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ABSTRACT

Recent advances have significantly improved our understanding of the sample
complexity of learning in average-reward Markov decision processes (AMDPs)
under the generative model. However, much less is known about the constrained
average-reward MDP (CAMDP), where policies must satisfy long-run average
constraints. In this work, we address this gap by studying the sample complexity
of learning an e-optimal policy in CAMDPs under a generative model. We propose
a model-based algorithm that operates under two settings: (i) relaxed feasibility,
which allows small constraint violations, and (ii) strict feasibility, where the out-
put policy satisfies the constraint. We show that our algorithm achieves sample

complexities of 0) (W) and O (%) under the relaxed and strict

feasibility settings, respectively. Here, ( is the Slater constant indicating the size of
the feasible region, H is the span bound of the bias function, and B is the transient

time bound. Moreover, a matching lower bound of Q (%ﬁm

feasibility case is established, thus providing the first minimax-optimal bounds for
CAMDPs. Our results close the theoretical gap in understanding the complexity of
constrained average-reward MDPs.

) for the strict

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 1998) provides a powerful framework for sequential
decision-making under uncertainty, enabling progress in domains such as game playing (Mnih et al.,
2015; Silver et al., 2016), robotic control (Tan et al., 2018; Zeng et al., 2020), clinical decision-
making (Schaefer et al., 2005), and aligning large language models with human preferences (Shao
et al., 2024; Ouyang et al., 2022). Most classical RL algorithms optimize a single reward signal
without additional constraints. Yet in many high-stakes applications, agents must operate not only
efficiently but also safely, fairly, or within resource limits. This leads to the study of constrained
Markov decision processes (CMDPs) (Altman, 1999), where the goal is to maximize expected
reward subject to an auxiliary cost constraint. A representative example arises in wireless sensor
networks (Buratti et al., 2009; Julian et al., 2002), where the system balances high data throughput
with average power constraints.

Motivated by the importance of constraints in real-world decision-making, a growing body of work
has investigated constrained reinforcement learning in unknown environments (Efroni et al., 2020;
Zheng & Ratliff, 2020; Qiu et al., 2020; Brantley et al., 2020; Kalagarla et al., 2021; Yu et al.,
2021; Ding et al., 2021; Gattami et al., 2021; Miryoosefi & Jin, 2022). These efforts focus on the
online learning setting, aiming to minimize both regret and constraint violation while addressing the
intertwined challenges of exploration, estimation, and policy optimization in finite-state, finite-action
CMDPs. In contrast, a recent line of research (HasanzadeZonuzy et al., 2021; Wei et al., 2021; Bai
et al., 2021; Vaswani et al., 2022) considers a simplified yet foundational framework in which the
agent has access to a generative model (Kearns & Singh, 1999; Kakade, 2003; Agarwal et al., 2020;
Sidford et al., 2018; Yang & Wang, 2019), i.e., a simulator that provides sample transitions and
rewards for any queried state-action pair, removing the need for exploration. This model provides a
clear approach for understanding the fundamental statistical complexity of the problem.

Most prior work centers on finite-horizon or discounted MDPs, where either the horizon is fixed to T’
steps or future rewards are geometrically discounted by +*. These formulations, though analytically
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convenient, limit long-term performance. The finite-horizon setting imposes an explicit cutoff, while
discounting attenuates future rewards, undesirable in sustained long-term applications. To address
this, the average-reward MDP (AMDP) framework (Puterman, 2014a) has been widely adopted,
seeking to maximize long-run average reward in the steady state.

Although planning in AMDPs is relatively well-understood (Altman, 1999; Borkar, 2005; Borkar &
Jain, 2014), characterizing the sample complexity for learning e-optimal policies remained elusive
until recent years due to the lack of natural episode resets and the need to reason about long-term
behavior without discounting. Recent advances addressed this gap in the generative model setting,
establishing near-optimal sample complexity bounds depending on structural properties—specifically,

the optimal bias span H and the mixing or transient time B—leading to rates of 6] (W) (Zurek

& Chen, 2024), where S is the number of states and A the number of actions. These quantities
capture the intrinsic difficulty of estimating long-run average rewards and distinguish average-reward
learning from its discounted counterpart.

Despite this progress for unconstrained AMDPs, the constrained variant—constrained average-
reward MDPs (CAMDPs)—remains poorly understood. In CAMDPs, the agent must simultaneously
maximize steady-state average reward and satisfy an average constraint on cost, risk, or resource
usage. This captures practical scenarios, including fairness in long-term decision-making, sustainable
operations in energy systems, and safe policy deployment. While the discounted CMDP setting has
seen progress in both relaxed and strict feasibility regimes (Vaswani et al., 2022), there are still no
known sample complexity bounds for learning in CAMDPs. In particular, how the constraint structure
interacts with the ergodic properties and what the fundamental statistical limits are in relaxed or strict
feasibility settings remain open.

This gap motivates our work. We initiate the study of the sample complexity of learning s-optimal
policies in CAMDPs under the generative model. We develop a model-based primal-dual algorithm
handling both relaxed feasibility, where the returned policy may violate the constraint by at most
€, and strict feasibility, where the policy must satisfy it exactly. We establish matching upper and
lower bounds near-optimal with respect to key parameters, including the bias span, the transient time,
and the Slater constant , which quantifies the feasible region. While relaxed and strict feasibility
have been studied in discounted CMDPs (Vaswani et al., 2022), our work provides the first sample
complexity characterization for CAMDPs in the average-reward setting. Below, we summarize our
contributions in more detail.

Our contributions. We present the first near-optimal sample-complexity bounds for learning in
CAMDPs with access to a generative model:

e We design a model-based algorithm that returns an e-optimal policy for CAMDPs under both
relaxed and strict feasibility. Our method relies on solving a sequence of unconstrained average-
reward MDPs using black-box planners.

o In the relaxed feasibility setting, we prove that our algorithm requires at most 0 (W)

samples, where S and A are the number of states and actions, H is the span bound of the bias
function, B is a transient time bound, and ( is the Slater constant characterizing the size of the
feasible region.

o In the strict feasibility setting, the sample complexity increases to O (%ﬁf{)

), and we show that

this dependence on ( is necessary by proving a matching lower bound of Q (%CJQH)) . These are

the first lower bounds for strict feasibility in CAMDPs, establishing a provable separation between
the relaxed and strict regimes.

Together, our results provide the first near minimax-optimal sample complexity bounds for constrained
average-reward reinforcement learning with respect to S, A, B and H and reveal fundamental insights
into how long-run constraints affect the hardness of planning under uncertainty.

1.1 RELATED WORKS

There is a large body of research on the sample complexity of learning in unconstrained Markov
decision processes (MDPs); see the monograph by Agarwal et al. (2019) for a comprehensive
overview. In parallel, substantial progress has been made in constrained reinforcement learning under
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unknown dynamics (Efroni et al., 2020; Zheng & Ratliff, 2020; Qiu et al., 2020; Brantley et al., 2020;
Kalagarla et al., 2021; Yu et al., 2021; Ding et al., 2021; Gattami et al., 2021; Miryoosefi & Jin, 2022),
particularly in finite-horizon settings. Another line of work addresses discounted constrained MDPs
(CMDPs) with access to a generative model (HasanzadeZonuzy et al., 2021; Wei et al., 2021; Bai
et al., 2021; Vaswani et al., 2022), yielding sample-efficient algorithms under both relaxed and strict
constraint satisfaction.

In contrast, the average-reward setting is less explored. For unconstrained average-reward MDPs,
Zurek & Chen (2024) established nearly minimax-optimal bounds under a generative model, showing
that O (S AH/ 62) samples suffice for weakly communicating MDPs, where H is the span of the
optimal bias function. They further introduced a transient time parameter B to handle general
multichain MDPs, proving a matching bound of O (S AB+H)/ 52). However, their analysis does
not incorporate constraints, and extending their framework to constrained average-reward MDPs
(CAMDPs) remains open.

Among works on CMDPs, Vaswani et al. (2022) provided the first minimax-optimal sample com-
plexity bounds for the discounted setting via dual linear programming. Yet their techniques do not
extend to average-reward problems, where key properties like Bellman contraction no longer hold.
In a separate effort, Bai et al. (2024) studied CAMDPs in an online model-free setting with general
policy classes, establishing sublinear regret for constraint violation and the duality gap. Their results,
however, focus on asymptotic behavior and do not provide near-optimal finite-sample guarantees
under a generative model.

To our knowledge, this work is the first to establish near-optimal sample complexity bounds for
CAMDPs under both relaxed and strict feasibility in the generative model setting. We propose a
primal-dual algorithm that achieves minimax-optimal rates in terms of the number of states, actions,
bias span, transient time, and the Slater constant, thereby unifying and extending existing results from
both the unconstrained and discounted settings.

2 PROBLEM FORMULATION AND PRELIMINARIES

We study an infinite-horizon constrained average-reward Markov decision process (CAMDP), denoted
by M and specified by the tuple (S, A, P, r,c, b, s). Here, S and A denote the sets of states and
actions; P : § x A — Ag is the transition probability kernel; and s € Ag represents the initial
state distribution. The objective is to maximize the primary reward function r : S x A — [0, 1],
subject to a constraint ¢ : S x A — [0,1]. Given that A 4 denotes the probability simplex over
actions, the expected average reward under a stochastic stationary policy 7w : S — A 4 is defined as
pT(s) = limp_ 0o %IES[ZZ:Ol 7(st,ar)], where so ~ s, ap ~ (- | s¢), and sp41 ~ P(- | 5, a4).
The bias function of a stationary policy  is h7 (s) := C-limp_yeo BT [ 3310 (e — pZ(St))], where
C-lim denotes the Cesaro limit. When the Markov chain induced by Py is aperiodic, the Cesaro
limit coincides with the standard limit. For any policy 7, the pair (p™, h™) satisfies the Bellman-like
relations pl = Prpl' and p]' + hll = r; + Prh7. Similarly, define the constraint value function and
constraint bias function of 7 as p7 and h] .The objective in a CAMDP is to find a policy solving the
following optimization problem:

max pl(s) s.t. pli(s) >b. (1)

We denote the optimal stochastic policy by 7*, and its corresponding reward value by p’(s).

Weakly communicating setting A Markov decision process (MDP) is weakly communicating if its
state space S can be partitioned into two disjoint subsets S = S; U Sa, such that all states in S; are
transient under any stationary policy, and for any s, s’ € S, there exists a stationary policy making s’
reachable from s. In such MDPs the average reward vector p* is constant, i.e., p*(s) = p* for all
s € 8. Consequently, (p*, h*) satisfies the average-reward optimality equation:

p* 4+ h*(s) = gleajl({r(s,a) + ZP(S/ | s,a)h*(s')}, VseS.

We occasionally abuse notation and treat p* as a scalar. A stationary policy is multichain if it induces
multiple closed irreducible recurrent classes, and an MDP is multichain if it admits at least one such
policy. While general MDPs may only possess multichain gain-optimal policies with non-constant p*,
any weakly communicating MDP admits at least one unichain gain-optimal policy under which p* is
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uniform. Moreover, every uniformly mixing MDP is weakly communicating. A stronger assumption
is communicating, which excludes transient states and requires every state be reachable from every
other under every stationary policy.

Complexity parameters We introduce several problem-dependent parameters characterizing the
complexity of constrained average-reward MDPs. The diameter D is D := max,, x5, ming Ef [7,],
where T, is the first hitting time to so under 7. The span bound of the bias function is H :=
maxy [|hflgpan With [[v]|g,,, = max, v(s) — min, v(s), capturing cumulative reward range and
long-term difficulty. We also introduce the transient time parameter B. Let 11 be the set of stationary
deterministic policies. For 7 € II, define recurrent states R™ and transient states 7™ = S \ R"™
under Py, and let Tr= = inf{t > 0 : S; € R™} be the first hitting time to a recurrent state. An
MDP satisfies the bounded transient time property with parameter B if ET [Txr-] < B forall m € II
and s € S, ensuring uniformly bounded time in transient states. Finally, the Slater constant is
¢ := max, p7(s) — b (Ding et al., 2021; Bai et al., 2021), measuring the feasibility margin and how
difficult it is to satisfy the constraint.

Blackwell-optimal policy A policy 7* is Blackwell-optimal if there exists some discount factor
7 € (0, 1) such that for all v > 4 we have Vvﬁ* > VI for all policies 7. Henceforth we let 7* denote
some fixed Blackwell-optimal policy, which is guaranteed to exist when S and A are finite (Puterman,
2014b). We define the optimal gain p* € RS by p*(s) = sup,. p™(s) and note that we have p* = p™ .
For all s € S, p*(s) > max,ca Psqp*, or equivalently p*(s) > P,p* for all policies 7 (and this
maximum is achieved by 7*). We also define h* = h™" (and we note that this definition does not
depend on which Blackwell-optimal 7* is used, if there are multiple). For all s € S, p* and h* satisfy
pr(s) + h*(s) = max,c . p,, p*=p*(s) Tsa + Psah”, known as the (unmodified) Bellman equation.

Learning framework For clarity of exposition, we assume that the reward functions r and c are
known, while the transition dynamics P are unknown and must be learned. This assumption does not
affect the leading-order sample complexity, as estimating rewards is generally easier than estimating
the transition matrix (Azar et al., 2013; Sidford et al., 2018). We further assume access to a generative
model (simulator), which allows the agent to draw samples from P(- | s, a) for any state-action pair
(s,a). Under this setting, our objective is to characterize the sample complexity required to compute
an approximately optimal policy 7 for the CAMDP M. Given a desired accuracy level € > 0, we
consider two distinct notions of settings:

Relaxed feasibility We require the returned policy 7 to achieve near-optimal reward, allowing for a
small violation of the constraint. Formally, we seek 7 such that:

pr(s) > pi(s)—e, and pl(s)>b—e. ©)

Strict feasibility We require 7 to achieve near-optimal reward while exactly satisfying the constraint,
i.e., zero constraint violation:

p7(s) = pi(s) —e, and pi(s) = b. 3

In the following sections, we describe a general model-based algorithm that can handle both the
relaxed and strict feasibility settings, and we instantiate it appropriately for each case.

3 METHODOLOGY

We will use a model-based approach for achieving the objectives in Eq. (2) and Eq. (3). In particular,
for each (s, a) pair, we collect NV independent samples from P(+|s, a) and form an empirical transition

matrix P such that P(s'|s,a) = w, where N (s'|s,a) is the number of samples that have
transitions from (s,a) to s’. These estimated transition probabilities are used to form a series of
empirical discounted MDPs, the result of which will be used as the near optimal solution for a
series of corresponding AMDPs. In particular, for each s € S and a € A, we define the perturbed
rewards 7(s,a) := r(s,a) + Z(s,a) where Z(s,a) ~ U[0,w] are i.i.d. uniform random variables
and we set other parameters, suchas € = B+ H, v = 1 — 3% and w = (1 — 7)&/6 to specify
the empirical AMDPs. Finally, compared to Eq. (1), we will require solving the CAMDP with a
constraint right-hand side equal to b’. Note that setting b’ < b corresponds to loosening the constraint,
while b’ > b corresponds to tightening the constraint. This completes the specification of a series of

empirical AMDPs { M, } that are defined by the tuple (S, A, P, 7 4+ A\, s). Furthermore, we will
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Algorithm 1: Model-based Algorithm for CAMDPs with Generative Model

Input: S (state space), A (action space),  (rewards), ¢ (constraint rewards), ¢ (Slater constant),
N (number of samples), b’ (constraint RHS), U (projection upper bound),, (epsilon-net
resolution), T' (number of iterations), Ao = 0 (initialization), &,y (target accuracy), -y (discount
factor).

For each (s,a) € § x A, collect n samples S} ..., S, from P(-|s, a)

Form P: P(s'|s,a) = ¥ 1{si, =5}, Vs es.

Set discount factor v = 1 — 4(};‘3‘:}1)

Perturb the rewards to form r,,(s, a) = r(s,a) + Z(s,a) where Z(s, a) ~ Unif(0,w).
Form the epsilon-net A = {0, ¢, 2¢,...,U}.
fort < OtoT —1do
Update the Blackwell-optimal policy 7; by solving the empirical unconstrained AMDP
(P,rp + Asc).
Update the dual variable:\;11 = Ra [Ppo,] [Ae — 1 (07t (s) — V)] .
end for

Output the mixture policy: 1 = % ZtT;Ol .

compute the optimal policy for a constraint reference CAMDP M as follows:
7" € arg max py (s)s.t.p;(s) > b’ 4)

We will require solving Eq. (4) using a specific primal-dual approach that we outline next. Using
this algorithm enables us to prove optimal sample complexity bounds under both relaxed and strict
feasibility.

First, observe that Eq. (4) can be written as an equivalent saddle-point problem -
max, miny>o [pF (s) + A (pZ (s) — b')], where A € R corresponds to the Lagrange multiplier for the
constraint. The solution to this saddle-point problem is (7*, A*) where 7* is the optimal policy for
M’ and \* is the optimal Lagrange multiplier. We solve the above saddle-point problem iteratively,
by alternatively updating the policy (primal variable) and the Lagrange multiplier (dual variable). If
T is the total number of iterations of the primal-dual algorithm, we define 7, and A, to be the primal
and dual iterates for ¢ € [T'] := {1,...,T}. The primal update at iteration ¢ is given as:
7 = arg max [pf + A\ p3 | = arg max py . ®)

Hence, iteration ¢ of the algorithm requires solving an unconstrained MDP with a reward equal to
7 + A¢¢. This can be done using any black-box MDP solver such as policy iteration. The algorithm
updates the Lagrange multipliers using a gradient descent step and requires projecting. In particular,
the dual variables are projected onto the [0, U] interval, where U is chosen to be an upper-bound on
A%].
The dual update at iteration ¢ is given as:

As1 = Ra [Py [N —n (5 (s) = )] ©)
where P 7)[A] = arg min,¢c1o 17 A — p| projects A onto the [0, U] interval. Finally, 7 in Eq. (6)
corresponds to the step-size for the gradient descent update. The above primal-dual updates are
similar to the dual-descent algorithm proposed in Vaswani et al. (Vaswani et al., 2022). The
pseudo-code summarizing the entire model-based algorithm is given in Algorithm 1. We note that
although Algorithm 1 requires the knowledge of (, this is not essential and we can instead use an
estimate of (. Next, we show that the primal-dual updates in Algorithm 1 can be used to solve the
CAMDP M'’. Specifically, we prove the following theorem that bounds the average optimality gap
(in the reward value function) and constraint violation for the mixture policy returned by Algorithm 1.

Theorem 1 (Guarantees for the primal-dual algorithm). For a target error o5 > 0, consider the
primal-dual updates given in Eq. (5)-Eq. (6) with parameters U > |\*|, T = 5—2 [1 + ﬁ},

2
op!
2 *
Eopt (Uﬁ)‘ )

€ = i and n = -Z then the resulting mixture policy 7 := % Z;‘F;Ol 7, satisfies

\/T’
pr (8) = pr (8) —eop and  p(s) > b — eopt.
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Hence, with T" = O(%/<,), the algorithm outputs a policy 7 that achieves a reward &, close to
that of the optimal empirical policy 7*, while violating the constraint by at most ¢,,. Hence, with
sufficient number of iterations 7', we can use the above primal-dual algorithm to approximately solve
the problem in Eq. (4). In order to completely instantiate the primal-dual algorithm, we require setting
U > |\*|. We will subsequently do this for the the relaxed and strict feasibility settings in Section 4.

4 UPPER-BOUND UNDER RELAXED FEASIBILITY

In order to achieve the objective in Eq. (2) for a target error ¢ > 0, we require setting N =
O (%) 0 =b— %5 and w = w. This completely specifies the empirical CMDP M
and the problem in Eq. (4). In order to specify the primal-dual algorithm, we set U = O (1/e (1-7)),
=0 (?(1-7)?),T =0 (Ya-v**)andy =1— 4(%}:}1). With these choices, we prove the
following theorem in Section B and provide a proof sketch below.

Theorem 2. For a fixed ¢ € (0,1], § € (0, 1) and a general CAMDP, suppose the corresponding
AMDPs (P, r) and (P, c¢) have bias functions bound H , and satisfy the bounded transient time
assumption with parameter B. Algorithm 1 with N = o} (W) samples, b’ = b — %‘5,
w=LU =0(Yec-v),6 =0 (2(1-7)?) , T = O (Ya-m**) and vy = 1 — 3525,
returns policy 7 that satisfies the objective in Eq. (2) with probability at least 1 — 4.

Proof Sketch: We prove the result for a general primal-dual error £oy < € and ¥’ = b — =—**, and

subsequently specify e, and hence b’. In Lemma 9 (proved in Section B), we show that if the
constraint value functions are sufficiently concentrated (the empirical value function is close to the
ground truth value function) for both the optimal policy 7* in M and the mixture policy 7 returned
by Algorithm 1, i.e., if

€ — Eopt

7 N € — &y " N
ps) = PE()| < S5 s 0T () = P ()] < S ™

then (i) policy 7 violates the constraint in M by at most ¢, i.e., p¥ (s) > b—¢, and (ii) its suboptimality
in M (compared to 7*) can be decomposed as:

P () = P () < 2w+ e+ |, () = 7, ()| +

pr,(s) = pr (s) ®)

In order to instantiate the primal-dual algorithm, we require a concentration result for policy
that maximizes the the constraint value function, i.e. if 7} := arg max p7(s), then we require

ﬁzri — p?z (s)] < €+ ey In Case 1 of Lemma 6 (proved in Section A), we show that if this

concentration result holds, then we can upper-bound the optimal dual variable |\*| by 2(14w) yith

(e+eopt)
these results in hand, we can instantiate all the algorithm parameters except N (the number of
samples required for each state-action pair). In particular, we set €, = § and hence b’ = b — %, and

W= @ < 1. Setting U = % ensures that the U > |\*| condition required by Theorem 1

holds. To guarantee that the primal-dual algorithm outputs an -approximate policy, we use Theorem 1

toset T = O (W) iterations and &, = O (¢2(1 — 7)?). Eq. (8) can then be simplified as,
T T € T A ™ AT T
pE () = pi(s) < 5+ [0 (9) = 77 ()| + [, () = o, (9)].
Putting everything together, in order to guarantee an e-reward suboptimality for 7, we require that:

AT wt o ts AT 3e " N 3e
P = T (5)] < s 1R () = AR s)| < s [er () — T ()] < T
T A € |z P €
o (s) = ()] < S5 |0, () = i (9)] < 5. ©

We control such concentration terms for both the constraint and reward value functions in Section B,
and bound the terms in Eq. (9). In particular, we prove that for a fixed ¢ € (0,1/1—], using

N >0 (W) samples enssures that the statements in Eq. (9) hold with probability 1 — 46.
This guarantees that p7 (s) — p7(s) < e and pf(s) > b — ¢. O
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5 UPPER-BOUND UNDER STRICT FEASIBILITY

Unlike Section 4, since the strict feasibility setting does not allow any constraint violations, it
necessitates using a stricter constraint in the empirical CMDP to account for the estimation error
in the transition probabilities. Algorithmically, we require setting b’ > b. Specifically, in order to
achieve the objective in Eq. (3) for a target error € > 0, we require setting N = O (%EH)) ,

b =b+= (1 V)C andw = (117707). This completely specifies the empirical CMDP M and the problem

in Eq. (4). To specify the primal-dual algorithm, we set U = ‘é(df‘:%, g = 0 (e2(1—v)*¢?),
T =0 (Ya-y°c*e?)andy = 1 — 4(§°+"‘H). With these choices, we prove the following theorem

in Section C, and provide a proof sketch below.

Theorem 3. For a fixed ¢ € (0,1/1—+] and § € (0,1), Algorithm 1, with N = O (M)

2<2
samples b = b+ 6(1 V) ) = 6(118”, U= CE?:;,& =0 (2(1 = )*?), T = O (Ya-v5¢*e?)
and v = - I B:_p‘ 2 returns policy 7 that satisfies the objective in Eq. (3), with probability at least
1 — 46.

Proof Sketch: We prove the result for a general b’ = b+ A for A > 0 and primal-dual error £,y < A,
and subsequently specify A (and hence ') and &,,. In Lemma 10 (proved in Section C), we prove
that if the constraint value functions are sufficiently concentrated (the empirical value function is
close to the ground truth value function) for both the optimal policy 7* in M and the mixture policy
@ returned by Algorithm 1 i.e. if

PE(s) = L) S A=z ¢ [pE () =00 () <A (10)

then (i) policy 7 satisfies the constraint in M i.e. p7 (s) > b, and (i) its suboptimality in M (compared
to m*) can be decomposed as:

P (5) = pi(s) < 2w+ e + 28N+ |7 (5) = 0, ()] + |oF, () = o, (5)| (D)
In order to upper-bound |\*|, we require a concentration result for policy 7} := arg max p7 (s)

that maximizes the the constraint value function. In particular, we require A € (O7 %) and

pg: (s) — pf: (s)| < % — A. In Case 2 of Lemma 6 (proved in Section A), we show that if

2(1+w)

this concentration result holds, then we can upper-bound the optimal dual variable |A\*| by =

Using the above bounds to simplify Eq. (11),
. 2w AA(1 4 w) . o o N
P () = PF(5) < T e + o+ | () = A (5)] + |7, () — 4, (5)]
1=y Tl T T P2 Py
With these results in hand, we can instantiate all the algorithm parameters except /N (the number of
samples required for each state-action pair). In particular weset A = (1_7) ¢ < C s Eopt = 4

o)

(1203)C <t andw = 5(1 "’) < 1. WesetU = C(l - for the primal- dual algorrthm ensuring

that the U > |)\*| condition requrred by Theorem 1 holds. In order to guarantee that the primal-dual
e(1—)¢
200

algorithm outputs an -approximate policy, we use Theorem 1 to set 7' = O ((1_7)%)

iterations and &, = O (¢2(1 — ~)*¢?). With these values, we can further simplify Eq. (11),
T* Us 3e A AT Us
Pr (S)ipr( )§€+ p1 ( )7107”1,(5) + prp(s)prp(S) .
Putting everything together, in order to guarantee an e-reward suboptimality for 7, we require the
following concentration results to hold for A = %,

07(5) — #2(9)] < %; o7 (5) — 7 (s)] <

* A ™ €
o () = 07, (5)] < 53 |7, (5) = o7, ()] < 5 (12)
‘We control such concentration terms for both the constraint and reward value functions in Section C,
and bound the terms in Eq. (12). In particular, we prove that for a fixed ¢ € (0,!/1—4], using

o ot 19A
P () = 5E ()| < =
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N >0 (%EH)) ensures that the statements in Eq. (12) hold with probability 1 — 44. This
guarantees that p7 (s) — p7 (s) < ¢ and p7(s) > b. O

6 LOWER-BOUND FOR WEAKLY COMMUNICATING CAMDPs

Theorem 4 (Lower-bound for communicating CAMDP). For any sufficiently small ¢, §, any

sufficiently large S, A, and any D > max{c; S, ca} (where ¢1, c2 > 0 is some universal constant),
for any algorithm promising to return an —;-optimal policy with probability at least % on any

communicating CAMDP problem, there is an CAMDP such that the expected total samples on all
SAH )

state-action pairs, when running this algorithm, is at least Q ( e

Figure 1: A Hard Communicating CAMDP Figure 2: A Component Communi-
when A =4, 5 = 19. cating CAMDP.

Proof Sketch: We construct a family of hard CAMDP instances with parameters .S, A, and diameter
D. Define A’ := A—1, D' := D/8, and K := [S/4], and assume standard bounds: A > 3,
e <1/16, D > max{16[log 4 ST, 16}.

We first design a primitive component MDP with three states (x,y, z), each having A’ actions
partitioned into subsets according to transition and reward structure (Figure 2). These components are
embedded at the leaves of an A’-ary tree with S — 3K internal nodes and depth at most [log 4, S| + 1.
The full MDP M, (Figure 1) connects components via deterministic transitions with diameter
bounded by D. A collection of instances { M}, ;} is constructed by perturbing action rewards at
selected zj, states. Optimal policies must distinguish between actions a; and a; at these states to
satisfy the constraint. The divergence in occupancy measures under different instances implies a
statistical gap. This separation in policy behavior across instances will be used to derive a lower
bound. This separation arises from the amplification effect of the constraint reward ¢, which is
necessary to ensure feasibility with respect to the objective defined in Eq. (1).

52 CZ
which translates to (*2 fg ) under the bound H < D (Bartlett & Tewari, 2009). See Appendix G
for a full proof. O

Finally, applying Fano’s method Wainwright (2019) yields a minimax lower bound of Q (S AD ) ,

7 LOWER-BOUND FOR GENERAL CAMDPsS

Theorem 5 (Lower-bound for general CAMDP). For any sufficiently small €, d, any sufficiently

large S, A, for any algorithm promising to return an 57-optimal policy with probability at least % on

any communicating CAMDP problem, there is an CAMDP such that the expected total samples on

SA(H+B)>

all state-action pairs, when running this algorithm, is at least Q ( e
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r=0
c=b+( P="3p

Figure 3: A Component MDP Used in the Hard Instance for CAMDP.

Proof Sketch: To establish the lower bound, we construct a family of hard instances in which
achieving e /24-average optimality requires significantly different policy behaviors across carefully
designed environments. In particular, we show that a policy must choose action a = 1 in a designated
subset of states with occupancy measure at most 2/3 in one instance, while the same action must be
selected with occupancy measure at least 2/3 in another. This separation in policy behavior across
instances will be used to derive a lower bound. This separation arises from the amplification effect of
the constraint reward ¢, which is necessary to ensure feasibility with respect to the objective defined
in Eq. (1). The design of our hard instance is motivated by the construction used for average-reward
MDPs in Zurek & Chen (2024). Finally, applying Fano’s inequality Wainwright (2019) to these

instances yields a lower bound on the sample complexity of (*Z;‘g ) . Finally, by combining this

result with Theorem 4, we obtain the general lower bound for weakly communicating CAMDPs:

Q (%;m) . See Appendix F for a full proof. O

8 CONCLUSION

In conclusion, we establish the first minimax-optimal sample complexity bounds for learning
in CAMDPs under a generative model. Our algorithm operates under both relaxed and strict
feasibility regimes, achieving tight upper bounds of O (W) and O <%§H)), respectively.
SA(BJrH))
e

Complementing these results, we derive a matching lower bound of ( for the strict

feasibility setting, together with a specialized lower bound of Q (i ;‘gj ) for the class of weakly

communicating CAMDPs. Taken together, these results constitute the first alignment of upper
and lower bounds in all key problem parameters — namely, the span bound of the bias function
H, the transient time bound B, and the target accuracy €. Our analysis therefore not only resolves
the minimax sample complexity of CAMDPs for the first time, but also sheds new light on the
fundamental complexity of constrained average-reward reinforcement learning, tightly connecting it
to the structural properties of average-reward MDPs.
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A PROOFS FOR PRIMAL-DUAL ALGORITHM

Theorem 1 (Guarantees for the primal-dual algorithm). For a target error eopt > 0, consider the

primal-dual updates given in Eq. (5)-Eq. (6) with parameters U > |[\*|, T = [1 + = /\ E }
€ = % andn = \F’ then the resulting mixture policy 7 := = Zt:_o 7, satisfies

pr,,( )—prp( $) — €opt  and Pc( ) 2 b — eopt-

Proof. We will define the dual regret w.r.t A as the following quantity:

RYNT) ==Y (M= X) (o] (s) = V). (13)

Using the primal update in Eq. (5), for any 7,

pre(s) + Meplt(s) > pf (s) + AepZ (s).
Substituting 7 = 7*, we have,
ol (5) = P () < v [F (5) = pE(5)] -

Since 7* is a solution to the CAMDP, pi“* >V, we get

P7(s) = pre(s) < N [ple(s) = V'] (14)
Starting from the definition of the dual regret in Eq. (13), using Eq. (14) and dividing by T’ gives

1 .- A — RN, T)
T;[mm pi(s)] + T; $) < —F— s

Recall that 7 = T Zt o ' #;. Then, by the definition of this *mixture’, we have = = ZT ! prt(s) =

Tp

( ) and £ Zt o Pre(s) = pf(s). Combining this with the last inequality, we get

d
[pif (s) — pﬁ,,(s)} +A(V —pl(s) < M' (16)

Lemma 7 show that the following inequality holds for any A € [0, U]:

2
RYN,T) < T3/? i ;Ug‘ + UVT. (17)

This combined with the previous inequality (and the "right" choice of 7', the number of updates)
gives the desired bounds. In particular, for the reward optimality gap, since A = 0 € [0, U],

. X e2+2U U 3e U .
pfp(s)fpfp(s)ﬁﬁ#+ﬁ<ﬁ?l+ﬁ. (since g; < U)

For the constraint violation, there are two cases. The first case is when b’ — p¥(s) < 0. In this case, it
also holds that b" — g4, — p7 (s) < 0, which is what we wanted to show. The second case is when

b — pT(p) > 0. In this case, using the notation [z]; = max{z,0} and Lemma 6, we have

d
P () = oE, )] + U Y = plo)], < 0T, 19)

13
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Because by assumption it holds that U > A*, Lemma 8 is applicable and gives that

- RYU,T)

b — prf —_— 1

W =re) < 75— (19)
Hence, since U € [0, U], combining the above display with Eq. (19) gives
2
. . + 26U U
W —pi(s)] < [V = pf(s)], < VT = 4 20
351 U .

<VvT + . since gy < U
2(U—-X)  (U—-X)VT ( <0

Now, set T' such that the second term in both quantities is bounded from above by €qp/2. This gives

U? 1
T=TH = — |14+ ——"—|. 21
0 5gpt { * (UA*)Q} =

Now, set €; such that the first term in both quantities is also bounded from above by % For this,
choose

o (U=
1 6U .
With these values, the algorithm ensures that
P:p (s) = pr(s) <éeop and b — p?(s) < Eopt- (22)
O

To further ensure the success of our primal-dual algorithm, we need to make sure A is bounded.So we
obtains Lemma 6 as follows.

Lemma 6 (Bounding the dual variable). The objective Eq. (4) satisfies strong duality. Defining

7 = arg max p7 (s). We consider two cases: (1) Ifb/ = b —¢&' fore’ > 0 and event £ =
{ pec — pec (s)‘ < %,} holds, then \* < w and (2)Ifb' = b+ A for A € (07 %) and event

o=

P pg:(s)‘ <§ A} holds, then \* < w

Proof. Writing the empirical CAMDP in Eq. (4) in its Lagrangian form,

AR s AT AT /

pr, (s) = max min pr,(s) + Alpc (s) — b]
Using the linear programming formulation of CMDPs in terms of the state-occupancy measures g,
we know that both the objective and the constraint are linear functions of p, and strong duality holds
w.r.t 4. Since p and 7 have a one-one mapping, we can switch the min and the max (Paternain et al.,
2019), implying,

_ : AT AT o
= min max pr (s) + A[pg (s) = U]

Since A* is the optimal dual variable for the empirical CMDP in Eq. (4),
— max 57, () + A" [57(s)
Define 7} := arg m;x pT(s) and 7¥ := arg max p7 (s)
> pri () + X [p2° (s) = ¥
=i (5)+ X [ (52 (5) = T (9)) + (0T (5) = 0) + (b= V)]

*

By definition, { = pz°(s) — b
= o () + X [(6(5) = T (9)) + (P (5) = T (5)) + ¢+ (b= V)]

14
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By definition of 7, (ﬁzf (s) — [)Z: (s)) >0
P (s) 2 s () + A" [C+ (b= ) -

DIfY =b— &' fore’ > 0. Hence,
Fi(s) 2 pri(s) + A" [C el —
P (5) = pT° (5)| < 5, implying,

/

i « €
> prg(s) + A 3

P (5) = T (5)|

EORVAIS]

If the event £; holds, /37072 (s) — pZ: (s)‘ <(+ %/ then,

,éfc(s)+x* [c-a-
pcc (s) — pQ: (8)‘ 2 — Afor A < , then,

If the event &5 holds,

> frs (s) + X3 :
* 2 N AT 2(1 + UJ)
— X< Z[F () - prms—
C ¢
Lemma 7 (Bounding the dual regret). For the dual regret defined in Eq. (13), we have

2
2
RYN,T) < T3/? % +UVT.

Proof. First, fix an arbitrary X € [0, U]. Defining A}, := Pjo p1[\e — n(p7* (s) — b')],

So we have,
A1 = Al = [Ra[Xa] = Al = [RalNiga] = Ay + Xy = AL S RAN 1] = Mg | 4+ [Agq = Al
S€1+|/\;+1—/\‘.
(since [A — Ra[N]| < g forall X € [0, U] because of the epsilon-net.)
Squaring both sides
R At — A2 + 26 A1 — Al < & +2aU + At — A2
(since A\, \j ., € [0,U],)
< el 4+2qU + |\ —n(pF(s) —b') — A|* (since projections are non-expansive)
=l +2aU + A = AP =20 (A = A) (577 (5) = ) + n?(pZ* (s) — V)

<l + 20U + A = AP =20 (A = ) (57 () = b)) + 07,
where the last inequality follows because b’ and the constraint value are in the [0, 1] interval. Rear-
ranging and dividing by 27, we get
e +2aU [N = AP = A1 = AP

A —A) (pit(s) = V) < —=.
(=) (31 (5) =) < T 25 5 +
Summing from ¢ = 0 to 7' — 1 and using the definition of the dual regret,
2 T-1
d e +29U0 1 9 90 T
AT <T ——F7—+ — At — AT — [ A1 — A —.
RY(\T) < o +277;Ht "= Pesr = AT+ 5

Telescoping, bounding |\g — A| by U and dropping a negative term gives

e24+2U U? T
RINT)<T 1 "2 .
\T) < 2n o 2n Ty 2
Setting n = %,
2
2
RYN,T) < T3/? % +UVT, (23)
which finishes the proof. O
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Lemma 8 (Bounding the positive constraint value). For any C' > \* and any 7 s.t. pI (s) —
PE(5) + CIY — ope — pE(5)]4 < B, we have [/ — e — pE ()4 < 5.

Proof. Define v(7) = max.{p[(s) | pZ(s) > V' — eopt + 7} and note that by definition, v(0) =
p™" (s) and that v is a decreasing function for its argument.

Let pf”\(s) = prr(s) + A(pZ(s) — b" — €opt). Then, for any policy 7 s.t. pZ(s) > b' — eope + 7, We
have

b
S
%
—
w
N
IN

max p (s)
Tr’Xpl

~ %

() (by strong duality)
0)
— 1(0) — A" > p M (s) — TA* = pT () + A* (p7 () — b + eop — 7)

|
XD

(from above relation)

Non-negative

= v(0) —7A* > max{p](s) | pL(s) > b —eop + 7} = v(7).

= 7\ <v(0) —v(7). (24)

Now we choose 7 = —(b — gopr — p7 ()4
(C=A)[F| = X7+ C7| (since 7 < 0)
<v(0) —v(7) + CI7| (Eq. (24))
=] (s) = pi(5) + C|F| + pii(s) — v(F) (definition of 1/(0))

— 7 () = F(5) + O — copi — 7 (5))4 + pE(5) — V()

< B+ pp(s) —v(7).
Now let us bound v(7): )
v(7) = max{py(s) | p7(s) 2 b —op — (b — €opt = pc(5))+}

> max{p; (s) | pZ(s) > pi(s)} (tightening the constraint)

v(7) 2 pl(s) = (C=N)FI<B = (V —eon — pi(s))+ <

C—\*
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B PROOF OF THEOREM 2

Theorem 2. For a fixed ¢ € (0,1], § € (0, 1) and a general CAMDP, suppose the corresponding
AMDPs (P, r) and (P, ¢) have bias functions bound H , and satisfy the bounded transient time
assumption with parameter B. Algorithm 1 with N = o} (W) samples, b’ = b — %5,
w= LU = 0ea-m), &= 0 (2 (1 =7)?) , T = O (Ya-mte*) and y = 1 — 5%,
returns pohcy 7 that satisfies the objective in Eq. (2) with probability at least 1 — 44.

Proof. We fill in the details required for the proof sketch in the main paper. Proceeding according to
the proof sketch, we first detail the computation of 7" and ¢, for the primal-dual algorithm. Recall that

U= (3127v) and e, = . Using Theorem 1, we need to set
4U? { 1 } 64 [ 1 ]
T=—— 7 |14 - 1+
opt (1 - ) (U A*) 82(1 - ’7)2 (U - )\*)2
Recall that |\*| < C := 55(1 ~y and U = 2C. Simplifying,
256 512 512 256
<—" [C?+1]< ——"—_0C%=
S S an o T an oy By

= T=0 (1/54(177)4) .
Using Theorem 1, we need to set ¢,
I A = )l S WO
6U 96U - 96
= =0(g*(1-7)%).

For bounding the concentration terms for 7 in Eq. (9), we first use Lemma 11 to convert them to

5(18_7) and ¢, = 52(197_7)2. In this

discounted setting, then use Lemma 13 with U = 5

32
5e (1—7)°
4 4
% =0 (%) and in order to satisfy the concentration bounds for 7, we

require that

w =

case, t =

SA(B+ H

N >0 <(2+)>
€

We use the Lemma 14 to bound the remaining concentration terms for 7* and 7 in Eq. (9). In this

case, for C’(9) = 72log (%) , we require that,

N>O <SA(BQ+ H))
€
Hence, if N > O (w), the bounds in Eq. (9) are satisfied, completing the proof. O
Lemma 9 (Decomposing the suboptimality). For b’ = b — =%, if (i) €, < ¢, and (ii) the
following conditions are satisfied,
E N E — &, * ar* £ —¢&,
[02() = 2 ()] < S5 [ () = 4T ()| < T

where T¥ = arg max p7 (s), then (a) policy 7 violates the constraint by at most € i.e. p (s) > b—e
and (b) its optimality gap can be bounded as:

o (5) = PF(s) < 2w+ et [ (5) = 7, (5)] +

7, (5) = 97, (5)]

Proof. From Theorem 1, we know that,
pr(s) = b —eq = pl(s) = pl(s) — pr(s) + b — e = —|pL(s) — pi(s)]| + b — o

17
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Since we require 7 to violate the constraint in the true CMDP by at most &, we require p7 (s) > b —e.
From the above equation, a sufficient condition for ensuring this is,

- ’p’:(s) - ﬁ?(5)| +0' - Ept = b—¢,
meaning that we require
|PE(s) = PE(s)| < (' = b) —eop + &
Plugging in the value of &', we see that this sufficient condition indeed holds, by our assumption that
|pZ(s) = pL(s)] < =5
Let 7* be the solution to Eq. (1). Our next goal is to show that 7* is feasible for the constrained
problem in Eq. (4), i.e., p7 (s) > b'. We have
P ()2 b = pT(s) 2 b= [T (5) = T (5)|
Since we require 7 (s) > I/, using the above equation, a sufficient condition to ensure this is
b— pr ()= P ()] <b=V,

pr (s) — pr (s)‘ > b'meaning that we require

Since ¥ = b — 6_28 Bt " we require that
* A g — Eopl
FACEVAGIEES=S
Given that the above statements hold, we can decompose the suboptimality in the reward value
function as follows:

Py (s) = pr(s)

= pr (s) = pr, () + o7, (s) = pr (s)

[ () — P ()] 0 () — AT (5) + B () — 07 (5)
(

< 1o (s) = o7, ()] + o7, () = pr, ()] + 47, () = pr(s)
(By optimality of 7* and since we have ensured that 7* is feasible for Eq. (4))

=107 (s) = o7, ()] + [o7, (5) = 7, ()] + A7, () = BT, ()] + 47, () — P} (s)
= [ () = P, ()] + [pr, () = BT, ()] + A7, (5) = A7, ()] + (7, (5) = o7 ()] + [pr, (5) — o7 (5)]

Perturbation Error Concentration Error Primal-Dual Error Concentration Error Perturbation Error
For a perturbation magnitude equal to w, we can bound both perturbation errors by w. Using Theo-

rem 1 to bound the primal-dual error by &y,
pr () = pr(s) < 2w+ eon + [07, (s) — 7, ()] + (A7, (s) — o7, ()]

Concentration Error Concentration Error

18
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C PROOF OF THEOREM 3

5242
samples, b’ = b+ E(IQOV)C,L«J = E(llgw, U= Zégtdy;,& =0 (52(1 - 7)4C2)’ T =0 (Ya-v°e?)
andy=1- 7 T Bff 7y returns policy 7 that satisfies the objective in Eq. (3), with probability at least

1 —46.

Theorem 3. For a fixed ¢ € (0,1/1-4] and 6 € (0,1), Algorithm 1, with N = O (w)

Proof. We fill in the details required for the proof sketch in the main paper. Proceeding according to
the proof sketch, we first detail the computation of 7" and ¢, for the primal-dual algorithm. Recall that

U= c(ls—y)’ A= 5(1;0“’)< and e, = %. Using Theorem 1, we need to set
4U? 1 100 1
= 2 5 |1+ 2| T A2 5 |1+ )2
eo (L —17) (U—=x) A2(1—1) (U—=x)
Recall that [\*| < C := C(+ and U = 2C. Simplifying,

=)
400 ) 800 ., 800 16
< —F 1 =
=ma-p ST B By ey
800 - 1600 16

=0 (Y2 ¢t (1—9)9).
= aa ey e
Using Theorem 1, we need to set ¢,
A1) U-N) AR (U -N) _ AY1 )

6U 150U - 150
e¢C1-7* 2 2
< = ]. - 4 .
= 9= 5ae00 0 EC A
For bounding the concentration terms for 7 in Eq. (12), we first use Lemma 11 to convert them to

2 ~2 4
discounted setting, then use Lemma 13 with U = 4(1877) W= 6(1167) and ¢, = %. In this
—_ 3.3 — 7 . . . A
case, . = % =0 (W) and in order to satisfy the concentration bounds for 7, we

require that
~ (S A(B+H ))
o 2,2
€%
We use the Lemma 14 to bound the remaining concentration terms for 7* and 7} in Eq. (12). In this
case, for C'(0) = 72log (%‘M), we require that,
~ (S A(B+H ))
o 2,2
e%¢

Hence, if N > O (%{51{)), the bounds in Eq. (12) are satisfied, completing the proof. O

Lemma 10 (Decomposing the suboptimality). For a fixed A > 0 and e,,, < A, if b/ =b+ A,
then the following conditions are satisfied,

[P2(s) = PE()] < A = e |07 (5) = 7 ()] < A

then (a) policy 7 satisfies the constraint i.e. p7 (s) > b and (b) its optimality gap can be bounded
as:

*

PT (5) — pr(s) < 2w + £ + 2AN" +

o (s) = P, (5)] +

pr (s)—pr (s)]-

Proof. Compared to Eq. (4), we define a slightly modified CMDP problem by changing the constraint
RHS to b” for some b” to be specified later. We denote its corresponding optimal policy as 7*. In
particular,

7" € arg max gy (s)s.t.p;(s) > 0" (25)

Frothheorem 1, we know that, ) h ) )
P(s) >V —eon = pl(s) > pl(s) = pL(s) + b — e > —|p(5) = L (5)] + b — €on
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Since we require 7 to satisfy the constraint in the true CMDP, we require p7 (s) > b. From the above
equation, a sufficient condition for ensuring this is,

= [pE(s) = pE(s)| + V' — e = b

meaning that we require |pg(s) - [)z(s)| < (b —b) — o
In the subsequent analysis, we will require 7 to be feasible for the constrained problem in Eq. (25).
This implies that we require 57 (s) > b”. Since 7* is the solution to Eq. (1), we know that,

pE(5) 2 b = T (s) 2 b= [T () = 5 (5)]
Since we require 57 (s) > b”, using the above equation, a sufficient condition to ensure this is
b o (s) = pT (s)| < bV,
Hence we require the following statements to hold:
[P2(s) = P2 S O = b) —eon 5 |oT () = 5T (5)] b0

Given that the above statements hold, we can decompose the suboptimality in the reward value
function as follows:

Py (s) = pr(s) = p} (s) = pr, (s) + 0},
(8) = A7, ()] + 57, () — P} (s)

= [} (s) = P} (s)] +
< 1o (s) = pf, ()] + o7, (s) = BT, ()] + 47, () = i (s)

(By optimality of 7* and since we have ensured that 7* is feasible for Eq. (25))
T (s) = o7, () + o7, (s) = A7, ()] + (7, () = A7, ()] + pr, () = P} (5)
T (s) = o, () + (o7, () = 7, ()] + (7, () = pr, ()] + fr, (5) = i (s)
T (s) = o, ()] + [or, () = i, ()] + (7, () = 7, ()] + (7, (5) = 7, (5)]
+ 7, (s) = P} (s)

o7 (s) = pr, ()] + [o7, (5) = A7, ()] + A7, () = AT, ()] + 57, () = fr, ()]

pr (s) — pr (s)‘ > b"'meaning that we require

:a*;:\ -

[oF,
[p

ﬁ

%:*;4

Perturbation Error Concentration Error Sensitivity Error Primal-Dual Error
NG i i i
+ [or,(s) = pr, ()] + [p7, (s) — pr(s)]
Concentration Error Perturbation Error

For a perturbation magnitude equal to w, we can bound both perturbation errors by w. Using Theo-
rem 1 to bound the primal-dual error by &,

< 20+ e+ (07, (8) = pr, ()] + (A7, (5) = b7, ()] + (A7, (5) — o7 (5)]
Concentration Error Sensitivity Error Concentration Error
Since ¥’ = b+ A and setting b = b — A, we use Lemma 15 to bound the sensitivity error term,
O () — pE(5) < 2+ £+ 2AX" + [T (5) — AT ()] + [5F, (5) — 7. (5)]

Concentration Error Concentration Error
With these values of b’ and b”, we require the following statements to hold,

|0E(s) = PE()] S A—em 1 |pZ () =T ()] <A
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D CONCENTRATION PROOFS

Lemma 11 (From AMDP to DMDP). Sety =1 — 1 J;TH) . If the concentration error for the

discounted MDP satisfies ||V — VV”HOO < B+ H, then it follows that ||p™ — p™ ||oc < Eopr-

Proof. We begin by decomposing the error term:
1

Tl = e < VT = Voo |V = 257
The first term in (26) is bounded by assumption:

Vi =V e < B+ H.
The second term can be bounded using Lemma 12, which yields

T 1 s

i <

Finally, by Lemma 17, we can bound the empirical error between average and discounted setting by
Crm 1 A~ ]

’V"/ —ﬁp - < HSQH,
with only a sample complexity independent of e. Combining these bounds, we obtain

1
——|lp" = "o < (B+H)+H+2H = B+4H.

(26)

Crm 1 ~m
-

L=y
Now, setting
Eopt
= 11—

7 A(B+H)
implies that

prr - ﬁW”oo S Eopts
which concludes the proof. O

Lemma 12. We have

T 1 T
Vi — ﬁ/) oo < H.

Proof. We begin by observing that 7 satisfies
pT+hT =r;+ Ph".
Therefore, it holds that
T —1
V’y - (I - ’YPTF) T'r
— (I —7Py) ™ (o + h™ — Pyh")
= —yP) " 'p" + (I —~vPy)" ' (I - Py)h".
Since P, p™ = p™, we can calculate that
- us us s 1 us
(I=Pr) " =D A Prp™ =D 'p" = ="
t>0 >0 v
It also holds that

(I 7 Pr) ™ (I~ Pr) = Y A PL(I — Pr)

t>0
DR R

t>0 t>0
=Pty (=Pt 27)

>0
and Y ,o 7Tt =4t = (y = 1) Y ;507" = —1. Therefore (27) is the difference of two stochastic
matrices, and so it follows that B
I(Z = ~vPx) ™" (I = Pr) ™| < H.
O
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Lemma 13 (Theorem 6 of Vaswani et al. (2022)). For § € (0,1), w < 1 and C(8) =

72log IG(HUH‘)_)S?LI?(E/I*”)) where 1 = %, if N > 416;(,‘:), then for Tt output by Algo-
rithm 1, with probability at least 1 — § /5,
C(0) « C(9)

VE(s) = VI(s)| < N-(1—7)?

MORABIES.

Lemma 14 (Lemma 7 of Vaswani et al. (2022)). For 6 € (0,1), w < 1 and C'(0) =
721log (M), if N > 4%;&) and B(§, N) := ,/%, then with probability at
least 1 — 36,

VI (s) = VI ()| < 2B6.N); VT (s) = VT ()] < B3, N).

VI () =V (s)| < BN

E SUPPORTING LEMMAS FOR THE UPPER BOUND

Lemma 15 (Bounding the sensitivity error). If b’ = b+ A such that,
#* € argmax pl(s)s.t.pl(s) > b+ A

7 € arg max pr (s)s.t. pn(s) > b,
s

then the sensitivity error term can be bounded by:
pr () = o7 ()] < AN

Proof. Writing the reference CAMDP in Eq. (4) in its Lagrangian form,
pi (s) = maxmin pf(s) + A[pI (s) — (b + A)]

= I}I\1>1101 max pp (s) + Alpa(s) — (b+ A)]  (By strong duality Lemma 6)

Since A* is the optimal dual variable for the empirical CMDP in Eq. (4),

= max py(s) + A" [p7 (s) = (0+ A)]

> " (s) + N [pF (s) — (b+ A)] (The relation holds for 7 = 7*.)
Since pT (s) > b,

pr (s) = pr (s) = A"A
— o (s)—pf (5) < AN
Since the CAMDP with b’ = b is a less constrained problem than the one in Eq. (4) (with ' = b+ A),
P (s) > pi (s), and hence,
Py (s) = pi (s)] < 2407,
O

Lemma 16 (Bounding the optimal bias function and the transient time). If the AMDPs (P,r)
and (P, ¢) admit bias functions bound with parameter H and satisfy the bounded transient time
assumption with parameter B, then the combined AMDP (P, r + Ac), where X is as defined in
Eq. (6), also satisfies the bounded bias functions assumption with parameter H and the bounded
transient time assumption with parameter B, after normalizing the reward values.

Proof. Based on the bounded transient time assumption, for all 7 € Il and s € S, we have

ET [Tr~] < B, where Tg-:=inf{t>0:5, € R"}.
Since the transient time parameter B is determined solely by the transition dynamics of the AMDP
and is independent of the reward function, it follows that the combined AMDP (P, r + Ac) also
satisfies the bounded transient time assumption.
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We now turn to bounding the span of the optimal bias function under the combined reward r + Ac.
Let m* denote the optimal policy for this reward. By linearity of the bias operator with respect to
reward and the definition of span, we have

T—1
||h7'+>\c’|ispan T 1+ (TJEOII}EW Z (Tt tAe—pr = Aoe )]
t=0 span
1 T—1 T-—1
< g [ (o) o g [ et
t=0 span t=0 span
_ H+4MH
1+
< H,
O]

Lemma 17 (Sample Complexity to Estimate Bias Span). Let h* be the optimal bias function
of an average-reward MDP with bias span span(h*) := maxg h*(s) — ming h*(s). Then under
access to a generative model, the span span(h*) can be estimated to constant-factor accuracy
using O(SAD)samples.

Proof. Let 7" be an optimal policy for M. Deﬁne the bias function h* and average reward p* by
P+ h (s) = —I—ZP (s'|s,m*(s))h*(s") Vs.

Similarly, define h and p* by solving the Bellman equation on the estimated MDP M = (S, A, P,r)
using the same policy 7r*'

+ h(s) = r(s,m*(s)) +ZP(SI|S,W*(S))E(8/) Vs.

Let ™ and 7™ denote the Bellman operators under P and P:
T7h(s) = r(s,m(s)) + S P(s'ls, w(s)h(s'),  Ths) i=r(s, 7(s)) + S P(s'|s,m(s))h(s").
g/ S/

Subtracting the equations S/ields

=T (h* — h)(s) + | T™h(s) — Tﬂh(s)} —(p* — p).
Define the perturbation term
Then

We now bound ||0|o0:

(T™ = T7)h(s)| =

< Nllos - [IP(-ls, @) = P(|s,a)lli < & [1A]|oc-
Also, from standard results (e.g., Puterman 1994, Lemma 8.6.4), we have |p* —p*| < O(e). Assuming
[I7]lcc < H := span(h*) (which is valid up to constants), we get:
[6]loc < O(eH).

Now, since 7' is a non-expansion under || - ||~ and the bias propagates over at most D steps due to
the diameter:

Ih* = hllos < D3]] < O(eDH).

Finally, observe that
| span(h) — span(h*)| < 2||h — h*||o < O(e DH).
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To achieve constant-factor approximation of span(h*), it suffices to set ¢ = O(1/D), which implies
total samples to be O(SAD?).

O

Lemma 18 (Sample Complexity to Estimate Transient Time Bound). Let B be the transient time
bound defined as Vr,s, ET[Tr-] < B, where Tr~ is the first hitting time to a recurrent state
under policy 7. Then, under access to a generative model or an environment where episodes can be
reset to any state-action pair, the transient time bound B can be estimated up to a constant-factor
accuracy using O(S AB) samples.

Proof. To estimate the expected hitting time ET [T -] from each state s under a fixed policy 7, we
sample full trajectories until they reach the recurrent class R™. Each trajectory is a random variable
T € N with expectation at most B and variance Var(T) = O(B?).

To estimate E[T'] up to additive error ¢ = ©(B), standard concentration inequalities (e.g., Bernstein’s

inequality) imply that
B?log(1/4 ~
n=0 (Og; / )) =0(1)
€
trajectories suffice.
Each trajectory requires ©(B) environment interactions in expectation, so the sample cost per state-

action pair is O(B). Summing over all SA state-action pairs yields a total sample complexity
of

O(SAB).
O

F PROOFS FOR LOWER-BOUND FOR GENERAL CAMDPS

Theorem 5 (Lower-bound for general CAMDP). For any sufficiently small €, , any sufficiently
large S, A, for any algorithm promising to return an 57-optimal policy with probability at least % on
any communicating CAMDP problem, there is an CAMDP such that the expected total samples on

SA(H+B)>
T2

all state-action pairs, when running this algorithm, is at least Q (

r=20 o
c=b+¢( P="3p

Figure 4: A Component MDP Used in the Hard Instance for CAMDP.

Proof. We begin by introducing a family of MDP instances M, indexed by a* € {1,..., A},
depicted in Figure Fig. 4. In all these instances, states 2,3,4,5 are absorbing, while states 0
and 1 are transient. Among them, state 1 is the only one with multiple actions, supporting A
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distinct actions. Taking action ¢ = 1 from state 1 deterministically leads to state 4. For action
a = 2, the transition probabilities are defined as P(1 | 1,2) = 1 — %+, P(2 | 1,2) = po, and
P3|1,2)=1—-P(1|1,2)— P(2]1,2). The specific values of P(2 | 1,a), P(3 | 1,a), and the
reward and constraint values r and c are shown in Figure 4, and are the only quantities that vary
across the different instances M,~. Note that all actions not in state 1 can only lead to one state.

In instance M;, the optimal policy selects action ¢ = 1, achieving an average reward of 1/2.

Choosing any other action results in a suboptimal average reward of % For instances M- with
1+2¢¢
2

a* € {2,..., A}, the optimal action is a = a*, yielding an average reward of , while action

a = 1 returns %, and all remaining actions incur a reward of % In all such cases, the span of the
bias function under the optimal policy satisfies ||7*(|,,,,, = 0. An analogous construction holds for
the constraint rewards c. Furthermore, any action a # 1 leads the agent to remain in state 1 for an
expected B steps before transitioning to either state 2 or 3, thus ensuring that the bounded transient
time condition is met with parameter B.

We then define a set of (A —1).S/6 master MDPs denoted M~ .-, indexed by s* € {1,...,5/6} and
a* € {2,..., A}. Each master MDP consists of 5/6 1ndependent copies of the sub- MDPS described
above, which are all connected to an initial state. The s*-th sub-MDP is set to be M+, while all
remaining sub-MDPs are instantiated as M;. To ensure non-overlapping state spaces, the states of the
s-th sub-MDP are relabeled as 6s,6s + 1, ...,6s + 5, corresponding to states 0, 1, ..., 5 in Figure 4.
We also define My composed of S/6 independent M;. As a result, each master MDP has exactly S
states and A actions, satisfies the bounded transient time condition with parameter B, and possesses
an optimal policy with bias span zero.

We further fix the constraint threshold to b = % in the construction of our hard CAMDP instances.

Based on the structure depicted in Fig. 4, we directly compute the expected reward and constraint
values as follows: in states of the form 6s + 1, choosing action a; yields reward r = % and constraint

value ¢ = b — (, while selecting any action a € A\ {a1 } results in reward r = % — e( and constraint
c=b—(—¢&C.
At the special state 6s* + 1, the designated optimal action a* yields reward r = % + €(, and the

corresponding constraint value is given by ¢ = % =b—(+eC—4e¢®+o(e).

Let sy denote the initial state that connects to all branches 65, and define the following occupancy
measures:

o=y .- /6 ! p(s0,65) - p(s,6s+5),

= ZS o (50,65) -p(6s,65+1) - p(6s+1,a1),
S/6—1
* g = Z z (s0,65) - p(6s,65+ 1) - p(6s + 1,a) fora € A\ {a1}.
acA s=0

We now formulate the linear program (LP) for solving the average-reward objective in Mj:
1 1
max _p+ | 5 —eC ) p2 (28)
2 2
st po+p1+pe =1,
(b+ Qo+ (b= Qi+ (b—(—eQ)u2 > b,
Ho, p1, 2 2> 0.
The unique optimal solution to Eq. (28) is p9 = %, B = %, and po = 0, yielding an average reward

p*(s0) = 1
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Next, we aim to show that for any - -optimal policy, the normalized occupancy p) := 1 f;g must
satisfy p} > % Suppose, for contradiction, that p} < % The modified LP becomes:
1 1
max o+ <2 - 5C> M2 (29)

2
st opo+p+p2=1, M/1<§7

O+ Quo+ (b= Qui+ (b—C—eQua = b,
o, p1s pr2 = 0.
A direct calculation shows that the optimal reward for Eq. (29) is p(s0) = 7 — 57 — %, which

violates the ;-optimality condition. Therefore, the assumption 17 < % must be false, and it follows
that any 5 -optimal policy must satisfy p} > %

For CAMDP M- ,~, we define the two new occupancy measures:

o 1§ = iz — p(so,65") - p(6s*, 65" + 1) - p(65” + 1, ax).

iz = p(so, 65) - p(6s*, 65" + 1) - p(65" + 1, ax)

We now formulate the LP for solving the average-reward objective in M« q:
max %m + (; - 8() 15+ (; + €<> w3 (30)
st o+ g1 A py +pz =1,
(b+Qpo + (b= Qpr + (b— ¢ — Q)i + [b— { +2¢ — 4e¢? + o(e)]us > D,
Ho, i1, fig, pig = 0.

The unique optimal solution to Eq. (30) is o = ;f;ig +o(e), p1 = ps = 0, i3 = 5=z + 0(e)

o X 3

yielding an average reward p*(sg) = & + £ + %C + o(e).

Next, we aim to show that for any —;-optimal policy, the normalized occupancy p; must satisfy
py < % Suppose, for contradiction, that p} > % The modified LP becomes:

1 1 1
max 2m+<24>@+(2+a>% 31)

2
st puo + g+ ps +pz =1, > 3
(b4 Qo+ (b= QOpr+ (b— ¢ —eQ)ps + [b— ¢+ &¢ — 4¢* + o(e)]us > b,
Moy H1, Hg, 3 > 0.

A direct calculation shows that the optimal reward for Eq. (31) is p(sg) = 1 + = + o(€), which
violates the 5;-optimality condition. Therefore, the assumption 7 > % must be false, and it follows
that any -optimal policy must satisfy 1} < %

In short, for any £ -optimal policy, ;) must satisfy pf < 2 for M+ o+ and pf > 2 for M.

So we can use the Fano’s method to lower bound the failure probability. We have:

1 1-2 142
('|6s*+17a*)=Cat(1— e 1+ €<> =:Q1,

B’ 2B ' 2B

. " 1 142e¢ 1—2e¢
Pug, (| 65 —|—1,a)=Cat(1—B7 5B 9B )z:QQ,
where Cat(p1, p2, p3) denotes the categorical distribution with event probabilities p;’s.

Py,

,a*

Now we use Fano’s method to lower bound this failure probability. This is inspired by the proof of
lower-bound for AMDP in Zurek & Chen (2024). Choose an index J uniformly at random from the
set 7 :={1,...,5/6} x {2,..., A} and suppose that we draw n iid samples X = (X1,...,X,,)
from the master MDP M ;; note that under the generative model, each random variable X; represents
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an (S x A)-by-S transition matrix with exactly one nonzero entry in each row. Letting I(J; X)
denote the mutual information between J and X, Fano’s inequality yields that the failure probability
is lower bounded by

I(J; X) +log2

log((A —1)S/6)
We can calculate using the fact that the P;’s are i.i.d., the chain rule of mutual information, and the
form of the construction that

I(J; X) = nI(J; X7)

<n max Dk (PMQ* . PMO)
(s*,a*)eT o
= nDkL(Q1 | Q2)-
By direct calculation, we have
1—2¢e¢ 1—2e¢  1+2¢C 14 2¢¢

D1(Q1]Q2)

1 1
2B ®112:¢ ' 2B BT 2

< 1—-2e¢ —4eC 14 2e¢ 4eC
- 2B 14 2e¢ 2B 1—2¢¢
16£2¢?
B(1+ 2¢¢)(1 — 2¢e(¢)
2,2
< 32;< e¢ <
Therefore the failure probability is at least
~ I(J;P") +1og2 1 n%—klog?
log((A—1)S/6) — log((A —1)S/6)

| e
>___ B
2 log((A-1)S/6)’
where in the second inequality we assumed A and S are at least a sufficiently large constant. For the

above RHS to be smaller than 1/4, we therefore require n > Q(BlggigA))Finally, by combining this

log(1+z) <z,Vr> -1

N

2 CQ

result with Theorem 4, we obtain the general lower bound for general CAMDPs: Q (M) . O

G PROOFS FOR LOWER-BOUND FOR WEAKLY COMMUNICATING CAMDPs

Theorem 4 (Lower-bound for communicating CAMDP). For any sufficiently small ¢, §, any
sufficiently large S, A, and any D > max{c;.5, co} (where ¢1, co > 0 is some universal constant),
for any algorithm promising to return an 7-optimal policy with probability at least % on any
communicating CAMDP problem, there is an CAMDP such that the expected total samples on all

state-action pairs, when running this algorithm, is at least Q (g fg )

Proof. To construct a family of hard MDP instances with parameters .S, A and diameter at most D,
we begin by introducing key components and associated notation. Define A’ := A — 1, D' := D/8,
and K := [S/4]. We assume that A > 3, ¢ < 1/16, and D > max{16[log4 S|, 16}, which are
standard parameter ranges in this construction.

We first define a primitive component MDP consisting of three states x, ¥, z, each equipped with A’
actions and parameterized by D’. The action space is partitioned into three subsets based on their
transition and reward behavior. This component MDP serves as a key building block in the lower
bound construction and is illustrated in Figure 6.

Next, we assemble K identical copies of the component MDP into a larger structure My, which
serves as the base instance for constructing the lower bound family. We begin by constructing an
A’-ary rooted tree with exactly S — 3K non-leaf nodes and K leaves. It is known that such a tree
exists with depth at most [log 4, ST + 1. Each leaf of this tree is replaced by a component MDP: the
node corresponding to the leaf becomes state =, while its two children are mapped to states y and z.
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Figure 5: A Hard Communicating CAMDP Figure 6: A Component Communi-
when A =4, S = 19. cating CAMDP.

The final MDP M|, is thus formed by embedding the component MDPs into the leaf structure of the
tree, as illustrated in Figure 5.

Transitions in the tree are defined deterministically: every internal node (including x-nodes) has
actions that lead to each of its children and its parent (if applicable); all remaining actions correspond
to self-loops with zero reward. For each y-state in the embedded components, one designated action
is also a deterministic self-loop with zero reward. By construction, X' > S/4, and the overall

diameter of M is bounded as: 2 (% +log, S+ 1) < D, given the definition D’ := D /8 and

the assumed bound log 4 S < D/8.

We then define a collection of hard instances { k,l}1§k§ K, 2<i<A’ based on perturbations of M.
To distinguish among these instances, note that a policy must favor action a; at the z, states in M,
while selecting a; in the corresponding Mj, ;. Specifically, to be /24-optimal in Mj, ;, the policy
must assign occupancy measure at most 2/3 to action a; at state x,, while in My, the same state must
have occupancy measure at least 2/3 on a;. This divergence in action distributions under different
instances forms the basis of our lower bound. The design of our hard instance is motivated by the
construction used for average-reward MDPs in Wang et al. (2022).

We further fix the constraint threshold to b = % in the construction of our hard CAMDP instances
(Figure 5). Building on the analysis in Section F, we leverage a carefully designed reward and

constraint structure to induce a separation in policy behavior across different MDP instances.

Under our construction, we can show that any policy that is 5;-optimal must satisfy distinct oc-
cupancy conditions across instances: in the base instance M), the normalized occupancy measure
'y —representing the fraction of trajectories where action a; is selected—must satisfy u} > %; in
contrast, for any perturbed instance M, ;, the same quantity must satisfy pf < % This divergence in
occupancy thresholds arises due to the amplification effect in the constraint values, and ensures that
policies achieving small regret in one instance must necessarily incur significant suboptimality in
others.

This behavioral separation enables us to apply Fano’s method to formally lower bound the probability
of misidentifying the underlying instance. Following the same framework as in Section F, we derive
a lower bound on the sample complexity of learning an ¢-optimal policy under strict feasibility:

Q (fff; ) . Furthermore, by noting that the bias span H is always bounded above by the diameter

D, this implies a corresponding lower bound of (i;‘g ) which holds for the class of weakly
communicating constrained average-reward MDPs. [
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STATEMENT OF LLM USAGE
This manuscript used large language models solely to assist with language editing and improving the

clarity of writing. All technical content, analysis, and conclusions were conceived, implemented, and
verified entirely by the authors.
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