119 where $\alpha(t)$ and $\sigma(t)$ are interpolation coefficients between $x_0 \sim p_0$ and $x_1 \sim p_1$, and $z \sim \mathcal{N}(0, I)$ is
 120 a latent variable introducing stochasticity. The process satisfies the boundary conditions $x(0) = x_0$
 121 and $x(1) = x_1$ by enforcing $\alpha(0) = \sigma(1) = 0$, $\alpha(1) = \sigma(0) = 1$, and $\gamma(0) = \gamma(1) = 0$.

122 While the general formulation written in Eq. 1 is broad, many important generative models—
 123 including diffusion (Song et al., 2021a; Ho et al., 2020; Karras et al., 2022), flow (Lipman et al.,
 124 2023; 2024), and score-based (Song et al., 2021b) models—can be expressed in a more specific
 125 form, referred to as one-sided interpolants:

$$126 \quad x(t) = \alpha(t)x_1 + \sigma(t)x_0, \quad (2)$$

128 where, as a common practice, $p_0 = \mathcal{N}(0, I)$ and $p_1 = p_{\text{data}}$, thereby the latent variable z is absorbed
 129 into the initial state x_0 . By differentiating both sides of Eq. 2, it can be expressed in the following
 130 ODE form:

$$131 \quad \frac{dx(t)}{dt} = \dot{\alpha}(t)x_1 + \dot{\sigma}(t)x_0, \quad (3)$$

133 where we denote a time derivative by the dot. For these dynamics to be well defined, $\alpha(t)$ and $\sigma(t)$
 134 must be twice continuously differentiable (C^2) to ensure that the divergence terms in the associated
 135 Fokker-Planck equation are well-defined.

136 Based on Eq. 2, within the SI framework, different ODE-based generative models, including diffusion,
 137 flow, score-based models, learn different but interchangeable quantities. Along the sampling
 138 path (x, t) , flow models $v_\phi(x, t)$ approximate the velocity field $u_t(x) = \mathbb{E}[\dot{x}_t \mid x_t = x]$, while diffusion
 139 models $\epsilon_\phi(x, t)$ approximate the expected initial random noise state $\eta_t(x) = \mathbb{E}[x_0 \mid x_t = x]$.
 140 Finally, score-based models $s_\phi(x, t)$ estimate the score function, which is equivalent to the scaled
 141 version of the expected initial state: $\nabla \log p_t(x) = -\sigma^{-1}(t)\eta_t(x)$. Thus, different types of generative
 142 models are mathematically linked, and under the SI framework, a pretrained model of one type can be reinterpreted as another at inference. For convenience, we collectively refer to these
 143 ODE-based generative models as the SI model, denoted by $S_\phi(x, t)$, throughout the paper.

146 4 BÉZIERFLOW

147 4.1 PROBLEM DEFINITION

149 The objective of our work is to learn an optimal *sampling trajectory* that enables high-quality generation
 150 with a few NFEs (e.g., ≤ 10), while using a pretrained diffusion or flow model.
 151

152 We consider two sampling trajectories that share the same endpoints x_0 and x_1 . The source path
 153 refers to the trajectory used during model training, while the target path is a newly optimized trajectory
 154 for inference. Although both trajectories share the same endpoints, we assume their intermediate
 155 geometry matters: due to discretization error in ODE solving, output quality would depend on
 156 the path geometry. Given this assumption, we therefore aim to optimize the target path such that,
 157 even with only a few of NFEs, its geometry produces sampling results comparable to those obtained
 158 along the source path with many steps.

159 Formally, given a pretrained SI model S_ϕ , let $\xi(x_0, \{t_i\}_{i=1}^N; S_\phi)$ denote a multistep ODE solver
 160 along the source path (the *teacher*), and $\bar{\xi}_\theta(x_0, \{s_i\}_{i=1}^M; S_\phi)$ a few-step ODE solver along the target
 161 path (the *student*), where $\{t_i\}_{i=1}^N$ and $\{s_i\}_{i=1}^M$ are the respective timestep sets with $M \ll N$. Although both solvers start from the same initial state $x_0 \sim p_0$, they differ in the number of NFEs and

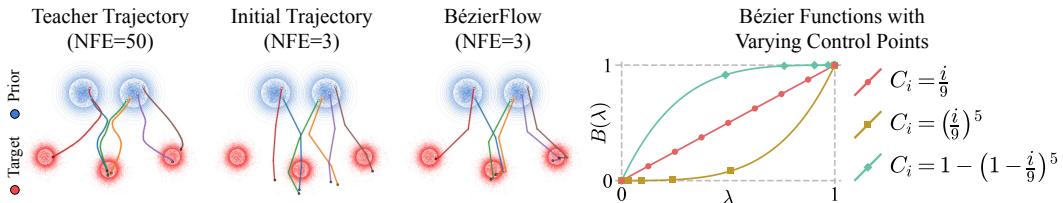


Figure 1: **Illustration of Sampling Trajectories and Bézier Functions.** On the left, we visualize different sampling trajectories. While initial trajectories deviate from the target distribution, BézierFlow aligns them with those of the teacher using only NFE=3. On the right, we present examples of 8-degree Bézier functions with different arrangements of control points.

the sampling path. Let $q(x_1)$ denote the distribution induced by the teacher, and $\bar{p}_\theta(x_1)$ the student’s output distribution. Our objective is formulated as the following teacher-forcing KL minimization:

$$\min_{\theta} D_{\text{KL}}(q(x_1) \parallel \bar{p}_\theta(x_1)). \quad (4)$$

In practice, we optimize Eq. 4 using the following tractable surrogate objective (Tong et al., 2025), which enforces the outputs of the two solvers to align with each other:

$$\min_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{x_0 \sim p_0} [d(\xi(x_0, \{t_i\}_{i=1}^N; S_\phi), \bar{\xi}_\theta(x_0, \{s_i\}_{i=1}^M; S_\phi))], \quad (5)$$

where $d(\cdot, \cdot)$ is a distance metric such as LPIPS (Zhang et al., 2018). This lightweight optimization adjusts only the target scheduler coefficients while using the pretrained model, thereby improving few-step generation at minimal training cost. See the left of Fig. 1, which compares sampling trajectories from the prior distribution to the target distribution: (i) the teacher’s trajectories with many steps (NFE=50), (ii) the student’s initial trajectories, and (iii) trajectories optimized by BézierFlow. While the student’s initial trajectories deviate from the target distribution at NFE=3, after training with BézierFlow, they closely follow those of the teacher despite the much smaller NFE.

4.2 SAMPLING PATH TRANSFORMATION

As discussed in Sec. 4.1, in order to define two trajectories that share the same endpoints, we view this as a transformation of the source path via the path reparameterization following prior works (Karras et al., 2022; Shaul et al., 2024; Pokle et al., 2024; Kim et al., 2025).

In the SI framework, a sampling path is governed by a pair of interpolation coefficients in Eq. 2, which we refer to as a *scheduler*. We denote the coefficients of the source path as the source scheduler (α_t, σ_t) , and those of the target path as the target scheduler $(\bar{\alpha}_s, \bar{\sigma}_s)$. Specifically, to relate the two schedulers, we adopt a scaling reparameterization trick (Karras et al., 2022), where the target state \bar{x}_s is defined from the source state x_t as $\bar{x}_s = c_s x_{t_s}$. Here, c_s can be arbitrary scalar functions and t_s any invertible mapping from s , but we define them as

$$c_s = \begin{cases} \frac{\bar{\sigma}(s)}{\sigma(t_s)} = \frac{\bar{\alpha}(s)}{\alpha(t_s)}, & 0 < s < 1, \\ 1, & \text{otherwise,} \end{cases} \quad (6)$$

$$t_s = t(s) = \rho^{-1}(\bar{\rho}(s)), \quad \rho(t) = \frac{\alpha(t)}{\sigma(t)}, \quad \bar{\rho}(s) = \frac{\bar{\alpha}(s)}{\bar{\sigma}(s)}, \quad (7)$$

where both ρ and $\bar{\rho}$ are invertible as the signal-to-noise ratio (SNR) increases monotonically over time.

Applying the change-of-variables to Eq. 3, the velocity in the target path $\bar{u}_s(\bar{x}_s)$ is expressed as

$$\bar{u}_s(\bar{x}_s) = \frac{d\bar{x}_s}{ds} = \left(\partial_s \log c_s \right) \bar{x}_s + c_s \frac{dt_s}{ds} u_{t_s} \left(\frac{\bar{x}_s}{c_s} \right). \quad (8)$$

We note that replacing the source scheduler with the target scheduler based on Eq. 6 at inference is valid for two reasons: (i) the endpoint marginal distributions are preserved, and (ii) the training objective of a SI model is invariant to the choice of schedule as long as the SNR endpoints (minimum and maximum values) are the same. Thus, learning $(\bar{\alpha}_s, \bar{\sigma}_s)$ only changes the geometry of the sampling path, and hence the few-step discretization behavior, without altering the underlying target distributions or requiring a different pretrained SI model. See App. A for more details.

216 4.3 BÉZIER STOCHASTIC INTERPOLANT SCHEDULER
217

218 In Sec. 4.2, we discussed *what* to optimize, namely the sampling path determined by the SI scheduler
219 $(\bar{\alpha}_s, \bar{\sigma}_s)$. The next crucial question is *how* to parameterize these 1D continuous functions effectively.
220 Since the space of arbitrary 1D functions is prohibitively large, we employ 1D Bézier parameteriza-
221 tion, which offers strong expressiveness with a compact number of parameters—the control points.
222 Moreover, Bézier functions naturally satisfy the three key requirements of the SI scheduler: (i)
223 boundary conditions, as described in Sec. 3, (ii) monotonicity to ensure a strictly nondecreasing
224 signal-to-noise ratio (SNR), and (iii) differentiability to compute the transformed velocity in Eq. 8.

225 An n -degree Bézier curve is defined as a weighted linear combination of $n + 1$ control points
226 $\{C_i\}_{i=0}^n$, where the weights are given by Bernstein basis polynomials $b_{i,n}$:

$$227 \quad B(\lambda) = \sum_{i=0}^n b_{i,n}(\lambda) C_i, \quad b_{i,n}(\lambda) = \binom{n}{i} (1-\lambda)^{n-i} \lambda^i, \quad \lambda \in [0, 1]. \quad (9)$$

230 As shown in Eq. 9, with only n control points, it can represent a wide range of trajectories. Unlike
231 arbitrary 1D polynomial functions, Bézier functions always pass through their control points in
232 order, making it straightforward to enforce boundary conditions and monotonicity. See the right
233 of Fig. 1, which illustrates how 1D Bézier functions $B(\lambda)$, $\lambda \in [0, 1]$ can represent diverse shapes
234 under different control point arrangements while keeping the endpoints fixed.

235 Moreover, they are inherently smooth and infinitely differentiable (C^∞), with a closed-form deriva-
236 tive:

$$237 \quad \dot{B}(\lambda) = n \sum_{i=0}^{n-1} b_{i,n-1}(\lambda) (C_{i+1} - C_i), \quad (10)$$

239 which allows us to directly compute the transformed velocity in Eq. 8 at any time s . Specifically,
240 we parameterize $\bar{\alpha}(s)$ and $\bar{\sigma}(s)$ as n -degree 1D Bézier functions, each defined by a set of control
241 points:

$$243 \quad \bar{\alpha}^\theta(s) = (\alpha_1 - \alpha_0) \sum_{i=0}^n b_{i,n}(s) C_i^{(\alpha)} + \alpha_0, \quad \bar{\sigma}^\theta(s) = (\sigma_1 - \sigma_0) \sum_{i=0}^n b_{i,n}(s) C_i^{(\sigma)} + \sigma_0. \quad (11)$$

245 For the boundary conditions, we fix the end control points $C_0^{(\alpha)} = C_0^{(\sigma)} = 0$, $C_n^{(\alpha)} = C_n^{(\sigma)} = 1$
246 and treat only the $n - 1$ interior control points as parameters. Concretely, with learnable parameters
247 $\theta^{(\alpha)}, \theta^{(\sigma)} \in \mathbb{R}^{n-1}$, the control points are given by

$$249 \quad C^{(\alpha)} = [0, \psi(\theta^{(\alpha)})_{1:n-1}, 1], \quad C^{(\sigma)} = [0, \psi(\theta^{(\sigma)})_{1:n-1}, 1], \quad (12)$$

251 where $\phi(\theta)_i = \frac{e^{\theta_i}}{\sum_{j=1}^n e^{\theta_j}}$ is a softmax function, and $\psi(\theta)_i = \sum_{j=1}^i \phi(\theta)_j$ is a cumulative soft-
252 max function that ensures monotonicity. This monotonic parameterization ensures that $\bar{\rho}(s) =$
253 $\bar{\alpha}(s)/\bar{\sigma}(s)$ is strictly nondecreasing on $[0, 1]$, resulting in $\bar{\rho}^{-1}$ exists.

255 4.4 CONNECTION TO PRIOR WORK
256

257 **LD3 (Tong et al., 2025).** From a parameterization perspective, both LD3 and ours optimize the
258 same type of parameter: a nondecreasing sequence of timesteps. However, their interpretations
259 differ: LD3’s parameters correspond directly to discrete ODE solver timesteps, whereas ours corre-
260 spond to Bézier control points that form a continuous sampling path. Interpreting these parameters
261 as an SI scheduler allows our approach to explore a much broader search space compared to LD3.
262 See App. B for the proof.

263 **Bespoke Solver (Shaul et al., 2024).** Bespoke solver similarly optimizes a new, target sampling
264 path, but the key difference from our approach lies in the parameterization. Their parameterization
265 is discrete: they learn per-step variables t_s and c_s in Eq. 6. Such a discrete parameterization requires
266 separately modeling the derivatives \dot{t}_s, \dot{c}_s , thereby breaking the intrinsic connection between the
267 values and their derivatives. This can yield mismatches between the predicted next value from
268 numerical integration and the actual learned value, ultimately causing unstable optimization.

269 In contrast, our Bézier parameterization ensures that the resulting scheduler $(\bar{\alpha}_s^\theta, \bar{\sigma}_s^\theta)$ is smooth
and, in particular, satisfies the C^2 condition required for the SI scheduler as discussed in Sec. 3.

270 Consequently, the time-derivative terms in the transformed velocity can be computed directly rather
 271 than learned separately, and the learned ODE trajectories are well-defined, thereby leading to more
 272 stable optimization.

273 Beyond the parameterization, Bespoke Solver also differs in its training objective: it relies on step-
 274 wise error minimization, whereas our method optimizes a global trajectory-level loss. See App. C
 275 for the results comparing with Bespoke Solver trained under our loss, which isolate and highlight
 276 the benefit of our Bézier-based continuous parameterization.

278 279 5 EXPERIMENTS

280 **Experiment Setup.** We evaluate our BézierFlow (BF) on both diffusion and flow models across
 281 diverse datasets for image generation. For diffusion models, we adopt EDM (Karras et al., 2022)
 282 with pretrained checkpoints on CIFAR-10 (32×32) (Krizhevsky, 2009), FFHQ (64×64) (Karras
 283 et al., 2019), and AFHQv2 (64×64) (Choi et al., 2020). For flow models, we use pretrained
 284 ReFlow (Liu et al., 2023) on CIFAR-10 (32×32) (Krizhevsky, 2009), FlowDCN (Wang et al.,
 285 2024) on ImageNet (256×256) (Deng et al., 2009), and Stable Diffusion v3.5 (SD) (Esser et al.,
 286 2024) on MS-COCO (512×512) (Lin et al., 2014). All pretrained models are from their official
 287 implementations.

288 Each model is paired with its dedicated ODE solver: UniPC (Zhao et al., 2023) and iPNDM (Zhang
 289 & Chen, 2023) for diffusion models, and Runge–Kutta integrators, RK1 (Euler) and RK2 (Mid-
 290 point), for flow models. We consider the following learning-based acceleration methods as baselines
 291 for comparisons with ours: DMN (Xue et al., 2024), GITS (Chen et al., 2024), and LD3 (Tong et al.,
 292 2025). For flow models, we additionally include Bespoke Solver (Shaul et al., 2024) as a baseline,
 293 which was specifically designed for RK1 and RK2 solvers. The results of the base ODE solvers,
 294 without additional learning, are reported as reference. All baselines are evaluated using their official
 295 implementations, except for Bespoke Solver, whose official code is not publicly available.

296 **Implementation Details.** Methods based on the teacher-forcing framework, including LD3, Be-
 297 spoke Solver, and our BézierFlow, are trained and validated with the same number of samples for
 298 both training and validation: 250 each for CIFAR-10, 50 each for FFHQ, AFHQv2, and ImageNet,
 299 and 25 each for Stable Diffusion v3.5, [following](#) the experiment setup used in LD3 (Tong et al.,
 300 2025). Training is performed for 8 epochs on CIFAR-10, FFHQ, AFHQv2 and 5 epochs on the
 301 others. For GITS (Chen et al., 2024), we precompute statistics using 256 sampling trajectories. For
 302 the training of BézierFlow, we use 32 control points for the Bézier parameterization unless stated
 303 otherwise. For all models, we initialize the target scheduler as the linear SI scheduler, i.e., $\bar{\alpha}(s) = s$
 304 and $\bar{\sigma}(s) = 1 - s$. We set the timesteps uniformly in SNR $\rho(s)$ for diffusion models and uniformly
 305 in time s for flow models. Following LD3 (Tong et al., 2025), we also feed the learned decoupled
 306 timesteps (Li et al., 2024) to the neural network. See App. D for more details.

307 **Quantitative Results.** We report Fréchet Inception Distance (FID) (Heusel et al., 2017) scores
 308 across diverse datasets for diffusion models in Tab. 1 and for flow models in Tab. 2. FID is computed
 309 between the reference set and 50K generated samples, where the test set for each dataset serves as
 310 the reference. For SD, both the reference and generated sets are constructed from disjoint subsets of
 311 30K text prompts from MS-COCO, following the setup used in LD3 (Tong et al., 2025). [Refer to](#)
 312 [App. E.2 for a more comprehensive comparison of SD, including text-image alignment metrics.](#)

313 As shown in Tab. 1, for few-step generation with pretrained diffusion models, BézierFlow consis-
 314 tently achieves the best FID on CIFAR-10 across different NFEs, with especially large margins over
 315 the second-best at small NFEs (e.g., at NFE=4, BézierFlow: 9.55 vs. LD3: 12.04 with UniPC, and
 316 BézierFlow: 6.93 vs. LD3: 9.97 with iPNDM). On FFHQ and AFHQv2, BézierFlow outperforms
 317 or remains comparable to the baselines. The improvements are particularly strong at small NFEs,
 318 for example, BézierFlow: 17.05 vs. LD3 (the second-best): 22.48 at NFE=4 with UniPC.

319 When it comes to flow models, as shown in Tab. 2, BézierFlow achieves state-of-the-art results on
 320 CIFAR-10 with both RK1 and RK2, outperforming the others by clear margins. For example, we
 321 surpass the second-best LD3 by 18.31 at NFE=4 with RK1, and the second-best GITS by 9.66 at
 322 NFE=4 with RK2. On ImageNet, we consistently obtain the best results across most NFEs, except
 323 at NFE=4, again by large margins. On MS-COCO evaluated with Stable Diffusion v3.5, BézierFlow
 outperforms the baselines at most NFEs, demonstrating generalizability to large-scale models.

324
 325 **Table 1: FID comparison of few-step generation with diffusion models.** Results of the base
 326 ODE solvers are reported on each top rows, highlighted in gray. **Bold** indicates the best results, and
327 underline marks the second best.

328 Method	329 NFE=4	329 NFE=6	329 NFE=8	329 NFE=10	328 Method	329 NFE=4	329 NFE=6	329 NFE=8	329 NFE=10
CIFAR-10 32 × 32 with EDM (Karras et al., 2022) (Teacher FID: 2.08)									
UniPC	50.30	19.33	9.64	6.16	iPNDM	29.53	9.84	5.30	3.75
+ DMN	26.42	8.11	4.22	2.79	+ DMN	28.29	9.33	4.82	3.52
+ GITS	24.83	11.02	6.68	5.02	+ GITS	16.20	6.80	4.07	3.30
+ LD3	<u>12.04</u>	<u>3.56</u>	<u>2.43</u>	<u>2.62</u>	+ LD3	<u>9.97</u>	<u>4.42</u>	<u>2.93</u>	<u>2.44</u>
+ BézierFlow	<u>9.55</u>	<u>3.13</u>	<u>2.40</u>	<u>2.09</u>	+ BézierFlow	<u>6.93</u>	<u>3.35</u>	<u>2.81</u>	<u>2.43</u>
FFHQ 64 × 64 with EDM (Karras et al., 2022) (Teacher FID: 2.86)									
UniPC	47.62	14.96	7.76	8.93	iPNDM	28.75	11.15	6.68	4.80
+ DMN	25.87	9.44	5.06	4.06	+ DMN	30.89	11.93	7.33	6.20
+ GITS	22.99	12.12	8.90	4.40	+ GITS	18.51	9.21	5.58	4.37
+ LD3	<u>22.48</u>	<u>6.16</u>	<u>4.25</u>	<u>2.92</u>	+ LD3	<u>15.55</u>	<u>5.89</u>	<u>3.74</u>	<u>3.03</u>
+ BézierFlow	<u>17.05</u>	<u>7.43</u>	<u>3.82</u>	<u>3.13</u>	+ BézierFlow	<u>15.39</u>	7.84	5.56	3.75
AFHQv2 64 × 64 with EDM (Karras et al., 2022) (Teacher FID: 2.04)									
UniPC	23.59	10.15	7.76	6.38	iPNDM	15.14	6.12	3.80	3.01
+ DMN	30.39	14.40	3.98	3.69	+ DMN	33.21	15.95	5.99	5.29
+ GITS	13.20	7.50	3.89	3.94	+ GITS	14.31	5.81	3.88	3.57
+ LD3	18.17	<u>4.95</u>	<u>2.68</u>	<u>3.02</u>	+ LD3	<u>11.85</u>	<u>3.11</u>	<u>2.45</u>	<u>2.18</u>
+ BézierFlow	<u>12.27</u>	<u>4.46</u>	<u>2.75</u>	<u>2.67</u>	+ BézierFlow	<u>14.44</u>	4.69	2.63	<u>2.16</u>

344
 345 **Table 2: FID comparison of few-step generation with flow-based models.** Results of the base
 346 ODE solvers are reported on each top rows, highlighted in gray. **Bold** indicates the best results, and
347 underline marks the second best.

349 Method	350 NFE=4	350 NFE=6	350 NFE=8	350 NFE=10	349 Method	350 NFE=4	350 NFE=6	350 NFE=8	350 NFE=10
CIFAR-10 32 × 32 with ReFlow (Liu et al., 2023) (Teacher FID: 2.70)									
RK1	52.78	26.30	17.40	13.30	RK2	25.36	12.12	9.17	7.89
+ DMN	180.03	104.23	30.94	21.58	+ DMN	82.41	51.99	21.43	18.62
+ Bespoke	45.31	18.08	11.88	9.25	+ Bespoke	39.45	64.87	16.67	13.34
+ GITS	47.42	26.11	19.89	15.34	+ GITS	<u>22.84</u>	<u>11.84</u>	8.77	6.58
+ LD3	<u>38.95</u>	<u>20.10</u>	<u>12.54</u>	<u>9.64</u>	+ LD3	29.45	13.82	<u>6.26</u>	<u>3.86</u>
+ BézierFlow	<u>20.64</u>	<u>9.67</u>	<u>7.30</u>	<u>5.51</u>	+ BézierFlow	<u>13.18</u>	<u>6.00</u>	<u>4.31</u>	<u>3.74</u>
ImageNet 256 × 256 with FlowDCN (Wang et al., 2024) (Teacher FID: 15.89)									
RK1	12.03	12.04	13.55	14.43	RK2	7.91	10.54	12.97	14.08
+ DMN	142.79	28.56	<u>10.61</u>	<u>11.69</u>	+ DMN	7.96	10.23	<u>9.42</u>	<u>7.86</u>
+ Bespoke	<u>11.85</u>	11.81	13.39	14.31	+ Bespoke	<u>7.66</u>	10.05	13.02	14.23
+ GITS	13.20	<u>10.91</u>	11.91	12.93	+ GITS	8.18	<u>9.80</u>	12.30	13.27
+ LD3	<u>11.62</u>	11.94	13.36	14.12	+ LD3	<u>7.59</u>	10.17	12.75	14.04
+ BézierFlow	15.60	<u>6.85</u>	<u>7.77</u>	<u>8.11</u>	+ BézierFlow	9.50	<u>5.94</u>	<u>6.22</u>	<u>7.56</u>
MS-COCO 512 × 512 with Stable Diffusion (Esser et al., 2024) (Teacher FID: 12.13)									
RK1	57.93	30.96	21.50	<u>17.19</u>	RK2	34.95	17.89	13.33	11.61
+ DMN	113.24	46.02	31.58	24.41	+ DMN	36.33	<u>16.45</u>	27.09	17.36
+ Bespoke	134.21	52.51	23.70	20.69	+ Bespoke	45.23	40.87	20.18	13.26
+ GITS	70.01	42.44	31.89	25.47	+ GITS	31.09	21.21	15.58	14.65
+ LD3	<u>55.31</u>	36.85	<u>20.37</u>	19.76	+ LD3	39.03	18.04	<u>12.30</u>	<u>11.54</u>
+ BézierFlow	54.05	<u>33.43</u>	19.69	16.52	+ BézierFlow	<u>33.94</u>	16.41	12.20	11.02

367
 368
 369 Overall, these results demonstrate that BézierFlow attains the best or comparable performance to
 370 existing acceleration approaches across diverse experiment setups, including both diffusion and flow
 371 models, different NFEs, ODE solvers, and datasets.

372
 373
 374 **Qualitative Results.** We present qualitative results for accelerated sampling of diffusion models in
 375 Fig. 2 and flow models in Fig. 3. Across both model classes, BézierFlow (BF) consistently produces
 376 sharper details and fewer artifacts at low NFEs. Notably, in the last row of Fig. 2 (right), the baselines
 377 fail to generate a plausible animal face, whereas our method produces a clear and realistic cat face.
 See App. F for more qualitative results.

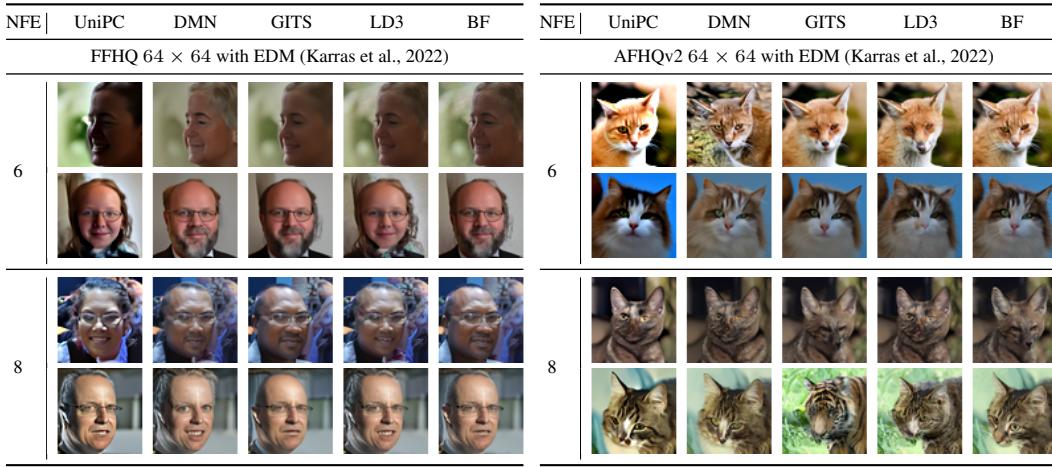


Figure 2: **Qualitative comparisons of samples generated using NFEs 6 and 8 on FFHQ and AFHQv2 datasets.** We use UniPC solver as the base solver for both cases.

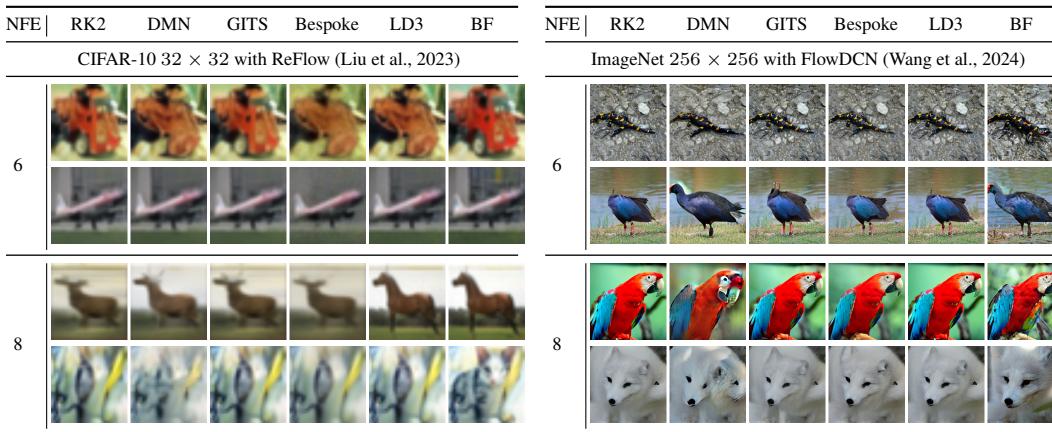


Figure 3: **Qualitative comparisons of samples generated using NFEs 6 and 8 on CIFAR-10 and ImageNet datasets.** We use RK2 solver as the base solver for both cases.

Table 3: **Generalizability of BézierFlow to unseen NFEs.** Each column corresponds to the inference **methods on CIFAR-10**. The middle column NFE. Baselines are trained with the same NFE used at inference, whereas ours is trained once with NFE=10 measured on an NVIDIA A6000, while distillation times are directly applied to unseen NFEs. Reported results are FID scores on CIFAR-10 (lower is better; best in bold). Best in **bold**.

Method	RK1			RK2			Method	FID (\downarrow) / NFE		Training Time
	6	8	10	6	8	10		CIFAR-10 32x32 — Diffusion	CIFAR-10 32x32 — Flow	
GITS	26.11	19.89	15.34	11.84	8.77	6.58	CD	2.93 / NFE=2	8 days	
Bespoke	18.08	11.88	9.25	64.87	16.67	13.34	BF w/ UniPC	2.09 / NFE=10	15 minutes	
LD3	20.10	12.54	9.64	13.82	6.26	3.86	2-RF	3.85 / NFE=2	8 days	
BF (NFE=10)	18.50	9.02	6.01	9.57	5.32	3.71	BF w/ RK2	3.74 / NFE=10	15 minutes	

Effect of the Degree of Bézier Functions. Fig. 4 shows the effect of the degree of Bézier functions by varying the number of control points from 4 to 32. Across different datasets, NFEs, and base ODE solvers, increasing the number of control points consistently improves FID, indicating that higher-degree Bézier functions provide greater expressiveness for learning optimal sampling trajectories.

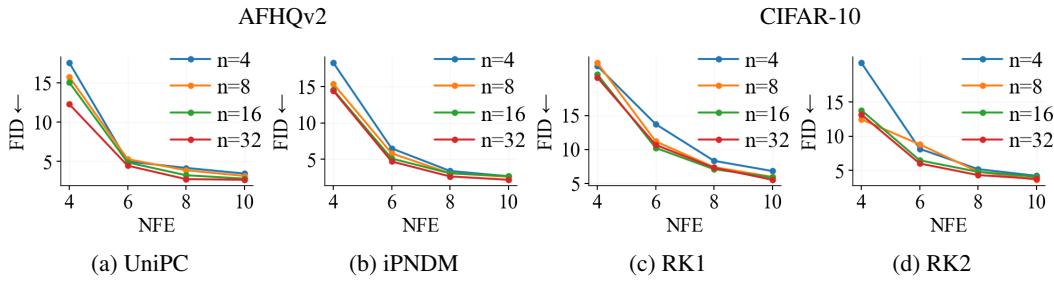


Figure 4: **Effect of the degree of Bézier functions.** Each line reports FID scores on CIFAR-10 across Bézier function degrees n from 4 to 32. Higher degrees yield lower FID, with convergence around $n = 32$.

Empirically, we observe that the additional gains between $n = 16$ and $n = 32$ become marginal, so we adopt $n = 32$ as our default. Note that the training time overhead from increasing n is negligible, with only a few seconds difference between $n = 4$ and $n = 32$.

Generalizability to Unseen NFEs. As discussed in Sec. 4.4, unlike prior works (Xue et al., 2024; Chen et al., 2024; Tong et al., 2025; Shaul et al., 2024) that learn *discrete per-step variables*, BézierFlow learns the sampling trajectory with continuous functions, enabling generalization to NFEs unseen during training. As shown in Tab. 3, BézierFlow trained with NFE=10 also performs well at NFE=6 and NFE=8, achieving outperforming FID scores against the baselines trained directly at those NFEs.

Training Efficiency. In Tab. 4, we compare BézierFlow on CIFAR-10 (Krizhevsky, 2009) against representative distillation-based approaches: Consistency Distillation (CD) (Song et al., 2023) for diffusion models and 2-Rectified Flow (2-RF) (Liu et al., 2023) for flow models. While BézierFlow achieves better FID scores with a larger inference NFE, its *training* cost is significantly lower, requiring only **15 minutes** compared to **8 days** for distillation, which corresponds to approximately **0.13%** of the training time. [A more comprehensive comparison of training time is provided in App. E.3.](#)

Combination with LD3. Since LD3 optimizes discrete timesteps while BézierFlow learns continuous sampling paths, it is natural to ask whether combining the two yields complementary improvements. We therefore optimize both the target timesteps and the scheduler in a unified framework. As shown in Tab. 5 of the Appendix, however, the combination does not offer clear advantages over using BézierFlow alone. This suggests that although LD3 and BézierFlow address orthogonal aspects of the problem, their benefits do not simply accumulate when applied together.

6 CONCLUSION

We introduce BézierFlow, a lightweight training framework for few-step generation. By combining the optimization of sampling trajectories, rather than discrete ODE timesteps, with a Bézier-based continuous parameterization, BézierFlow achieves consistent improvements across diffusion and flow models with only minutes of training, surpassing existing lightweight training approaches. For future work, we plan to explore alternative basis functions for Bézier functions, which may enable richer expressiveness with fewer control points.

Ethics Statement. We affirm adherence to the ICLR Code of Ethics. This work relies only on publicly available models and datasets and does not involve human subjects, user data, or personally identifiable information. We acknowledge the potential for misuse of generative AI and encourage responsible deployment and use of our method.

Reproducibility Statement. We plan to release the code upon publication. Details of the experimental implementation are provided in Sec. 5 and App. D. Theoretical analyses of the scheduler reparameterization are also included in App. A.

486 REFERENCES
487

488 Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic Interpolants: A Unifying Frame-
489 work for Flows and Diffusions. *arXiv*, 2023.

490 Michael S. Albergo, Nicholas M. Boffi, Michael Lindsey, and Eric Vanden-Eijnden. Multimarginal generative
491 modeling with stochastic interpolants. In *ICLR*, 2024.

492 David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel Zheng, Walter
493 Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure time-distillation. *arXiv
494 preprint arXiv:2303.04248*, 2023.

495 J.C. Butcher. A history of runge-kutta methods. *Applied Numerical Mathematics*, 1996.

496 Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
497 Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An
498 information-rich 3d model repository. In *International Conference on 3D Vision*, 2015.

499 Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory regularity of ode-
500 based diffusion sampling. In *ICML*, 2024.

501 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple
502 domains. In *CVPR*, 2020.

503 Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibscher, Daniel Afergan, Yang Li, Jeffrey Nichols, and
504 Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design applications. In *Proceedings of
505 the 30th Annual ACM Symposium on User Interface Software and Technology*, 2017.

506 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
507 image database. In *CVPR*, 2009.

508 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Do-
509 minik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, and Robin Rom-
510 bach. Scaling rectified flow transformers for high-resolution image synthesis. In *ICML*, 2024.

511 Julian Jorge Andrade Guerreiro, Naoto Inoue, Kento Masui, Mayu Otani, and Hideki Nakayama. Layoutflow:
512 Flow matching for layout generation. In *ECCV*, 2024.

513 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free
514 evaluation metric for image captioning. In *EMNLP*, 2021.

515 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained
516 by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*, 2017.

517 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*, 2020.

518 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
519 networks. In *CVPR*, 2019.

520 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
521 generative models. 2022. URL <https://arxiv.org/abs/2206.00364>.

522 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong He,
523 Yuki Mitsuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode trajectory
524 of diffusion. In *ICLR*, 2024.

525 Jaihoon Kim, Taehoon Yoon, Jisung Hwang, and Minhyuk Sung. Inference-time scaling for flow models via
526 stochastic generation and rollover budget forcing. In *NeurIPS*, 2025.

527 Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In *NeurIPS*,
528 2023.

529 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-pic: An
530 open dataset of user preferences for text-to-image generation. In *NeurIPS*, 2023.

531 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

532 Mingxiao Li, Tingyu Qu, Ruicong Yao, Wei Sun, and Marie-Francine Moens. Alleviating exposure bias in
533 diffusion models through sampling with shifted time steps. In *ICLR*, 2024.

540 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
 541 C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.

542

543 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
 544 generative modeling. In *ICLR*, 2023.

545 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q. Chen, David
 546 Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. 2024. URL <https://arxiv.org/abs/2412.06264>.

547

548 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data
 549 with rectified flow. In *ICLR*, 2023.

550 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver
 551 for diffusion probabilistic model sampling in around 10 steps. In *NeurIPS*, 2022.

552

553 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver for
 554 guided sampling of diffusion probabilistic models. In *ICLR*, 2023.

555 Ashwini Pokle, Matthew J Muckley, Ricky TQ Chen, and Brian Karrer. Training-free linear image inverses via
 556 flows. *TMLR*, 2024.

557 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In *ICLR*, 2022.

558

559 Neta Shaul, Juan Perez, Ricky T. Q. Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Bespoke solvers
 560 for generative flow models. In *ICLR*, 2024.

561

562 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*, 2021a.

563 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
 564 Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021b.

565 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *ICML*, 2023.

566

567 Vinh Tong, Trung-Dung Hoang, Anji Liu, Guy Van den Broeck, and Mathias Niepert. Learning to discretize
 568 denoising diffusion odes. In *ICLR*, 2025.

569 Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, and Limin Wang. Flowdcn: Explor-
 570 ing dcn-like architectures for fast image generation with arbitrary resolution, 2024.

571 Shuchen Xue, Zhaoqiang Liu, Fei Chen, Shifeng Zhang, Tianyang Hu, Enze Xie, and Zhenguo Li. Accelerating
 572 diffusion sampling with optimized time steps. In *CVPR*, 2024.

573

574 Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator. In *ICLR*,
 575 2023.

576 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
 577 of deep features as a perceptual metric. In *CVPR*, 2018.

578 Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-corrector
 579 framework for fast sampling of diffusion models. In *NeurIPS*, 2023.

580

581 Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion: Control-
 582 lable diffusion model for layout-to-image generation. In *CVPR*, 2023.

583 Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel diffusion. In
 584 *ICCV*, 2021.

585 Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In *ICML*, 2025.

586

587

588

589

590

591

592

593

594 A VALIDITY OF SCHEDULER REPARAMETERIZATION
595596 We provide a detailed exposition of two key properties discussed in Sec. 4.2: (i) the preservation of
597 endpoint marginals, and (ii) the invariance of the SI training objective with respect to the choice of
598 schedule, provided that the SNR endpoints are identical.599 **Proposition A.1.** *(Endpoint marginals equivalence)* Let p_0 and p_1 denote the endpoint marginals of
600 x_t governed by a scheduler (α_t, σ_t) , \bar{p}_0 and \bar{p}_1 denote those of another stochastic interpolant \bar{x}_s . If
601 $\bar{x}_s = c_s x_{t_s}$ with c_s and t_s defined in Eq. 6, then the endpoint marginals are preserved, i.e., $p_0 = \bar{p}_0$
602 and $p_1 = \bar{p}_1$.
603604 *Proof.* By the boundary conditions discussed in Sec. 3, any SI scheduler satisfies
605

606
$$\alpha(0) = 0, \alpha(1) = 1, \sigma(0) = 1, \sigma(1) = 0. \quad (13)$$

607 From Eq. 6, $c_s = 1$ at both $s = 0$ and $s = 1$. By the definition of $t_s = \rho^{-1}(\bar{\rho}(s))$, we also have
608 $t_{s=0} = 0$ and $t_{s=1} = 1$. Hence, $\bar{x}_{s=0} = x_{t=0}$ and $\bar{x}_{s=1} = x_{t=1}$. Since the pair of endpoints (x_0, x_1)
609 does not change under the sampling path transformation, the endpoint marginals also coincide: $p_0 =$
610 \bar{p}_0 and $p_1 = \bar{p}_1$. \square
611612 **Proposition A.2.** *(Training objective invariance)* For any two schedulers (α_t, σ_t) and $(\bar{\alpha}_s, \bar{\sigma}_s)$ with
613 matching SNR endpoints, training an SI model S_ϕ under either scheduler minimizes the same training
614 objective, hence yields equivalent optima.615 *Proof.* As noted in Sec. 3, different SI models (noise, velocity, or score predictors) learn different
616 but interchangeable quantities, and can all be expressed in the denoiser form \hat{x}_ϕ . For convenience,
617 we therefore recall the continuous-time SI objective in the denoiser form (Eq. 18 from Kingma et al.
618 (2023)): for a schedule (α_t, σ_t) with $\rho(t) = \alpha(t)/\sigma(t)$ strictly increasing, define $\nu = \rho^2$ and

619
$$x_\nu = \alpha_\nu x_1 + \sigma_\nu x_0, \quad \alpha_\nu := \alpha(\rho^{-1}(\sqrt{\nu})), \quad \sigma_\nu := \sigma(\rho^{-1}(\sqrt{\nu})), \quad (14)$$

620 with $\nu_{\min} = \rho(0)^2$, $\nu_{\max} = \rho(1)^2$. Then,

621
$$\mathcal{L}_\nu[\phi; (\alpha_t, \sigma_t)] = \frac{1}{2} \int_{\nu_{\min}}^{\nu_{\max}} \mathbb{E}_{x_1 \sim p_{\text{data}}, x_0 \sim p_0} [\|x_1 - \hat{x}_\phi(x_\nu, \nu)\|_2^2] d\nu. \quad (15)$$

622 Now consider another schedule $(\bar{\alpha}_s, \bar{\sigma}_s)$ with the same SNR endpoints. Since $\rho(t) = \frac{\alpha(t)}{\sigma(t)}$ and
623 $\bar{\rho}(s) = \frac{\bar{\alpha}(s)}{\bar{\sigma}(s)}$ are strictly increasing, the maps $t \mapsto \nu = \rho(t)^2$ and $s \mapsto \nu = \bar{\rho}(s)^2$ are bijections onto
624 the common interval $[\nu_{\min}, \nu_{\max}]$. Now, for each fixed ν , we have

625
$$\nu = \frac{\alpha(t)^2}{\sigma(t)^2} = \frac{\bar{\alpha}(s)^2}{\bar{\sigma}(s)^2}, \quad (16)$$

626 which implies $\sigma_\nu = \frac{\alpha_\nu}{\sqrt{\nu}}$ and $\bar{\sigma}_\nu = \frac{\bar{\alpha}_\nu}{\sqrt{\nu}}$. Therefore, the interpolants satisfy

627
$$x_\nu = \alpha_\nu \left(x_1 + \frac{1}{\sqrt{\nu}} x_0 \right), \quad \bar{x}_\nu = \bar{\alpha}_\nu \left(x_1 + \frac{1}{\sqrt{\nu}} x_0 \right), \quad (17)$$

628 so that $x_\nu = \frac{\alpha_\nu}{\bar{\alpha}_\nu} \bar{x}_\nu$. This shows that the two interpolants differ only by a scalar rescaling factor, and
629 since the integration limits are the same, we conclude

630
$$\mathcal{L}_\nu[\phi; (\alpha_t, \sigma_t)] = \mathcal{L}_\nu[\phi; (\bar{\alpha}_s, \bar{\sigma}_s)]. \quad (18)$$

631 \square 644 B THEORETICAL ANALYSIS OF SAMPLING TRAJECTORY SPACES
645646 In this section, we formally show that the family of sampling trajectories realizable by BézierFlow
647 is a super set of that of LD3 (Tong et al., 2025), offering better optimization advantages.

648 **Theorem B.1** (Inclusion of LD3 in the BézierFlow Trajectory Space). *Let M and D denote the number of sampling steps and the dimension of the state x , respectively. Let $\mathcal{X}_{\text{LD3}}, \mathcal{X}_{\text{BF}} \subseteq \mathbb{R}^{M+1 \times D}$ be the sets of sampling trajectories over discrete timesteps realizable by LD3 and BézierFlow (parameterized by Bézier curves of degree $n \geq M$). Assuming the source sampling path defines a non-linear geometry, the trajectory space of LD3 is a subset of that of BézierFlow:*

$$653 \quad \mathcal{X}_{\text{LD3}} \subsetneq \mathcal{X}_{\text{BF}}. \quad (19)$$

655 *Proof.* Let $\{t_k\}_{k=0}^M$ and $\{s_k\}_{k=0}^M$ denote the timesteps on the source scheduler and on the trajectory induced by the Bézier SI scheduler, respectively, with

$$658 \quad 0 = t_0 < t_1 < \dots < t_M = 1, \quad 0 = s_0 < s_1 < \dots < s_M = 1.$$

660 Define

$$661 \quad \alpha_k := \alpha(t_k), \quad \sigma_k := \sigma(t_k), \quad x_{t_k} = \alpha_k x_1 + \sigma_k x_0, \quad k = 0, \dots, M. \quad (20)$$

663 With this notation, any LD3 sampling trajectory over M timesteps can be written as $\mathbf{x} = (x_{t_0}, \dots, x_{t_M}) \in \mathcal{X}_{\text{LD3}}$.

665 Since a Bézier curve of degree $n \geq M$ can interpolate any $M + 1$ distinct values, there exists θ^* such that

$$667 \quad \bar{\alpha}_{\theta^*}(s_k) = \alpha_k, \quad \bar{\sigma}_{\theta^*}(s_k) = \sigma_k, \quad \forall k. \quad (21)$$

668 Hence

$$669 \quad \bar{\rho}_{\theta^*}(s_k) := \frac{\bar{\alpha}_{\theta^*}(s_k)}{\bar{\sigma}_{\theta^*}(s_k)} = \frac{\alpha_k}{\sigma_k} = \rho(t_k), \quad (22)$$

672 and therefore

$$673 \quad t_{s_k} = \rho^{-1}(\bar{\rho}_{\theta^*}(s_k)) = t_k, \quad c_{s_k} = \frac{\bar{\sigma}_{\theta^*}(s_k)}{\sigma(t_{s_k})} = \frac{\sigma_k}{\sigma_k} = 1. \quad (23)$$

675 Using the sampling transformation in Eq. 8,

$$677 \quad \bar{x}_{s_k} = c_{s_k} x_{t_{s_k}} = x_{t_k}, \quad \forall k, \quad (24)$$

678 so every $\mathbf{x} \in \mathcal{X}_{\text{LD3}}$ is also realizable by BézierFlow, and thus

$$680 \quad \mathcal{X}_{\text{LD3}} \subseteq \mathcal{X}_{\text{BF}}. \quad (25)$$

682 For strictness, fix $\{t_k\}_{k=0}^M$ and consider a target scheduler θ such that

$$684 \quad \bar{\rho}_{\theta}(s_k) = \rho(t_k), \quad \bar{\sigma}_{\theta}(s_k) \neq \sigma_k \quad \text{for at least one } k. \quad (26)$$

685 Then

$$687 \quad t_{s_k} = \rho^{-1}(\bar{\rho}_{\theta}(s_k)) = t_k, \quad c_{s_k} = \frac{\bar{\sigma}_{\theta}(s_k)}{\sigma(t_{s_k})} = \frac{\bar{\sigma}_{\theta}(s_k)}{\sigma_k} \neq 1 \quad \text{for at least one } k, \quad (27)$$

689 and the resulting trajectory satisfies

$$691 \quad \bar{x}_{s_k} = c_{s_k} x_{t_k}, \quad c_{s_k} \neq 1 \quad \text{for some } k. \quad (28)$$

693 Since LD3 is constrained to the fixed source scheduler, which corresponds to sampling via Eq. 8 with

$$695 \quad s_k = t_k, \quad c_{s_k} \equiv 1, \quad (29)$$

696 so any trajectory with $c_{s_k} \neq 1$ for some k cannot be realized by LD3. Thus

$$698 \quad \mathbf{x}_{\theta} \in \mathcal{X}_{\text{BF}} \quad \text{and} \quad \mathbf{x}_{\theta} \notin \mathcal{X}_{\text{LD3}}, \quad (30)$$

699 which implies

$$700 \quad \mathcal{X}_{\text{LD3}} \subsetneq \mathcal{X}_{\text{BF}}. \quad (31)$$

701 \square

702 Table 5: **FID comparison of BézierFlow, LD3 and their combination, denoted as Both.** The best
 703 results are highlighted in **bold** and the second best results are underlined. Gray cells indicate the
 704 base ODE solvers.

Method	NFE=4	NFE=6	NFE=8	NFE=10	Method	NFE=4	NFE=6	NFE=8	NFE=10		
UniPC	CIFAR-10 with EDM (Teacher FID: 2.08)					UniPC	FFHQ with EDM (Teacher FID: 2.86)				
+ LD3	12.04	3.56	2.43	2.62	+ LD3	22.48	6.16	4.25	2.92		
+ BézierFlow	9.55	<u>3.13</u>	<u>2.40</u>	<u>2.09</u>	+ BézierFlow	<u>17.05</u>	<u>7.43</u>	<u>3.82</u>	3.13		
+ Both	<u>9.32</u>	<u>3.37</u>	2.44	2.71	+ Both	<u>20.77</u>	6.24	<u>4.13</u>	<u>3.04</u>		
RK2	CIFAR-10 with ReFlow (Teacher FID: 2.70)					RK2	ImageNet with FlowDCN (Teacher FID: 15.89)				
+ LD3	29.45	13.82	6.26	3.86	+ LD3	7.59	10.17	12.75	14.04		
+ BézierFlow	13.18	6.00	4.31	3.74	+ BézierFlow	9.50	<u>5.94</u>	<u>6.22</u>	<u>7.56</u>		
+ Both	12.23	<u>5.50</u>	<u>3.74</u>	<u>3.17</u>	+ Both	9.11	6.64	<u>9.38</u>	<u>10.88</u>		

714
 715 Table 6: **FID comparison of BézierFlow, Bespoke Solver and Bespoke Solver trained with our**
 716 **training loss, denoted as Bespoke*.** Results for the base solvers are reported on each top rows. The
 717 best results are highlighted in **bold** and the second best results are underlined. Gray cells indicate the
 718 base ODE solvers.

Method	NFE=4	NFE=6	NFE=8	NFE=10	Method	NFE=4	NFE=6	NFE=8	NFE=10
CIFAR-10 32 × 32 with ReFlow (Liu et al., 2023) (Teacher FID: 2.70)									
RK1	52.78	26.30	17.40	13.30	RK2	25.36	<u>12.12</u>	9.17	7.89
+ Bespoke	45.31	18.08	11.88	9.25	+ Bespoke	39.45	64.87	16.67	13.34
+ Bespoke*	38.34	<u>17.28</u>	<u>10.34</u>	<u>7.65</u>	+ Bespoke*	<u>19.44</u>	49.65	<u>4.40</u>	<u>3.70</u>
+ BézierFlow	20.64	<u>9.67</u>	<u>7.30</u>	<u>5.51</u>	+ BézierFlow	13.18	<u>6.00</u>	<u>4.31</u>	<u>3.74</u>

725
 726 **Proposition B.2** (Better Optima under Larger Trajectory Spaces). *Let $\mathcal{X}_{\text{LD3}}, \mathcal{X}_{\text{BF}} \subseteq \mathbb{R}^{M+1 \times D}$ be*
 727 *the trajectory spaces of LD3 and BézierFlow, respectively, and suppose*

$$\mathcal{X}_{\text{LD3}} \subsetneq \mathcal{X}_{\text{BF}} \quad (32)$$

728 *as in Theorem B.1. Let $\mathcal{L} : \mathcal{X} \rightarrow \mathbb{R}$ be any real-valued objective functional (e.g., a distillation loss*
 729 *to a teacher). Define the optimal objective values*

$$\mathcal{L}_{\text{LD3}}^* := \inf_{\mathbf{x} \in \mathcal{X}_{\text{LD3}}} \mathcal{L}(\mathbf{x}), \quad \mathcal{L}_{\text{BF}}^* := \inf_{\mathbf{x} \in \mathcal{X}_{\text{BF}}} \mathcal{L}(\mathbf{x}). \quad (33)$$

730 *Then, the following inequality holds:*

$$\mathcal{L}_{\text{BF}}^* \leq \mathcal{L}_{\text{LD3}}^*. \quad (34)$$

731 *Proof.* Recall that for any two sets $\mathcal{A} \subseteq \mathcal{B}$ and an objective function f , the infimum over the superset
 732 is less than or equal to the infimum over the subset, i.e.,

$$\inf_{x \in \mathcal{B}} f(x) \leq \inf_{x \in \mathcal{A}} f(x). \quad (35)$$

733 Since $\mathcal{X}_{\text{LD3}} \subsetneq \mathcal{X}_{\text{BF}}$, applying this property directly yields:

$$\mathcal{L}_{\text{BF}}^* = \inf_{\mathbf{x} \in \mathcal{X}_{\text{BF}}} \mathcal{L}(\mathbf{x}) \leq \inf_{\mathbf{x} \in \mathcal{X}_{\text{LD3}}} \mathcal{L}(\mathbf{x}) = \mathcal{L}_{\text{LD3}}^*. \quad (36)$$

734 Moreover, if there exists $\mathbf{x}' \in \mathcal{X}_{\text{BF}} \setminus \mathcal{X}_{\text{LD3}}$ such that $\mathcal{L}(\mathbf{x}') < \mathcal{L}_{\text{LD3}}^*$, then

$$\mathcal{L}_{\text{BF}}^* < \mathcal{L}_{\text{LD3}}^*. \quad (37)$$

735 \square

751 C COMPARISON OF PARAMETERIZATION AGAINST BESPOKE SOLVER

752 As discussed in Sec.4.4, both Bespoke Solver (Shaul et al., 2024) and BézierFlow aim to learn sam-
 753 pling trajectories, but differ in (i) parameterization and (ii) training objective. Bespoke Solver (Shaul
 754 et al., 2024) employs discrete per-step parameterization and minimizes step-wise ℓ_2 errors against

756 teacher outputs, whereas BézierFlow adopts a Bézier-based continuous parameterization and is
 757 trained with a global truncation loss, computed along the full trajectory from x_0 to x_1 , with
 758 LPIPS (Zhang et al., 2018).

759 To ablate the effect of different training objectives and focus solely on parameterization, we report
 760 additional quantitative results in Tab. 6, where Bespoke* retains Bespoke Solver’s parameterization
 761 but adopts the same training objective as ours. While Bespoke* improves over the original Be-
 762 spoke Solver, BézierFlow remains superior, with especially large gains at low NFEs, such as +17.7
 763 FID improvement at NFE=4 with RK1, underscoring the advantage of our Bézier-based continuous
 764 parameterization.

766 D IMPLEMENTATION DETAILS

768 We first describe the shared experimental setup for the methods based on teacher-forcing framework
 769 (Bespoke solver, LD3, and BézierFlow) and method-specific configurations for BézierFlow and the
 770 baselines.

772 D.1 SHARED SETUP

774 **Teacher Data Generation.** We generate teacher samples using the high-order adaptive solver
 775 RK45 (Butcher, 1996), except for Stable Diffusion v3.5 (Esser et al., 2024), where we adopt RK2
 776 with 30 NFEs. The same teacher samples are used for all baselines that rely on the teacher-forcing
 777 framework (e.g., Bespoke Solver, LD3).

779 **Training.** We train for 8 epochs on CIFAR-10 (Krizhevsky, 2009), FFHQ (Karras et al., 2019), and
 780 AFHQv2 (Choi et al., 2020), and for 5 epochs on ImageNet (Deng et al., 2009) and Stable Diffusion
 781 v3.5 (Esser et al., 2024). At the end of each epoch, we perform validation and select the checkpoint
 782 with the best validation score for final evaluation. We use LPIPS (Zhang et al., 2018) as the distance
 783 metric for LD3 (Tong et al., 2025) and BézierFlow, and RMSE for Bespoke Solver (Shaul et al.,
 784 2024).

785 **Evaluation.** We report Fréchet Inception Distance (FID) (Heusel et al., 2017) scores computed
 786 against the reference set using 50K randomly generated samples. On ImageNet, generated sam-
 787 ples are drawn to match the class distribution of the reference set. For SD3.5, both reference and
 788 generated samples are constructed from disjoint subsets of 30K text prompts from the MS-COCO
 789 validation set, following the setup of LD3 (Tong et al., 2025).

791 D.2 BÉZIERFLOW TRAINING DETAILS

793 **Target Timesteps.** For diffusion models, the timesteps $\{s_i\}_{i=0}^{NFE}$ are initialized to be uniformly
 794 spaced in terms of the signal-to-noise ratio (SNR). For flow models, they are initialized to be uni-
 795 formly spaced in the time domain.

796 **Initialization.** We initialize the Bézier scheduler with a linear SI scheduler, i.e., $\bar{\alpha}(s) = s$ and
 797 $\bar{\sigma}(s) = 1 - s$. Under the 1D Bézier parameterization, this corresponds to

$$799 \theta_i^{(\alpha)} = 1, \quad \theta_i^{(\sigma)} = 1, \quad i = 0, 1, \dots, n, \quad (38)$$

801 which places the $n - 1$ interior control points uniformly between the two endpoints. We use 32
 802 control points in all experiments. For decoupled timesteps s_i^c that are fed into the model, we set
 803 $s_i^c = s_i + \theta_i^{(c)}$, with $\theta_i^{(c)}$ initialized to zero, following LD3 (Tong et al., 2025).

805 **Optimizer.** We optimize the Bézier scheduler parameters $\theta^{(\alpha)}, \theta^{(\sigma)}$ using RMSprop, and the de-
 806 coupled timesteps $\theta_i^{(c)}$ using SGD. For RMSprop, we set the momentum to 0.9 and weight decay to
 807 0. The learning rate is 5×10^{-3} for CIFAR-10, FFHQ, and AFHQv2, and 1×10^{-3} for ImageNet and
 808 Stable Diffusion v3.5. For the decoupled timesteps, we use SGD with a learning rate of 1×10^{-1} for
 809 all datasets, except for Stable Diffusion v3.5, where we use 1×10^{-5} . We apply gradient clipping
 with a global norm threshold of 1.0 to all parameters.

810 **Table 7: FID comparison of few-step generation with diffusion models at extremely low NFEs.**
 811 Results of the base ODE solvers are reported on each top rows. **Bold** indicates the best results, and
 812 underline marks the second best. Gray cells indicate the base ODE solvers.

814	815 CIFAR-10 32×32 with EDM			816 FFHQ 64×64 with EDM			817 AFHQv2 64×64 with EDM			
	818 Method	819 NFE=1	820 NFE=2	821 NFE=3	822 NFE=1	823 NFE=2	824 NFE=3	825 NFE=1	826 NFE=2	827 NFE=3
828 UniPC	829 <u>377.15</u>	830 168.35	831 57.45	832 <u>280.61</u>	833 104.57	834 59.54	835 <u>312.37</u>	836 64.62	837 44.52	838
839 + DMN	840 -	841 <u>160.65</u>	842 66.03	843 -	844 142.57	845 64.99	846 -	847 141.99	848 70.01	849
850 + GITS	851 -	852 168.29	853 <u>53.21</u>	854 -	855 107.71	856 <u>42.38</u>	857 -	858 73.95	859 25.13	860
861 + LD3	862 -	863 187.42	864 39.56	865 -	866 120.87	867 48.30	868 -	869 107.77	870 30.53	871
872 + BézierFlow	873 125.03	874 50.41	875 55.07	876 121.94	877 72.03	878 33.72	879 159.58	880 39.86	881 <u>26.31</u>	882
884 iPNDM	885 <u>377.15</u>	886 153.31	887 47.68	888 <u>280.61</u>	889 102.50	890 45.70	891 <u>312.37</u>	892 79.32	893 38.16	894
896 + DMN	897 -	898 146.40	899 58.98	900 -	901 112.55	902 61.54	903 -	904 128.36	905 76.28	906
909 + GITS	910 -	911 153.33	912 43.71	913 -	914 105.78	915 32.33	916 -	917 95.47	918 <u>26.40</u>	919
922 + LD3	923 -	924 <u>145.03</u>	925 <u>32.19</u>	926 -	927 <u>97.62</u>	928 38.14	929 -	930 <u>91.10</u>	931 23.85	932
935 + BézierFlow	936 125.03	937 41.58	938 22.20	939 121.94	940 60.45	941 <u>35.10</u>	942 159.58	943 34.70	944 36.26	945

824 **Table 8: FID comparison of few-step generation with flow models at extremely low NFEs.**
 825 Results of the base ODE solvers are reported on each top rows. **Bold** indicates the best results, and
 826 underline marks the second best. Gray cells indicate the base ODE solvers.

828	829 CIFAR-10 32×32 with ReFlow			830 ImageNet 256×256 with FlowDCN			831 MS-COCO 512×512 with SDv3.5			
	832 Method	833 NFE=1	834 NFE=2	835 NFE=3	836 NFE=1	837 NFE=2	838 NFE=3	839 NFE=1	840 NFE=2	841 NFE=3
842 RK1	843 <u>379.22</u>	844 171.48	845 89.00	846 <u>263.54</u>	847 113.27	848 27.69	849 328.02	850 214.03	851 103.97	852
854 + DMN	855 -	856 <u>170.53</u>	857 <u>79.54</u>	858 -	859 115.89	860 42.78	861 -	862 218.20	863 82.68	864
867 + GITS	868 -	869 183.40	870 81.46	871 -	872 130.81	873 31.70	874 -	875 166.06	876 94.94	877
880 + Bespoke	881 471.18	882 405.94	883 265.77	884 264.81	885 114.66	886 <u>28.27</u>	887 <u>324.94</u>	888 212.16	889 98.91	890
893 + LD3	894 -	895 182.40	896 81.35	897 -	898 126.29	899 85.16	900 -	901 150.21	902 85.16	903
907 + BézierFlow	908 314.52	909 67.63	910 30.40	911 261.79	912 94.64	913 44.60	914 320.67	915 <u>156.20</u>	916 <u>83.55</u>	917
918 RK2	919 -	920 <u>128.80</u>	921 -	922 -	923 90.26	924 -	925 -	926 163.35	927 -	928
931 + DMN	932 -	933 -	934 -	935 -	936 -	937 -	938 -	939 -	940 -	941
945 + GITS	946 -	947 -	948 -	949 -	950 -	951 -	952 -	953 -	954 -	955
959 + Bespoke	960 -	961 309.60	962 -	963 -	964 <u>86.58</u>	965 -	966 -	967 <u>162.40</u>	968 -	969
973 + LD3	974 -	975 -	976 -	977 -	978 -	979 -	980 -	981 -	982 -	983
987 + BézierFlow	988 -	989 70.87	990 -	991 -	992 83.97	993 -	994 -	995 146.20	996 -	997

840 D.3 BASELINES

841 **GITS (Chen et al., 2024).** We adopt the official implementation code and follow the default number
 842 of sampling trajectories, which is 256.

843 **Bespoke Solver (Shaul et al., 2024).** Since no official implementation code is publicly available,
 844 we re-implemented the method based on the descriptions in the original paper. We employ Adam
 845 optimizer with a learning rate of 1×10^{-4} , as we observed that the learning rate reported in the paper
 846 (2×10^{-3}) caused divergence and very high FID scores when training on relatively small datasets.

847 **LD3 (Tong et al., 2025).** We adopt the official implementation code and follow the default training
 848 configurations. For timestep parameters, we use the same optimizer and match their learning rate to
 849 that of our scheduler. For the decoupled timesteps, we follow the original parameterization and use
 850 SGD with a learning rate of 0.1.

855 E MORE QUANTITATIVE RESULTS

856 E.1 PROBING BÉZIERFLOW AT EXTREMELY LOW NFEs

857 To stress-test BézierFlow in the extreme low-NFE regime and identify where quality collapse begins,
 858 we conduct additional experiments in the very low-NFE range ($NFE \leq 3$), which is even lower than
 859 the NFEs used in Sec. 5. Except for the NFEs, all other experiment setups follow those used in
 860 Sec. 5.

864 **Table 9: Quantitative comparison of few-step generation on text-image alignment with Stable**
 865 **Diffusion (Esser et al., 2024).** Results for the base solvers are reported on each top rows. **Bold**
 866 indicates the best results, and underline marks the second best. Gray cells indicate the base ODE
 867 solvers.

Method	NFE=4		NFE=6		NFE=8		NFE=10	
	CLIP \uparrow	PickScore \uparrow						
MS-COCO 512 \times 512 with Stable Diffusion (Esser et al., 2024)								
RK1	0.240	0.206	<u>0.252</u>	0.212	<u>0.257</u>	<u>0.215</u>	0.260	0.217
+ DMN	0.225	0.199	0.246	0.209	0.253	0.213	0.256	0.215
+ Bespoke	0.241	0.206	0.243	<u>0.212</u>	0.251	0.214	0.252	<u>0.216</u>
+ GITS	0.234	0.204	0.247	0.210	0.252	0.213	0.255	0.214
+ LD3	<u>0.244</u>	0.208	0.249	<u>0.212</u>	0.258	0.217	0.258	0.217
+ BézierFlow	0.245	0.209	0.253	0.214	0.256	0.217	<u>0.258</u>	0.217
RK2	0.244	0.208	0.255	0.214	<u>0.259</u>	0.216	0.260	0.217
+ DMN	0.243	0.208	<u>0.257</u>	0.216	0.252	0.213	0.259	0.217
+ Bespoke	0.244	0.208	0.225	0.200	0.253	0.215	0.257	0.217
+ GITS	0.251	0.211	0.255	0.214	0.257	0.216	0.258	0.216
+ LD3	0.241	0.208	0.255	<u>0.215</u>	0.260	0.218	<u>0.261</u>	<u>0.218</u>
+ BézierFlow	0.248	<u>0.210</u>	0.258	<u>0.215</u>	0.260	<u>0.217</u>	0.263	0.219

881
 882 **Table 10: Quantitative comparison on training efficiency in few-step generation for diffusion**
 883 **and flow models on CIFAR-10.** All experiments are conducted on A6000 GPUs, except for the last
 884 row of distillation methods, which reports the performance of pretrained model from their official
 885 implementations (Song et al., 2023; Liu et al., 2023). “Time” denotes wall-clock training time,
 886 where s/m/d denote seconds/minutes/days, respectively.

Method	NFE=6		NFE=8		Method	NFE=6		NFE=8	
	FID \downarrow	Time \downarrow	FID \downarrow	Time \downarrow		FID \downarrow	Time \downarrow	FID \downarrow	Time \downarrow
(1) Non-distillation Methods									
iPNNDM	CIFAR-10 with EDM (Teacher FID: 2.08)			RK2	CIFAR-10 with ReFlow (Teacher FID: 2.70)				
+ DMN	9.33	5s	4.82	5s	+ DMN	51.99	5s	21.43	5s
+ GITS	6.80	30s	4.07	30s	+ GITS	11.84	30s	8.77	30s
+ Bespoke	-	-	-	-	+ Bespoke	64.87	30m	16.67	30m
+ LD3	4.42	10m	2.93	13m	+ LD3	13.82	10m	6.26	13m
+ BézierFlow	3.35	10m	2.81	13m	+ BézierFlow	6.00	10m	4.31	13m
(2) Distillation Methods									
CD	359.59	15m	343.59	15m	+ 2-RF	12.12	15m	9.17	15m
CD	4.24	6d	3.95	6d	+ 2-RF	5.69	2d	5.45	2d
CD	2.82	8d (A100)	2.79	8d (A100)	+ 2-RF	3.74	8d (A100)	3.68	8d (A100)

900
 901 As summarized in Tab. 7 and Tab. 8, BézierFlow remains effective even at extremely low NFEs for
 902 both diffusion and flow models, improving over the base solvers by a substantial margin. Note that
 903 blank entries for RK2 simply reflect that RK2 only supports even numbers of function evaluations
 904 and has no timestep to learn in NFE=2. Furthermore, for NFE=1, timestep-learning methods cannot
 905 be applied, whereas scheduler-learning approaches such as Bespoke Solver (Shaul et al., 2024) and
 906 BézierFlow remain applicable.

E.2 TEXT-IMAGE ALIGNMENT FOR FOUNDATIONAL MODEL

911 To complement the zero-shot MS-COCO FID results of Stable Diffusion v3.5 (Esser et al., 2024)
 912 in Tab. 2, we provide additional evaluation results for a more comprehensive assessment. We report
 913 CLIP score (Hessel et al., 2021) and PickScore (Kirstain et al., 2023), both of which measure the
 914 alignment between the given text prompt and the generated image.

915 As shown in Tab. 9, BézierFlow achieves the best or second-best performance across various NFEs,
 916 solvers, and evaluation metrics except for the CLIP Score at NFE=8 with the RK1 solver. These
 917 additional results further corroborate the superiority of BézierFlow even with the large-scale 2.5B
 918 pretrained stochastic interpolant model (Esser et al., 2024).

NFE	UniPC	DMN	GITS	LD3	BF	NFE	UniPC	DMN	GITS	LD3	BF
FFHQ 64×64 with EDM (Karras et al., 2022)											
6						6					
8						8					
AFHQv2 64×64 with EDM (Karras et al., 2022)											

Figure 5: **Qualitative comparisons of samples generated using NFEs 6 and 8 on FFHQ and AFHQv2 datasets.** We use UniPC solver as the base solver for both cases.

NFE	RK2	DMN	GITS	Bespoke	LD3	BF	NFE	RK2	DMN	GITS	Bespoke	LD3	BF
CIFAR-10 32×32 with ReFlow (Liu et al., 2023)													
6							6						
8							8						
ImageNet 256×256 with FlowDCN (Wang et al., 2024)													

Figure 6: **Qualitative comparisons of samples generated using NFEs 6 and 8 on CIFAR-10 and ImageNet datasets.** We use RK2 solver as the base solver for both cases.

E.3 COMPARISON ON TRAINING EFFICIENCY WITH FEW-STEP GENERATION METHODS

For a more comprehensive and fair comparison of training efficiency beyond the Tab. 4, we report additional results at matched NFEs with varying training budgets in Tab. 10. As shown, under the same NFEs, distillation-based approaches (Consistency Distillation (CD) (Song et al., 2023) and 2-Rectified Flow (2-RF) (Liu et al., 2023)) yield notably worse FID under the same lightweight training budget (15 minutes) and require *substantially longer* training time (2-6 days) to achieve FID comparable to BézierFlow, corresponding to roughly **200-600× more training time**. These results underscore BézierFlow’s highly training-efficient acceleration, achieving in just a few minutes the performance that prior distillation-based approaches require several days of training to reach. Note that the 15-minute performance of 2-RF is identical to that of the base pretrained model as this budget is fully spent on the data creation stage for ReFlow.

We also include training time comparisons against non-distillation baselines that accelerate generation with lightweight training, including DMN, GITS, Bespoke Solver and LD3 (Xue et al., 2024; Chen et al., 2024; Shaul et al., 2024; Tong et al., 2025). Among these lightweight acceleration methods, BézierFlow achieves the best FID, even outperforming LD3 under the same training budget. This demonstrates that BézierFlow offers a more favorable trade-off between training efficiency and sample quality.

972	NFE	RK1	DMN	GITS	Bespoke	LD3	BézierFlow
973	MS-COCO 512 × 512 with Stable Diffusion (Esser et al., 2024)						
974							
975							
976							
977							
978							
979	6						
980		"A man standing up against a wall with his hands clasped together."					
981							
982							
983							
984							
985							
986							
987							
988							
989							
990	8						
991		"Computer on the desk at nighttime in front of a window."					
992							
993							
994							
995							
996							
997							
998	NFE	RK2	DMN	GITS	Bespoke	LD3	BézierFlow
999							
1000							
1001							
1002							
1003							
1004	6						
1005		"A bus stopped in front of a tall red building."					
1006							
1007							
1008							
1009							
1010							
1011							
1012							
1013							
1014							
1015	8						
1016		"A few pieces of luggage sitting on top of a chair in an airport."					
1017							
1018							
1019							
1020							
1021							
1022							
1023	Figure 7: Qualitative comparisons of samples generated using NFEs 6 and 8 with Stable Diffusion v3.5 Esser et al. (2024). We use RK1 and RK2 as the base solver.						
1024							
1025							

Table 11: Quantitative comparison on unconditional 3D point cloud generation with Point Voxel Diffusion (PVD) (Zhou et al., 2021). Lower is better for CD-MMD (denoted as MMD) and JSD and higher is better for CD-COV (denoted as COV). CD-MMD is multiplied by 10^3 . Results for the base solvers are reported on each top rows. **Bold** indicates the best results, and underline marks the second best. Gray cells indicate the base ODE solvers.

Method	NFE=4			NFE=6			NFE=8			NFE=10		
	MMD ↓	COV ↑	JSD ↓	MMD ↓	COV ↑	JSD ↓	MMD ↓	COV ↑	JSD ↓	MMD ↓	COV ↑	JSD ↓
UniPC	2.50	3.21	0.46	1.25	8.89	0.30	0.95	17.03	0.25	0.79	20.25	0.22
+ DMN	<u>1.10</u>	16.79	<u>0.27</u>	<u>0.68</u>	26.42	0.23	1.50	15.06	0.32	<u>0.67</u>	19.51	0.27
+ GITS	5.32	9.52	0.56	9.14	0.74	0.63	1.20	20.25	0.31	0.90	16.30	0.23
+ LD3	1.20	21.23	0.24	1.16	20.74	<u>0.24</u>	0.80	<u>21.48</u>	<u>0.25</u>	0.91	<u>21.23</u>	0.23
+ BézierFlow	0.88	<u>18.77</u>	0.29	0.59	<u>22.72</u>	<u>0.23</u>	0.58	23.45	0.24	<u>0.53</u>	<u>23.70</u>	0.21
iPNDM	<u>1.17</u>	14.81	0.27	0.91	16.54	<u>0.23</u>	0.78	<u>23.46</u>	0.21	0.67	26.67	0.20
+ DMN	1.18	19.26	<u>0.29</u>	<u>0.63</u>	24.69	0.22	1.74	6.17	0.35	<u>0.65</u>	20.49	0.22
+ GITS	3.22	7.65	0.44	3.59	3.21	0.48	3.99	1.73	0.49	2.73	3.95	0.41
+ LD3	2.40	13.33	0.34	0.89	18.52	0.25	<u>0.77</u>	19.01	0.25	0.70	22.72	0.22
+ BézierFlow	0.85	<u>18.52</u>	<u>0.29</u>	0.58	<u>22.73</u>	<u>0.23</u>	0.57	24.44	<u>0.23</u>	0.56	<u>24.52</u>	<u>0.21</u>

F MORE QUALITATIVE RESULTS

We provide more qualitative results for accelerated sampling of diffusion models in Fig. 5 and flow models in Fig. 6 and Fig. 7. Across both model classes, BézierFlow (BF) consistently yields clearer structures and more faithful details compared to baselines under low NFEs.

G EXTENSION TO OTHER DOMAINS

BézierFlow is a generic framework applicable not only to image synthesis but also to various generative tasks within the stochastic interpolant framework. To demonstrate the versatility of our method and its robustness to different distance metrics beyond LPIPS, we conduct additional experiments on two distinct domains: 3D point cloud generation and layout generation.

G.1 UNCONDITIONAL 3D POINT CLOUD GENERATION

3D Point cloud generation involves creating 3D representations of objects using discrete points, a task essential for applications in robotics, autonomous driving, and 3D modeling. We evaluate BézierFlow using the Point-Voxel Diffusion (PVD) model (Zhou et al., 2021), trained on the *airplane* category of the ShapeNet dataset (Chang et al., 2015).

Experiment Setup. We adopt a simple mean squared error (MSE) loss for both training and validation. We generate 32 noise–data pairs for both the training and validation sets using DPM-Solver (Lu et al., 2022) with 64 NFEs, and train the model for 5 epochs. We compare our method against the same set of baselines reported in Tab. 1.

Evaluation Metrics. Following the evaluation protocol of PVD (Zhou et al., 2021), we assess the quality of generated samples using three metrics based on the Chamfer Distance (CD): Minimum Matching Distance (CD-MMD), Coverage Score (CD-COV), and Jensen-Shannon Divergence (JSD).

Results. Tab. 11 presents the quantitative results. BézierFlow consistently achieves the best or second-best performance on CD-MMD, CD-COV across all NFEs, substantially improving over the base solvers and timestep-learning baselines (Xue et al., 2024; Chen et al., 2024; Tong et al., 2025). Fig. 8 provides qualitative comparisons of generated 3D point clouds, where BézierFlow better preserves both the global shape and coverage of the target distribution.

G.2 UNCONDITIONAL LAYOUT GENERATION

Layout generation aims to synthesize structural arrangements of elements (e.g., UI components, document blocks), which is a critical step in graphic design automation. We evaluate our method on

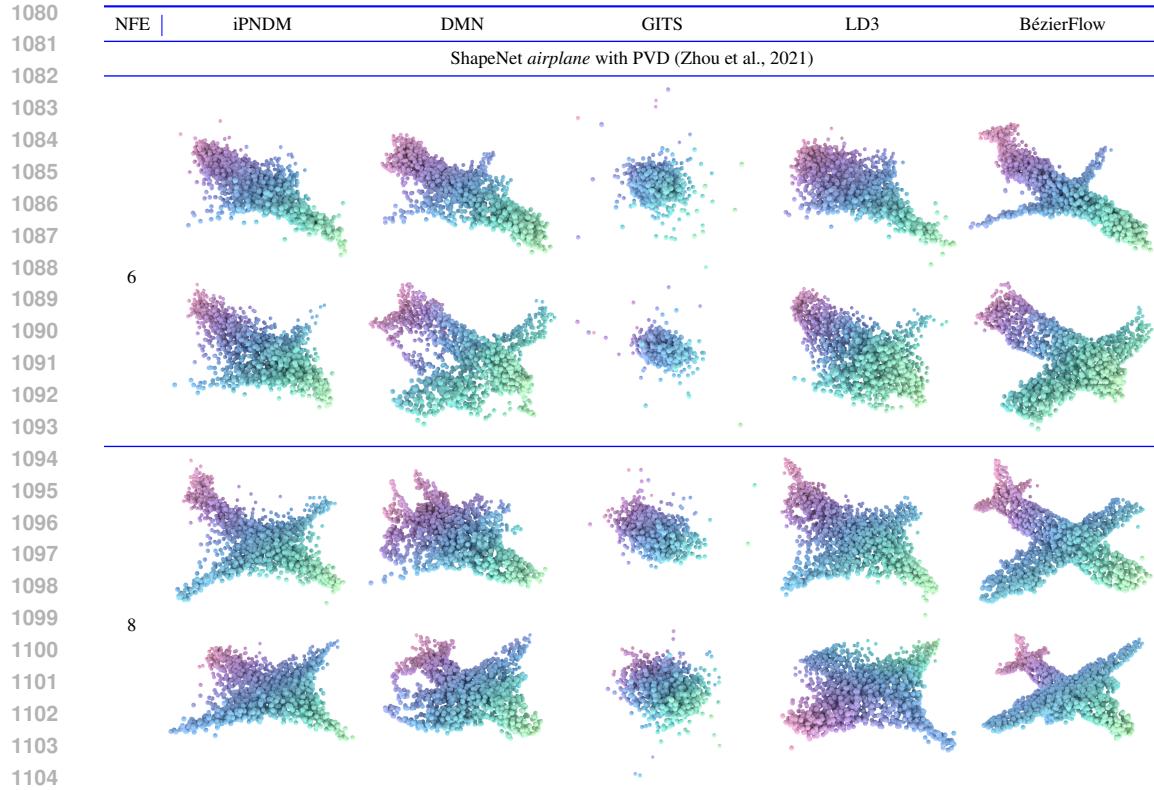


Figure 8: Qualitative comparisons of 3D point cloud samples generated using NFEs 6 and 8 with PVD (Zhou et al., 2021). We use iPNNDM as the base solver.

Table 12: Quantitative comparison on unconditional layout generation with Layout-Flow (Guerreiro et al., 2024). Lower is better for FID, Alignment (denoted as Align.), Overlap. Results for the base solvers are reported on each top rows. **Bold** indicates the best results, and underline marks the second best. Gray cells indicate the base ODE solvers.

Method	NFE=4			NFE=6			NFE=8			NFE=10		
	FID ↓	Align. ↓	Overlap ↓	FID ↓	Align. ↓	Overlap ↓	FID ↓	Align. ↓	Overlap ↓	FID ↓	Align. ↓	Overlap ↓
RK1	55.88	0.40	0.60	22.75	0.35	0.56	11.66	0.30	0.54	7.93	0.27	0.52
+ DMN	178.35	0.55	1.08	88.40	0.69	0.70	26.27	0.37	<u>0.46</u>	10.96	0.33	0.46
+ GITS	41.08	0.37	0.57	12.84	0.35	0.47	7.32	0.29	0.45	5.90	0.27	0.46
+ Bespoke	213.61	0.92	1.01	201.20	0.88	0.67	168.49	0.63	0.59	171.11	0.63	0.56
+ LD3	19.51	0.32	<u>0.54</u>	<u>8.36</u>	<u>0.28</u>	<u>0.51</u>	<u>5.03</u>	0.23	0.48	<u>3.70</u>	<u>0.23</u>	<u>0.47</u>
+ BézierFlow	32.78	<u>0.35</u>	0.53	7.10	0.26	<u>0.47</u>	<u>3.86</u>	<u>0.25</u>	0.49	<u>2.96</u>	0.22	0.50
RK2	143.90	0.67	0.65	73.91	0.47	0.49	35.84	0.38	0.51	20.80	0.34	0.51
+ DMN	142.40	0.66	0.35	88.15	0.49	<u>0.46</u>	63.57	0.37	0.42	56.23	0.35	0.43
+ GITS	102.11	0.49	<u>0.42</u>	51.62	0.37	0.48	27.84	<u>0.32</u>	0.50	<u>8.25</u>	0.22	<u>0.47</u>
+ Bespoke	<u>126.80</u>	<u>0.61</u>	0.47	187.62	0.86	0.37	32.99	0.38	0.54	21.54	0.36	0.50
+ LD3	162.98	0.62	0.47	<u>42.82</u>	<u>0.37</u>	0.48	12.57	0.26	<u>0.48</u>	8.39	0.27	0.48
+ BézierFlow	142.34	0.63	0.57	39.17	0.35	0.52	<u>25.51</u>	0.37	0.50	7.18	<u>0.26</u>	0.49

unconditional layout generation using LayoutFlow (Guerreiro et al., 2024), pretrained on the RICO dataset (Deka et al., 2017).

Experiment Setup. We adopt negative mean Intersection over Union (mIoU) between the teacher and student layouts as the objective for both training and validation. We generate 50 noise–data pairs for both the training and validation sets using an RK45 (Butcher, 1996) solver, and train the model for 5 epochs. We compare our method against the same set of baselines reported in Tab. 2.

Evaluation Metrics. Following the evaluation protocol of LayoutFlow (Guerreiro et al., 2024), we assess generation quality using Fréchet Inception Distance (FID) adapted for layouts, alongside

Figure 9: Qualitative comparisons of layout samples generated using NFEs 6 and 8 with LayoutFlow (Guerreiro et al., 2024). We use RK1 as the base solver. The rightmost column shows teacher samples from RK45 solver.

Table 13: FID comparison of VDM, Multi-marginal SI (denoted as MMSI), and BézierFlow on CIFAR-10. Results for the base solvers are reported on each top rows. **Bold** indicates the best results, and underline marks the second best. Gray cells indicate the base ODE solvers.

Method	NFE=4	NFE=6	NFE=8	NFE=10	Method	NFE=4	NFE=6	NFE=8	NFE=10
CIFAR-10 32 × 32 with ReFlow (Liu et al., 2023) (Teacher FID: 2.70)									
RK1	52.78	26.30	17.40	13.30	RK2	25.36	12.12	9.17	7.89
+ VDM	54.72	22.06	19.10	19.00	+ VDM	36.24	25.74	16.37	12.39
+ MMSI	22.89	<u>12.06</u>	<u>7.59</u>	<u>5.86</u>	+ MMSI	<u>20.82</u>	<u>9.03</u>	<u>7.57</u>	<u>7.79</u>
+ BézierFlow	20.64	9.67	7.30	5.51	+ BézierFlow	13.18	6.00	4.31	3.74

Alignment and Overlap scores. For FID calculation, we employ the feature extractor from LayoutDiffusion (Zheng et al., 2023).

Results. As shown in Table 12, BézierFlow shows better performance than other baselines in terms of FID and Alignment. Interestingly, it consistently outperforms the base solvers (RK1 and RK2) on all metrics at the same NFE settings. We provide a qualitative comparison of the generated layouts in Fig. 9. BézierFlow produces layouts that most closely follow the teacher trajectory, preserving the spatial arrangement and aspect ratios of objects.

1188 H COMPARISON WITH OTHER SCHEDULER PARAMETERIZATIONS

1190 In this section, we discuss prior work (Kingma et al., 2023; Albergo et al., 2024) that also learns opt-
 1191 imal SI schedulers and compare them against BézierFlow. We first clarify how these methods differ
 1192 in their scheduler parameterizations, and then experimentally show that BézierFlow achieves su-
 1193 perior performance due to its compact parameterization that explicitly satisfies the core SI scheduler
 1194 requirements: boundary conditions, monotonicity, and differentiability.

1195 **Variational Diffusion Models (Kingma et al., 2023).** Variational Diffusion Models (VDMs)
 1196 model the signal-to-noise ratio function $\text{SNR}(t)$ with a monotone neural network to satisfy mono-
 1197 tonicity, aiming primarily to improve generative performance rather than sampling acceleration.
 1198 However, this neural network contains more than 1024 parameters, and thus is not parameter-
 1199 efficient. In contrast, BézierFlow uses a much more compact parameterization with only $n = 32$
 1200 control points in our experiments by leveraging 1-D Bézier functions, reducing the number of sched-
 1201 uler parameters by roughly an order of magnitude.

1203 **Multi-Marginal Stochastic Interpolant (Albergo et al., 2024).** Multi-Marginal Stochastic In-
 1204 terpolant (Multi-Marginal SI) also learns a stochastic interpolant scheduler to improve generative
 1205 performance. In the 2-marginal case, the (unnormalized) scheduler is parameterized as

$$1207 \tilde{\alpha}(s) = 1 - s + \left(\sum_{k=1}^K a_k \sin\left(\frac{\pi}{2}t\right) \right)^2, \quad \tilde{\sigma}(s) = s + \left(\sum_{k=1}^K b_k \sin\left(\frac{\pi}{2}t\right) \right)^2, \quad (39)$$

1211 with learnable coefficients a_k and b_k , which are then normalized via

$$1213 \bar{\alpha}(s) = \frac{\tilde{\alpha}(s)}{\tilde{\alpha}(s) + \tilde{\sigma}(s)}, \quad \bar{\sigma}(s) = \frac{\tilde{\sigma}(s)}{\tilde{\alpha}(s) + \tilde{\sigma}(s)}. \quad (40)$$

1216 While this parameterization enforces the boundary conditions $\bar{\alpha}(0) = 0$, $\bar{\sigma}(1) = 0$, $\bar{\alpha}(1) = 1$, and
 1217 $\bar{\sigma}(0) = 1$, the induced SNR schedule $\bar{\rho}(s) = \bar{\alpha}(s)/\bar{\sigma}(s)$ is not guaranteed to be monotonically
 1218 increasing. In contrast, our Bézier-based parameterization explicitly satisfies the three core require-
 1219 ments of an SI scheduler: (1) boundary conditions, (2) monotonicity, and (3) differentiability. This
 1220 advantage is reflected in the quantitative comparison reported below.

1221 **Results.** We report few-step generation FIDs on CIFAR-10 with ReFlow (Liu et al., 2023) for
 1222 VDM (Kingma et al., 2023), Multi-Marginal SI (Albergo et al., 2024), and BézierFlow. For VDM,
 1223 we parameterize the SNR neural network as a 3-layer MLP with hidden size 1024, following the
 1224 original configuration in the paper, and set the trigonometric order of Multi-Marginal SI to $K = 32$
 1225 so that its number of scheduler degrees of freedom matches our $n = 32$ Bézier parameterization. As
 1226 shown in Tab. 13, BézierFlow consistently achieves the best FID across all NFEs and base solvers,
 1227 outperforming VDM and Multi-Marginal SI under the same training setup. This highlights that our
 1228 Bézier-based parameterization, which satisfies the key requirements of an SI scheduler, provides a
 1229 more effective and stable way to learn SI schedulers for few-step generation than existing neural or
 1230 trigonometric alternatives.

1231 I CROSS-DATASET TRANSFER OF BÉZIER SCHEDULER

1234 We investigate whether a BézierFlow trained on one dataset can be reused on other datasets without
 1235 retraining. Specifically, we train BézierFlow on CIFAR-10 with pretrained diffusion models (Karras
 1236 et al., 2022) and then evaluate on two different datasets, FFHQ and AFHQv2. In Tab. 14, we report
 1237 FIDs for the base ODE solvers, the dataset-specific scheduler (denoted as “BézierFlow”) and the
 1238 CIFAR-10-trained scheduler reused on the target datasets (denoted as “Transferred”).

1239 As shown, although the scheduler is trained only on CIFAR-10, its performance on out-of-domain
 1240 datasets still outperforms the base solvers and remains competitive with a scheduler trained directly
 1241 on the target dataset. This demonstrates that BézierFlow provides a generally effective acceleration
 scheme even under domain shift.

1242 **Table 14: Cross-dataset transfer of Bézier stochastic interpolant schedulers.** Results for the
 1243 base solvers are reported on each top rows. **Bold** indicates the best results, and underline marks the
 1244 second best. Gray cells indicate the base ODE solvers.

Method	NFE=4	NFE=6	NFE=8	NFE=10	Method	NFE=4	NFE=6	NFE=8	NFE=10
CIFAR-10 32 × 32 with EDM → FFHQ 64 × 64 with EDM									
UniPC	47.62	14.96	7.76	8.93	iPNDM	28.75	11.15	6.68	4.80
+ BézierFlow	17.05	<u>7.43</u>	<u>3.82</u>	<u>3.13</u>	+ BézierFlow	15.39	<u>7.84</u>	<u>5.56</u>	<u>3.75</u>
+ Transferred	22.35	<u>9.05</u>	<u>4.93</u>	<u>4.50</u>	+ Transferred	<u>23.41</u>	9.87	<u>5.47</u>	<u>3.79</u>
CIFAR-10 32 × 32 with EDM → AFHQv2 64 × 64 with EDM									
UniPC	23.59	10.15	7.76	6.38	iPNDM	15.14	6.12	3.80	3.01
+ BézierFlow	12.27	4.46	<u>2.75</u>	<u>2.67</u>	+ BézierFlow	<u>14.44</u>	4.69	<u>2.63</u>	2.16
+ Transferred	11.58	<u>4.47</u>	<u>2.98</u>	<u>2.71</u>	+ Transferred	9.52	<u>3.95</u>	<u>2.96</u>	<u>2.30</u>

1254 **Table 15: Training time and peak GPU memory usage of BézierFlow for diffusion and flow
 1255 models at NFEs 4 and 10 on a single A6000 GPU.**

Dataset / Model	NFE=4		NFE=10	
	Training Time	VRAM	Training Time	VRAM
(1) Diffusion Models				
CIFAR-10 32×32 with EDM (Karras et al., 2022)	8 minutes	4 GB	15 minutes	8 GB
FFHQ 64×64 with EDM (Karras et al., 2022)	11 minutes	3 GB	18 minutes	7 GB
AFHQv2 64×64 with EDM (Karras et al., 2022)	11 minutes	3 GB	18 minutes	7 GB
(2) Flow Models				
CIFAR-10 32×32 with ReFlow (Liu et al., 2023)	8 minutes	3 GB	15 minutes	7 GB
ImageNet 256×256 with FlowDCN (Wang et al., 2024)	25 minutes	5 GB	45 minutes	8 GB
MS-COCO 512×512 with Stable Diffusion (Esser et al., 2024)	60 minutes	21 GB	100 minutes	22 GB

J COMPUTATIONAL COSTS

1270 We report wall-clock training time and peak GPU memory for BézierFlow across all datasets and
 1271 both diffusion and flow models, evaluated at NFE=4 and NFE=10 on a single A6000 GPU. As shown
 1272 in Tab. 15, BézierFlow trains in at most 1 hour even for a 2.5B large-scale pretrained model (Esser
 1273 et al., 2024) at 512 × 512 resolution, while requiring only 22 GB of GPU memory. This makes the
 1274 method practical even on a single commodity GPU commonly available in research labs. Despite
 1275 this low training and memory cost, BézierFlow improves FID by large margins over the base model,
 1276 e.g., **from 50.30 to 9.55 (≈81% relative improvement)** at NFE=4 on CIFAR-10 and **from 8.93 to
 1277 3.13 (≈64% relative improvement)** at NFE=10 on FFHQ, as shown in Tab. 1.

1278 The increase in training time from NFE=4 to NFE=10 is always less than 2×, and peak GPU mem-
 1279 ory grows only mildly with NFE. This is because we apply gradient checkpointing over the student
 1280 trajectory, so activation memory scales only weakly with the number of steps, even for Stable Diffu-
 1281 sion v3.5. These results indicate that BézierFlow scales to high-resolution, large models with modest
 1282 computational overhead, making it practical as a plug-and-play scheduler even for large-scale gen-
 1283 erative models.

K LLM USAGE STATEMENT

1287 We used large language models solely for text polishing (e.g., grammar and clarity). The technical
 1288 content, experiments, and analyses remain entirely the work of the authors.