

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NEAR-OPTIMAL SAMPLE COMPLEXITY BOUNDS FOR CONSTRAINED AVERAGE-REWARD MDPs

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances have significantly improved our understanding of the sample complexity of learning in average-reward Markov decision processes (AMDPS) under the generative model. However, much less is known about the constrained average-reward MDP (CAMDP), where policies must satisfy long-run average constraints. In this work, we address this gap by studying the sample complexity of learning an ε -optimal policy in CAMDPs under a generative model. We propose a model-based algorithm that operates under two settings: (i) *relaxed feasibility*, which allows small constraint violations, and (ii) *strict feasibility*, where the output policy satisfies the constraint. We show that our algorithm achieves sample complexities of $\tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$ and $\tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2\zeta^2}\right)$ under the relaxed and strict feasibility settings, respectively. Here, ζ is the Slater constant indicating the size of the feasible region, H is the span bound of the bias function, and B is the transient time bound. Moreover, a matching lower bound of $\tilde{\Omega}\left(\frac{SA(B+H)}{\varepsilon^2\zeta^2}\right)$ for the strict feasibility case is established, thus providing the first *minimax-optimal* bounds for CAMDPs. Our results close the theoretical gap in understanding the complexity of constrained average-reward MDPs.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 1998) provides a powerful framework for sequential decision-making under uncertainty, enabling progress in domains such as game playing (Mnih et al., 2015; Silver et al., 2016), robotic control (Tan et al., 2018; Zeng et al., 2020), clinical decision-making (Schaefer et al., 2005), and aligning large language models with human preferences (Shao et al., 2024; Ouyang et al., 2022). Most classical RL algorithms optimize a single reward signal without additional constraints. Yet in many high-stakes applications, agents must operate not only efficiently but also safely, fairly, or within resource limits. This leads to the study of *constrained Markov decision processes* (CMDPs) (Altman, 1999), where the goal is to maximize expected reward subject to an auxiliary cost constraint. A representative example arises in wireless sensor networks (Buratti et al., 2009; Julian et al., 2002), where the system balances high data throughput with average power constraints.

Motivated by the importance of constraints in real-world decision-making, a growing body of work has investigated constrained reinforcement learning in unknown environments (Efroni et al., 2020; Zheng & Ratliff, 2020; Qiu et al., 2020; Brantley et al., 2020; Kalagarla et al., 2021; Yu et al., 2021; Ding et al., 2021; Gattami et al., 2021; Miryoosefi & Jin, 2022). These efforts focus on the online learning setting, aiming to minimize both regret and constraint violation while addressing the intertwined challenges of exploration, estimation, and policy optimization in finite-state, finite-action CMDPs. In contrast, a recent line of research (HasanzadeZonuzy et al., 2021; Wei et al., 2021; Bai et al., 2021; Vaswani et al., 2022) considers a simplified yet foundational framework in which the agent has access to a *generative model* (Kearns & Singh, 1999; Kakade, 2003; Agarwal et al., 2020; Sidford et al., 2018; Yang & Wang, 2019), i.e., a simulator that provides sample transitions and rewards for any queried state-action pair, removing the need for exploration. This model provides a clear approach for understanding the fundamental statistical complexity of the problem.

Most prior work centers on finite-horizon or discounted MDPs, where either the horizon is fixed to T steps or future rewards are geometrically discounted by γ^t . These formulations, though analytically

054 convenient, limit long-term performance. The finite-horizon setting imposes an explicit cutoff, while
 055 discounting attenuates future rewards, undesirable in sustained long-term applications. To address
 056 this, the *average-reward MDP* (AMDP) framework (Puterman, 2014a) has been widely adopted,
 057 seeking to maximize long-run average reward in the steady state.

058 Although planning in AMDPs is relatively well-understood (Altman, 1999; Borkar, 2005; Borkar &
 059 Jain, 2014), characterizing the sample complexity for learning ε -optimal policies remained elusive
 060 until recent years due to the lack of natural episode resets and the need to reason about long-term
 061 behavior without discounting. Recent advances addressed this gap in the generative model setting,
 062 establishing near-optimal sample complexity bounds depending on structural properties—specifically,
 063 the *optimal bias span* H and the *mixing or transient time* B —leading to rates of $\tilde{\Theta}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$ (Zurek
 064 & Chen, 2024), where S is the number of states and A the number of actions. These quantities
 065 capture the intrinsic difficulty of estimating long-run average rewards and distinguish average-reward
 066 learning from its discounted counterpart.

067 Despite this progress for unconstrained AMDPs, the constrained variant—*constrained average-
 068 reward MDPs* (CAMDPs)—remains poorly understood. In CAMDPs, the agent must simultaneously
 069 maximize steady-state average reward and satisfy an average constraint on cost, risk, or resource
 070 usage. This captures practical scenarios, including fairness in long-term decision-making, sustainable
 071 operations in energy systems, and safe policy deployment. While the discounted CMDP setting has
 072 seen progress in both relaxed and strict feasibility regimes (Vaswani et al., 2022), there are still no
 073 known sample complexity bounds for learning in CAMDPs. In particular, how the constraint structure
 074 interacts with the ergodic properties and what the fundamental statistical limits are in relaxed or strict
 075 feasibility settings remain open.

076 This gap motivates our work. We initiate the study of the sample complexity of learning ε -optimal
 077 policies in CAMDPs under the generative model. We develop a model-based primal-dual algorithm
 078 handling both *relaxed feasibility*, where the returned policy may violate the constraint by at most
 079 ε , and *strict feasibility*, where the policy must satisfy it exactly. We establish matching upper and
 080 lower bounds near-optimal with respect to key parameters, including the bias span, the transient time,
 081 and the *Slater constant* ζ , which quantifies the feasible region. While relaxed and strict feasibility
 082 have been studied in discounted CMDPs (Vaswani et al., 2022), our work provides the first sample
 083 complexity characterization for CAMDPs in the average-reward setting. Below, we summarize our
 084 contributions in more detail.

085 **Our contributions.** We present the first near-optimal sample-complexity bounds for learning in
 086 CAMDPs with access to a generative model:

087 • We design a model-based algorithm that returns an ε -optimal policy for CAMDPs under both
 088 relaxed and strict feasibility. Our method relies on solving a sequence of unconstrained average-
 089 reward MDPs using black-box planners.

090 • In the relaxed feasibility setting, we prove that our algorithm requires at most $\tilde{\Theta}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$
 091 samples, where S and A are the number of states and actions, H is the span bound of the bias
 092 function, B is a transient time bound, and ζ is the *Slater constant* characterizing the size of the
 093 feasible region.

094 • In the strict feasibility setting, the sample complexity increases to $\tilde{\Theta}\left(\frac{SA(B+H)}{\varepsilon^2\zeta^2}\right)$, and we show that
 095 this dependence on ζ is necessary by proving a matching lower bound of $\tilde{\Omega}\left(\frac{SA(B+H)}{\varepsilon^2\zeta^2}\right)$. These are
 096 the first lower bounds for strict feasibility in CAMDPs, establishing a provable separation between
 097 the relaxed and strict regimes.

098 Together, our results provide the first near *minimax-optimal* sample complexity bounds for constrained
 100 average-reward reinforcement learning with respect to S , A , B and H and reveal fundamental insights
 101 into how long-run constraints affect the hardness of planning under uncertainty.

103 1.1 RELATED WORKS

104 There is a large body of research on the sample complexity of learning in *unconstrained* Markov
 105 decision processes (MDPs); see the monograph by Agarwal et al. (2019) for a comprehensive
 106 overview. In parallel, substantial progress has been made in *constrained* reinforcement learning under

108 unknown dynamics (Efroni et al., 2020; Zheng & Ratliff, 2020; Qiu et al., 2020; Brantley et al., 2020;
 109 Kalagarla et al., 2021; Yu et al., 2021; Ding et al., 2021; Gattami et al., 2021; Miryoosefi & Jin, 2022),
 110 particularly in finite-horizon settings. Another line of work addresses *discounted* constrained MDPs
 111 (CMDPs) with access to a generative model (HasanzadeZonuzy et al., 2021; Wei et al., 2021; Bai
 112 et al., 2021; Vaswani et al., 2022), yielding sample-efficient algorithms under both relaxed and strict
 113 constraint satisfaction.

114 In contrast, the average-reward setting is less explored. For unconstrained average-reward MDPs,
 115 Zurek & Chen (2024) established nearly minimax-optimal bounds under a generative model, showing
 116 that $\tilde{O}(SAH/\varepsilon^2)$ samples suffice for weakly communicating MDPs, where H is the span of the
 117 optimal bias function. They further introduced a transient time parameter B to handle general
 118 multichain MDPs, proving a matching bound of $\tilde{O}(SA(B+H)/\varepsilon^2)$. However, their analysis does
 119 not incorporate constraints, and extending their framework to constrained average-reward MDPs
 120 (CAMDPs) remains open.

121 Among works on CMDPs, Vaswani et al. (2022) provided the first minimax-optimal sample
 122 complexity bounds for the *discounted* setting via dual linear programming. Yet their techniques do not
 123 extend to average-reward problems, where key properties like Bellman contraction no longer hold.
 124 In a separate effort, Bai et al. (2024) studied CAMDPs in an online model-free setting with general
 125 policy classes, establishing sublinear regret for constraint violation and the duality gap. Their results,
 126 however, focus on asymptotic behavior and do not provide near-optimal finite-sample guarantees
 127 under a generative model.

128 To our knowledge, this work is the first to establish near-optimal sample complexity bounds for
 129 CAMDPs under both relaxed and strict feasibility in the generative model setting. We propose a
 130 primal-dual algorithm that achieves minimax-optimal rates in terms of the number of states, actions,
 131 bias span, transient time, and the Slater constant, thereby unifying and extending existing results from
 132 both the unconstrained and discounted settings.

2 PROBLEM FORMULATION AND PRELIMINARIES

137 We study an infinite-horizon constrained average-reward Markov decision process (CAMDP), denoted
 138 by M and specified by the tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, r, c, b, s \rangle$. Here, \mathcal{S} and \mathcal{A} denote the sets of states and
 139 actions; $\mathcal{P} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta_{\mathcal{S}}$ is the transition probability kernel; and $s \in \Delta_{\mathcal{S}}$ represents the initial
 140 state distribution. The objective is to maximize the primary reward function $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$,
 141 subject to a constraint $c : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$. Given that $\Delta_{\mathcal{A}}$ denotes the probability simplex over
 142 actions, the expected average reward under a stochastic stationary policy $\pi : \mathcal{S} \rightarrow \Delta_{\mathcal{A}}$ is defined as

$$\rho_r^\pi(s) = \lim_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}_s \left[\sum_{t=0}^{T-1} r(s_t, a_t) \right], \text{ where } s_0 \sim s, a_t \sim \pi(\cdot | s_t), \text{ and } s_{t+1} \sim \mathcal{P}(\cdot | s_t, a_t).$$
 143 The *bias function* of a stationary policy π is $h_r^\pi(s) := \text{C-lim}_{T \rightarrow \infty} \mathbb{E}_s^\pi \left[\sum_{t=0}^{T-1} (r_t - \rho_r^\pi(s_t)) \right]$, where
 144 C-lim denotes the Cesàro limit. When the Markov chain induced by P_π is aperiodic, the Cesàro
 145 limit coincides with the standard limit. For any policy π , the pair (ρ_r^π, h_r^π) satisfies the Bellman-like
 146 relations $\rho_r^\pi = P_\pi \rho_r^\pi$ and $\rho_r^\pi + h_r^\pi = r_\pi + P_\pi h_r^\pi$. Similarly, define the *constraint value function* and
 147 *constraint bias function* of π as ρ_c^π and h_c^π . The objective in a CAMDP is to find a policy solving the
 148 following optimization problem:

$$\max_{\pi} \rho_r^\pi(s) \quad \text{s.t.} \quad \rho_c^\pi(s) \geq b. \quad (1)$$

150 We denote the optimal stochastic policy by π^* , and its corresponding reward value by $\rho_r^*(s)$.

151 **Weakly communicating setting** A Markov decision process (MDP) is *weakly communicating* if its
 152 state space \mathcal{S} can be partitioned into two disjoint subsets $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2$, such that all states in \mathcal{S}_1 are
 153 transient under any stationary policy, and for any $s, s' \in \mathcal{S}_2$ there exists a stationary policy making s'
 154 reachable from s . In such MDPs the average reward vector ρ^* is constant, i.e., $\rho^*(s) = \rho^*$ for all
 155 $s \in \mathcal{S}$. Consequently, (ρ^*, h^*) satisfies the *average-reward optimality equation*:

$$\rho^* + h^*(s) = \max_{a \in \mathcal{A}} \{r(s, a) + \sum_{s'} P(s' | s, a) h^*(s')\}, \quad \forall s \in \mathcal{S}.$$

156 We occasionally abuse notation and treat ρ^* as a scalar. A stationary policy is *multichain* if it induces
 157 multiple closed irreducible recurrent classes, and an MDP is *multichain* if it admits at least one such
 158 policy. While general MDPs may only possess multichain gain-optimal policies with non-constant ρ^* ,
 159 any weakly communicating MDP admits at least one unichain gain-optimal policy under which ρ^* is

162 uniform. Moreover, every *uniformly mixing* MDP is weakly communicating. A stronger assumption
 163 is *communicating*, which excludes transient states and requires every state be reachable from every
 164 other under every stationary policy.

165 **Complexity parameters** We introduce several problem-dependent parameters characterizing the
 166 complexity of constrained average-reward MDPs. The diameter D is $D := \max_{s_1 \neq s_2} \min_{\pi} \mathbb{E}_{s_1}^{\pi} [\tau_{s_2}]$,
 167 where τ_{s_2} is the first hitting time to s_2 under π . The span bound of the bias function is $H :=$
 168 $\max_{\pi} \|h\|_{\text{span}}$ with $\|v\|_{\text{span}} := \max_s v(s) - \min_s v(s)$, capturing cumulative reward range and
 169 long-term difficulty. We also introduce the *transient time parameter* B . Let Π be the set of stationary
 170 deterministic policies. For $\pi \in \Pi$, define recurrent states \mathcal{R}^{π} and transient states $\mathcal{T}^{\pi} = \mathcal{S} \setminus \mathcal{R}^{\pi}$
 171 under P_{π} , and let $T_{\mathcal{R}^{\pi}} = \inf\{t \geq 0 : S_t \in \mathcal{R}^{\pi}\}$ be the first hitting time to a recurrent state. An
 172 MDP satisfies the *bounded transient time property* with parameter B if $\mathbb{E}_s^{\pi} [T_{\mathcal{R}^{\pi}}] \leq B$ for all $\pi \in \Pi$
 173 and $s \in \mathcal{S}$, ensuring uniformly bounded time in transient states. Finally, the *Slater constant* is
 174 $\zeta := \max_{\pi} \rho_c^{\pi}(s) - b$ (Ding et al., 2021; Bai et al., 2021), measuring the feasibility margin and how
 175 difficult it is to satisfy the constraint.

176 **Blackwell-optimal policy** A policy π^* is Blackwell-optimal if there exists some discount factor
 177 $\bar{\gamma} \in (0, 1)$ such that for all $\gamma \geq \bar{\gamma}$ we have $V_{\gamma}^{\pi^*} \geq V_{\gamma}^{\pi}$ for all policies π . Henceforth we let π^* denote
 178 some fixed Blackwell-optimal policy, which is guaranteed to exist when S and A are finite (Puterman,
 179 2014b). We define the optimal gain $\rho^* \in \mathbb{R}^{\mathcal{S}}$ by $\rho^*(s) = \sup_{\pi} \rho^{\pi}(s)$ and note that we have $\rho^* = \rho^{\pi^*}$.
 180 For all $s \in \mathcal{S}$, $\rho^*(s) \geq \max_{a \in \mathcal{A}} P_{sa} \rho^*$, or equivalently $\rho^*(s) \geq P_{\pi} \rho^*$ for all policies π (and this
 181 maximum is achieved by π^*). We also define $h^* = h^{\pi^*}$ (and we note that this definition does not
 182 depend on which Blackwell-optimal π^* is used, if there are multiple). For all $s \in \mathcal{S}$, ρ^* and h^* satisfy
 183 $\rho^* r(s) + h^*(s) = \max_{a \in \mathcal{A}: P_{sa} \rho^* = \rho^*(s)} r_{sa} + P_{sa} h^*$, known as the (unmodified) Bellman equation.

184 **Learning framework** For clarity of exposition, we assume that the reward functions r and c are
 185 known, while the transition dynamics \mathcal{P} are unknown and must be learned. This assumption does not
 186 affect the leading-order sample complexity, as estimating rewards is generally easier than estimating
 187 the transition matrix (Azar et al., 2013; Sidford et al., 2018). We further assume access to a *generative*
 188 *model* (simulator), which allows the agent to draw samples from $\mathcal{P}(\cdot | s, a)$ for any state-action pair
 189 (s, a) . Under this setting, our objective is to characterize the sample complexity required to compute
 190 an approximately optimal policy $\hat{\pi}$ for the CAMDP M . Given a desired accuracy level $\varepsilon > 0$, we
 191 consider two distinct notions of settings:

192 **Relaxed feasibility** We require the returned policy $\hat{\pi}$ to achieve near-optimal reward, allowing for a
 193 small violation of the constraint. Formally, we seek $\hat{\pi}$ such that:

$$\rho_r^{\hat{\pi}}(s) \geq \rho_r^*(s) - \varepsilon, \quad \text{and} \quad \rho_c^{\hat{\pi}}(s) \geq b - \varepsilon. \quad (2)$$

194 **Strict feasibility** We require $\hat{\pi}$ to achieve near-optimal reward while exactly satisfying the constraint,
 195 i.e., zero constraint violation:

$$\rho_r^{\hat{\pi}}(s) \geq \rho_r^*(s) - \varepsilon, \quad \text{and} \quad \rho_c^{\hat{\pi}}(s) \geq b. \quad (3)$$

196 In the following sections, we describe a general model-based algorithm that can handle both the
 197 relaxed and strict feasibility settings, and we instantiate it appropriately for each case.

202 3 METHODOLOGY

203 We will use a model-based approach for achieving the objectives in Eq. (2) and Eq. (3). In particular,
 204 for each (s, a) pair, we collect N independent samples from $\mathcal{P}(\cdot | s, a)$ and form an empirical transition
 205 matrix $\hat{\mathcal{P}}$ such that $\hat{\mathcal{P}}(s' | s, a) = \frac{N(s' | s, a)}{N}$, where $N(s' | s, a)$ is the number of samples that have
 206 transitions from (s, a) to s' . These estimated transition probabilities are used to form a series of
 207 empirical discounted MDPs, the result of which will be used as the near optimal solution for a
 208 series of corresponding AMDPs. In particular, for each $s \in \mathcal{S}$ and $a \in \mathcal{A}$, we define the perturbed
 209 rewards $r_p(s, a) := r(s, a) + Z(s, a)$ where $Z(s, a) \sim \mathcal{U}[0, \omega]$ are i.i.d. uniform random variables
 210 and we set other parameters, such as $\bar{\varepsilon} = B + H$, $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4\bar{\varepsilon}}$ and $\omega = (1 - \gamma)\bar{\varepsilon}/6$ to specify
 211 the empirical AMDPs. Finally, compared to Eq. (1), we will require solving the CAMDP with a
 212 constraint right-hand side equal to b' . Note that setting $b' < b$ corresponds to loosening the constraint,
 213 while $b' > b$ corresponds to tightening the constraint. This completes the specification of a series of
 214 empirical AMDPs $\{\hat{M}_t\}$ that are defined by the tuple $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, r_p + \lambda_t c, s \rangle$. Furthermore, we will
 215

216 **Algorithm 1: Model-based Algorithm for CAMDPs with Generative Model**

217 1 **Input:** \mathcal{S} (state space), \mathcal{A} (action space), r (rewards), c (constraint rewards), ζ (Slater constant),
218 N (number of samples), b' (constraint RHS), U (projection upper bound), ε_1 (epsilon-net
219 resolution), T (number of iterations), $\lambda_0 = 0$ (initialization), ε_{opt} (target accuracy), γ (discount
220 factor).

221 2 For each $(s, a) \in \mathcal{S} \times \mathcal{A}$, collect n samples $S_{s,a}^1, \dots, S_{s,a}^n$ from $\mathcal{P}(\cdot | s, a)$

222 3 Form $\hat{\mathcal{P}}$: $\hat{\mathcal{P}}(s'|s, a) = \frac{1}{N} \sum_{i=1}^n \mathbf{1}\{S_{s,a}^i = s'\}, \quad \forall s' \in \mathcal{S}$.

223 4 Set discount factor $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)}$

224 5 Perturb the rewards to form $r_p(s, a) = r(s, a) + Z(s, a)$ where $Z(s, a) \sim \text{Unif}(0, \omega)$.

225 6 Form the epsilon-net $\Lambda = \{0, \varepsilon_1, 2\varepsilon_1, \dots, U\}$.

226 7 **for** $t \leftarrow 0$ **to** $T - 1$ **do**

227 8 Update the Blackwell-optimal policy $\hat{\pi}_t$ by solving the empirical unconstrained AMDP
228 $(\hat{P}, r_p + \lambda_t c)$.

229 9 Update the dual variable: $\lambda_{t+1} = \mathcal{R}_\Lambda [\mathbb{P}_{[0,U]} [\lambda_t - \eta (\rho_c^{\hat{\pi}_t}(s) - b')]]$.

230 10 **end for**

231 11 Output the mixture policy: $\hat{\pi} = \frac{1}{T} \sum_{t=0}^{T-1} \hat{\pi}_t$.

234

235 compute the optimal policy for the empirical CAMDP \hat{M} introduced by the generative model as
236 follows:

$$\hat{\pi}^* \in \arg \max \hat{\rho}_{r_p}^\pi(s) \text{ s.t. } \hat{\rho}_c^\pi(s) \geq b' \quad (4)$$

237 We will require solving Eq. (4) using a specific primal-dual approach that we outline next. Using
238 this algorithm enables us to prove optimal sample complexity bounds under both relaxed and strict
239 feasibility.

240 First, observe that Eq. (4) can be written as an equivalent saddle-point problem –
241 $\max_\pi \min_{\lambda \geq 0} [\rho_r^\pi(s) + \lambda (\rho_c^\pi(s) - b')]$, where $\lambda \in \mathbb{R}$ corresponds to the Lagrange multiplier for the
242 constraint. The solution to this saddle-point problem is $(\hat{\pi}^*, \lambda^*)$ where $\hat{\pi}^*$ is the optimal policy for
243 M' and λ^* is the optimal Lagrange multiplier. We solve the above saddle-point problem iteratively,
244 by alternatively updating the policy (primal variable) and the Lagrange multiplier (dual variable). If
245 T is the total number of iterations of the primal-dual algorithm, we define $\hat{\pi}_t$ and λ_t to be the primal
246 and dual iterates for $t \in [T] := \{1, \dots, T\}$. The primal update at iteration t is given as:

$$\hat{\pi}_t = \arg \max \left[\rho_{r_p}^\pi + \lambda_t \rho_c^\pi \right] = \arg \max \rho_t^\pi. \quad (5)$$

247 Hence, iteration t of the algorithm requires solving an unconstrained MDP with a reward equal to
248 $r_p + \lambda_t c$. This can be done using any black-box MDP solver such as policy iteration. The algorithm
249 updates the Lagrange multipliers using a gradient descent step and requires projecting. In particular,
250 the dual variables are projected onto the $[0, U]$ interval, where U is chosen to be an upper-bound on
251 $|\lambda^*|$.

252 The dual update at iteration t is given as:

$$\lambda_{t+1} = \mathcal{R}_\Lambda [\mathbb{P}_{[0,U]} [\lambda_t - \eta (\rho_c^{\hat{\pi}_t}(s) - b')]], \quad (6)$$

253 where $\mathbb{P}_{[0,U]}[\lambda] = \arg \min_{p \in [0,U]} |\lambda - p|$ projects λ onto the $[0, U]$ interval. Finally, η in Eq. (6)
254 corresponds to the step-size for the gradient descent update. The above primal-dual updates are
255 similar to the dual-descent algorithm proposed in Vaswani et al. (Vaswani et al., 2022). The
256 pseudo-code summarizing the entire model-based algorithm is given in Algorithm 1. We note that
257 although Algorithm 1 requires the knowledge of ζ , this is not essential and we can instead use an
258 estimate of ζ . Next, we show that the primal-dual updates in Algorithm 1 can be used to solve
259 a reference CAMDP M' . Specifically, we prove the following theorem that bounds the average
260 optimality gap (in the reward value function) and constraint violation for the mixture policy returned
261 by Algorithm 1.

262 **Theorem 1** (Guarantees for the primal-dual algorithm). For a target error $\varepsilon_{\text{opt}} > 0$, consider the
263 primal-dual updates given in Eq. (5)–Eq. (6) with parameters $U > |\lambda^*|$, $T = \frac{U^2}{\varepsilon_{\text{opt}}^2} \left[1 + \frac{1}{(U - \lambda^*)^2} \right]$,

270 $\varepsilon_1 = \frac{\varepsilon_{\text{opt}}^2 (U - \lambda^*)}{6U}$ and $\eta = \frac{U}{\sqrt{T}}$, then the resulting mixture policy $\hat{\pi} := \frac{1}{T} \sum_{t=0}^{T-1} \hat{\pi}_t$ satisfies
 271 $\hat{\rho}_{r_p}^{\hat{\pi}}(s) \geq \rho_{r_p}^{\hat{\pi}^*}(s) - \varepsilon_{\text{opt}}$ and $\rho_c^{\hat{\pi}}(s) \geq b' - \varepsilon_{\text{opt}}$.
 272
 273

274 Hence, with $T = O(1/\varepsilon_{\text{opt}}^2)$, the algorithm outputs a policy $\hat{\pi}$ that achieves a reward ε_{opt} close to
 275 that of the optimal empirical policy $\hat{\pi}^*$, while violating the constraint by at most ε_{opt} . Hence, with
 276 sufficient number of iterations T , we can use the above primal-dual algorithm to approximately solve
 277 the problem in Eq. (4). In order to completely instantiate the primal-dual algorithm, we require setting
 278 $U > |\lambda^*|$. We will subsequently do this for the the relaxed and strict feasibility settings in Section 4.
 279

280 4 UPPER-BOUND UNDER RELAXED FEASIBILITY

281
 282 In order to achieve the objective in Eq. (2) for a target error $\varepsilon > 0$, we require setting $N =$
 283 $\tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$, $b' = b - \frac{3\varepsilon}{8}$ and $\omega = \frac{\varepsilon(1-\gamma)}{8}$. This completely specifies the empirical CMDP \hat{M}
 284 and the problem in Eq. (4). In order to specify the primal-dual algorithm, we set $U = O(1/\varepsilon(1-\gamma))$,
 285 $\varepsilon_1 = O(\varepsilon^2(1-\gamma)^2)$, $T = O(1/(1-\gamma)^4\varepsilon^4)$ and $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)}$. With these choices, we prove the
 286 following theorem in Section B and provide a proof sketch below.
 287

288 **Theorem 2.** For a fixed $\varepsilon \in (0, 1]$, $\delta \in (0, 1)$ and a general CAMDP, suppose the corresponding
 289 AMDPs (\mathcal{P}, r) and (\mathcal{P}, c) have bias functions bound H , and satisfy the bounded transient time
 290 assumption with parameter B . Algorithm 1 with $N = \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$ samples, $b' = b - \frac{3\varepsilon}{8}$,
 291 $\omega = \frac{\varepsilon(1-\gamma)}{8}$, $U = O(1/\varepsilon(1-\gamma))$, $\varepsilon_1 = O(\varepsilon^2(1-\gamma)^2)$, $T = O(1/(1-\gamma)^4\varepsilon^4)$ and $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)}$,
 292 returns policy $\hat{\pi}$ that satisfies the objective in Eq. (2) with probability at least $1 - 4\delta$.
 293

294
 295 *Proof Sketch:* We prove the result for a general primal-dual error $\varepsilon_{\text{opt}} < \varepsilon$ and $b' = b - \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}$, and
 296 subsequently specify ε_{opt} and hence b' . In Lemma 9 (proved in Section B), we show that if the
 297 constraint value functions are sufficiently concentrated (the empirical value function is close to the
 298 ground truth value function) for both the optimal policy π^* in M and the mixture policy $\hat{\pi}$ returned
 299 by Algorithm 1, i.e., if

$$300 \quad |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}; \quad |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}, \quad (7)$$

301 then (i) policy $\hat{\pi}$ violates the constraint in M by at most ε , i.e., $\hat{\rho}_c^{\hat{\pi}}(s) \geq b - \varepsilon$, and (ii) its suboptimality
 302 in M (compared to π^*) can be decomposed as:

$$303 \quad \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq 2\omega + \varepsilon_{\text{opt}} + |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| + |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_{r_p}^{\hat{\pi}}(s)| \quad (8)$$

304 In order to instantiate the primal-dual algorithm, we require a concentration result for policy π_c^*
 305 that maximizes the the constraint value function, i.e. if $\pi_c^* := \arg \max \rho_c^{\pi}(s)$, then we require
 306 $|\hat{\rho}_c^{\pi_c^*} - \rho_c^{\pi_c^*}(s)| \leq \varepsilon + \varepsilon_{\text{opt}}$. In Case 1 of Lemma 6 (proved in Section A), we show that if this
 307 concentration result holds, then we can upper-bound the optimal dual variable $|\lambda^*|$ by $\frac{2(1+\omega)}{(\varepsilon+\varepsilon_{\text{opt}})}$. With
 308 these results in hand, we can instantiate all the algorithm parameters except N (the number of
 309 samples required for each state-action pair). In particular, we set $\varepsilon_{\text{opt}} = \frac{\varepsilon}{4}$ and hence $b' = b - \frac{3\varepsilon}{8}$, and
 310 $\omega = \frac{\varepsilon(1-\gamma)}{8} < 1$. Setting $U = \frac{32}{5\varepsilon(1-\gamma)}$ ensures that the $U > |\lambda^*|$ condition required by Theorem 1
 311 holds. To guarantee that the primal-dual algorithm outputs an $\frac{\varepsilon}{4}$ -approximate policy, we use Theorem 1
 312 to set $T = O\left(\frac{1}{(1-\gamma)^4\varepsilon^4}\right)$ iterations and $\varepsilon_1 = O(\varepsilon^2(1-\gamma)^2)$. Eq. (8) can then be simplified as,
 313

$$314 \quad \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq \frac{\varepsilon}{2} + |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| + |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_{r_p}^{\hat{\pi}}(s)|.$$

315 Putting everything together, in order to guarantee an ε -reward suboptimality for $\hat{\pi}$, we require that:
 316

$$317 \quad |\hat{\rho}_c^{\pi_c^*} - \rho_c^{\pi_c^*}(s)| \leq \frac{5\varepsilon}{4}; \quad |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq \frac{3\varepsilon}{8}; \quad |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \frac{3\varepsilon}{8}$$

$$318 \quad |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| \leq \frac{\varepsilon}{4}; \quad |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_{r_p}^{\hat{\pi}}(s)| \leq \frac{\varepsilon}{4}. \quad (9)$$

319 We control such concentration terms for both the constraint and reward value functions in Section B,
 320 and bound the terms in Eq. (9). In particular, we prove that for a fixed $\varepsilon \in (0, 1/(1-\gamma)]$, using
 321

324 $N \geq \tilde{O} \left(\frac{SA(B+H)}{\varepsilon^2} \right)$ samples ensures that the statements in Eq. (9) hold with probability $1 - 4\delta$.
 325 This guarantees that $\rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq \varepsilon$ and $\rho_c^{\hat{\pi}}(s) \geq b - \varepsilon$. \square
 326
 327
 328

5 UPPER-BOUND UNDER STRICT FEASIBILITY

329 Unlike Section 4, since the strict feasibility setting does not allow any constraint violations, it
 330 necessitates using a stricter constraint in the empirical CMDP to account for the estimation error
 331 in the transition probabilities. Algorithmically, we require setting $b' > b$. Specifically, in order to
 332 achieve the objective in Eq. (3) for a target error $\varepsilon > 0$, we require setting $N = \tilde{O} \left(\frac{SA(B+H)}{\varepsilon^2 \zeta^2} \right)$,
 333 $b' = b + \frac{\varepsilon(1-\gamma)\zeta}{20}$ and $\omega = \frac{\varepsilon(1-\gamma)}{10}$. This completely specifies the empirical CMDP \hat{M} and the problem
 334 in Eq. (4). To specify the primal-dual algorithm, we set $U = \frac{4(1+\omega)}{\zeta(1-\gamma)}$, $\varepsilon_1 = O(\varepsilon^2(1-\gamma)^4\zeta^2)$,
 335 $T = O(1/(1-\gamma)^6\zeta^4\varepsilon^2)$ and $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)}$. With these choices, we prove the following theorem
 336 in Section C, and provide a proof sketch below.
 337

338 **Theorem 3.** For a fixed $\varepsilon \in (0, 1/(1-\gamma)]$ and $\delta \in (0, 1)$, Algorithm 1, with $N = \tilde{O} \left(\frac{SA(B+H)}{\varepsilon^2 \zeta^2} \right)$
 339 samples, $b' = b + \frac{\varepsilon(1-\gamma)\zeta}{20}$, $\omega = \frac{\varepsilon(1-\gamma)}{10}$, $U = \frac{4(1+\omega)}{\zeta(1-\gamma)}$, $\varepsilon_1 = O(\varepsilon^2(1-\gamma)^4\zeta^2)$, $T = O(1/(1-\gamma)^6\zeta^4\varepsilon^2)$
 340 and $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)}$ returns policy $\hat{\pi}$ that satisfies the objective in Eq. (3), with probability at least
 341 $1 - 4\delta$.
 342
 343
 344
 345
 346

347
 348
 349
 350
 351 *Proof Sketch:* We prove the result for a general $b' = b + \Delta$ for $\Delta > 0$ and primal-dual error $\varepsilon_{\text{opt}} < \Delta$,
 352 and subsequently specify Δ (and hence b') and ε_{opt} . In Lemma 10 (proved in Section C), we prove
 353 that if the constraint value functions are sufficiently concentrated (the empirical value function is
 354 close to the ground truth value function) for both the optimal policy π^* in M and the mixture policy
 355 $\hat{\pi}$ returned by Algorithm 1 i.e. if

$$|\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq \Delta - \varepsilon_{\text{opt}} \quad ; \quad |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \Delta \quad (10)$$

356 then (i) policy $\hat{\pi}$ satisfies the constraint in M i.e. $\rho_c^{\hat{\pi}}(s) \geq b$, and (ii) its suboptimality in M (compared
 357 to π^*) can be decomposed as:
 358

$$\rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq 2\omega + \varepsilon_{\text{opt}} + 2\Delta|\lambda^*| + |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| + |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_r^{\hat{\pi}}(s)| \quad (11)$$

359 In order to upper-bound $|\lambda^*|$, we require a concentration result for policy $\pi_c^* := \arg \max \rho_c^{\pi}(s)$
 360 that maximizes the the constraint value function. In particular, we require $\Delta \in (0, \frac{\zeta}{2})$ and
 361 $|\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \frac{\zeta}{2} - \Delta$. In Case 2 of Lemma 6 (proved in Section A), we show that if
 362 this concentration result holds, then we can upper-bound the optimal dual variable $|\lambda^*|$ by $\frac{2(1+\omega)}{\zeta(1-\gamma)}$.
 363 Using the above bounds to simplify Eq. (11),
 364

$$\rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq \frac{2\omega}{1-\gamma} + \varepsilon_{\text{opt}} + \frac{4\Delta(1+\omega)}{\zeta(1-\gamma)} + |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| + |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_r^{\hat{\pi}}(s)|.$$

365 With these results in hand, we can instantiate all the algorithm parameters except N (the number of
 366 samples required for each state-action pair). In particular, we set $\Delta = \frac{\varepsilon(1-\gamma)\zeta}{40} < \frac{\zeta}{2}$, $\varepsilon_{\text{opt}} = \frac{\Delta}{5} =$
 367 $\frac{\varepsilon(1-\gamma)\zeta}{200} < \frac{\varepsilon}{5}$, and $\omega = \frac{\varepsilon(1-\gamma)}{10} < 1$. We set $U = \frac{8}{\zeta(1-\gamma)}$ for the primal-dual algorithm, ensuring
 368 that the $U > |\lambda^*|$ condition required by Theorem 1 holds. In order to guarantee that the primal-dual
 369 algorithm outputs an $\frac{\varepsilon(1-\gamma)\zeta}{200}$ -approximate policy, we use Theorem 1 to set $T = O\left(\frac{1}{(1-\gamma)^6\zeta^4\varepsilon^2}\right)$
 370 iterations and $\varepsilon_1 = O(\varepsilon^2(1-\gamma)^4\zeta^2)$. With these values, we can further simplify Eq. (11),
 371

$$\rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq \frac{3\varepsilon}{5} + |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| + |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_r^{\hat{\pi}}(s)|.$$

Putting everything together, in order to guarantee an ε -reward suboptimality for $\hat{\pi}$, we require the following concentration results to hold for $\Delta = \frac{\varepsilon(1-\gamma)\zeta}{40}$,

$$\begin{aligned} |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| &\leq \frac{4\Delta}{5}; |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \Delta; |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \frac{19\Delta}{5} \\ |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| &\leq \frac{\varepsilon}{5}; |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_{r_p}^{\hat{\pi}}(s)| \leq \frac{\varepsilon}{5}. \end{aligned} \quad (12)$$

We control such concentration terms for both the constraint and reward value functions in Section C, and bound the terms in Eq. (12). In particular, we prove that for a fixed $\varepsilon \in (0, 1/(1-\gamma)]$, using $N \geq \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2\zeta^2}\right)$ ensures that the statements in Eq. (12) hold with probability $1 - 4\delta$. This guarantees that $\rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq \varepsilon$ and $\rho_c^{\hat{\pi}}(s) \geq b$. \square

6 LOWER-BOUND FOR WEAKLY COMMUNICATING CAMDPs

Theorem 4 (Lower-bound for communicating CAMDP). For any sufficiently small ε, δ , any sufficiently large S, A , and any $D \geq \max\{c_1S, c_2\}$ (where $c_1, c_2 \geq 0$ is some universal constant), for any algorithm promising to return an $\frac{\varepsilon}{24}$ -optimal policy with probability at least $\frac{3}{4}$ on any communicating CAMDP problem, there is an CAMDP such that the expected total samples on all state-action pairs, when running this algorithm, is at least $\tilde{\Omega}\left(\frac{SAH}{\varepsilon^2\zeta^2}\right)$

Figure 1: A Hard Communicating CAMDP when $A = 4, S = 19$.

Figure 2: A Component Communicating CAMDP.

Proof Sketch: We construct a family of hard CAMDP instances with parameters S, A , and diameter D . Define $A' := A - 1$, $D' := D/8$, and $K := \lceil S/4 \rceil$, and assume standard bounds: $A \geq 3$, $\varepsilon \leq 1/16$, $D \geq \max\{16\lceil \log_A S \rceil, 16\}$.

We first design a primitive component MDP with three states (x, y, z) , each having A' actions partitioned into subsets according to transition and reward structure (Figure 2). These components are embedded at the leaves of an A' -ary tree with $S - 3K$ internal nodes and depth at most $\lceil \log_{A'} S \rceil + 1$. The full MDP M_0 (Figure 1) connects components via deterministic transitions with diameter bounded by D . A collection of instances $\{M_{k,l}\}$ is constructed by perturbing action rewards at selected x_k states. Optimal policies must distinguish between actions a_1 and a_l at these states to satisfy the constraint. The divergence in occupancy measures under different instances implies a statistical gap. This separation in policy behavior across instances will be used to derive a lower bound. This separation arises from the amplification effect of the constraint reward c , which is necessary to ensure feasibility with respect to the objective defined in Eq. (1).

Finally, applying Fano's method Wainwright (2019) yields a minimax lower bound of $\tilde{\Omega}\left(\frac{SAD}{\varepsilon^2\zeta^2}\right)$, which translates to $\tilde{\Omega}\left(\frac{SAH}{\varepsilon^2\zeta^2}\right)$ under the bound $H \leq D$ (Bartlett & Tewari, 2009). See Appendix G for a full proof. \square

7 LOWER-BOUND FOR GENERAL CAMDPs

Theorem 5 (Lower-bound for general CAMDP). For any sufficiently small ε, δ , any sufficiently large S, A , for any algorithm promising to return an $\frac{\varepsilon}{24}$ -optimal policy with probability at least $\frac{3}{4}$ on any communicating CAMDP problem, there is an CAMDP such that the expected total samples on all state-action pairs, when running this algorithm, is at least $\tilde{\Omega}\left(\frac{SA(H+B)}{\varepsilon^2\zeta^2}\right)$

Figure 3: A Component MDP Used in the Hard Instance for CAMDP.

Proof Sketch: To establish the lower bound, we construct a family of hard instances in which achieving $\varepsilon/24$ -average optimality requires significantly different policy behaviors across carefully designed environments. In particular, we show that a policy must choose action $a = 1$ in a designated subset of states with occupancy measure at most $2/3$ in one instance, while the same action must be selected with occupancy measure at least $2/3$ in another. This separation in policy behavior across instances will be used to derive a lower bound. This separation arises from the amplification effect of the constraint reward c , which is necessary to ensure feasibility with respect to the objective defined in Eq. (1). The design of our hard instance is motivated by the construction used for average-reward MDPs in [Zurek & Chen \(2024\)](#). Finally, applying Fano’s inequality [Wainwright \(2019\)](#) to these instances yields a lower bound on the sample complexity of $\tilde{\Omega}\left(\frac{SAB}{\varepsilon^2\zeta^2}\right)$. Finally, by combining this result with Theorem 4, we obtain the general lower bound for weakly communicating CAMDPs: $\tilde{\Omega}\left(\frac{SA(B+H)}{\varepsilon^2\zeta^2}\right)$. See Appendix F for a full proof. \square

8 CONCLUSION

In conclusion, we establish the **first minimax-optimal sample complexity bounds** for learning in CAMDPs under a generative model. Our algorithm operates under both relaxed and strict feasibility regimes, achieving tight upper bounds of $\tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$ and $\tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2\zeta^2}\right)$, respectively. Complementing these results, we derive a matching lower bound of $\tilde{\Omega}\left(\frac{SA(B+H)}{\varepsilon^2\zeta^2}\right)$ for the strict feasibility setting, together with a specialized lower bound of $\tilde{\Omega}\left(\frac{SAH}{\varepsilon^2\zeta^2}\right)$ for the class of weakly communicating CAMDPs. Taken together, these results constitute the **first alignment of upper and lower bounds in all key problem parameters** — namely, the span bound of the bias function H , the transient time bound B , and the target accuracy ε . Our analysis therefore not only resolves the minimax sample complexity of CAMDPs for the first time, but also sheds new light on the fundamental complexity of constrained average-reward reinforcement learning, tightly connecting it to the structural properties of average-reward MDPs.

486 REFERENCES
487

488 Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. *Reinforcement Learning: Theory
489 and Algorithms*. CS Dept., University of Washington, 2019. URL <https://rltheorybook.github.io/>. Version 1, October 27, 2019.

490

491 Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative
492 model is minimax optimal. In *Conference on Learning Theory*, pp. 67–83. PMLR, 2020.

493

494 Eitan Altman. *Constrained Markov decision processes*, volume 7. CRC Press, 1999.

495

496 Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen. Minimax PAC bounds on the
497 sample complexity of reinforcement learning with a generative model. *Machine Learning*, 91
498 (3):325–349, 2013. doi: 10.1007/s10994-013-5368-1. URL <https://doi.org/10.1007/s10994-013-5368-1>.

499

500 Qinbo Bai, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel, and Vaneet Aggarwal. Achieving
501 zero constraint violation for constrained reinforcement learning via primal-dual approach. *arXiv
502 preprint arXiv:2109.06332*, 2021.

503

504 Qinbo Bai, Washim Uddin Mondal, and Vaneet Aggarwal. Learning general parameterized
505 policies for infinite horizon average reward constrained MDPs via primal-dual policy
506 gradient algorithm. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 37, 2024. URL https://papers.nips.cc/paper_files/paper/2024/file/c46c759679acea07d7ea92823ea1e290-Paper-Conference.pdf.

507

508 Peter L. Bartlett and Ambuj Tewari. Regal: A regularization based algorithm for reinforcement
509 learning in weakly communicating MDPs. In *Proceedings of the 25th Conference on Uncertainty
510 in Artificial Intelligence (UAI)*, pp. 35–42, Arlington, Virginia, USA, 2009. AUAI Press. URL
511 <https://arxiv.org/abs/1205.2661>.

512

513 Vivek Borkar and Rahul Jain. Risk-constrained markov decision processes. *IEEE Transactions on
514 Automatic Control*, 59(9):2574–2579, 2014.

515

516 Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. *Systems &
517 control letters*, 54(3):207–213, 2005.

518

519 Kianté Brantley, Miroslav Dudik, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksan-
520 drs Slivkins, and Wen Sun. Constrained episodic reinforcement learning in concave-convex and
521 knapsack settings. *arXiv preprint arXiv:2006.05051*, 2020.

522

523 Chiara Buratti, Andrea Conti, Davide Dardari, and Roberto Verdone. An overview on wireless sensor
524 networks technology and evolution. *Sensors*, 9(9):6869–6896, 2009.

525

526 Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
527 efficient safe exploration via primal-dual policy optimization. In *International Conference on
528 Artificial Intelligence and Statistics*, pp. 3304–3312. PMLR, 2021.

529

530 Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained MDPs.
531 *arXiv preprint arXiv:2003.02189*, 2020.

532

533 Ather Gattami, Qinbo Bai, and Vaneet Aggarwal. Reinforcement learning for constrained markov
534 decision processes. In *International Conference on Artificial Intelligence and Statistics*, pp.
535 2656–2664. PMLR, 2021.

536

537 Aria HasanzadeZonuzy, Dileep M. Kalathil, and Srinivas Shakkottai. Model-based reinforcement
538 learning for infinite-horizon discounted constrained markov decision processes. In Zhi-Hua Zhou
539 (ed.), *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI
2021, Virtual Event / Montreal, Canada, 19-27 August 2021*, pp. 2519–2525. ijcai.org, 2021.

540

541 D. Julian, Mung Chiang, D. O’Neill, and S. Boyd. Qos and fairness constrained convex optimization
542 of resource allocation for wireless cellular and ad hoc networks. In *Proceedings.Twenty-First
543 Annual Joint Conference of the IEEE Computer and Communications Societies*, volume 2, pp.
544 477–486, 2002. doi: 10.1109/INFCOM.2002.1019292.

540 Sham Machandranath Kakade. *On the sample complexity of reinforcement learning*. University of
 541 London, University College London (United Kingdom), 2003.
 542

543 Krishna Chaitanya Kalagarla, Rahul Jain, and Pierluigi Nuzzo. A sample-efficient algorithm for
 544 episodic finite-horizon MDP with constraints. In *Thirty-Fifth AAAI Conference on Artificial*
 545 *Intelligence, AAAI*, pp. 8030–8037. AAAI Press, 2021.

546 Michael Kearns and Satinder Singh. Finite-sample convergence rates for q-learning and indirect
 547 algorithms. *Advances in neural information processing systems*, pp. 996–1002, 1999.
 548

549 Sobhan Miryoosefi and Chi Jin. A simple reward-free approach to constrained reinforcement learning.
 550 In *International Conference on Machine Learning*, pp. 15666–15698. PMLR, 2022.
 551

552 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 553 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 554 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.
 555

556 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 557 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
 558 Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
 559 Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
 560 back. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Ad-*
 561 *vances in Neural Information Processing Systems*, volume 35, pp. 27730–27744. Curran Asso-
 562 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.
 563

564 Santiago Paternain, Luiz FO Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
 565 reinforcement learning has zero duality gap. *arXiv preprint arXiv:1910.13393*, 2019.
 566

567 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 568 Wiley & Sons, 2014a.
 569

570 Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John
 571 Wiley & Sons, 2014b. ISBN 978-1-118-62587-3.
 572

573 Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. Upper
 574 confidence primal-dual reinforcement learning for cMDP with adversarial loss.
 575 In *Advances in Neural Information Processing Systems*, volume 33, 2020. URL
 576 https://proceedings.neurips.cc/paper_files/paper/2020/hash/ae95296e27d7f695f891cd26b4f37078-Abstract.html.
 577

578 Andrew J Schaefer, Matthew D Bailey, Steven M Shechter, and Mark S Roberts. Modeling medical
 579 treatment using markov decision processes. In *Operations research and health care*, pp. 593–612.
 580 Springer, 2005.
 581

582 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 583 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 584 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.
 585

586 Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal
 587 time and sample complexities for solving markov decision processes with a generative
 588 model. In *Advances in Neural Information Processing Systems*, volume 31. Curran Asso-
 589 ciates, Inc., 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/bb03e43ffe34eeb242a2ee4a4f125e56-Abstract.html>.
 590

591 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 592 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 593 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.
 594

595 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press,
 596 Cambridge, MA, USA, 1998. ISBN 978-0262193986. URL <http://incompleteideas.net/book/the-book.html>.
 597

594 Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
 595 Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. *arXiv preprint*
 596 *arXiv:1804.10332*, 2018.

597

598 Sharan Vaswani, Lin F. Yang, and Csaba Szepesvari. Near-optimal sample complexity bounds for
 599 constrained MDPs. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35,
 600 pp. 3110–3122, October 2022. URL <https://arxiv.org/abs/2206.06270>.

601 Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*.
 602 Cambridge University Press, 1 edition, 2019. ISBN 978-1-108-62777-1. doi:
 603 10.1017/9781108627771. URL <https://www.cambridge.org/core/product/identifier/9781108627771/type/book>.

604

605 Jinghan Wang, Mengdi Wang, and Lin F. Yang. Near sample-optimal reduction-based policy learning
 606 for average reward MDP. *arXiv preprint arXiv:2212.00603*, 2022. URL <http://arxiv.org/abs/2212.00603>.

607

608 Honghao Wei, Xin Liu, and Lei Ying. A provably-efficient model-free algorithm for constrained
 609 markov decision processes. *arXiv preprint arXiv:2106.01577*, 2021.

610

611 Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
 612 In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International
 613 Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*,
 614 pp. 6995–7004. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/yang19b.html>.

615

616

617 Tiancheng Yu, Yi Tian, Jingzhao Zhang, and Suvrit Sra. Provably efficient algorithms for multi-
 618 objective competitive rl. In *International Conference on Machine Learning*, pp. 12167–12176.
 619 PMLR, 2021.

620

621 Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
 622 Learning to throw arbitrary objects with residual physics. *IEEE Transactions on Robotics*, 36(4):
 623 1307–1319, 2020.

624

625 Liyuan Zheng and Lillian Ratliff. Constrained upper confidence reinforcement learning. In *Learning
 for Dynamics and Control*, pp. 620–629. PMLR, 2020.

626

627 Matthew Zurek and Yudong Chen. Span-based optimal sample complexity for
 628 weakly communicating and general average reward MDPs. In *Advances in
 629 Neural Information Processing Systems (NeurIPS)*, volume 37, 2024. URL
 630 https://proceedings.neurips.cc/paper_files/paper/2024/file/3acbe9dc3a1e8d48a57b16e9aef91879-Paper-Conference.pdf.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A PROOFS FOR PRIMAL-DUAL ALGORITHM
649

650 **Theorem 1** (Guarantees for the primal-dual algorithm). For a target error $\varepsilon_{\text{opt}} > 0$, consider the
651 primal-dual updates given in Eq. (5)–Eq. (6) with parameters $U > |\lambda^*|$, $T = \frac{U^2}{\varepsilon_{\text{opt}}^2} \left[1 + \frac{1}{(U - \lambda^*)^2} \right]$,
652 $\varepsilon_1 = \frac{\varepsilon_{\text{opt}}^2 (U - \lambda^*)}{6U}$ and $\eta = \frac{U}{\sqrt{T}}$, then the resulting mixture policy $\hat{\pi} := \frac{1}{T} \sum_{t=0}^{T-1} \hat{\pi}_t$ satisfies
653 $\rho_{r_p}^{\hat{\pi}}(s) \geq \rho_{r_p}^{\hat{\pi}^*}(s) - \varepsilon_{\text{opt}}$ and $\rho_c^{\hat{\pi}}(s) \geq b' - \varepsilon_{\text{opt}}$.
654

655
656 *Proof.* We will define the dual regret w.r.t λ as the following quantity:
657

$$658 \quad 659 \quad 660 \quad R^d(\lambda, T) := \sum_{t=0}^{T-1} (\lambda_t - \lambda) (\rho_c^{\hat{\pi}_t}(s) - b') . \quad (13)$$

661 Using the primal update in Eq. (5), for any π ,
662

$$663 \quad 664 \quad \rho_{r_p}^{\hat{\pi}_t}(s) + \lambda_t \rho_c^{\hat{\pi}_t}(s) \geq \rho_{r_p}^{\pi}(s) + \lambda_t \rho_c^{\pi}(s).$$

665 Substituting $\pi = \hat{\pi}^*$, we have,
666

$$667 \quad 668 \quad \rho_{r_p}^{\hat{\pi}^*}(s) - \rho_{r_p}^{\hat{\pi}_t}(s) \leq \lambda_t [\rho_c^{\hat{\pi}_t}(s) - \rho_c^{\hat{\pi}^*}(s)].$$

670 Since $\hat{\pi}^*$ is a solution to the CAMDP, $\rho_c^{\hat{\pi}^*} \geq b'$, we get
671

$$672 \quad 673 \quad \rho_{r_p}^{\hat{\pi}^*}(s) - \rho_{r_p}^{\hat{\pi}_t}(s) \leq \lambda_t [\rho_c^{\hat{\pi}_t}(s) - b'] . \quad (14)$$

674 Starting from the definition of the dual regret in Eq. (13), using Eq. (14) and dividing by T gives
675

$$676 \quad 677 \quad \frac{1}{T} \sum_{t=0}^{T-1} [\rho_{r_p}^{\hat{\pi}^*}(s) - \rho_{r_p}^{\hat{\pi}_t}(s)] + \frac{\lambda}{T} \sum_{t=0}^{T-1} (b' - \rho_c^{\hat{\pi}_t}(s)) \leq \frac{R^d(\lambda, T)}{T} . \quad (15)$$

679 Recall that $\hat{\pi} = \frac{1}{T} \sum_{t=0}^{T-1} \hat{\pi}_t$. Then, by the definition of this 'mixture', we have $\frac{1}{T} \sum_{t=0}^{T-1} \rho_{r_p}^{\hat{\pi}_t}(s) =$
680 $\rho_{r_p}^{\hat{\pi}}(s)$ and $\frac{1}{T} \sum_{t=0}^{T-1} \rho_c^{\hat{\pi}_t}(s) = \rho_c^{\hat{\pi}}(s)$. Combining this with the last inequality, we get
682

$$683 \quad 684 \quad [\rho_{r_p}^{\hat{\pi}^*}(s) - \rho_{r_p}^{\hat{\pi}}(s)] + \lambda (b' - \rho_c^{\hat{\pi}}(s)) \leq \frac{R^d(\lambda, T)}{T} . \quad (16)$$

686 Lemma 7 show that the following inequality holds for any $\lambda \in [0, U]$:
687

$$688 \quad 689 \quad R^d(\lambda, T) \leq T^{3/2} \frac{\varepsilon_1^2 + 2\varepsilon_1 U}{2U} + U\sqrt{T} . \quad (17)$$

690 This combined with the previous inequality (and the "right" choice of T , the number of updates)
691 gives the desired bounds. In particular, for the reward optimality gap, since $\lambda = 0 \in [0, U]$,
692

$$693 \quad 694 \quad \rho_{r_p}^{\hat{\pi}^*}(s) - \rho_{r_p}^{\hat{\pi}}(s) \leq \sqrt{T} \frac{\varepsilon_1^2 + 2\varepsilon_1 U}{2U} + \frac{U}{\sqrt{T}} < \sqrt{T} \frac{3\varepsilon_1}{2} + \frac{U}{\sqrt{T}} . \quad (\text{since } \varepsilon_1 < U)$$

696 For the constraint violation, there are two cases. The first case is when $b' - \rho_c^{\hat{\pi}}(s) \leq 0$. In this case, it
697 also holds that $b' - \varepsilon_{\text{opt}} - \rho_c^{\hat{\pi}}(s) \leq 0$, which is what we wanted to show. The second case is when
698 $b' - \rho_c^{\hat{\pi}}(s) > 0$. In this case, using the notation $[x]_+ = \max\{x, 0\}$ and Lemma 6, we have
699

$$700 \quad 701 \quad [\rho_{r_p}^{\hat{\pi}^*}(s) - \rho_{r_p}^{\hat{\pi}}(s)] + U [b' - \rho_c^{\hat{\pi}}(s)]_+ \leq \frac{R^d(U, T)}{T} . \quad (18)$$

Because by assumption it holds that $U > \lambda^*$, Lemma 8 is applicable and gives that

$$[b' - \rho_c^{\hat{\pi}}(s)]_+ \leq \frac{R^d(U, T)}{T(U - \lambda^*)}. \quad (19)$$

Hence, since $U \in [0, U]$, combining the above display with Eq. (19) gives

$$\begin{aligned} [b' - \rho_c^{\hat{\pi}}(s)] &\leq [b' - \rho_c^{\hat{\pi}}(s)]_+ \leq \sqrt{T} \frac{\varepsilon_1^2 + 2\varepsilon_1 U}{2U(U - \lambda^*)} + \frac{U}{(U - \lambda^*)\sqrt{T}} \\ &< \sqrt{T} \frac{3\varepsilon_1}{2(U - \lambda^*)} + \frac{U}{(U - \lambda^*)\sqrt{T}} \dots \quad (\text{since } \varepsilon_1 < U) \end{aligned} \quad (20)$$

Now, set T such that the second term in both quantities is bounded from above by $\varepsilon_{\text{opt}}/2$. This gives

$$T = T_0 := \frac{U^2}{\varepsilon_{\text{opt}}^2} \left[1 + \frac{1}{(U - \lambda^*)^2} \right]. \quad (21)$$

Now, set ε_1 such that the first term in both quantities is also bounded from above by $\frac{\varepsilon_{\text{opt}}}{2}$. For this, choose

$$\varepsilon_1 = \frac{\varepsilon_{\text{opt}}^2 (U - \lambda^*)}{6U}.$$

With these values, the algorithm ensures that

$$\rho_{r_p}^{\hat{\pi}^*}(s) - \rho_{r_p}^{\hat{\pi}}(s) \leq \varepsilon_{\text{opt}} \quad \text{and} \quad b' - \rho_c^{\hat{\pi}}(s) \leq \varepsilon_{\text{opt}}. \quad (22)$$

□

To further ensure the success of our primal-dual algorithm, we need to make sure λ is bounded. So we obtains Lemma 6 as follows.

Lemma 6 (Bounding the dual variable). *The objective Eq. (4) satisfies strong duality. Defining $\pi_c^* := \arg \max \rho_c^\pi(s)$. We consider two cases: (1) If $b' = b - \varepsilon'$ for $\varepsilon' > 0$ and event $\mathcal{E}_1 = \left\{ \left| \hat{\rho}_c^{\pi_c^*} - \rho_c^{\pi_c^*}(s) \right| \leq \frac{\varepsilon'}{2} \right\}$ holds, then $\lambda^* \leq \frac{2(1+\omega)}{\varepsilon'}$ and (2) If $b' = b + \Delta$ for $\Delta \in \left(0, \frac{\zeta}{2}\right)$ and event $\mathcal{E}_2 = \left\{ \left| \hat{\rho}_c^{\pi_c^*} - \rho_c^{\pi_c^*}(s) \right| \leq \frac{\zeta}{2} - \Delta \right\}$ holds, then $\lambda^* \leq \frac{2(1+\omega)}{\zeta}$.*

Proof. Writing the empirical CAMDP in Eq. (4) in its Lagrangian form,

$$\hat{\rho}_{r_p}^{\hat{\pi}^*}(s) = \max_{\pi} \min_{\lambda \geq 0} \hat{\rho}_{r_p}^\pi(s) + \lambda[\hat{\rho}_c^\pi(s) - b']$$

Using the linear programming formulation of CMDPs in terms of the state-occupancy measures μ , we know that both the objective and the constraint are linear functions of μ , and strong duality holds w.r.t μ . Since μ and π have a one-one mapping, we can switch the min and the max (Paternain et al., 2019), implying,

$$= \min_{\lambda \geq 0} \max_{\pi} \hat{\rho}_{r_p}^\pi(s) + \lambda[\hat{\rho}_c^\pi(s) - b']$$

Since λ^* is the optimal dual variable for the empirical CMDP in Eq. (4),

$$= \max_{\pi} \hat{\rho}_{r_p}^\pi(s) + \lambda^*[\hat{\rho}_c^\pi(s) - b']$$

Define $\pi_c^* := \arg \max \rho_c^\pi(s)$ and $\hat{\pi}_c^* := \arg \max \hat{\rho}_c^\pi(s)$

$$\geq \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s) + \lambda^*[\hat{\rho}_c^{\hat{\pi}_c^*}(s) - b']$$

$$= \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s) + \lambda^* \left[\left(\hat{\rho}_c^{\hat{\pi}_c^*}(s) - \rho_c^{\pi_c^*}(s) \right) + \left(\rho_c^{\pi_c^*}(s) - b \right) + (b - b') \right]$$

By definition, $\zeta = \rho_c^{\pi_c^*}(s) - b$

$$= \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s) + \lambda^* \left[\left(\hat{\rho}_c^{\hat{\pi}_c^*}(s) - \hat{\rho}_c^{\pi_c^*}(s) \right) + \left(\hat{\rho}_c^{\pi_c^*}(s) - \rho_c^{\pi_c^*}(s) \right) + \zeta + (b - b') \right]$$

756 By definition of $\hat{\pi}_c^*$, $\left(\hat{\rho}_c^{\hat{\pi}_c^*}(s) - \hat{\rho}_c^{\pi_c^*}(s)\right) \geq 0$
757
758 $\hat{\rho}_{r_p}^{\hat{\pi}^*}(s) \geq \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s) + \lambda^* \left[\zeta + (b - b') - \left| \hat{\rho}_c^{\pi_c^*}(s) - \rho_c^{\pi_c^*}(s) \right| \right]$
759
760 1) If $b' = b - \varepsilon'$ for $\varepsilon' > 0$. Hence,
761 $\hat{\rho}_{r_p}^{\hat{\pi}^*}(s) \geq \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s) + \lambda^* \left[\zeta + \varepsilon' - \left| \hat{\rho}_c^{\pi_c^*}(s) - \rho_c^{\pi_c^*}(s) \right| \right]$
762 If the event \mathcal{E}_1 holds, $\left| \hat{\rho}_c^{\pi_c^*}(s) - \rho_c^{\pi_c^*}(s) \right| \leq \frac{\varepsilon'}{2}$, implying, $\left| \hat{\rho}_c^{\pi_c^*}(s) - \rho_c^{\pi_c^*}(s) \right| < \zeta + \frac{\varepsilon'}{2}$, then,
763
764 $\geq \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s) + \lambda^* \frac{\varepsilon'}{2}$
765
766 $\implies \lambda^* \leq \frac{2}{\varepsilon'} [\hat{\rho}_{r_p}^{\hat{\pi}^*}(s) - \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s)] \leq \frac{2(1 + \omega)}{\varepsilon'}$
767
768 2) If $b' = b + \Delta$ for $\Delta \in (0, \frac{\zeta}{2})$. Hence,
769
770 $\hat{\rho}_{r_p}^{\hat{\pi}^*}(s) \geq \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s) + \lambda^* \left[\zeta - \Delta - \left| \hat{\rho}_c^{\pi_c^*}(s) - \rho_c^{\pi_c^*}(s) \right| \right]$
771 If the event \mathcal{E}_2 holds, $\left| \hat{\rho}_c^{\pi_c^*}(s) - \rho_c^{\pi_c^*}(s) \right| \leq \frac{\zeta}{2} - \Delta$ for $\Delta < \frac{\zeta}{2}$, then,
772
773 $\geq \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s) + \lambda^* \frac{\zeta}{2}$
774
775 $\implies \lambda^* \leq \frac{2}{\zeta} [\hat{\rho}_{r_p}^{\hat{\pi}^*}(s) - \hat{\rho}_{r_p}^{\hat{\pi}_c^*}(s)] \leq \frac{2(1 + \omega)}{\zeta}$
776
777

Lemma 7 (Bounding the dual regret). *For the dual regret defined in Eq. (13), we have*

$$R^d(\lambda, T) \leq T^{3/2} \frac{\varepsilon_1^2 + 2\varepsilon_1 U}{2U} + U\sqrt{T}.$$

778
779
780
781

782 *Proof.* First, fix an arbitrary $\lambda \in [0, U]$. Defining $\lambda'_{t+1} := \mathbb{P}_{[0, U]}[\lambda_t - \eta(\hat{\rho}_c^{\hat{\pi}_t}(s) - b')]$,
783 So we have,
784
785 $|\lambda_{t+1} - \lambda| = |\mathcal{R}_\Lambda[\lambda'_{t+1}] - \lambda| = |\mathcal{R}_\Lambda[\lambda'_{t+1}] - \lambda'_{t+1} + \lambda'_{t+1} - \lambda| \leq |\mathcal{R}_\Lambda[\lambda'_{t+1}] - \lambda'_{t+1}| + |\lambda'_{t+1} - \lambda|$
786 $\leq \varepsilon_1 + |\lambda'_{t+1} - \lambda|$.
787 (since $|\lambda - \mathcal{R}_\Lambda[\lambda]| \leq \varepsilon_1$ for all $\lambda \in [0, U]$ because of the epsilon-net.)
788 Squaring both sides,
789 $|\lambda_{t+1} - \lambda|^2 = \varepsilon_1^2 + |\lambda'_{t+1} - \lambda|^2 + 2\varepsilon_1 |\lambda'_{t+1} - \lambda| \leq \varepsilon_1^2 + 2\varepsilon_1 U + |\lambda'_{t+1} - \lambda|^2$
790 (since $\lambda, \lambda'_{t+1} \in [0, U]$),
791
792 $\leq \varepsilon_1^2 + 2\varepsilon_1 U + |\lambda_t - \eta(\hat{\rho}_c^{\hat{\pi}_t}(s) - b') - \lambda|^2$ (since projections are non-expansive)
793 $= \varepsilon_1^2 + 2\varepsilon_1 U + |\lambda_t - \lambda|^2 - 2\eta(\lambda_t - \lambda)(\hat{\rho}_c^{\hat{\pi}_t}(s) - b') + \eta^2(\hat{\rho}_c^{\hat{\pi}_t}(s) - b')^2$
794 $\leq \varepsilon_1^2 + 2\varepsilon_1 U + |\lambda_t - \lambda|^2 - 2\eta(\lambda_t - \lambda)(\hat{\rho}_c^{\hat{\pi}_t}(s) - b') + \eta^2$,
795 where the last inequality follows because b' and the constraint value are in the $[0, 1]$ interval. Rearranging and dividing by 2η , we get
796
797 $(\lambda_t - \lambda)(\hat{\rho}_c^{\hat{\pi}_t}(s) - b') \leq \frac{\varepsilon_1^2 + 2\varepsilon_1 U}{2\eta} + \frac{|\lambda_t - \lambda|^2 - |\lambda_{t+1} - \lambda|^2}{2\eta} + \frac{\eta}{2}.$
798 Summing from $t = 0$ to $T - 1$ and using the definition of the dual regret,
799
800 $R^d(\lambda, T) \leq T \frac{\varepsilon_1^2 + 2\varepsilon_1 U}{2\eta} + \frac{1}{2\eta} \sum_{t=0}^{T-1} [|\lambda_t - \lambda|^2 - |\lambda_{t+1} - \lambda|^2] + \frac{\eta T}{2}.$
801
802 Telescoping, bounding $|\lambda_0 - \lambda|$ by U and dropping a negative term gives
803
804 $R^d(\lambda, T) \leq T \frac{\varepsilon_1^2 + 2\varepsilon_1 U}{2\eta} + \frac{U^2}{2\eta} + \frac{\eta T}{2}.$
805
806 Setting $\eta = \frac{U}{\sqrt{T}}$,
807
808 $R^d(\lambda, T) \leq T^{3/2} \frac{\varepsilon_1^2 + 2\varepsilon_1 U}{2U} + U\sqrt{T},$ (23)
809 which finishes the proof. \square

810
811
812
813

Lemma 8 (Bounding the positive constraint value). *For any $C > \lambda^*$ and any $\tilde{\pi}$ s.t. $\rho_r^{\tilde{\pi}^*}(s) - \rho_r^{\tilde{\pi}}(s) + C[b' - \varepsilon_{\text{opt}} - \rho_c^{\tilde{\pi}}(s)]_+ \leq \beta$, we have $[b' - \varepsilon_{\text{opt}} - \rho_c^{\tilde{\pi}}(s)]_+ \leq \frac{\beta}{C - \lambda^*}$.*

814
815
816

Proof. Define $\nu(\tau) = \max_{\pi} \{\rho_r^{\pi}(s) \mid \rho_c^{\pi}(s) \geq b' - \varepsilon_{\text{opt}} + \tau\}$ and note that by definition, $\nu(0) = \rho_r^{\tilde{\pi}^*}(s)$ and that ν is a decreasing function for its argument.

817
818

Let $\rho_l^{\pi, \lambda}(s) = \rho_r^{\pi}(s) + \lambda(\rho_c^{\pi}(s) - b' - \varepsilon_{\text{opt}})$. Then, for any policy π s.t. $\rho_c^{\pi}(s) \geq b' - \varepsilon_{\text{opt}} + \tau$, we have

$$\begin{aligned}
 \rho_l^{\pi, \lambda^*}(s) &\leq \max_{\pi'} \rho_l^{\pi', \lambda^*}(s) \\
 &= \rho_r^{\tilde{\pi}^*}(s) && \text{(by strong duality)} \\
 &= \nu(0) && \text{(from above relation)} \\
 \implies \nu(0) - \tau\lambda^* &\geq \rho_l^{\pi, \lambda}(s) - \tau\lambda^* = \rho_r^{\pi}(s) + \lambda^* \underbrace{(\rho_c^{\pi}(s) - b' + \varepsilon_{\text{opt}} - \tau)}_{\text{Non-negative}} \\
 \implies \nu(0) - \tau\lambda^* &\geq \max_{\pi} \{\rho_r^{\pi}(s) \mid \rho_c^{\pi}(s) \geq b' - \varepsilon_{\text{opt}} + \tau\} = \nu(\tau) . \\
 \implies \tau\lambda^* &\leq \nu(0) - \nu(\tau) . \tag{24}
 \end{aligned}$$

829
830
831
832
833
834
835
836

Now we choose $\tilde{\tau} = -(b' - \varepsilon_{\text{opt}} - \rho_c^{\tilde{\pi}}(s))_+$.

$$\begin{aligned}
 (C - \lambda^*)|\tilde{\tau}| &= \lambda^*\tilde{\tau} + C|\tilde{\tau}| && \text{(since } \tilde{\tau} \leq 0\text{)} \\
 &\leq \nu(0) - \nu(\tilde{\tau}) + C|\tilde{\tau}| && \text{(Eq. (24))} \\
 &= \rho_r^{\tilde{\pi}^*}(s) - \rho_r^{\tilde{\pi}}(s) + C|\tilde{\tau}| + \rho_r^{\tilde{\pi}}(s) - \nu(\tilde{\tau}) && \text{(definition of } \nu(0)\text{)} \\
 &= \rho_r^{\tilde{\pi}^*}(s) - \rho_r^{\tilde{\pi}}(s) + C(b' - \varepsilon_{\text{opt}} - \rho_c^{\tilde{\pi}}(s))_+ + \rho_r^{\tilde{\pi}}(s) - \nu(\tilde{\tau}) \\
 &\leq \beta + \rho_r^{\tilde{\pi}}(s) - \nu(\tilde{\tau}) .
 \end{aligned}$$

Now let us bound $\nu(\tilde{\tau})$:

$$\begin{aligned}
 \nu(\tilde{\tau}) &= \max_{\pi} \{\rho_r^{\pi}(s) \mid \rho_c^{\pi}(s) \geq b' - \varepsilon_{\text{opt}} - (b' - \varepsilon_{\text{opt}} - \rho_c^{\tilde{\pi}}(s))_+\} \\
 &\geq \max_{\pi} \{\rho_r^{\pi}(s) \mid \rho_c^{\pi}(s) \geq \rho_c^{\tilde{\pi}}(s)\} && \text{(tightening the constraint)} \\
 \nu(\tilde{\tau}) \geq \rho_r^{\tilde{\pi}}(s) &\implies (C - \lambda^*)|\tilde{\tau}| \leq \beta \implies (b' - \varepsilon_{\text{opt}} - \rho_c^{\tilde{\pi}}(s))_+ \leq \frac{\beta}{C - \lambda^*} \tag*{\square}
 \end{aligned}$$

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B PROOF OF THEOREM 2**
865

866 **Theorem 2.** For a fixed $\varepsilon \in (0, 1]$, $\delta \in (0, 1)$ and a general CAMDP, suppose the corresponding
867 AMDPs (\mathcal{P}, r) and (\mathcal{P}, c) have bias functions bound H , and satisfy the bounded transient time
868 assumption with parameter B . Algorithm 1 with $N = \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$ samples, $b' = b - \frac{3\varepsilon}{8}$,
869 $\omega = \frac{\varepsilon(1-\gamma)}{8}$, $U = O(1/\varepsilon(1-\gamma))$, $\varepsilon_1 = O(\varepsilon^2(1-\gamma)^2)$, $T = O(1/(1-\gamma)^4\varepsilon^4)$ and $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)}$,
870 returns policy $\hat{\pi}$ that satisfies the objective in Eq. (2) with probability at least $1 - 4\delta$.
871

872
873 *Proof.* We fill in the details required for the proof sketch in the main paper. Proceeding according to
874 the proof sketch, we first detail the computation of T and ε_1 for the primal-dual algorithm. Recall that
875 $U = \frac{32}{5\varepsilon(1-\gamma)}$ and $\varepsilon_{\text{opt}} = \frac{\varepsilon}{4}$. Using Theorem 1, we need to set
876

$$877 T = \frac{4U^2}{\varepsilon_{\text{opt}}^2(1-\gamma)^2} \left[1 + \frac{1}{(U-\lambda^*)^2} \right] = \frac{64}{\varepsilon^2(1-\gamma)^2} \left[1 + \frac{1}{(U-\lambda^*)^2} \right]$$

878 Recall that $|\lambda^*| \leq C := \frac{16}{5\varepsilon(1-\gamma)}$ and $U = 2C$. Simplifying,

$$879 \leq \frac{256}{\varepsilon^2(1-\gamma)^2} [C^2 + 1] < \frac{512}{\varepsilon^2(1-\gamma)^2} C^2 = \frac{512}{\varepsilon^2(1-\gamma)^2} \frac{256}{25\varepsilon^2(1-\gamma)^2}$$

$$880 \implies T = O(1/\varepsilon^4(1-\gamma)^4).$$

881 Using Theorem 1, we need to set ε_1 ,

$$882 \varepsilon_1 = \frac{\varepsilon_{\text{opt}}^2(1-\gamma)^2(U-\lambda^*)}{6U} = \frac{\varepsilon^2(1-\gamma)^2(U-\lambda^*)}{96U} \leq \frac{\varepsilon^2(1-\gamma)^2}{96}$$

$$883 \implies \varepsilon_1 = O(\varepsilon^2(1-\gamma)^2).$$

884 For bounding the concentration terms for $\hat{\pi}$ in Eq. (9), we first use Lemma 11 to convert them to
885 discounted setting, then use Lemma 13 with $U = \frac{32}{5\varepsilon(1-\gamma)}$, $\omega = \frac{\varepsilon(1-\gamma)}{8}$ and $\varepsilon_1 = \frac{\varepsilon^2(1-\gamma)^2}{96}$. In this
886 case, $\iota = \frac{\omega\delta(1-\gamma)\varepsilon_1}{30U|S||A|^2} = O\left(\frac{\delta\varepsilon^4(1-\gamma)^4}{SA^2}\right)$ and in order to satisfy the concentration bounds for $\hat{\pi}$, we
887 require that

$$888 N \geq \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$$

889 We use the Lemma 14 to bound the remaining concentration terms for π^* and π_c^* in Eq. (9). In this
890 case, for $C'(\delta) = 72 \log\left(\frac{4S \log(e/1-\gamma)}{\delta}\right)$, we require that,

$$891 N \geq \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$$

892 Hence, if $N \geq \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2}\right)$, the bounds in Eq. (9) are satisfied, completing the proof. \square
893

903 **Lemma 9** (Decomposing the suboptimality). *For $b' = b - \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}$, if (i) $\varepsilon_{\text{opt}} < \varepsilon$, and (ii) the
904 following conditions are satisfied,*

$$905 |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}; |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}$$

906 where $\pi_c^* := \arg \max \rho_c^{\pi}(s)$, then (a) policy $\hat{\pi}$ violates the constraint by at most ε i.e. $\rho_c^{\hat{\pi}}(s) \geq b - \varepsilon$
907 and (b) its optimality gap can be bounded as:

$$908 \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq 2\omega + \varepsilon_{\text{opt}} + |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| + |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_{r_p}^{\hat{\pi}}(s)|$$

915 *Proof.* From Theorem 1, we know that,

$$916 \hat{\rho}_c^{\hat{\pi}}(s) \geq b' - \varepsilon_{\text{opt}} \implies \rho_c^{\hat{\pi}}(s) \geq \hat{\rho}_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s) + b' - \varepsilon_{\text{opt}} \geq -|\hat{\rho}_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| + b' - \varepsilon_{\text{opt}}$$

918 Since we require $\hat{\pi}$ to violate the constraint in the true CMDP by at most ε , we require $\rho_c^{\hat{\pi}}(s) \geq b - \varepsilon$.
 919 From the above equation, a sufficient condition for ensuring this is,

$$920 \quad -|\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| + b' - \varepsilon_{\text{opt}} \geq b - \varepsilon,$$

921 meaning that we require

$$922 \quad |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq (b' - b) - \varepsilon_{\text{opt}} + \varepsilon.$$

923 Plugging in the value of b' , we see that this sufficient condition indeed holds, by our assumption that
 924 $|\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}$.
 925

926 Let π^* be the solution to Eq. (1). Our next goal is to show that π^* is feasible for the constrained
 927 problem in Eq. (4), i.e., $\hat{\rho}_c^{\pi^*}(s) \geq b'$. We have

$$928 \quad \rho_c^{\pi^*}(s) \geq b \implies \hat{\rho}_c^{\pi^*}(s) \geq b - |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)|$$

929 Since we require $\hat{\rho}_c^{\pi^*}(s) \geq b'$, using the above equation, a sufficient condition to ensure this is

$$930 \quad b - |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \geq b' \text{ meaning that we require } |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq b - b'.$$

931 Since $b' = b - \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}$, we require that

$$932 \quad |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \frac{\varepsilon - \varepsilon_{\text{opt}}}{2}.$$

933 Given that the above statements hold, we can decompose the suboptimality in the reward value
 934 function as follows:

$$935 \quad \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s)$$

$$936 \quad = \rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s) + \rho_{r_p}^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s)$$

$$937 \quad = [\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)] + \rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s) + \hat{\rho}_{r_p}^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s)$$

$$938 \quad \leq [\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)] + [\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)] + \hat{\rho}_{r_p}^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s)$$

939 (By optimality of $\hat{\pi}^*$ and since we have ensured that π^* is feasible for Eq. (4))

$$940 \quad = [\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)] + [\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)] + [\hat{\rho}_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\hat{\pi}}(s)] + \hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_r^{\hat{\pi}}(s)$$

$$941 \quad = \underbrace{[\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)]}_{\text{Perturbation Error}} + \underbrace{[\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)]}_{\text{Concentration Error}} + \underbrace{[\hat{\rho}_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\hat{\pi}}(s)]}_{\text{Primal-Dual Error}} + \underbrace{[\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_r^{\hat{\pi}}(s)]}_{\text{Concentration Error}} + \underbrace{[\rho_r^{\hat{\pi}}(s) - \rho_r^{\pi^*}(s)]}_{\text{Perturbation Error}}$$

942 For a perturbation magnitude equal to ω , we can bound both perturbation errors by ω . Using Theorem 1 to bound the primal-dual error by ε_{opt} ,

$$943 \quad \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq 2\omega + \varepsilon_{\text{opt}} + \underbrace{[\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)]}_{\text{Concentration Error}} + \underbrace{[\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_r^{\hat{\pi}}(s)]}_{\text{Concentration Error}}.$$

944 \square

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 **C PROOF OF THEOREM 3**
 973

974 **Theorem 3.** For a fixed $\varepsilon \in (0, 1/(1-\gamma)]$ and $\delta \in (0, 1)$, Algorithm 1, with $N = \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2 \zeta^2}\right)$
 975 samples, $b' = b + \frac{\varepsilon(1-\gamma)\zeta}{20}$, $\omega = \frac{\varepsilon(1-\gamma)}{10}$, $U = \frac{4(1+\omega)}{\zeta(1-\gamma)}$, $\varepsilon_1 = O(\varepsilon^2(1-\gamma)^4\zeta^2)$, $T = O(1/(1-\gamma)^6\zeta^4\varepsilon^2)$
 976 and $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)}$ returns policy $\hat{\pi}$ that satisfies the objective in Eq. (3), with probability at least
 977 $1 - 4\delta$.
 978

980 *Proof.* We fill in the details required for the proof sketch in the main paper. Proceeding according to
 981 the proof sketch, we first detail the computation of T and ε_1 for the primal-dual algorithm. Recall that
 982 $U = \frac{8}{\zeta(1-\gamma)}$, $\Delta = \frac{\varepsilon(1-\gamma)\zeta}{40}$ and $\varepsilon_{\text{opt}} = \frac{\Delta}{5}$. Using Theorem 1, we need to set
 983

$$984 T = \frac{4U^2}{\varepsilon_{\text{opt}}^2(1-\gamma)^2} \left[1 + \frac{1}{(U-\lambda^*)^2} \right] = \frac{100}{\Delta^2(1-\gamma)^2} \left[1 + \frac{1}{(U-\lambda^*)^2} \right]$$

986 Recall that $|\lambda^*| \leq C := \frac{4}{\zeta(1-\gamma)}$ and $U = 2C$. Simplifying,

$$987 \leq \frac{400}{\Delta^2(1-\gamma)^2} [C^2 + 1] < \frac{800}{\Delta^2(1-\gamma)^2} C^2 = \frac{800}{\Delta^2(1-\gamma)^2} \frac{16}{\zeta^2(1-\gamma)^2}$$

$$988 \implies T \leq \frac{800 \cdot 1600}{\varepsilon^2 \zeta^2 (1-\gamma)^4} \frac{16}{\zeta^2 (1-\gamma)^2} = O(1/\varepsilon^2 \zeta^4 (1-\gamma)^6).$$

991 Using Theorem 1, we need to set ε_1 ,

$$992 \varepsilon_1 = \frac{\varepsilon_{\text{opt}}^2(1-\gamma)^2(U-\lambda^*)}{6U} = \frac{\Delta^2(1-\gamma)^2(U-\lambda^*)}{150U} \leq \frac{\Delta^2(1-\gamma)^2}{150}$$

$$995 \implies \varepsilon_1 \leq \frac{\varepsilon^2 \zeta^2 (1-\gamma)^4}{150 \cdot 1600} = O(\varepsilon^2 \zeta^2 (1-\gamma)^4).$$

996 For bounding the concentration terms for $\hat{\pi}$ in Eq. (12), we first use Lemma 11 to convert them to
 997 discounted setting, then use Lemma 13 with $U = \frac{8}{\zeta(1-\gamma)}$, $\omega = \frac{\varepsilon(1-\gamma)}{10}$ and $\varepsilon_1 = \frac{\varepsilon^2 \zeta^2 (1-\gamma)^4}{150 \cdot 1600}$. In this
 999 case, $\iota = \frac{\omega \delta (1-\gamma) \varepsilon_1}{30 U |S| |A|^2} = O\left(\frac{\delta \varepsilon^3 \zeta^3 (1-\gamma)^7}{SA^2}\right)$ and in order to satisfy the concentration bounds for $\hat{\pi}$, we
 1000 require that

$$1001 \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2 \zeta^2}\right)$$

1003 We use the Lemma 14 to bound the remaining concentration terms for π^* and π_c^* in Eq. (12). In this
 1004 case, for $C'(\delta) = 72 \log\left(\frac{4S \log(e/1-\gamma)}{\delta}\right)$, we require that,
 1005

$$1006 \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2 \zeta^2}\right)$$

1008 Hence, if $N \geq \tilde{O}\left(\frac{SA(B+H)}{\varepsilon^2 \zeta^2}\right)$, the bounds in Eq. (12) are satisfied, completing the proof. \square
 1009

1011 **Lemma 10** (Decomposing the suboptimality). *For a fixed $\Delta > 0$ and $\varepsilon_{\text{opt}} < \Delta$, if $b' = b + \Delta$,
 1012 then the following conditions are satisfied,*

$$1013 |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq \Delta - \varepsilon_{\text{opt}}; |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \Delta$$

1015 then (a) policy $\hat{\pi}$ satisfies the constraint i.e. $\rho_c^{\hat{\pi}}(s) \geq b$ and (b) its optimality gap can be bounded
 1016 as:

$$1017 \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq 2\omega + \varepsilon_{\text{opt}} + 2\Delta\lambda^* + |\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)| + |\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_{r_p}^{\hat{\pi}}(s)|.$$

1020 *Proof.* Compared to Eq. (4), we define a slightly modified CMDP problem by changing the constraint
 1021 RHS to b'' for some b'' to be specified later. We denote its corresponding optimal policy as $\tilde{\pi}^*$. In
 1022 particular,

$$1023 \tilde{\pi}^* \in \arg \max_{\pi} \hat{\rho}_{r_p}^{\pi}(s) \text{ s.t. } \hat{\rho}_c^{\pi}(s) \geq b'' \quad (25)$$

1024 From Theorem 1, we know that,

$$1025 \hat{\rho}_c^{\hat{\pi}}(s) \geq b' - \varepsilon_{\text{opt}} \implies \rho_c^{\hat{\pi}}(s) \geq \rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s) + b' - \varepsilon_{\text{opt}} \geq -|\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| + b' - \varepsilon_{\text{opt}}$$

1026 Since we require $\hat{\pi}$ to satisfy the constraint in the true CMDP, we require $\rho_c^{\hat{\pi}}(s) \geq b$. From the above
 1027 equation, a sufficient condition for ensuring this is,

$$1028 - |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| + b' - \varepsilon_{\text{opt}} \geq b$$

1029 meaning that we require $|\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq (b' - b) - \varepsilon_{\text{opt}}$.

1030 In the subsequent analysis, we will require π^* to be feasible for the constrained problem in Eq. (25).
 1031 This implies that we require $\hat{\rho}_c^{\pi^*}(s) \geq b''$. Since π^* is the solution to Eq. (1), we know that,

$$1033 \rho_c^{\pi^*}(s) \geq b \implies \hat{\rho}_c^{\pi^*}(s) \geq b - |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)|$$

1034 Since we require $\hat{\rho}_c^{\pi^*}(s) \geq b''$, using the above equation, a sufficient condition to ensure this is

$$1036 b - |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \geq b'' \text{ meaning that we require } |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq b - b''.$$

1037 Hence we require the following statements to hold:

$$1038 |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq (b' - b) - \varepsilon_{\text{opt}} ; \quad |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq b - b''.$$

1039 Given that the above statements hold, we can decompose the suboptimality in the reward value
 1040 function as follows:

$$\begin{aligned} 1041 \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) &= \rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s) + \rho_{r_p}^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \\ 1042 &= [\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)] + [\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)] + \hat{\rho}_{r_p}^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \\ 1043 &\leq [\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)] + [\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)] + \hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \rho_r^{\hat{\pi}}(s) \\ 1044 &\quad (\text{By optimality of } \hat{\pi}^* \text{ and since we have ensured that } \pi^* \text{ is feasible for Eq. (25)}) \\ 1045 &= [\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)] + [\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)] + [\hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)] + \hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \rho_r^{\hat{\pi}}(s) \\ 1046 &= [\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)] + [\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)] + [\hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)] + [\hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \hat{\rho}_{r_p}^{\hat{\pi}}(s)] \\ 1047 &\quad + \hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_r^{\hat{\pi}}(s) \\ 1048 &= \underbrace{[\rho_r^{\pi^*}(s) - \rho_{r_p}^{\pi^*}(s)]}_{\text{Perturbation Error}} + \underbrace{[\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)]}_{\text{Concentration Error}} + \underbrace{[\hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)]}_{\text{Sensitivity Error}} + \underbrace{[\hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \hat{\rho}_{r_p}^{\hat{\pi}}(s)]}_{\text{Primal-Dual Error}} \\ 1049 &\quad + \underbrace{[\hat{\rho}_{r_p}^{\hat{\pi}}(s) - \rho_r^{\hat{\pi}}(s)]}_{\text{Concentration Error}} + \underbrace{[\rho_r^{\hat{\pi}}(s) - \hat{\rho}_r^{\hat{\pi}}(s)]}_{\text{Perturbation Error}} \end{aligned}$$

1050 For a perturbation magnitude equal to ω , we can bound both perturbation errors by ω . Using Theorem 1051 to bound the primal-dual error by ε_{opt} ,

$$1052 \leq 2\omega + \varepsilon_{\text{opt}} + \underbrace{[\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)]}_{\text{Concentration Error}} + \underbrace{[\hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)]}_{\text{Sensitivity Error}} + \underbrace{[\hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \hat{\rho}_{r_p}^{\hat{\pi}}(s)]}_{\text{Concentration Error}}$$

1053 Since $b' = b + \Delta$ and setting $b'' = b - \Delta$, we use Lemma 15 to bound the sensitivity error term,

$$1054 \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}}(s) \leq 2\omega + \varepsilon_{\text{opt}} + 2\Delta\lambda^* + \underbrace{[\rho_{r_p}^{\pi^*}(s) - \hat{\rho}_{r_p}^{\pi^*}(s)]}_{\text{Concentration Error}} + \underbrace{[\hat{\rho}_{r_p}^{\tilde{\pi}^*}(s) - \hat{\rho}_{r_p}^{\hat{\pi}}(s)]}_{\text{Concentration Error}}$$

1055 With these values of b' and b'' , we require the following statements to hold,

$$1056 |\rho_c^{\hat{\pi}}(s) - \hat{\rho}_c^{\hat{\pi}}(s)| \leq \Delta - \varepsilon_{\text{opt}} ; \quad |\rho_c^{\pi^*}(s) - \hat{\rho}_c^{\pi^*}(s)| \leq \Delta.$$

1057 \square

1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 **D CONCENTRATION PROOFS**
1081

Lemma 11 (From AMDP to DMDP). *Set $\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)}$. If the concentration error for the discounted MDP satisfies $\|V_\gamma^\pi - \hat{V}_\gamma^\pi\|_\infty \leq B + H$, then it follows that $\|\rho^\pi - \hat{\rho}^\pi\|_\infty \leq \varepsilon_{\text{opt}}$.*

1085 *Proof.* We begin by decomposing the error term:

1087
$$\frac{1}{1-\gamma} \|\rho^\pi - \hat{\rho}^\pi\|_\infty \leq \|V_\gamma^\pi - \hat{V}_\gamma^\pi\|_\infty + \left\| V_\gamma^\pi - \frac{1}{1-\gamma} \rho^\pi \right\|_\infty + \left\| \hat{V}_\gamma^\pi - \frac{1}{1-\gamma} \hat{\rho}^\pi \right\|_\infty. \quad (26)$$

1088 The first term in (26) is bounded by assumption:

1090
$$\|V_\gamma^\pi - \hat{V}_\gamma^\pi\|_\infty \leq B + H.$$

1091 The second term can be bounded using Lemma 12, which yields

1092
$$\left\| V_\gamma^\pi - \frac{1}{1-\gamma} \rho^\pi \right\|_\infty \leq H.$$

1093 Similarly, we can bound the empirical error between average and discounted setting by

1094
$$\left\| \hat{V}_\gamma^\pi - \frac{1}{1-\gamma} \hat{\rho}^\pi \right\|_\infty \leq 2H,$$

1095 with only a sample complexity independent of ε . Combining these bounds, we obtain

1096
$$\frac{1}{1-\gamma} \|\rho^\pi - \hat{\rho}^\pi\|_\infty \leq (B + H) + H + 2H = B + 4H.$$

1097 Now, setting

1098
$$\gamma = 1 - \frac{\varepsilon_{\text{opt}}}{4(B+H)},$$

1099 implies that

1100
$$\|\rho^\pi - \hat{\rho}^\pi\|_\infty \leq \varepsilon_{\text{opt}},$$

1101 which concludes the proof. \square 1106 **Lemma 12.** *We have*

1107
$$\|V_\gamma^\pi - \frac{1}{1-\gamma} \rho^\pi\|_\infty \leq H.$$

1110 *Proof.* We begin by observing that π satisfies

1111
$$\rho^\pi + h^\pi = r_\pi + P_\pi h^\pi.$$

1112 Therefore, it holds that

1113
$$\begin{aligned} V_\gamma^\pi &= (I - \gamma P_\pi)^{-1} r_\pi \\ &= (I - \gamma P_\pi)^{-1} (\rho^\pi + h^\pi - P_\pi h^\pi) \\ &= (I - \gamma P_\pi)^{-1} \rho^\pi + (I - \gamma P_\pi)^{-1} (I - P_\pi) h^\pi. \end{aligned}$$

1117 Since $P_\pi \rho^\pi = \rho^\pi$, we can calculate that

1118
$$(I - \gamma P_\pi)^{-1} \rho^\pi = \sum_{t \geq 0} \gamma^t P_\pi^t \rho^\pi = \sum_{t \geq 0} \gamma^t \rho^\pi = \frac{1}{1-\gamma} \rho^\pi.$$

1120 It also holds that

1121
$$\begin{aligned} (I - \gamma P_\pi)^{-1} (I - P_\pi) &= \sum_{t \geq 0} \gamma^t P_\pi^t (I - P_\pi) \\ &= \sum_{t \geq 0} \gamma^t P_\pi^t - \sum_{t \geq 0} \gamma^t P_\pi^{t+1} \\ &= P_\pi + \sum_{t \geq 0} (\gamma^{t+1} - \gamma^t) P_\pi^{t+1} \end{aligned} \quad (27)$$

1128 and $\sum_{t \geq 0} \gamma^{t+1} - \gamma^t = (\gamma - 1) \sum_{t \geq 0} \gamma^t = -1$. Therefore (27) is the difference of two stochastic
1129 matrices, and so it follows that

1130
$$\|(I - \gamma P_\pi)^{-1} (I - P_\pi) h^\pi\|_\infty \leq H.$$

1131 \square

1132

1133

1134
1135
1136
1137
1138
1139
1140
1141

Lemma 13 (Theorem 6 of [Vaswani et al. \(2022\)](#)). For $\delta \in (0, 1)$, $\omega \leq 1$ and $C(\delta) = 72 \log \left(\frac{16(1+U+\omega) SA \log(e/1-\gamma)}{(1-\gamma)^2 \iota \delta} \right)$ where $\iota = \frac{\omega \delta (1-\gamma) \varepsilon_l}{30 U |S| |A|^2}$, if $N \geq \frac{4C(\delta)}{1-\gamma}$, then for $\hat{\pi}$ output by Algorithm 1, with probability at least $1 - \delta/5$,

$$\left| V_{r_p}^{\hat{\pi}}(s) - \hat{V}_{r_p}^{\hat{\pi}}(s) \right| \leq 2 \sqrt{\frac{C(\delta)}{N \cdot (1-\gamma)^3}} \quad ; \quad \left| V_c^{\hat{\pi}}(s) - \hat{V}_c^{\hat{\pi}}(s) \right| \leq \sqrt{\frac{C(\delta)}{N \cdot (1-\gamma)^3}}.$$

1142
1143
1144
1145
1146
1147

Lemma 14 (Lemma 7 of [Vaswani et al. \(2022\)](#)). For $\delta \in (0, 1)$, $\omega \leq 1$ and $C'(\delta) = 72 \log \left(\frac{4|S| \log(e/1-\gamma)}{\delta} \right)$, if $N \geq \frac{4C'(\delta)}{1-\gamma}$ and $B(\delta, N) := \sqrt{\frac{C'(\delta)}{(1-\gamma)^3 N}}$, then with probability at least $1 - 3\delta$,

$$\left| V_{r_p}^{\pi^*}(s) - \hat{V}_{r_p}^{\pi^*}(s) \right| \leq 2B(\delta, N); \quad \left| V_c^{\pi^*}(s) - \hat{V}_c^{\pi^*}(s) \right| \leq B(\delta, N); \quad \left| V_c^{\pi_c^*}(s) - \hat{V}_c^{\pi_c^*}(s) \right| \leq B(\delta, N).$$

E SUPPORTING LEMMAS FOR THE UPPER BOUND

1151
1152
1153
1154

Lemma 15 (Bounding the sensitivity error). If $b' = b + \Delta$ such that,

$$\hat{\pi}^* \in \arg \max_{\pi} \rho_r^{\pi}(s) \text{ s.t. } \rho_c^{\pi}(s) \geq b + \Delta$$

$$\pi^* \in \arg \max_{\pi} \rho_r^{\pi}(s) \text{ s.t. } \rho_c^{\pi}(s) \geq b,$$

1155 then the sensitivity error term can be bounded by:

$$\left| \rho_r^{\hat{\pi}^*}(s) - \rho_r^{\pi^*}(s) \right| \leq \Delta \lambda^*.$$

1159 *Proof.* Writing the reference CAMDP in Eq. (4) in its Lagrangian form,

$$\begin{aligned} \rho_r^{\hat{\pi}^*}(s) &= \max_{\pi} \min_{\lambda \geq 0} \rho_r^{\pi}(s) + \lambda [\rho_c^{\pi}(s) - (b + \Delta)] \\ &= \min_{\lambda \geq 0} \max_{\pi} \rho_r^{\pi}(s) + \lambda [\rho_c^{\pi}(s) - (b + \Delta)] \quad (\text{By strong duality Lemma 6}) \end{aligned}$$

1164 Since λ^* is the optimal dual variable for the empirical CMDP in Eq. (4),

$$\begin{aligned} &= \max_{\pi} \rho_r^{\pi}(s) + \lambda^* [\rho_c^{\pi}(s) - (b + \Delta)] \\ &\geq \rho_r^{\pi^*}(s) + \lambda^* [\rho_c^{\pi^*}(s) - (b + \Delta)] \quad (\text{The relation holds for } \pi = \pi^*.) \end{aligned}$$

1168 Since $\rho_c^{\pi^*}(s) \geq b$,

$$\rho_r^{\hat{\pi}^*}(s) \geq \rho_r^{\pi^*}(s) - \lambda^* \Delta$$

$$\implies \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}^*}(s) \leq \Delta \lambda^*$$

1172 Since the CAMDP with $b' = b$ is a less constrained problem than the one in Eq. (4) (with $b' = b + \Delta$),
1173 $\rho_r^{\pi^*}(s) \geq \rho_r^{\hat{\pi}^*}(s)$, and hence,

$$\left| \rho_r^{\pi^*}(s) - \rho_r^{\hat{\pi}^*}(s) \right| \leq 2\Delta \lambda^*.$$

□

1177
1178
1179
1180
1181
1182

Lemma 16 (Bounding the optimal bias function and the transient time). If the AMDPs (\mathcal{P}, r) and (\mathcal{P}, c) admit bias functions bound with parameter H and satisfy the bounded transient time assumption with parameter B , then the combined AMDP $(\mathcal{P}, r + \lambda c)$, where λ is as defined in Eq. (6), also satisfies the bounded bias functions assumption with parameter H and the bounded transient time assumption with parameter B , after normalizing the reward values.

1183
1184 *Proof.* Based on the bounded transient time assumption, for all $\pi \in \Pi$ and $s \in \mathcal{S}$, we have

$$\mathbb{E}_s^{\pi} [T_{\mathcal{R}^{\pi}}] \leq B, \quad \text{where } T_{\mathcal{R}^{\pi}} := \inf \{t \geq 0 : S_t \in \mathcal{R}^{\pi}\}.$$

1185 Since the transient time parameter B is determined solely by the transition dynamics of the AMDP
1186 and is independent of the reward function, it follows that the combined AMDP $(\mathcal{P}, r + \lambda c)$ also
1187 satisfies the bounded transient time assumption.

1188 We now turn to bounding the span of the optimal bias function under the combined reward $r + \lambda c$.
 1189 Let π^* denote the optimal policy for this reward. By linearity of the bias operator with respect to
 1190 reward and the definition of span, we have

$$\begin{aligned}
 1191 \|\mathbf{h}_{r+\lambda c}^*\|_{\text{span}} &= \frac{1}{1+\lambda} \left\| \text{C-lim}_{T \rightarrow \infty} \mathbb{E}_s^{\pi^*} \left[\sum_{t=0}^{T-1} (r_t + \lambda c_t - \rho_r^{\pi^*} - \lambda \rho_c^{\pi^*}) \right] \right\|_{\text{span}} \\
 1192 &\leq \frac{1}{1+\lambda} \left(\left\| \text{C-lim}_{T \rightarrow \infty} \mathbb{E}_s^{\pi^*} \left[\sum_{t=0}^{T-1} (r_t - \rho_r^{\pi^*}) \right] \right\|_{\text{span}} + \lambda \left\| \text{C-lim}_{T \rightarrow \infty} \mathbb{E}_s^{\pi^*} \left[\sum_{t=0}^{T-1} (c_t - \rho_c^{\pi^*}) \right] \right\|_{\text{span}} \right) \\
 1193 &= \frac{H + \lambda H}{1+\lambda} \\
 1194 &\leq H,
 \end{aligned}$$

1200 □

1203 **Lemma 17** (Sample Complexity to Estimate Bias Span). *Let H denote the bias-span parameter,
 1204 $H := \max_{\pi} \|\mathbf{h}^{\pi}\|_{\text{span}} = \max_{\pi} (\max_s h^{\pi}(s) - \min_s h^{\pi}(s))$. Then, under access to a generative
 1205 model, the quantity H can be estimated to constant-factor accuracy using $\tilde{O}(SAD)$ samples.*

1207 *Proof.* Fix a reference state s_0 in a recurrent class of π and normalize the bias so that $h^{\pi}(s_0) = 0$.
 1208 For any state s , consider the trajectory obtained by starting from s , following π , and stopping when
 1209 the chain hits s_0 for the first time. Let T_s be this hitting time and define the random variable

$$1211 \quad Z_s := \sum_{t=0}^{T_s-1} (r(s_t, \pi(s_t)) - \rho_r^{\pi}(s_t)),$$

1213 where ρ_r^{π} is the (state-dependent) average reward vector under π . By standard average-reward theory,
 1214 we have $\mathbb{E}[Z_s] = h^{\pi}(s) - h^{\pi}(s_0) = h^{\pi}(s)$.

1216 Each trajectory length T_s is at most D in expectation, and every increment $r(s_t, \pi(s_t)) - \rho_r^{\pi}(s_t)$ is
 1217 bounded in $[-1, 1]$. Thus Z_s has magnitude and variance on the order of D and D^2 , respectively.
 1218 To estimate $\mathbb{E}[Z_s]$ up to additive error αH for some fixed small constant $\alpha \in (0, 1)$, Bernstein-type
 1219 concentration inequalities imply that a constant number $n_s = \tilde{O}(1)$ of independent trajectories
 1220 starting from s suffice: the target accuracy αH is of the same order as the typical size of Z_s , so only
 1221 $O(1)$ samples are needed to obtain a constant-factor estimate. Each such trajectory requires $\tilde{O}(D)$
 1222 environment interactions in expectation, so the sample cost per state is $\tilde{O}(D)$.

1223 Repeating this construction for all SA state-action pairs and applying a union bound, we obtain an
 1224 estimator \hat{h}^{π} such that

$$1225 \quad \max_s |\hat{h}^{\pi}(s) - h^{\pi}(s)| \leq \alpha H$$

1226 with high probability. Consequently, the empirical bias span $\hat{H} := \max_{\pi} \|\hat{h}^{\pi}\|_{\text{span}}$ satisfies

$$1228 \quad |\hat{H} - H| \leq 2\alpha H, \quad \text{and hence} \quad \hat{H} \leq (1 + 2\alpha)H,$$

1229 so \hat{H}_{π} is a constant-factor upper bound on H_{π} . The total number of environment interactions used is
 1230 $\tilde{O}(SAD)$. □

1233 **Lemma 18** (Sample Complexity to Estimate Transient Time Bound). *Let B be the transient time
 1234 bound defined as $\forall \pi, s, \mathbb{E}_s^{\pi}[T_{\mathcal{R}^{\pi}}] \leq B$, where $T_{\mathcal{R}^{\pi}}$ is the first hitting time to a recurrent state
 1235 under policy π . Then, under access to a generative model or an environment where episodes can be
 1236 reset to any state-action pair, the transient time bound B can be estimated up to a constant-factor
 1237 accuracy using $\tilde{O}(SAB)$ samples.*

1239 *Proof.* To estimate the expected hitting time $\mathbb{E}_s^{\pi}[T_{\mathcal{R}^{\pi}}]$ from each state s under a fixed policy π , we
 1240 sample full trajectories until they reach the recurrent class \mathcal{R}^{π} . Each trajectory is a random variable
 1241 $T \in \mathbb{N}$ with expectation at most B and variance $\text{Var}(T) = O(B^2)$.

To estimate $\mathbb{E}[T]$ up to additive error $\varepsilon = \Theta(B)$, standard concentration inequalities (e.g., Bernstein's inequality) imply that

$$n = O\left(\frac{B^2 \log(1/\delta)}{\varepsilon^2}\right) = \tilde{O}(1)$$

trajectories suffice.

Each trajectory requires $\Theta(B)$ environment interactions in expectation, so the sample cost per state-action pair is $\tilde{O}(B)$. Summing over all SA state-action pairs yields a total sample complexity of

$$\tilde{O}(SAB).$$

1

F PROOFS FOR LOWER-BOUND FOR GENERAL CAMDPs

Theorem 5 (Lower-bound for general CAMDP). For any sufficiently small ε, δ , any sufficiently large S, A , for any algorithm promising to return an $\frac{\varepsilon}{24}$ -optimal policy with probability at least $\frac{3}{4}$ on any communicating CAMDP problem, there is an CAMDP such that the expected total samples on all state-action pairs, when running this algorithm, is at least $\tilde{\Omega}\left(\frac{SA(H+B)}{\varepsilon^2\zeta^2}\right)$

Figure 4: A Component MDP Used in the Hard Instance for CAMDP.

Proof. We begin by introducing a family of MDP instances M_{a^*} indexed by $a^* \in \{1, \dots, A\}$, depicted in Figure Fig. 4. In all these instances, states 2, 3, 4, 5 are absorbing, while states 0 and 1 are transient. Among them, state 1 is the only one with multiple actions, supporting A distinct actions. Taking action $a = 1$ from state 1 deterministically leads to state 4. For action $a = 2$, the transition probabilities are defined as $P(1 \mid 1, 2) = 1 - \frac{1}{B}$, $P(2 \mid 1, 2) = p_2$, and $P(3 \mid 1, 2) = 1 - P(1 \mid 1, 2) - P(2 \mid 1, 2)$. The specific values of $P(2 \mid 1, a)$, $P(3 \mid 1, a)$, and the reward and constraint values r and c are shown in Figure 4, and are the only quantities that vary across the different instances M_{a^*} . Note that all actions not in state 1 can only lead to one state.

In instance M_1 , the optimal policy selects action $a = 1$, achieving an average reward of $1/2$. Choosing any other action results in a suboptimal average reward of $\frac{1-2\varepsilon\zeta}{2}$. For instances M_{a^*} with $a^* \in \{2, \dots, A\}$, the optimal action is $a = a^*$, yielding an average reward of $\frac{1+2\varepsilon\zeta}{2}$, while action $a = 1$ returns $\frac{1}{2}$, and all remaining actions incur a reward of $\frac{1-2\varepsilon\zeta}{2}$. In all such cases, the span of the bias function under the optimal policy satisfies $\|h^*\|_{\text{span}} = 0$. An analogous construction holds for the constraint rewards c . Furthermore, any action $a \neq 1$ leads the agent to remain in state 1 for an expected B steps before transitioning to either state 2 or 3, thus ensuring that the bounded transient time condition is met with parameter B .

1296 We then define a set of $(A - 1)S/6$ master MDPs denoted M_{s^*, a^*} , indexed by $s^* \in \{1, \dots, S/6\}$ and
 1297 $a^* \in \{2, \dots, A\}$. Each master MDP consists of $S/6$ independent copies of the sub-MDPs described
 1298 above, which are all connected to an initial state. The s^* -th sub-MDP is set to be M_{a^*} , while all
 1299 remaining sub-MDPs are instantiated as M_1 . To ensure non-overlapping state spaces, the states of the
 1300 s -th sub-MDP are relabeled as $6s, 6s + 1, \dots, 6s + 5$, corresponding to states $0, 1, \dots, 5$ in Figure 4.
 1301 We also define M_0 composed of $S/6$ independent M_1 . As a result, each master MDP has exactly S
 1302 states and A actions, satisfies the bounded transient time condition with parameter B , and possesses
 1303 an optimal policy with bias span zero.

1304 We further fix the constraint threshold to $b = \frac{1}{2}$ in the construction of our hard CAMDP instances.
 1305 Based on the structure depicted in Fig. 4, we directly compute the expected reward and constraint
 1306 values as follows: in states of the form $6s + 1$, choosing action a_1 yields reward $r = \frac{1}{2}$ and constraint
 1307 value $c = b - \zeta$, while selecting any action $a \in \mathcal{A} \setminus \{a_1\}$ results in reward $r = \frac{1}{2} - \varepsilon\zeta$ and constraint
 1308 $c = b - \zeta - \varepsilon\zeta$.

1309 At the special state $6s^* + 1$, the designated optimal action a^* yields reward $r = \frac{1}{2} + \varepsilon\zeta$, and the
 1310 corresponding constraint value is given by $c = \frac{(b - \zeta - \varepsilon\zeta)(1 + 2\varepsilon\zeta)}{1 - 2\varepsilon\zeta} = b - \zeta + \varepsilon\zeta - 4\varepsilon\zeta^2 + o(\varepsilon)$.
 1311

1312 Let s_0 denote the initial state that connects to all branches $6s$, and define the following occupancy
 1313 measures:

$$\begin{aligned} 1315 \quad & \bullet \mu_0 = \sum_{s=0}^{S/6-1} p(s_0, 6s) \cdot p(s, 6s + 5), \\ 1316 \\ 1317 \quad & \bullet \mu_1 = \sum_{s=0}^{S/6-1} p(s_0, 6s) \cdot p(6s, 6s + 1) \cdot p(6s + 1, a_1), \\ 1318 \\ 1319 \quad & \bullet \mu_2 = \sum_{a \in A} \sum_{s=0}^{S/6-1} p(s_0, 6s) \cdot p(6s, 6s + 1) \cdot p(6s + 1, a) \text{ for } a \in \mathcal{A} \setminus \{a_1\}. \\ 1320 \\ 1321 \end{aligned}$$

1322 We now formulate the linear program (LP) for solving the average-reward objective in M_0 :

$$\begin{aligned} 1324 \quad & \max \quad \frac{1}{2}\mu_1 + \left(\frac{1}{2} - \varepsilon\zeta\right)\mu_2 \\ 1325 \\ 1326 \quad & \text{s.t.} \quad \mu_0 + \mu_1 + \mu_2 = 1, \\ 1327 \\ 1328 \quad & \quad (b + \zeta)\mu_0 + (b - \zeta)\mu_1 + (b - \zeta - \varepsilon\zeta)\mu_2 \geq b, \\ 1329 \\ 1330 \end{aligned} \tag{28}$$

1330 The unique optimal solution to Eq. (28) is $\mu_0 = \frac{1}{2}$, $\mu_1 = \frac{1}{2}$, and $\mu_2 = 0$, yielding an average reward
 1331 $\rho^*(s_0) = \frac{1}{4}$.

1332 Next, we aim to show that for any $\frac{\varepsilon}{24}$ -optimal policy, the normalized occupancy $\mu'_1 := \frac{\mu_1}{1 - \mu_0}$ must
 1333 satisfy $\mu'_1 \geq \frac{2}{3}$. Suppose, for contradiction, that $\mu'_1 < \frac{2}{3}$. The modified LP becomes:

$$\begin{aligned} 1335 \quad & \max \quad \frac{1}{2}\mu_1 + \left(\frac{1}{2} - \varepsilon\zeta\right)\mu_2 \\ 1336 \\ 1337 \quad & \text{s.t.} \quad \mu_0 + \mu_1 + \mu_2 = 1, \quad \mu'_1 < \frac{2}{3}, \\ 1338 \\ 1339 \quad & \quad (b + \zeta)\mu_0 + (b - \zeta)\mu_1 + (b - \zeta - \varepsilon\zeta)\mu_2 \geq b, \\ 1340 \\ 1341 \end{aligned} \tag{29}$$

1342 A direct calculation shows that the optimal reward for Eq. (29) is $\rho(s_0) = \frac{1}{4} - \frac{\varepsilon}{24} - \frac{\varepsilon\zeta}{6}$, which
 1343 violates the $\frac{\varepsilon}{24}$ -optimality condition. Therefore, the assumption $\mu'_1 < \frac{2}{3}$ must be false, and it follows
 1344 that any $\frac{\varepsilon}{24}$ -optimal policy must satisfy $\mu'_1 \geq \frac{2}{3}$.

1345 For CAMDP M_{s^*, a^*} , we define the two new occupancy measures:

$$\begin{aligned} 1346 \quad & \bullet \mu_2^c = \mu_2 - p(s_0, 6s^*) \cdot p(6s^*, 6s^* + 1) \cdot p(6s^* + 1, a^*). \\ 1347 \\ 1348 \quad & \bullet \mu_3 = p(s_0, 6s^*) \cdot p(6s^*, 6s^* + 1) \cdot p(6s^* + 1, a^*) \\ 1349 \end{aligned}$$

1350 We now formulate the LP for solving the average-reward objective in M_{s^*, a^*} :

$$\begin{aligned} 1352 \quad \max \quad & \frac{1}{2}\mu_1 + \left(\frac{1}{2} - \varepsilon\zeta\right)\mu_2^c + \left(\frac{1}{2} + \varepsilon\zeta\right)\mu_3 \\ 1353 \quad \text{s.t.} \quad & \mu_0 + \mu_1 + \mu_2^c + \mu_3 = 1, \\ 1354 \quad & (b + \zeta)\mu_0 + (b - \zeta)\mu_1 + (b - \zeta - \varepsilon\zeta)\mu_2^c + [b - \zeta + \varepsilon\zeta - 4\varepsilon\zeta^2 + o(\varepsilon)]\mu_3 \geq b, \\ 1355 \quad & \mu_0, \mu_1, \mu_2^c, \mu_3 \geq 0. \end{aligned} \quad (30)$$

1358 The unique optimal solution to Eq. (30) is $\mu_0 = \frac{1+\varepsilon-\varepsilon\zeta}{2-\varepsilon+\varepsilon\zeta} + o(\varepsilon)$, $\mu_1 = \mu_2^c = 0$, $\mu_3 = \frac{1}{2-\varepsilon+\varepsilon\zeta} + o(\varepsilon)$ 1359 yielding an average reward $\rho^*(s_0) = \frac{1}{4} + \frac{\varepsilon}{8} + \frac{3\varepsilon\zeta}{8} + o(\varepsilon)$.

1360 Next, we aim to show that for any $\frac{\varepsilon}{24}$ -optimal policy, the normalized occupancy μ'_1 must satisfy 1361 $\mu'_1 \leq \frac{2}{3}$. Suppose, for contradiction, that $\mu'_1 > \frac{2}{3}$. The modified LP becomes:

$$\begin{aligned} 1363 \quad \max \quad & \frac{1}{2}\mu_1 + \left(\frac{1}{2} - \varepsilon\zeta\right)\mu_2^c + \left(\frac{1}{2} + \varepsilon\zeta\right)\mu_3 \\ 1364 \quad \text{s.t.} \quad & \mu_0 + \mu_1 + \mu_2^c + \mu_3 = 1, \mu'_1 > \frac{2}{3} \\ 1365 \quad & (b + \zeta)\mu_0 + (b - \zeta)\mu_1 + (b - \zeta - \varepsilon\zeta)\mu_2^c + [b - \zeta + \varepsilon\zeta - 4\varepsilon\zeta^2 + o(\varepsilon)]\mu_3 \geq b, \\ 1366 \quad & \mu_0, \mu_1, \mu_2^c, \mu_3 \geq 0. \end{aligned} \quad (31)$$

1370 A direct calculation shows that the optimal reward for Eq. (31) is $\rho(s_0) = \frac{1}{4} + \frac{\varepsilon}{24} + o(\varepsilon)$, which 1371 violates the $\frac{\varepsilon}{24}$ -optimality condition. Therefore, the assumption $\mu'_1 > \frac{2}{3}$ must be false, and it follows 1372 that any $\frac{\varepsilon}{24}$ -optimal policy must satisfy $\mu'_1 \leq \frac{2}{3}$.

1373 In short, for any $\frac{\varepsilon}{24}$ -optimal policy, μ'_1 must satisfy $\mu'_1 \leq \frac{2}{3}$ for M_{s^*, a^*} and $\mu'_1 \geq \frac{2}{3}$ for M_0 .

1375 So we can use the Fano's method to lower bound the failure probability. We have:

$$\begin{aligned} 1377 \quad P_{M_{s^*, a^*}}(\cdot \mid 6s^* + 1, a^*) &= \text{Cat}\left(1 - \frac{1}{B}, \frac{1 - 2\varepsilon\zeta}{2B}, \frac{1 + 2\varepsilon\zeta}{2B}\right) =: Q_1, \\ 1379 \quad P_{M_0}(\cdot \mid 6s^* + 1, a^*) &= \text{Cat}\left(1 - \frac{1}{B}, \frac{1 + 2\varepsilon\zeta}{2B}, \frac{1 - 2\varepsilon\zeta}{2B}\right) =: Q_2, \end{aligned}$$

1381 where $\text{Cat}(p_1, p_2, p_3)$ denotes the categorical distribution with event probabilities p_i 's.

1382 Now we use Fano's method to lower bound this failure probability. This is inspired by the proof of 1383 lower-bound for AMDP in [Zurek & Chen \(2024\)](#). Choose an index J uniformly at random from the 1384 set $\mathcal{J} := \{1, \dots, S/6\} \times \{2, \dots, A\}$ and suppose that we draw n iid samples $X = (X_1, \dots, X_n)$ 1385 from the master MDP M_J ; note that under the generative model, each random variable X_i represents 1386 an $(S \times A)$ -by- S transition matrix with exactly one nonzero entry in each row. Letting $I(J; X)$ 1387 denote the mutual information between J and X , Fano's inequality yields that the failure probability 1388 is lower bounded by

$$1389 \quad 1 - \frac{I(J; X) + \log 2}{\log((A-1)S/6)}.$$

1390 We can calculate using the fact that the P_i 's are i.i.d., the chain rule of mutual information, and the 1391 form of the construction that

$$\begin{aligned} 1393 \quad I(J; X) &= nI(J; X_1) \\ 1394 &\leq n \max_{(s^*, a^*) \in \mathcal{J}} D_{\text{KL}}\left(P_{M_{s^*, a^*}} \mid P_{M_0}\right) \\ 1395 &= nD_{\text{KL}}(Q_1 \mid Q_2). \end{aligned}$$

1404 By direct calculation, we have
 1405
$$\begin{aligned} \text{D}_{\text{KL}}(Q_1|Q_2) &= \frac{1-2\epsilon\zeta}{2B} \log \frac{1-2\epsilon\zeta}{1+2\epsilon\zeta} + \frac{1+2\epsilon\zeta}{2B} \log \frac{1+2\epsilon\zeta}{1-2\epsilon\zeta} \\ &\leq \frac{1-2\epsilon\zeta}{2B} \cdot \frac{-4\epsilon\zeta}{1+2\epsilon\zeta} + \frac{1+2\epsilon\zeta}{2B} \cdot \frac{4\epsilon\zeta}{1-2\epsilon\zeta} \quad \log(1+x) \leq x, \forall x > -1 \\ &= \frac{16\epsilon^2\zeta^2}{B(1+2\epsilon\zeta)(1-2\epsilon\zeta)} \\ &\leq \frac{32\epsilon^2\zeta^2}{B} \quad \epsilon\zeta \leq \frac{1}{4}. \end{aligned}$$

1414 Therefore the failure probability is at least

$$\begin{aligned} 1 - \frac{\text{I}(J; P^n) + \log 2}{\log((A-1)S/6)} &\geq 1 - \frac{n \frac{32\epsilon^2\zeta^2}{B} + \log 2}{\log((A-1)S/6)} \\ &\geq \frac{1}{2} - \frac{n \frac{32\epsilon^2\zeta^2}{B}}{\log((A-1)S/6)}, \end{aligned}$$

1420 where in the second inequality we assumed A and S are at least a sufficiently large constant. For the
 1421 above RHS to be smaller than $1/4$, we therefore require $n \geq \tilde{\Omega}\left(\frac{B \log(SA)}{\epsilon^2\zeta^2}\right)$. Finally, by combining this
 1422 result with Theorem 4, we obtain the general lower bound for general CAMDPs: $\tilde{\Omega}\left(\frac{SA(B+H)}{\epsilon^2\zeta^2}\right)$. \square
 1423

1425 G PROOFS FOR LOWER-BOUND FOR WEAKLY COMMUNICATING CAMDPs

1427 **Theorem 4** (Lower-bound for communicating CAMDP). For any sufficiently small ϵ, δ , any
 1428 sufficiently large S, A , and any $D \geq \max\{c_1S, c_2\}$ (where $c_1, c_2 \geq 0$ is some universal constant),
 1429 for any algorithm promising to return an $\frac{\epsilon}{24}$ -optimal policy with probability at least $\frac{3}{4}$ on any
 1430 communicating CAMDP problem, there is an CAMDP such that the expected total samples on all
 1431 state-action pairs, when running this algorithm, is at least $\tilde{\Omega}\left(\frac{SAH}{\epsilon^2\zeta^2}\right)$
 1432

1447 Figure 5: A Hard Communicating CAMDP
 1448 when $A = 4, S = 19$.

1447 Figure 6: A Component Communicating
 1448 CAMDP.

1451 *Proof.* To construct a family of hard MDP instances with parameters S, A and diameter at most D ,
 1452 we begin by introducing key components and associated notation. Define $A' := A - 1$, $D' := D/8$,
 1453 and $K := \lceil S/4 \rceil$. We assume that $A \geq 3$, $\epsilon \leq 1/16$, and $D \geq \max\{16\lceil \log_A S \rceil, 16\}$, which are
 1454 standard parameter ranges in this construction.

1455 We first define a primitive component MDP consisting of three states x, y, z , each equipped with A'
 1456 actions and parameterized by D' . The action space is partitioned into three subsets based on their
 1457 transition and reward behavior. This component MDP serves as a key building block in the lower
 1458 bound construction and is illustrated in Figure 6.

1458 Next, we assemble K identical copies of the component MDP into a larger structure M_0 , which
 1459 serves as the base instance for constructing the lower bound family. We begin by constructing an
 1460 A' -ary rooted tree with exactly $S - 3K$ non-leaf nodes and K leaves. It is known that such a tree
 1461 exists with depth at most $\lceil \log_{A'} S \rceil + 1$. Each leaf of this tree is replaced by a component MDP: the
 1462 node corresponding to the leaf becomes state x , while its two children are mapped to states y and z .
 1463 The final MDP M_0 is thus formed by embedding the component MDPs into the leaf structure of the
 1464 tree, as illustrated in Figure 5.

1465 Transitions in the tree are defined deterministically: every internal node (including x -nodes) has
 1466 actions that lead to each of its children and its parent (if applicable); all remaining actions correspond
 1467 to self-loops with zero reward. For each y -state in the embedded components, one designated action
 1468 is also a deterministic self-loop with zero reward. By construction, $K \geq S/4$, and the overall
 1469 diameter of M_0 is bounded as: $2 \left(\frac{D'}{1+8\varepsilon} + \log_{A'} S + 1 \right) \leq D$, given the definition $D' := D/8$ and
 1470 the assumed bound $\log_A S \leq D/8$.

1471 We then define a collection of hard instances $\{M_{k,l}\}_{1 \leq k \leq K, 2 \leq l \leq A'}$ based on perturbations of M_0 .
 1472 To distinguish among these instances, note that a policy must favor action a_1 at the x_k states in M_0 ,
 1473 while selecting a_l in the corresponding $M_{k,l}$. Specifically, to be $\varepsilon/24$ -optimal in $M_{k,l}$, the policy
 1474 must assign occupancy measure at most $2/3$ to action a_1 at state x_k , while in M_0 , the same state must
 1475 have occupancy measure at least $2/3$ on a_1 . This divergence in action distributions under different
 1476 instances forms the basis of our lower bound. The design of our hard instance is motivated by the
 1477 construction used for average-reward MDPs in Wang et al. (2022).

1478 We further fix the constraint threshold to $b = \frac{1}{2}$ in the construction of our hard CAMDP instances
 1479 (Figure 5). Building on the analysis in Section F, we leverage a carefully designed reward and
 1480 constraint structure to induce a separation in policy behavior across different MDP instances.

1481 Under our construction, we can show that any policy that is $\frac{\varepsilon}{24}$ -optimal must satisfy distinct oc-
 1482 cupancy conditions across instances: in the base instance M_0 , the normalized occupancy measure
 1483 μ'_1 —representing the fraction of trajectories where action a_1 is selected—must satisfy $\mu'_1 \geq \frac{2}{3}$; in
 1484 contrast, for any perturbed instance $M_{k,l}$, the same quantity must satisfy $\mu'_1 \leq \frac{2}{3}$. This divergence in
 1485 occupancy thresholds arises due to the amplification effect in the constraint values, and ensures that
 1486 policies achieving small regret in one instance must necessarily incur significant suboptimality in
 1487 others.

1488 This behavioral separation enables us to apply Fano’s method to formally lower bound the probability
 1489 of misidentifying the underlying instance. Following the same framework as in Section F, we derive
 1490 a lower bound on the sample complexity of learning an ε -optimal policy under strict feasibility:
 1491 $\tilde{\Omega} \left(\frac{SAD}{\varepsilon^2 \zeta^2} \right)$. Furthermore, by noting that the bias span H is always bounded above by the diameter
 1492 D , this implies a corresponding lower bound of $\tilde{\Omega} \left(\frac{SAH}{\varepsilon^2 \zeta^2} \right)$, which holds for the class of weakly
 1493 communicating constrained average-reward MDPs. \square

1497 STATEMENT OF LLM USAGE 1498

1499 This manuscript used large language models solely to assist with language editing and improving the
 1500 clarity of writing. All technical content, analysis, and conclusions were conceived, implemented, and
 1501 verified entirely by the authors.

1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511