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ABSTRACT

As Large Language Models (LLMs) become increasingly prevalent, their secu-
rity vulnerabilities have already drawn attention. Machine unlearning is intro-
duced to seek to mitigate these risks by removing the influence of undesirable
data. However, existing methods not only rely on the retained dataset to preserve
model utility, but also suffer from cumulative catastrophic utility loss under con-
tinuous unlearning requests. To solve this dilemma, we propose a novel method,
called Rotation Control Unlearning (RCU), which leverages the rotational salience
weight of RCU to quantify and control the unlearning degree in the continuous un-
learning process. The skew symmetric loss is designed to construct the existence
of the cognitive rotation space, where the changes of rotational angle can simulate
the continuous unlearning process. Furthermore, we design an orthogonal rota-
tion axes regularization to enforce mutually perpendicular rotation directions for
continuous unlearning requests, effectively minimizing interference and address-
ing cumulative catastrophic utility loss. Experiments on multiple datasets confirm
that our method without retained dataset achieves SOTA performance.

1 INTRODUCTION

In recent years, the development of Large Language Models (LLMs) has received widespread at-
tention. With the extensive application of GPT (Achiam et al.|(2023)) and other LLMs (Liu et al.
(2024); Touvron et al.| (2023)) in academic research and industry (Wang et al.| (2024)), concerns
about LLMs have also increased. Among these, security issues regarding information protection
have become particularly prominent. These concerns have motivated researchers to use the machine
unlearning method to remove potentially private (Ortiz-Jimenez et al.| (2023))), illegal or toxic data
that may exist in LLMs. Currently, machine unlearning in LLMs (Bourtoule et al.|(2021))) is mainly
divided into two paradigms: the method based on parameters (Chen & Yang| (2023b); [Eldan &
Russinovich| (2023)); Jia et al.| (2024))) and the method based on in-context unlearning (Thaker et al.
(2024); Pan et al.| (2020)). The methods based on parameters achieve effective unlearning by max-
imizing the task loss on the unlearning data (Wang et al.[ (2025a); Hu et al.| (2025))). The methods
based on in-context unlearning modify the input prompts of LLM to make them refuse to output the
content that needs to be unlearning (Chen et al.[(2025)); Yu et al.|(2025))). Other methods achieve the
unlearning goal by interfering with the LLM’s representation of the unlearned data (He et al.|(2025));
Jiang et al.| (2025)).

However, unlearning methods in LLM are often not a one-time operation but a continuous process
in real world. Most of them exist the cumulative catastrophic utility loss (Gao et al.[(2025))) when
dealing with continuous unlearning. Furthermore, they still require a retained dataset to maintain
the model’s utility. This retained dataset consists of a part of the original training dataset (Bourtoule
et al.|(2021)). Since LLM require a large amount of data for training (Wang et al.| (2024)), using the
retained dataset in continuous unlearning is not feasible (Liu et al.|(2025)). The work of 03 (Gao et al.
(2025)) proposed an unlearning paradigm for allocating weights to LoRA (Hu et al.| (2022)) based
on the Out-Of-Distribution (OOD) detector score to address the aforementioned issues. However,
its main limitation lies in the lack of in-depth investigation into the continuous unlearning process,
which prevents o® from effectively quantifying the unlearning process. Moreover, the mapping
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relationship between Out-Of-Distribution (OOD) scores and LoRA weights still requires extensive
experimentation to determine, resulting in a lack of precise control over the unlearning process.

In this work, we propose Rotation Control Unlearning (RCU), a novel unlearning method that ad-
dresses the above challenges by conceptualizing LoRA update as rotations within a cognitive rota-
tion space. Our approach introduces a skew symmetric loss in LoORA update paradigm to formulate
the unlearning process as rotation operations, with the rotational angle serving as a precise quan-
tification metric. We introduce an orthogonal rotation axes loss to enforce perpendicular rotation
directions for consecutive unlearning requests, effectively mitigating cumulative catastrophic utility
loss by minimizing inter unlearning request interference. Furthermore, to enhance compatibility, we
design an unlearning alignment loss that guides the OOD detector to produce representations aligned
with our LoRA update paradigm. These representations then collaborate with the distributional shift
compensator to generate rotational salience weights for auxiliary quantification.

Specifically, our contributions are outlined as follows:

* We propose the RCU method, which quantifies the unlearning process by leveraging rota-
tional changes in the cognitive rotation space, and introduce the rotational salience weight
to precisely control the degree of unlearning throughout the continuous unlearning process.

* We design the skew symmetric loss to establish the existence of the cognitive rotation space
and the orthogonal rotation axes loss to alleviate cumulative catastrophic utility loss.

» Extensive experiments on the ScienceQA and TOFU datasets confirm the effectiveness of
our proposed method without retained dataset.

2 PRELIMINARY

Machine Unlearning in LLMs. The objective of machine unlearning is to safeguard informa-
tion security. Currently, there are two mainstream approaches: parameters-based methods (Chen
& Yang| (2023b); [Eldan & Russinovich| (2023); Jia et al.| (2024)) and in-context unlearning-based
methods. [Thaker et al.| (2024); Pan et al| (2020) Parameters-based methods iteratively adjust the
LLMs’ internal parameters to minimize the loss function on specific tasks, thereby improving un-
learning performance (Y1 et al.|(2025); |Yang et al.| (2025); Bronec & Helcl| (20235)); |[Premptis et al.
(2025)). |Yi et al.|(2025)) method employs fine-tuning for rapid learning and induces deliberate model
degradation upon detection of harmful fine-tuning behaviors. |Yang et al.| (2025) approach utilizes
a reweighting strategy to adjust training sample weights, focusing particularly on data useful for
unlearning. In-context unlearning-based methods modify input prompts to prevent the generation
of undesired content. |Yu et al.|(2025) method generates tokens that guide forgetting based on the
input query, achieving unlearning without altering model parameters. Additionally, other techniques
exist (Muhamed et al.| (2025); Wang et al.| (2025b)). For instance, Muhamed et al.| (2025)s control
forgetting by manipulating model activations. The He et al.|(2025) method disrupts the latent space
of forgotten samples during training to induce chaotic outputs. While existing methods often over-
look the challenges of continuous unlearning requests and the associated catastrophic degradation
of model utility in real-world scenarios, (Gao et al.| (2025) formalizes the concept of continuous ma-
chine unlearning and introduces an unlearning framework based on an out-of-distribution detector.
Building upon the |Gao et al.| (2025) paradigm, our method proposes a more refined LoRA update
strategy that enables more precise quantification of unlearning extent.

Out-Of-Distribution Detection. The current methods of OOD detection include one-class SVM
based methods [Erfani et al.| (2016)), random forest based methods Mihaylov et al.| (2018)), Gaussian
mixture modeling based methods|Laxhammar et al.|(2009)), and deep learning based OOD detection
methods|Yang et al.|(2024)). At the same time, OOD detection based on deep learning has become the
mainstream in classification tasks. Among them, Zong et al.[|(2018)) is a method suitable for multi-
source time series, which estimates OOD scores by generating low-dimensional representations
through deep autoencoders. Xu et al.| (2021)) extracts features by pre-trained language model and
then fits one-class SVM for detection. In addition,|Zhou et al.|(2023)) using ensemble learning,[Lang
et al.[(2022) using pseudo-label,|Cao et al.| (2024) using outlier exposure, Ouyang et al.| (2023) using
prefix adjustment and other methods have achieved good results in OOD detection. (Gao et al.|(2025)
incorporates the contrastive entropy loss and Masked Language Modeling (MLM) loss (Jian et al.
(2022)), enhances the ability to detect out-of-distribution cases. By studying the unlearning process,
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we introduced the unlearning alignment loss, thereby enhancing the compatibility between the OOD
detector and unlearning.
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Figure 1: The overall architecture of our method is shown in the figure. In the training pipeline,
the orthogonal rotation axes loss L, is applied to the attention layers of the LLMs for training;
simultaneously, the unlearning alignment loss L, is used to train an OOD detector, whose output
is fed into the distributional shift compensator to generate the rotational salience weight 3. In the
inference pipeline, given that the LoRA parameters B A are proportional to the rotation angle 6, ,
in the Cognitive Rotation Space Rp4. We control the rotation angle , , amplitude by adjusting
the scale of LoORA BA, and use the weight 5 to dynamically load the parameters that match the
required unlearning degree.

3 METHODOLOGY

Problem Definition. We use the popular causal LLMs, where the input to the LLM is a sequence
of text tokens of variable length. The LLM Mg, where © is the parameter of the LLM, will cal-
culate the probability of each token in the text under the preorder token based on the input. We
set continuous unlearning ploblem as a series of consecutive arriving unlearning requests, each

with NU+* data samples, which can be written as {DU’t}thl. For the ¢ — th unlearning request

NU,t
, DUt = {alexz ~ Pg’t} , where T is the index of the latest arriving unlearning request, and
i=1

the P is the input marginal distribution. In each request, we utilize the input P, and the label dis-
tribution 73; for training. Traditional unlearning methods assume a holdout data set drawn from a

distribution 7))1,% " that is disjoint from the forgetting data set P;?t to preserve the performance of the
model on the original training distribution. The immediate goal of continuous unlearning is:

T T
;néitnI (mepg,t(ac, 0); M;wvgvf (:B, @t)) ,;r%ath (MmN,P/IYt,t((E, 0); M;NPg,t (CL’, @t)> ,
(H

where M with the parameters ©° represents the target model during and after unlearning on the ¢ —
th unlearning set DY!, and I (-; -) computes the mutual information between two random variables.
The model utility preservation on other distributions P4, different from the unlearning distribution
is another goal of unlearning. This can be expressed as follows:

T
2 max I (MENPS (2, 0); ML, _po (. @t)) . 2)
t=

3.1 CONTINUOUS UNLEARNING FOR LLM wiITH LORA

The continuous unlearning process of LLM inevitably leads to cumulative catastrophic utility loss
(Gao et al.|(2025)). This requires the method to simultaneously achieve the continuous preservation
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of its historical unlearning knowledge and the original utility when handling the current unlearning
request. In addition, the unlearning methods often require a lot of computational resources and
cost. We proposed the RCU to address these challenges. Within this framework, we constructed the
cognitive rotation space through a new LoRA update paradigm and regarded the parameter updates
of LoRA as rotations within this space. By monitoring and manipulating the changes in this rotation
angle 6, we were able to achieve controllable adjustment of the degree of unlearning LoRA loading.

LoRA |Hu et al.[(2022) reduces the trainable parameters by introducing two low-rank trainable matri-
ces {A, B}, where Wy opa = BA,Wropa € RUXV B € RUXK A € REXV which decomposes
the high-dimensional matrix into a low-rank matrix. The specific update formula is as follows:

W « I + BA. 3)

In order to better control the unlearning process of LoRA. Our method constructs a new LoRA
update paradigm from the perspective of rotation angle.

Firstly, we assume a cognitive rotation space R. Since R can be viewed as an n-dimensional rotation
matrix, R satisfies the following conditions: The R is an orthogonal matrix. The determinant of R
is 1, so det (R) = 1. Since R directly satisfies the two conditions of SO(n), we have R € SO(n).
From |Gallier| (2001, we can then conclude that cognitive rotation space R € SO(n) corresponds to
at least one matrix C in the Lie algebra so(n).

However, every element C' in the Lie algebra so (n) can be mapped to the R in the Lie group SO (n)
by the exponential map exp (C'). From this we obtain:

R =exp(C), “4)

here, C'is an antisymmetric matrix. Since R = exp (C'), we can obtain from Taylor’s Formula:

2
R:e:vp(C)=I+C+%+...mI+C,C<<I. (5)

From|[Equation 5] we can conclude that for any antisymmetric matrix C, there exists a corresponding
cognitive rotation space R¢. Therefore, we construct the skew symmetric loss Lgy, and impose the
constraint that BA is an antisymmetric matrix:

Ly = H(BA)T+BAH1, ©)

here, I is the identity matrix, and ||- H% is the Frobenius norm.

In addition, due to the influence of factors such as the learning rate, BA << I (the parameter size
information of BA is provided in the appendix.). Thereby, there exists a cognitive rotation space
R BA ~ I+ B A.

We can establish the following LoRA update paradigm:
W« W + BAW = (I + BA) W, 7

here, we update the above equation given a set of low-rank parameters { A, B}, where the parameter
matrix W of LLM is frozen.

From [Equation 7} we can consider the update of the W as a rotation in the cognitive rotation space
Rpa.

After expressing the update of B A as the cognitive rotation space Rp 4 in the parameter space, we
aim to quantify the degree of unlearning of LLM by changing the rotation angle of Rp 4.

Although we only trained the attention layers, due to the huge parameter size of the large language
model, directly calculating the rotation angle 6 of Rp 4 still incurs a significant amount of compu-
tational cost. Here we present our theorem 1.

Theorem 1: For R € R"*", when R = exp (C), the rotation angle 0 of R is directly proportional
to C. The proof of theorem 1 can be found in the appendix.

From Theorem 1, if we want to change the rotational angle 6 of Rp 4, we only need to make the
corresponding changes to B A. Therefore, we obtain the rotational salience weight 8 from the OOD
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detector and the distributional shift compensator. When /3 x BA , all the rotation angles 6 in Rp 4
are changed to 3 x 6. Therefore, we can use the rotation Angle 6 to quantify the unlearning degree
of LoRA, and only need to use BA for the calculation.

In addition, for achieving effective unlearning, we utilize preference optimization to update the
model to accommodate random task labels or refuse-based answers such as ”’I don’t know”, which
we call y'. For each unlearning we only train the cross-entropy loss using the unlearning dataset of
our current knowledge:

NU-t
1
Lcg = ~NUT Z Y’ log Mg (wﬁ”) ®)
i—1

To reduce the interaction between the change of the rotation angle for each unlearning request in
continuous unlearning, we make the rotation axes of each rotation perpendicular to each other. The
rotation axes here refers to the subspace formed by the points that remain stationary under rotation
in the high-dimensional space.

Here, we know that when unlearning request ¢, the corresponding cognitive rotation space is Rp, 4, -
Then, from request ¢t — 1 to request ¢, the relative rotation matrix is A R;. From this, we can obtain :

ARy =Ry RE | = (I+ BAr) (I + Bi1Ar )" ©)
since BA is an antisymmetric matrix, we have:

ARy = (I +BeA))(I+Bi_1Ar1)" = (I+ BAy) (I — Bi_144_1) (10)
=1+ BA; — By 1Ay 1 — BiAyBy 1Ay 1 = I+ ByAy — By 141,

We cannot directly calculate the rotation axes for the calculation because this would consume a large
amount of computing resources and significantly slow down the training speed of the model. Here,
we know from Theorem 2 that when the cognitive rotation space Rp, ,4, ,, RBp,4, and By_1A;_1,
B A, are mutually perpendicular, their rotation axes must be perpendicular. Therefore, we make the
cognitive rotation space Rp, ,a, , of the (¢ — 1)-th request and the relative rotation space AR
relative to the ¢-th request and the (¢ — 1)-th request mutually perpendicular. This ensures that the
rotation angles of each unlearning request in the cognitive rotation space do not affect each other,
reducing the cumulative catastrophic utility loss generated with continuous unlearning.

Theorem 2: when R = exp (A) and R’ = exp (A’), ALA’, then the rotation axes of R and R’ are
perpendicular to each other. The proof of theorem 2 can be found in the appendix.

The orthogonal rotation axes loss are as follows:
Lo= I+ Wi =Wimr) - Weerllz = (1 + BiAs = BiaAv) - (Boa A7, (D)

where W;_1 = B;_1A;_1 are the parameters of the lora after training on the (¢ — 1)-th request. The
|| H?; is the Frobenius norm.

In summary, the overall loss of our method is as follows:
‘Coverall = /\1£Sk + )\Q‘Co + )\SECE7 (12)

here,we set Ay = 0.1,A\2 = 0.1 and A3 = 1 in ScienceQA dataset. We set Ay = 0.01,A5 = 0.5 and
A3 = 1 in TOFU dataset.

3.2 UNLEARNED KNOWLEDGE DETECTION

OO0D Detection. Based on 0, we turn the unlearned knowledge detection task into an OOD task
by treating the unlearned dataset as In-Distribution (ID) data, and leverage a scoring mechanism to
quantify the extent of unlearning.

We propose the OOD detection loss, which consists of three parts. We use the contrastive entropy
loss and Masked Language Modeling (MLM) loss (Gao et al.| (2025)). As shown in the
updates of RCU exhibit an uneven characteristic, where the feature always involves continuous
updates within a very small range of rotation angle changes. Given this characteristic, in order to
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make the output of OOD detection better align with the update pattern of RCU, we introduced the
unlearning alignment loss Ly,. The Ly, are as follows:

1
EUa:ﬁ

~ 7
, where Z; = ——, (13)
[1Zill

217,

n—1

1

F
where ||-||5 is Lo norm. The Z; is the average pooled feature representation from layer i of the
backbone network. The |- ||2F denotes the Frobenius norm.

In addition, the contrastive entropy L¢ gy, also starts with the augmentation view generation. The
Lcrr (Gao et al.|(2025) leverage random masking to generate the first view type. For a particular
text instance x with tokens of length n, we randomly select p% (p = 15 in our implementation)
tokens and replace them with the tokens of [MASK]. The z* is the instance with the random mask-
ing. For the second contrastive view, we make use of a key encoder Fqrey, Which is initialized
from the original OOD module backbone Fg, that is a transformer consisting of L attention layers
: F = f, o fs o f,,. Then we input the original text instance = and generate the second
view from Frey. The Lopy is as follow:

NB L NB
Lopr ==Y > Y A1, 5) log(A(i, 1, ), (14)
i=1I=1 j=1
exp (fuy (@0) - fper (@)
where A(i,1,j) = N ] ;
Zk:l exp (fw[1:z] («’ﬁ) : fwhe}l' (wk))

i)
here N is the sample quantity of a mini-batch. And the f,,, (x) is the token averaging repre-
sentation of the [-th layer. We use MLM loss Ly, (Jian et al.| (2022)) to improve the language
generation of our model:

NB
1
Lyvrv = =5 >y log Fa («7), (15)
i=1

where y* is the random token masking label. Here, the Lo g focuses on the relative relationship of
sample pairs. The £/, s boosts the representation power of the generated language.

The final loss Loop can be:
Loop = Lcer +Lyrm + Lua- (16)

Distributional Shift Compensator. We follow the method for obtaining the output of OOD detec-
tion as described in 0®. We utilized the Mahalanobis distance and the distance based on the maxi-
mum instance cosine similarity. Finally, we calculated the combined score v¢. For the calculation
of the OOD score ~¢, please refer to the appendix.

After we get combined score 7¥, we need to map the 4 into an rotational salience weight 3. Here, we
hope that the change of 5 can conform to the unlearning process of the cognitive rotation space Rp 4.
However, as the unlearning learning proceeds, we find that the performance of the update based on
RCU is uneven. As shown in the (a)(b), the model does not learn unlearning knowledge
before 8 = 0.3 on the ScienceQA dataset. At 5 = 0.3 to 8 = 0.5, the unlearned knowledge is
gradually learned, while at 5 = 0.5 to 8 = 1, the model has fully learned the unlearned knowledge.
On the TOFU dataset, the range of knowledge that the model learns for unlearning is approximately
between 5 = 0.2 and 8 = 0.6. The specific results can be found in the appendix. This gives us the
following relation:

045 To<At <1,
B=dM(() T <A <Ty, (17)
0 7t S F17

the I'; and I'g are thresholds, whichI';y = 1e—80, I's = 0.1 on the ScienceQA datasetand I'; = 0.2,
I'; = 1 on the TOFU dataset. The M (+") on the ScienceQA dataset is 0.35+ (log; 7" + 80) /790.
The M (+?) on the TOFU dataset is 0.35 + ((y* — 0.2) /0.8) - 0.25.
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Finally, for each input z of the ¢-th unlearning request, the corresponding parameters W can be
expressed as:

Wl =(I+p8-BA)W. (18)

4 EXPERIMENTS

4.1 DATASETS

We conducted experiments on two tasks: question answering and fictional knowledge generation.
We have divided the question-answering task into 5 consecutive sub-tasks, and the fictional knowl-
edge generation has been divided into 3 consecutive sub-tasks. The detailed introduction of the
datasets is as follows:

Question Answeing. We use ScienceQA (Lu et al.| (2022))) as the question and answer dataset.
This dataset consists of 6,508 training samples and 2,224 testing samples. We selected five of
these areas as the continuous unlearning requests, namely biology, physics, chemistry, economics,
and earth-science. We utilized the CommonsenseQA (Talmor et al.| (2018))) as the utility dataset,
which contained 9,740 training samples and 1,221 validation samples, to evaluate the commonsense
reasoning ability of LLMs. The OpenbookQA (Taor1 et al.| (2023)) can assess the understanding
ability of books. The training set contains 4,957 samples, the validation set includes 500 samples,
and the test set consists of 500 samples.

Fictitious Knowledge Generation. We conducted a test on the generation of fictional knowledge
using the TOFU dataset (Maini et al.| (2024)). The TOFU dataset contains questions about fictional
authors synthesized by GPT-4. The three unlearning sets *fogetO1’, *foget05’, and ’foget10’ respec-
tively represent random selection ratios of 1%, 5%, and 10% of the authors. The authors in each
unlearning set are mutually exclusive. Additionally, we also utilized the data related to real-word
authors and world facts in this dataset to test the LLMs’ ability to maintain its effectiveness.

4.2 EXPERIMENTAL SETUP

Table 1: Performance Comparison between our method and other baselines when continually un-
learning TOFU-forgetO1, -forget05, and -forget10 in Fictitious Knowledge Generation.

Method Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
s.U| DUJ RDft RAfT WEt|SU| DU/ RDft RAfT WEt|SU| DUJ RDt RAT WE?|

Base | 850  90.0 85.8 89.0 87.0 | 873 89.3 85.8 89.0 87.0 | 853 90.0 85.8 89.0 870 |

GradASC | 75.0 85.0 71.0 86.0  82.1 17.6 23.1 19.0 0 0 17.1 14.2 19.0 0 0

GradDif | 78.1 84.0 81.9 86.7 835 | 625 70.0 70.4 65.7 719 16.5 15.2 19.0 0 0
EUL 84.1 86.3 86.1 86.7 87.1 844 903 85.8 88.0 855 80.1 83.5 83.4 86.3 83.5
PO 12.5 16.0 78.4 86.7 83.8 30.5 48.8 82.5 87.3 832 | 382 471 81.4 86.3 84.4

NPO 68.8 75.0 83.6 89.0 81.8 76.3 84.2 83.2 87.7 84.1 71.6 79.2 81.4 87.3 82.9
SOGD 43.7 76.0 80.3 85.3 83.4 22.8 24.0 79.0 81.3 82.6 17.4 21.7 82.3 77.0 82.1
SOPO 25.6 38.0 83.7 85.3 83.7 34.1 37.5 81.5 87.3 83.2 345 40.0 80.2 86.7 84.2

o3 15.6 250 8515 89.0 86.3 33.1 30.0 85.0 89.0 86.3 30.9 25.0 85.2 89.0 86.3

Ours | 9.37 12.5 8557 89.0 87.0 | 125 125 85.61 89.0 87.0 | 20.6 17.5 85.6 89.0 87.0

Evaluation Metrics. We continue to use the 03 (Gao et al.| (2025)) key evaluation indicators. Here,
the Sample-level Unlearning (S.U.) represents the performance of the test LLMs on the unlearning
training set when there is a unlearning request. The Distribution-level Unlearning (D.U.) indicates
the performance of the test LLMs on the unlearning test set when there is the unlearning request. In
addition, we use three indicators to measure the performance of the LLMs in maintaining utility. The
Retained Distribution (R.D.) represents the distribution that is most sensitive to unlearning requests.
The CommonsenseQA (C.QA.) and QpenbookQA (O.QA.) are datasets used on the scienceQA
dataset to measure the utility of each request. We use the accuracy of these two datasets to measure
their performance in QA. On the TOFU dataset, we use the utility datasets provided by the two
datasets, namely Real-word Authors (R.A.) and Word Fact (W.F.), to measure their performance in
Fictitious Knowledge Generation.

Compared Baseline. We compared a series of the most advanced LLM unlearning methods:
GradAsc |Golatkar et al.| (2020), GradDif |Yao et al.[ (2024), EUL [Chen & Yang| (2023a), PO [EI-
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(a) (b) ©)

Figure 2: Experimental results on the ScienceQA dataset. (a)The relationship between the S and
unlearning processes (S.U.). (b) The relationship between the 8 and unlearning processes (D.U.).
(c) The results of C.QA.. (d)The results of O.QA..

dan & Russinovich|(2023), NPO|Zhang et al.|(2024)), SOGD [Jia et al.|(2024), SOPO Jia et al.|(2024)
and 0° |Gao et al.| (2025). The base refers to the result obtained directly through the LLM testing.

Implementation Details. We use LLaMA2-7b (Touvron et al.| (2023)) as the target model. The
detection backbone is Pseudo-Roberta-Large (Liu et al.[(2019)). For the TOFU dataset, the learning
rate is 2e-4, and the number of epoch is 10. For the ScienceQA dataset, the batch size is 128, the
number of epoch is 15, and the learning rate is 3e-4. In the inference pipeline of ScienceQA, the max
batch size is 24. The LoRA ranks for both datasets are 8. Our method only fine-tunes the attention
layers in LLM. We conducted our experiments on two NVIDIA RTX A6000.

4.3 EXPERIMENTAL RESULTS

Question Answering. The results of our method are shown in (c)(d) and We
compared base, PO, SOPO, 03 and our results. Some detailed results can be found in the appendix.
Our method achieved the same results as the base method (C.QA. and O.QA.). The results of the
R.D. were also very similar to those of the base method. However, our method performed much
better than the others in the S.U. and D.U. indicators. Compared with the most advanced method
03, the S.U. decreased by 9.68%, 4.02%, 4.05%, 7.58% and 10.82% respectively on five requests.
The D.U. compared to the most advanced method 0>, on average, decreased by 17.67% across five
requests. In addition, the number of training parameters of our method is much smaller than that of

03.

Fictitious Knowledge Generation. [Table T|presents the experimental results of our method on the
TOFU dataset. Based on the results, we found that our method can effectively enhance the LLMs’
ability to unlearning (D.U. and S.U.). Compared with the currently best continuous unlearning
method 03, the result on the S.U. decreased by 6.23%, 20.6% and 10.3%. the result on the D.U.
decreased by 12.5%, 17.5% and 7.5%. Furthermore, in terms of the stability of the LLMs’ utility,
the performance level of our method is comparable to the current best results. We observed that as
the number of unlearning requests increased, the unlearning accuracy on the test set (D.U.) of most
methods showed significant fluctuations or increasing. This phenomenon indicates that catastrophic
utility loss continues to accumulate, and the LLMs’ stability is affected. In contrast, our method not
only effectively mitigates such utility losses but also significantly improves the performance stability
of LLMs during the continuous forgetting process.

In two datasets, 03 has 19.99 M trainable parameters, compared to our method’s 8.39 M. The re-
quired number of training parameters is significantly less than that of 0®. The number of parameters
that need to be updated in our method is much smaller than that in 0®.

4.4 HYPERPARAMETER ANALYSIS

In [Figure 2| (a) and |[Figure 2| (b), we have presented the changes about 3, along with the exper-
imental results for each unlearning request. Based on the results in ScienceQA dataset, we can
observe that when [ is within the range of 0.15 to 0.45, the model rapidly undergoes the process
of unlearning. However, when S is less than 0.15, the model does not forget the knowledge. And
when S is greater than 0.45, the model has achieved complete forgetting and no longer continues to
unlearning. The above experimental results indicate that the unlearning process of RCU is achieved
within a very small rotation angle change range in the cognitive rotation space. Therefore, when
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Figure 3: The comparison results with other methods on the ScienceQA dataset. (a) The results of
S.U.. (b) The results of D.U.. (c) The results of R.D..

designing the OOD detector and the distributional shift compensator, we must also ensure that the
rotational salience weights they output have a relatively concentrated distribution to match the above
characteristics. The 8 changes regarding TOFU dataset are presented in the appendix.

4.5 ABLATION STUDY

The results of our ablation experiments are shown in Here, we aim to focus more on the
unlearning process rather than the OOD process. Therefore, we consider the impact of Ly, on the
unlearning performance rather than on the OOD performance. Based on the results, we found that
Ly is the main influencing factor for the unlearning performance. And the LoRA update Paradigm
(RC-LoRA in[Table 2), Lg;, and the £, are three key factors for mitigating cumulative catastrophic
utility loss in continuous unlearning. The results of the ablation experiment proved the effectiveness
of our method.

Table 2: The ablation experiment results on the ScienceQA dataset.The RC-LoRA represents our
LoRA update paradigm.

Method Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
S.U) DU.J RDt CQAt OQA1|SUJ DU/ RD+ CQAF O.QAf1|SUJ DUJ RDP CQAT O0.QA7D |
w/o L, 0.54 0.68  89.01  79.19 83.09 | 0.65 474 88.02 79.19 83.09 | 078 898 8822 79.19 83.09
w/o L} 99.75  98.99 90.16  79.19 83.09 | 9951 9801 89.18 79.19 83.09 | 99.51 98.04 8844  79.19 83.09
w/o RC-LoRA 0.12 1.35  90.51 79.19 82.39 0.58 424 9111 79.19 82.39 0.99 2245 90.68  79.19 82.39
w/o Ls;+RC-LoRA | 100.00 99.24 89.16  79.19 83.09 | 9952 98.14 8825 79.19 83.09 | 99.62 9853 8744  79.19 83.09
w/lo Lyq 1.27 344 8701 79.02 81.35 277 485 83.08 79.02 81.35 3.11 823 87.62  79.02 81.35
Ours 0.05 012 925  79.19 83.2 0.17 245 9175 79.19 832 | 033 613 905  79.19 832 |
Method Unlearning Request 4 Unlearning Request 5
S.U.l DU.J RD?t CQAf O0QAf|SUJ| DUJ RDt CQAT O.QAT|
wlo L, 1.24  11.58 88.06  79.19 83.09 241 1685 87.95 79.19 83.09
w/o Ly 99.75 98.04 8820  79.19 83.09 | 99.75 98.04 87.95 79.19 83.09

w/o RC-LoRA 1.03  30.68 89.43  79.19 83.09 246  31.85  90.00 79.19 83.09
w/o Lsi+RC-LoRA | 99.85 9853 872 79.19 83.09 | 99.85 9828 8645 79.19 83.09
wlo Lyrq 9.19 11.07 8733  79.02 81.35 13.65 1521 86.93 79.02 81.35

Ours | 049 956 905 79.19 83.2 098 1029 89.753 79.19 832 |

5 CONCLUSION

Existing LLM machine unlearning methods rely on a retained dataset to maintain model utility,
which makes them susceptible to cumulative catastrophic utility loss when handling continuous
unlearning requests. To overcome this limitation, we introduce RCU, a retain-free approach that
formulates LoRA updates as rotations within a specially constructed cognitive rotation space. This
formulation allows the degree of unlearning to be directly quantified through corresponding changes
in rotational angles. Furthermore, by analyzing the update dynamics during unlearning, we propose
a rotational salience weight to achieve precise and continuous control over the unlearning process.
Our method is supported by theoretical guarantees, and we rigorously establish its efficacy through
a mathematical analysis. Extensive experiments demonstrate that RCU achieves superior unlearning
effectiveness while maintaining model utility on multiple datasets.
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A APPENDIX

This Appendix includes additional details for the our paper including the following aspects:
* A.1: The proofs of the theorem 1 and theorem 2.

* A.2: Detailed experimental results on the ScienceQA dataset.

* A.3: Large Language Model usage declaration.

* A.4: An in-depth study on why our method is effective.

* A.5: The experimental results on the TOFU dataset showing the relationship between S and the
unlearning process.

* A.6: The detailed calculation steps of the OOD Score.
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A.1 PROOFS OF THE THEOREMS.

Theorem 1: For R € R"*", when R = exp (C), the rotation angle 0 of R is directly proportional
to C.

Proof 1: It is known that R € SO (n) is an n-dimensional rotation matrix (n > 3) and R = exp (C)
, where C' is an antisymmetric matrix. If the rotation angle of R = exp (C) is 6 , then the rotation
Angle of exp (kC) is k6.

Due to R € SO (n), there exist orthogonal matrices @ such that:

R=Q-diag(1,...,1.R(61),....,R(0,,)) - Q", (19)
here, R = cos 0 —sinb; is Two-dimensional rotation matrix (the rotation angle is 6; ), the rest
sinf; cosd;

of the eigenvalues are 1. The m = [n/2].
The antisymmetric matrix C' can be similarly block-diagonalized as follows:
C= Q ' dzag (Oa ey 07 B (91) ) 7B (em)) : QT7 (20)

where B — {HOJ ‘5’]} cexp (B (6;)) = R (6;).

If C’ = kC ,we can gather:

C'=Q-diag(0,...,0,B(61),..., B (6m)) - Q", @21)

since B is linear, B (kf;) = kB (6;). Then:
exp (kC) = exp (C') = Q - exp (diag (0, ...,0, B (kb1) , ..., B (kb,,))) - QT (22)
=Q-diag(1,...,1.B(kby), ..., B (k6,,)) - Q". (23)

And the exp (B (kb)) is as follow:

cos (kf;) —sin(k0;)| _

exp (B (kb;)) = sin (k0;) cos(k0;) | —

R (k6;). (24)

Due to the [Equation 25|and [Equation 24] we can get as follow:
exp (kC) = Q - diag (0, ...,0, R (k0y) , ..., R (k0,,)) - Q" (25)
here means the rotation angle of exp (kC) are kb1, ..., kO,,.

Theorem 2: when R = exp (A) and R’ = exp (A") , AL A’, then the rotation axes of R and R’ are
perpendicular to each other.

Proof 2: Let A and A’ be skew-symmetric matrices with their rotation faces P and P’, respectively.
Assume that P and P’ are orthogonal to each other (A and A’ are perpendicular). Since P1 P/,
there are P C ker (A’) and P’ C ker (A). (Here, ker (-) refers to the null space.) Thus, for any
vector v, A’Av = 0 and AA’v = 0, whichis AA’ = A’A = 0.

Now, R = exp (A) = [+ A+ 47 + ... Similarly, R = exp (4’).

The rotation face of R is P (the eigenspace corresponding to the nonzero eigenvalues of A), since
exp (A) is the usual rotation on P and identity elsewhere. Similarly, the surface of rotation of R’
is P’. Since P and P’ are orthogonal, the spaces of rotation of R and R’ are perpendicular to each
other.

Thus, when the rotation faces of the skewsymmetric matrices A and A’ generating rotations are
perpendicular to each other, the rotation spaces of the corresponding rotation matrices R’ and R are
also perpendicular to each other.

A.2 MORE EXPERIMENTAL RESULTS

The detailed results of our work on the ScienceQA dataset are shown in Based on the
results, we can observe that compared to 03, our method is more stable and has a better ability to
resist cumulative catastrophic utility loss.
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Table 3: Performance Comparison between our method and other baselines when continually un-
learning biology, physics, chemistry, economics and earth-science in Fictitious Knowledge Gener-
ation. The unlearning effectiveness is measured by the generation accuracy of the unlearning train
data and unlearning test data denoted as S.U. and D.U., CommonsenseQA (C.QA.), OpenbookQA
(0.QA.) respectively. Utility preservation is evaluated by the generation accuracy of Retained Dis-
tribution (R.D.).

Method Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
S.U.l DU.J RD?t CQAT O.QAf|SU| DU| RDt CQAt OQAf|SUJ DUJ RDft CQAT OQAT|
Base | 100 99.24 9261  79.19 832 ]99.66 983 9217 79.192 832 9973 9802 91.82 79.19 832 |
o? 973 274 9215 79.19 83.0 4.19  20.03 9111  79.19 83.0 | 438 2048 9025  79.19 83.0
Ours 0.05 012 925 79.19 83.2 017 245 9175 79.19 83.2 033 613 905 79.19 83.2
Method Unlearning Request 4 Unlearning Request 5

S.U.l DUJ RDt CQAt OQAt|SUJ DUJ RDt CQAT O.QAT|
Base | 99.75 98.23 9134  79.19 832 | 9977 9825 91.0 79.19 832 |

o’ 8.07 2398 90.17 79.19 83.0 118 280  89.52 79.19 83.0
Ours 049 956  90.5 79.19 83.2 098 1029 89.753 79.19 83.2

A.3 LARGE LANGUAGE MODEL USAGE DECLARATION

During this research process, the LLM provided significant assistance in organizing the logic of the
paper and improving the language expression. Here, we express our gratitude for the role that the
LLM played in enhancing the logicality and clarity of this research.

A.4 RESEARCH ON OUR METHOD

Starting from the intrinsic characteris-
tics of the model parameters, we an- Table 4: On the ScienceQA dataset, the parameter © ;4
alyzed the proposed method. Specifi- maintained a stable performance at the 10~ scale in mul-

cally, the magnitude of the learnable pa-  tiple unlearning requests (block 1 in attention layers)
rameter ©p4 in each training round is

shown in The study found that Unlearning Request | Param B Param A
when the parameters Op4 << 1, the

matrix [+ B A always has a correspond- biology 106 107°
ing cognitive rotation space. In the physice 1075 1075
ablation experiments (Table 2)), when chemistry 10-° 107°
we remove the designed LoRA update economics 1076 107°
paradigm, the unlearning effect mea- earth-science 10-6 10-5

sured by D.U. is relatively ideal when
the unlearning request is 1 to 2. How-
ever, when the unlearning request reached 3 or higher, due to the cumulative catastrophic utility
loss, the unlearning performance reflected by D.U. significantly decreased. The core of this method
lies in introducing the Lsk loss, which can constrain the parameters © g 4 to continuously maintain a
small amplitude, thereby maintaining the effectiveness of the cognitive rotation space and ensuring
the continuous efficacy of the method in handling the continuous unlearning. The results shown in
pertain to the queries layer of the attention layers (block 1). The other results generally vary
within the range of 10~ to 10~°.

A.5 HYPERPARAMETER ANALYSIS ON THE TOFU DATASET

The results on TOFU dataset are shown in[Figure 4 We found that the change of /3 shifted slightly to
the right for a short period, but the overall change was still concentrated in a certain area. Therefore,
when designing the distributional shift compensator for TOFU dataset, we also tried to map M (y%)
to the range of 0.2 to 0.6.
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Figure 4: The relationship between the 3 process and the unlearning process. (a) The results of S.U.
on the TOFU dataset. (b) The results of D.U. on the TOFU dataset.

A.6 CALCULATION OF OOD SCORE

We follow the method for obtaining the output of OOD detection as described in 0%. Our method
for calculating the OOD score is as follows:

v W1 TJwpg gj
s @)= (=) S0 (Fapay =) +7- (—%f_gf({ !j: [ .]((i))\ é . ZU;’ }> |
Wi1:1) Wi1:1] 7
(26)

aN alN
1 1 T
f= T E Jop (33?) U= NT E (fw[l:l] (iL'ZU) - Ml) (fw[l:l] (IBZU) — M) , (27
i=1 i=1

here, r = 1000, f,, representing the parameter of layer [. DuU;te 4 Tefers to one of the two subsets

randomly divided from the training dataset DV", which contains a/NY>* samples.

When the T-th re-learning request is completed, each test input x is input into the OOD detection to
calculate the score vector, and the distance between x and the hyper-spherical H' (cf, r') boundary
is obtained using one-class SVM. The final score is:

dyo (2)

s(z)! —¢

-, (28)

7' =0 {C[1 = max(p,p') +min (p, )]}, p = Prix (dgee(2)) 9 = Pryy (23 — dae () ,
(29)

here, ¢! and r! represent the center vector and radius of the hypersphere. Ppi, is the mixed gaussian
distribution function.
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