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ABSTRACT

As Large Language Models (LLMs) become increasingly prevalent, their secu-
rity vulnerabilities have already drawn attention. Machine unlearning is intro-
duced to seek to mitigate these risks by removing the influence of undesirable
data. However, existing methods not only rely on the retained dataset to preserve
model utility, but also suffer from cumulative catastrophic utility loss under con-
tinuous unlearning requests. To solve this dilemma, we propose a novel method,
called Rotation Control Unlearning (RCU), which leverages the rotational salience
weight of RCU to quantify and control the unlearning degree in the continuous un-
learning process. The skew symmetric loss is designed to construct the existence
of the cognitive rotation space, where the changes of rotational angle can simulate
the continuous unlearning process. Furthermore, we design an orthogonal rota-
tion axes regularization to enforce mutually perpendicular rotation directions for
continuous unlearning requests, effectively minimizing interference and address-
ing cumulative catastrophic utility loss. Experiments on multiple datasets confirm
that our method without retained dataset achieves SOTA performance.

1 INTRODUCTION

In recent years, the development of Large Language Models (LLMs) has received widespread at-
tention. With the extensive application of GPT (Achiam et al. (2023)) and other LLMs (Liu et al.
(2024); Touvron et al. (2023)) in academic research and industry (Wang et al. (2024)), concerns
about LLMs have also increased. Among these, security issues regarding information protection
have become particularly prominent. These concerns have motivated researchers to use the machine
unlearning method to remove potentially private (Ortiz-Jimenez et al. (2023)), illegal or toxic data
that may exist in LLMs. Currently, machine unlearning in LLMs (Bourtoule et al. (2021)) is mainly
divided into two paradigms: the method based on parameters (Chen & Yang (2023b); Eldan &
Russinovich (2023); Jia et al. (2024)) and the method based on in-context unlearning (Thaker et al.
(2024); Pan et al. (2020)). The methods based on parameters achieve effective unlearning by max-
imizing the task loss on the unlearning data (Wang et al. (2025a); Hu et al. (2025)). The methods
based on in-context unlearning modify the input prompts of LLM to make them refuse to output the
content that needs to be unlearning (Chen et al. (2025); Yu et al. (2025)). Other methods achieve the
unlearning goal by interfering with the LLM’s representation of the unlearned data (He et al. (2025);
Jiang et al. (2025)).

However, unlearning methods in LLM are often not a one-time operation but a continuous process
in real world. Most of them exist the cumulative catastrophic utility loss (Gao et al. (2025)) when
dealing with continuous unlearning. The cumulative catastrophic utility loss causes a significant
decline in both the LLM’s unlearning capability and utility retention capacity during the continuous
unlearning process as the number of requests increases. At the parameter level, this manifests as
new unlearning requests inducing parameter shift in previously learned ones. Furthermore, they still
require a retained dataset to maintain the model’s utility. This retained dataset consists of a part of
the original training dataset (Bourtoule et al. (2021)). Since LLM require a large amount of data for
training (Wang et al. (2024)), using the retained dataset in continuous unlearning is not feasible (Liu
et al. (2025)).
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The work of o3 (Gao et al. (2025)) proposes to mitigate cumulative catastrophic utility loss by im-
posing orthogonal constraints on LoRA parameters and introduces weights for the LoRA (Hu et al.
(2022)) modules to represent the degree of unlearning. However, this approach suffers from several
significant limitations. Firstly, the effectiveness of its simple orthogonal constraints on LoRA pa-
rameters diminishes as the number of unlearning requests increases, making it difficult to sustainably
alleviate cumulative catastrophic utility loss. Secondly, using LoRA weights to quantify the degree
of unlearning lacks interpretable justification. Finally, the mapping from the Out-Of-Distribution
(OOD) detector outputs to the corresponding weights heavily relies on empirical design, which sub-
stantially increases the complexity and cost of application.

In this work, we propose Rotation Control Unlearning (RCU), a novel unlearning method that ad-
dresses the above challenges. This method is inspired by the theory of Lie group (Gallier (2001))
and re-constructs the LoRA update paradigm through mathematical derivation. It re-expresses the
unlearning update of LLM as rotational operations within a cognitive rotation space. The cognitive
rotation space is defined as a high-dimensional rotation space, which is used to depict the rotational
transformations experienced by the original parameters of LLM during continuous unlearning. This
enables the transformation of the uncontrollable parameter shift into controllable rotational angle
changes, thereby effectively alleviating the cumulative catastrophic utility loss. The specific math-
ematical formulation is elaborated in the methodology. Our approach introduces a skew symmetric
loss in LoRA update paradigm to formulate the unlearning process as rotation operations, with the
rotational angle serving as a precise quantification metric. We introduce an orthogonal rotation axes
loss to enforce perpendicular rotation directions for consecutive unlearning requests, effectively
mitigating cumulative catastrophic utility loss by minimizing inter unlearning request interference.
Furthermore, to enhance compatibility, we design an unlearning alignment loss that guides the OOD
detector to produce representations aligned with our LoRA update paradigm. These representations
then collaborate with the distributional shift compensator to generate rotational salience weights for
auxiliary quantification. Finally, our method is supported by straightforward experimental inter-
pretability and requires significantly fewer trainable parameters than o3.

Specifically, our contributions are outlined as follows:

• We propose the RCU method, which quantifies the unlearning process by leveraging rota-
tional changes in the cognitive rotation space, and introduce the rotational salience weight
to precisely control the degree of unlearning throughout the continuous unlearning process.

• We design the skew symmetric loss to establish the existence of the cognitive rotation space
and the orthogonal rotation axes loss to alleviate cumulative catastrophic utility loss.

• We demonstrate the connection between rotation and unlearning through mathematical
proof and experimental validation.

• Extensive experiments on the ScienceQA and TOFU datasets confirm the effectiveness of
our proposed method without retained dataset.

2 PRELIMINARY

Machine Unlearning in LLMs. The objective of machine unlearning is to safeguard informa-
tion security. Currently, there are two mainstream approaches: parameters-based methods Chen
& Yang (2023b); Eldan & Russinovich (2023); Jia et al. (2024) and in-context unlearning-based
methods. Thaker et al. (2024); Pan et al. (2020) Parameters-based methods iteratively adjust the
LLMs’ internal parameters to minimize the loss function on specific tasks, thereby improving un-
learning performance (Yi et al. (2025); Yang et al. (2025); Bronec & Helcl (2025); Premptis et al.
(2025)). Yi et al. (2025) method employs fine-tuning for rapid learning and induces deliberate model
degradation upon detection of harmful fine-tuning behaviors. Yang et al. (2025) approach utilizes
a reweighting strategy to adjust training sample weights, focusing particularly on data useful for
unlearning. In-context unlearning-based methods modify input prompts to prevent the generation
of undesired content. Yu et al. (2025) method generates tokens that guide forgetting based on the
input query, achieving unlearning without altering model parameters. Additionally, other techniques
exist (Muhamed et al. (2025); Wang et al. (2025b)). For instance, Muhamed et al. (2025)s control
forgetting by manipulating model activations. The He et al. (2025) method disrupts the latent space
of forgotten samples during training to induce chaotic outputs. The Zhao et al. (2025) has achieved
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ideal unlearning by masking out the training signal of TOFU dataset (Maini et al. (2024)) in their
corpus from the data perspective. While existing methods often overlook the challenges of contin-
uous unlearning requests and the associated catastrophic degradation of model utility in real-world
scenarios, Gao et al. (2025) formalizes the concept of continuous machine unlearning and intro-
duces an unlearning framework based on an out-of-distribution detector. Building upon the Gao
et al. (2025) paradigm, our method proposes a more refined LoRA update strategy that enables more
precise quantification of unlearning extent.

Out-Of-Distribution Detection. The current methods of OOD detection include one-class SVM
based methods Erfani et al. (2016), random forest based methods Mihaylov et al. (2018), Gaussian
mixture modeling based methods Laxhammar et al. (2009), and deep learning based OOD detection
methods Yang et al. (2024). At the same time, OOD detection based on deep learning has become the
mainstream in classification tasks. Among them, Zong et al. (2018) is a method suitable for multi-
source time series, which estimates OOD scores by generating low-dimensional representations
through deep autoencoders. Xu et al. (2021) extracts features by pre-trained language model and
then fits one-class SVM for detection. In addition, Zhou et al. (2023) using ensemble learning, Lang
et al. (2022) using pseudo-label, Cao et al. (2024) using outlier exposure, Ouyang et al. (2023) using
prefix adjustment and other methods have achieved good results in OOD detection. Gao et al. (2025)
incorporates the contrastive entropy loss and Masked Language Modeling (MLM) loss (Jian et al.
(2022)), enhances the ability to detect out-of-distribution cases. By studying the unlearning process,
we introduced the unlearning alignment loss, thereby enhancing the compatibility between the OOD
detector and unlearning.
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Figure 1: The overall architecture of our method is shown in the figure. In the training pipeline,
the orthogonal rotation axes loss Lo is applied to the attention layers of the LLMs for training;
simultaneously, the unlearning alignment loss LUa is used to train an OOD detector, whose output
is fed into the distributional shift compensator to generate the rotational salience weight β. In the
inference pipeline, given that the LoRA parameters BA are proportional to the rotation angle θRBA

in the Cognitive Rotation Space RBA. We control the rotation angle θRBA
amplitude by adjusting

the scale of LoRA BA, and use the weight β to dynamically load the parameters that match the
required unlearning degree.

3 METHODOLOGY

Problem Definition. We use the popular causal LLMs, where the input to the LLM is a sequence
of text tokens of variable length. The LLM MΘ, where Θ is the parameter of the LLM, will cal-
culate the probability of each token in the text under the preorder token based on the input. We
set continuous unlearning ploblem as a series of consecutive arriving unlearning requests, each
with NU,t data samples, which can be written as

{
DU,t

}T
t=1

. For the t − th unlearning request

, DU,t =
{
xi||xi ∼ PU,t

X

}NU,t

i=1
, where T is the index of the latest arriving unlearning request, and

the P is the input marginal distribution. In each request, we utilize the input Pt
X and the label dis-

tribution Pt
Y for training. Traditional unlearning methods assume a holdout data set drawn from a

distribution PR,t
Y that is disjoint from the forgetting data set PU,t

X to preserve the performance of the
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model on the original training distribution. The immediate goal of continuous unlearning is:

T∑
t=1

min
Θt

I
(
Mx∼PU,t

X
(x,Θ);M t

x∼PU,t
X

(
x,Θt

))
,

T∑
t=1

max
Θt

I
(
Mx∼PR,t

X
(x,Θ);M t

x∼PR,t
X

(
x,Θt

))
,

(1)

where M t with the parameters Θt represents the target model during and after unlearning on the t−
th unlearning set DU,t, and I (·; ·) computes the mutual information between two random variables.
The model utility preservation on other distributions Po

X different from the unlearning distribution
is another goal of unlearning. This can be expressed as follows:

T∑
t=1

max
Θt

I
(
Mx∼PO

X
(x,Θ);M t

x∼PO
X

(
x,Θt

))
. (2)

3.1 CONTINUOUS UNLEARNING FOR LLM WITH LORA

The continuous unlearning process of LLM inevitably leads to cumulative catastrophic utility loss
(Gao et al. (2025)). The cumulative catastrophic utility loss manifests as a significant decline in
both the LLM’s unlearning capability and its utility retention capability as the number of unlearning
requests increases. At the parameter level, this is reflected in a shift of the parameters corresponding
to previous unlearning requests when the model is trained on new ones. This requires the method to
simultaneously achieve the continuous preservation of its historical unlearning knowledge and the
original utility when handling the current unlearning request.

While existing approaches o3 (Gao et al. (2025)) rely on orthogonal constraints to enforce perpen-
dicularity between parameters of A (W = BA). However, this constraint suffers from inherent
limitations: the introduction of parameter B undermines its effectiveness, and its capability further
diminishes as the number of unlearning requests accumulates, making it inadequate for continuous
unlearning scenarios. Moreover, the o3 empirically assigns weights to LoRA parameters to repre-
sent the degree of unlearning, which is a heuristic design that lacks theoretical grounding and leads
to poor interpretability.

We proposed the RCU to address these challenges. We develop a mathematically-derived approach
with enhanced interpretability for quantifying unlearning process. By constructing a cognitive ro-
tation space wherein LLM parameter updates are formulated as a novel rotational transformation,
the RCU transforms continuous unlearning into rotations in a high-dimensional parameter space,
thereby converting uncontrollable parameter shift into controlled angular rotations and ultimately
alleviating cumulative catastrophic utility loss.

Our analysis in Figure 2 (a)(b) revealed the relationship between different weighting coefficients
β and unlearning updates, demonstrating that the extent of unlearning intensifies with increasing
values of the β.

LoRA Hu et al. (2022) reduces the trainable parameters by introducing two low-rank trainable matri-
ces {A,B}, where WLoRA = BA,WLoRA ∈ RU×V , B ∈ RU×K , A ∈ RK×V , which decomposes
the high-dimensional matrix into a low-rank matrix. The specific update formula is as follows:

W ′ ←W +BA. (3)

LoRA updates inevitably lead to uncontrollable parameter shift. To address this problem, we draw
inspiration from Lie group (Gallier (2001)) to introduce a new update paradigm. This paradigm
redefines parameter updates as rotations within the original parameter space. As rotations are the
rigid transformation (Daniele (2001)), the update via the BA matrices solely governs the change in
the rotation angle. Consequently, the unlearning process is directly driven by changes in this angle,
enabling us to use the rotation angle to precisely quantify the degree of unlearning in LLMs.

Firstly, we assume a cognitive rotation space R. Since R can be viewed as an n-dimensional rotation
matrix, R satisfies the following conditions: The R is an orthogonal matrix. The determinant of R
is 1, so det (R) = 1. Since R directly satisfies the two conditions of SO(n), we have R ∈ SO(n).
From Gallier (2001), we can then conclude that cognitive rotation space R ∈ SO(n) corresponds to
at least one matrix C in the Lie algebra so(n).

4
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However, every element C in the Lie algebra so (n) can be mapped to the R in the Lie group SO (n)
by the exponential map exp (C). From this we obtain the cognitive rotation space R:

R = exp (C) , (4)

here, C is an antisymmetric matrix. Since R = exp (C), we can obtain from Taylor’s Formula:

R = exp (C) = I + C +
C2

2!
+ ... ≈ I + C,C << I. (5)

From Equation 5, we can conclude that for any antisymmetric matrix C, there exists a corresponding
cognitive rotation space RC . Therefore, we construct the skew symmetric loss LSk and impose the
constraint that BA is an antisymmetric matrix:

LSk =
∥∥∥(BA)

T
+BA

∥∥∥2
F
, (6)

here, I is the identity matrix, and ∥·∥2F is the Frobenius norm.

In addition, due to the influence of factors such as the learning rate, BA << I (as summarized in
Table 4 and Figure 6 of Appendix A.6, the specifications for the BA matrix parameters are detailed
there.). Thereby, there exists a cognitive rotation space RBA ≈ I +BA.

We can establish the following LoRA update paradigm:

W ←W +BAW = (I +BA)W, (7)

here, we update the above equation given a set of low-rank parameters {A,B}, where the parameter
matrix W of LLM is frozen.

From Equation 7, we can consider the update of the W as a rotation in the cognitive rotation space
RBA.

After expressing the update of BA as the cognitive rotation space RBA in the parameter space, we
aim to quantify the degree of unlearning of LLM by changing the rotation angle of RBA.

Although we only trained the attention layers, due to the huge parameter size of the large language
model, directly calculating the rotation angle θ of RBA still incurs a significant amount of compu-
tational cost. Here we present our theorem 1.

Theorem 1: For R ∈ Rn×n, when R = exp (C), the rotation angle θ of R is directly proportional
to C. The proof of theorem 1 can be found in the appendix.

From Theorem 1, if we want to change the rotational angle θ of RBA, we only need to make the
corresponding changes to BA. Therefore, we obtain the rotational salience weight β from the OOD
detector and the distributional shift compensator. When β × BA , all the rotation angles θ in RBA

are changed to β × θ. Therefore, we can use the rotation Angle θ to quantify the unlearning degree
of LoRA, and only need to use BA for the calculation.

In addition, for achieving effective unlearning, we utilize preference optimization to update the
model to accommodate random task labels or refuse-based answers such as ”I don’t know”, which
we call y′. For each unlearning we only train the cross-entropy loss using the unlearning dataset of
our current knowledge:

LCE = − 1

NU,t

NU,t∑
i=1

y′
U,t
i logMΘ

(
xU,t
i

)
. (8)

To reduce the interaction between the change of the rotation angle for each unlearning request in
continuous unlearning, we make the rotation axes of each rotation perpendicular to each other. The
rotation axes here refers to the subspace formed by the points that remain stationary under rotation
in the high-dimensional space.

Here, we know that when unlearning request t, the corresponding cognitive rotation space is RBtAt .
Then, from request t− 1 to request t, the relative rotation matrix is△Rt. From this, we can obtain :

△Rt = Rt ·RT
t−1 = (I +BtAt) (I +Bt−1At−1)

T
, (9)

5
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since BA is an antisymmetric matrix, we have:

△Rt = (I +BtAt) (I +Bt−1At−1)
T
= (I +BtAt) (I −Bt−1At−1) (10)

= I +BtAt −Bt−1At−1 −BtAtBt−1At−1 ≈ I +BtAt −Bt−1At−1,

We cannot directly calculate the rotation axes for the calculation because this would consume a large
amount of computing resources and significantly slow down the training speed of the model. Here,
we know from Theorem 2 that when the cognitive rotation space RBt−1At−1

, RBtAt
and Bt−1At−1,

BtAt are mutually perpendicular, their rotation axes must be perpendicular. Therefore, we make the
cognitive rotation space RBt−1At−1

of the (t − 1)-th request and the relative rotation space △R
relative to the t-th request and the (t − 1)-th request mutually perpendicular. This ensures that the
rotation angles of each unlearning request in the cognitive rotation space do not affect each other,
reducing the cumulative catastrophic utility loss generated with continuous unlearning.

Theorem 2: when R = exp (A) and R′ = exp (A′) , A⊥A′, then the rotation axes of R and R′ are
perpendicular to each other. The proof of theorem 2 can be found in the appendix.

We hope that △Rt = I + BtAt − Bt−1At−1 and Rt−1 = I + Bt−1At−1 are perpendicular to
each other, then BtAt − Bt−1At−1 and Bt−1At−1 will also be perpendicular to each other from
Equation 5 and Theorem 2. The orthogonal rotation axes loss are as follows:

Lo = ∥(Wt −Wt−1) ·Wt−1∥2F = ∥(BtAt −Bt−1At−1) · (Bt−1At−1)∥2F , (11)

where Wt−1 = Bt−1At−1 are the parameters of the lora after training on the (t− 1)-th request. The
∥·∥2F is the Frobenius norm.

In summary, the overall loss of our method is as follows:

Loverall = λ1LSk + λ2Lo + λ3LCE , (12)

here,we set λ1 = 0.1,λ2 = 0.1 and λ3 = 1 on the ScienceQA dataset. We set λ1 = 0.01,λ2 = 0.5
and λ3 = 1 on the TOFU dataset.

3.2 UNLEARNED KNOWLEDGE DETECTION

OOD Detection. Based on o3, we turn the unlearned knowledge detection task into an OOD task
by treating the unlearned dataset as In-Distribution (ID) data, and leverage a scoring mechanism to
quantify the extent of unlearning.

We propose the OOD detection loss, which consists of three parts. We use the contrastive entropy
loss and Masked Language Modeling (MLM) loss (Gao et al. (2025)). As shown in Figure 2, the
updates of RCU exhibit an uneven characteristic, where the feature always involves continuous
updates within a very small range of rotation angle changes. Given this characteristic, in order to
make the output of OOD detection better align with the update pattern of RCU, we introduced the
unlearning alignment loss LUa. The LUa are as follows:

LUa =
1

d2

∥∥∥∥∥ ẐT
i Ẑi

n− 1
− I

∥∥∥∥∥
2

F

, where Ẑi =
Zi

∥Zi∥2
, (13)

where ∥·∥2 is L2 norm. The Zi is the average pooled feature representation from layer i of the
backbone network. The ∥·∥2F denotes the Frobenius norm.

In addition, the contrastive entropy LCEL also starts with the augmentation view generation. The
LCEL (Gao et al. (2025)) leverage random masking to generate the first view type. For a particular
text instance x with tokens of length n, we randomly select p% (p = 15 in our implementation)
tokens and replace them with the tokens of [MASK]. The x∗ is the instance with the random mask-
ing. For the second contrastive view, we make use of a key encoder FΩkey , which is initialized
from the original OOD module backbone FΩ that is a transformer consisting of L attention layers
: F := fω1 ◦ · · · fωl

◦ · · · fωL
. Then we input the original text instance x and generate the second

6
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view from FΩkey . The LCEL is as follow:

LCEL = −
NB∑
i=1

L∑
l=1

NB∑
j=1

∆(i, l, j) log(∆(i, l, j)), (14)

where ∆(i, l, j) =
exp

(
fω[1:l]

(x∗
i ) · fωkey

[1:l]
(xj)

)
∑NB

k=1 exp
(
fω[1:l]

(x∗
i ) · fωkey

[1:l]
(xk)

) ,
here N is the sample quantity of a mini-batch. And the fω[1:l]

(x∗
i ) is the token averaging repre-

sentation of the l-th layer. We use MLM loss LMLM (Jian et al. (2022)) to improve the language
generation of our model:

LMLM = − 1

NB

NB∑
i=1

y∗i logFΩ (x∗
i ), (15)

where y∗ is the random token masking label. Here, the LCEL focuses on the relative relationship of
sample pairs. The LMLM boosts the representation power of the generated language.

The final loss LOOD can be:

LOOD = LCEL + LMLM + LUa. (16)

Distributional Shift Compensator. We follow the method for obtaining the output of OOD detec-
tion as described in o3. We utilized the Mahalanobis distance and the distance based on the maxi-
mum instance cosine similarity. Finally, we calculated the combined score γt. For the calculation
of the OOD score γt, please refer to the appendix.

After we get combined score γt, we need to map the γt into an rotational salience weight β. Here, we
hope that the change of β can conform to the unlearning process of the cognitive rotation space RBA.
However, as the unlearning learning proceeds, we find that the performance of the update based on
RCU is uneven. As shown in the Figure 2 (a)(b), the model does not learn unlearning knowledge
before β = 0.3 on the ScienceQA dataset. At β = 0.3 to β = 0.5, the unlearned knowledge is
gradually learned, while at β = 0.5 to β = 1, the model has fully learned the unlearned knowledge.
On the TOFU dataset, the range of knowledge that the model learns for unlearning is approximately
between β = 0.2 and β = 0.6. The specific results can be found in the appendix. This gives us the
following relation:

β =

 0.45 Γ2 < γt ≤ 1,
M (γt) Γ1 < γt ≤ Γ2,

0 γt ≤ Γ1,
(17)

the Γ1 and Γ3 are thresholds, which Γ1 = 1e−80, Γ2 = 0.1 on the ScienceQA dataset and Γ1 = 0.2,
Γ2 = 1 on the TOFU dataset. TheM (γt) on the ScienceQA dataset is 0.35+(log10 γ

t + 80) /790.
TheM (γt) on the TOFU dataset is 0.35 + ((γt − 0.2) /0.8) · 0.25.

Finally, for each input x of the t-th unlearning request, the corresponding parameters W t
x can be

expressed as:

W t
x = (I + β ·BA)W. (18)

4 EXPERIMENTS

4.1 DATASETS

We conducted experiments on two tasks: question answering and fictional knowledge generation.
We have divided the question-answering task into 5 consecutive sub-tasks, and the fictional knowl-
edge generation has been divided into 3 consecutive sub-tasks. The detailed introduction of the
datasets is as follows:

Question Answeing. We use ScienceQA (Lu et al. (2022)) as the question and answer dataset.
This dataset consists of 6,508 training samples and 2,224 testing samples. We selected five of
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these areas as the continuous unlearning requests, namely biology, physics, chemistry, economics,
and earth-science. We utilized the CommonsenseQA (Talmor et al. (2018)) as the utility dataset,
which contained 9,740 training samples and 1,221 validation samples, to evaluate the commonsense
reasoning ability of LLMs. The OpenbookQA (Taori et al. (2023)) can assess the understanding
ability of books. The training set contains 4,957 samples, the validation set includes 500 samples,
and the test set consists of 500 samples.

Fictitious Knowledge Generation. We conducted a test on the generation of fictional knowledge
using the TOFU dataset (Maini et al. (2024)). The TOFU dataset contains questions about fictional
authors synthesized by GPT-4. The three unlearning sets ’foget01’, ’foget05’, and ’foget10’ respec-
tively represent random selection ratios of 1%, 5%, and 10% of the authors. The authors in each
unlearning set are mutually exclusive. Additionally, we also utilized the data related to real-word
authors and world facts in this dataset to test the LLMs’ ability to maintain its effectiveness.

4.2 EXPERIMENTAL SETUP

Table 1: Performance Comparison between our method and other baselines when continually un-
learning TOFU-forget01, -forget05, and -forget10 in Fictitious Knowledge Generation. The * rep-
resents the results we achieved in our own experimental environment.

Method Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
S.U.↓ D.U.↓ R.D.↑ R.A.↑ W.F.↑ S.U.↓ D.U.↓ R.D.↑ R.A.↑ W.F.↑ S.U.↓ D.U.↓ R.D.↑ R.A.↑ W.F.↑

Base * 85.0 90.0 85.8 89.0 87.0 87.3 89.3 85.8 89.0 87.0 85.3 90.0 85.8 89.0 87.0

GradASC 75.0 85.0 71.0 86.0 82.1 17.6 23.1 19.0 0 0 17.1 14.2 19.0 0 0
GradDif 78.1 84.0 81.9 86.7 83.5 62.5 70.0 70.4 65.7 77.9 16.5 15.2 19.0 0 0

EUL 84.1 86.3 86.1 86.7 87.1 84.4 90.3 85.8 88.0 85.5 80.1 83.5 83.4 86.3 83.5
PO * 18.75 25.0 77.0 85.0 81.0 31.88 52.5 79.0 86.0 79.0 43.13 52.5 77.75 78.0 80.0
NPO 68.8 75.0 83.6 89.0 81.8 76.3 84.2 83.2 87.7 84.1 77.6 79.2 81.4 87.3 82.9

SOGD 43.7 76.0 80.3 85.3 83.4 22.8 24.0 79.0 81.3 82.6 17.4 21.7 82.3 77.0 82.1
SOPO * 31.25 37.5 83.7 85.0 83.0 38.13 45.0 80.0 87.0 82.0 36.88 43.75 79.5 85.0 82.0
o3 * 15.66 14.67 85.25 89.0 86.3 22.49 20.17 85.5 89.0 86.3 26.66 23.56 85.25 89.0 86.3

Ours 9.37 12.5 85.57 89.0 87.0 12.5 12.5 85.61 89.0 87.0 20.6 17.5 85.6 89.0 87.0

Evaluation Metrics. We continue to use the o3 (Gao et al. (2025)) key evaluation indicators. Here,
the Sample-level Unlearning (S.U.) represents the performance of the test LLMs on the unlearning
training set when there is a unlearning request. The Distribution-level Unlearning (D.U.) indicates
the performance of the test LLMs on the unlearning test set when there is the unlearning request. In
addition, we use three indicators to measure the performance of the LLMs in maintaining utility. The
Retained Distribution (R.D.) represents the distribution that is most sensitive to unlearning requests.
The CommonsenseQA (C.QA.) and QpenbookQA (O.QA.) are datasets used on the scienceQA
dataset to measure the utility of each request. We use the accuracy of these two datasets to measure
their performance in QA. On the TOFU dataset, we use the utility datasets provided by the two
datasets, namely Real-word Authors (R.A.) and Word Fact (W.F.), to measure their performance in
Fictitious Knowledge Generation.

Compared Baseline. We compared a series of the most advanced LLM unlearning methods:
GradAsc Golatkar et al. (2020), GradDif Yao et al. (2024), EUL Chen & Yang (2023a), PO El-
dan & Russinovich (2023), NPO Zhang et al. (2024), SOGD Jia et al. (2024), SOPO Jia et al. (2024)
and o3 Gao et al. (2025). The base refers to the result obtained directly through the LLM testing.

Implementation Details. We use LLaMA2-7b (Touvron et al. (2023)) as the target model. The
detection backbone is Pseudo-Roberta-Large (Liu et al. (2019)). For the TOFU dataset, the learning
rate is 2e-4, and the number of epoch is 10. For the ScienceQA dataset, the batch size is 128, the
number of epoch is 15, and the learning rate is 3e-4. In the inference pipeline of ScienceQA, the max
batch size is 24. The LoRA ranks for both datasets are 8. Our method only fine-tunes the attention
layers in LLM. We conducted our experiments on two NVIDIA RTX A6000.

4.3 EXPERIMENTAL RESULTS

Question Answering. The results of our method are shown in appendix A.8 and Figure 3. We
compared base, PO, SOPO, o3 and our results. Some detailed results can be found in the appendix.
Our method achieved the same results as the base method (C.QA. and O.QA.). The results of the
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(a) (b) (c)

Figure 2: Experimental results on the ScienceQA dataset. (a) The relationship between the β (β is
proportional to the rotation angle) and unlearning processes (S.U.). (b) The relationship between the
β (β is proportional to the rotation angle) and unlearning processes (D.U.). (c) The results of U2R
on the TOFU dataset.

R.D. were also very similar to those of the base method. However, our method performed much
better than the others in the S.U. and D.U. indicators. Compared with the most advanced method
o3, the S.U. decreased by 9.68%, 4.02%, 4.05%, 7.58% and 10.82% respectively on five requests.
The D.U. compared to the most advanced method o3, on average, decreased by 17.67% across five
requests. In addition, the number of training parameters of our method is much smaller than that of
o3.

Fictitious Knowledge Generation. Table 1 presents the experimental results of our method on the
TOFU dataset. Based on the results, we found that our method can effectively enhance the LLMs’
ability to unlearning (D.U. and S.U.). Compared with the currently best continuous unlearning
method o3, the result on the S.U. decreased by 6.29%, 9.99% and 6.06%. the result on the D.U.
decreased by 2.17%, 7.67% and 6.06%. Furthermore, in terms of the stability of the LLMs’ utility,
the performance level of our method is comparable to the current best results. We observed that as
the number of unlearning requests increased, the unlearning accuracy on the test set (D.U.) of most
methods showed significant fluctuations or increasing. This phenomenon indicates that catastrophic
utility loss continues to accumulate, and the LLMs’ stability is affected. In contrast, our method not
only effectively mitigates such utility losses but also significantly improves the performance stability
of LLMs during the continuous unlearning process.

In two datasets, o3 has 19.99 M trainable parameters, compared to our method’s 8.39 M. The re-
quired number of training parameters is significantly less than that of o3. The number of parameters
that need to be updated in our method is much smaller than that in o3.

Furthermore, we follow the Unlearning-Utility Ratio (U2R) in o3.

U2R =
Acc0S.U. +Acc0D.U. −AccTS.U. −AccTD.U.

Acc0R.D. +Acc0U.1. +Acc0U.2. −AccTR.D. −AccTU.1. −AccTU.2.

, (19)

where the Acc denotes Accuracy, the U.1 represents C.QA or R.A., the U.2 represents O.QA or
W.F., and the T denotes the unlearning request. The result on the TOFU dataset is shown in Figure 2
(c). Our method has demonstrated significant advantages in both unlearning and utility retention.
Furthermore, the results on the ScienceQA dataset can be found in the Appendix A.2.

4.4 THE RELATIONSHIP BETWEEN ROTATION AND UNLEARNING

In Figure 2 (a) and Figure 2 (b), we have presented the changes about β, along with the experi-
mental results for each unlearning request. Based on the results on the ScienceQA dataset, we can
observe that when β is within the range of 0.15 to 0.45, the model rapidly undergoes the process
of unlearning. However, when β is less than 0.15, the model does not forget the knowledge. And
when β is greater than 0.45, the model has achieved complete forgetting and no longer continues to
unlearning. The above experimental results indicate that the unlearning process of RCU is achieved
within a very small rotation angle change range in the cognitive rotation space. Therefore, when
designing the OOD detector and the distributional shift compensator, we must also ensure that the
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(a) (b) (c)

Figure 3: The comparison results with other methods on the ScienceQA dataset. (a) The results of
S.U.. (b) The results of D.U.. (c) The results of R.D..

rotational salience weights they output have a relatively concentrated distribution to match the above
characteristics. The β changes regarding TOFU dataset are presented in the appendix.

4.5 ABLATION STUDY

The results of our ablation experiments are shown in Table 2. Here, we aim to focus more on the
unlearning process rather than the OOD process. Therefore, we consider the impact of LUa on the
unlearning performance rather than on the OOD performance. Based on the results, we found that
LSk is the main influencing factor for the unlearning performance. And the LoRA update Paradigm
(RC-LoRA in Table 2), LSk and the Lo are three key factors for mitigating cumulative catastrophic
utility loss in continuous unlearning. The results of the ablation experiment proved the effectiveness
of our method.

Table 2: The ablation experiment results on the ScienceQA dataset.The RC-LoRA represents our
LoRA update paradigm.

Method Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑ S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑ S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑

w/o Lo 0.54 0.68 89.01 79.19 83.09 0.65 4.74 88.02 79.19 83.09 0.78 8.98 88.22 79.19 83.09
w/o LSk 99.75 98.99 90.16 79.19 83.09 99.51 98.01 89.18 79.19 83.09 99.51 98.04 88.44 79.19 83.09

w/o RC-LoRA 0.12 1.35 90.51 79.19 82.39 0.58 4.24 91.11 79.19 82.39 0.99 22.45 90.68 79.19 82.39
w/o LSk+RC-LoRA 100.00 99.24 89.16 79.19 83.09 99.52 98.14 88.25 79.19 83.09 99.62 98.53 87.44 79.19 83.09

w/o LUa 1.27 3.44 87.01 79.02 81.35 2.77 4.85 88.08 79.02 81.35 3.11 8.23 87.62 79.02 81.35

Ours 0.05 0.12 92.5 79.19 83.2 0.17 2.45 91.75 79.19 83.2 0.33 6.13 90.5 79.19 83.2

Method Unlearning Request 4 Unlearning Request 5
S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑ S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑

w/o Lo 1.24 11.58 88.06 79.19 83.09 2.41 16.85 87.95 79.19 83.09
w/o LSk 99.75 98.04 88.20 79.19 83.09 99.75 98.04 87.95 79.19 83.09

w/o RC-LoRA 1.03 30.68 89.43 79.19 83.09 2.46 31.85 90.00 79.19 83.09
w/o LSk+RC-LoRA 99.85 98.53 87.2 79.19 83.09 99.85 98.28 86.45 79.19 83.09

w/o LUa 9.19 11.07 87.33 79.02 81.35 13.65 15.21 86.93 79.02 81.35

Ours 0.49 9.56 90.5 79.19 83.2 0.98 10.29 89.753 79.19 83.2

5 CONCLUSION

Existing LLM unlearning methods are vulnerable not only to cumulative catastrophic utility loss
from continuous unlearning requests, but also to a fundamental limitation in practicality owing to
their heavy reliance on the retained dataset. To overcome this limitation, we introduce RCU, a retain-
free approach that formulates LoRA updates as rotations within a specially constructed cognitive ro-
tation space. This formulation makes the rotational angle updated by LoRA the sole variable, which
is strongly correlated with the degree of unlearning. Consequently, the unlearning process can be
directly quantified by corresponding changes in the rotational angle. Furthermore, by analyzing the
update dynamics during unlearning, we propose a rotational salience weight to achieve precise and
continuous control over the unlearning process. Our method is supported by theoretical guarantees,
and we rigorously establish its efficacy through a mathematical analysis. Extensive experiments
demonstrate that RCU achieves superior unlearning effectiveness while maintaining model utility
on multiple datasets.
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A APPENDIX

This Appendix includes additional details for the our paper including the following aspects:

• A.1: The proofs of the theorem 1 and theorem 2.

• A.2: Detailed experimental results on the ScienceQA dataset.

• A.3: Large Language Model usage declaration.

• A.4: The experimental results on the TOFU dataset showing the relationship between β and the
unlearning process.

• A.5: The detailed calculation steps of the OOD Score.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• A.6: An in-depth study on why our method is effective.

• A.7: Experimental results regarding the hyperparameter λ

• A.8: Computation overhead analysis.

• A.9: The comparison results of the Truth Ratio on the TOFU dataset.

A.1 PROOFS OF THE THEOREMS.

Theorem 1: For R ∈ Rn×n, when R = exp (C), the rotation angle θ of R is directly proportional
to C.

Proof 1: It is known that R ∈ SO (n) is an n-dimensional rotation matrix (n > 3) and R = exp (C)
, where C is an antisymmetric matrix. If the rotation angle of R = exp (C) is θ , then the rotation
Angle of exp (kC) is kθ.

Due to R ∈ SO (n), there exist orthogonal matrices Q such that:

R = Q · diag (1, ..., 1.R (θ1) , ..., R (θm)) ·QT , (20)

here, R =

[
cos θj − sin θj
sin θj cos θj

]
is Two-dimensional rotation matrix (the rotation angle is θj ), the rest

of the eigenvalues are 1. The m = [n/2].

The antisymmetric matrix C can be similarly block-diagonalized as follows:

C = Q · diag (0, ..., 0, B (θ1) , ..., B (θm)) ·QT , (21)

where B =

[
0 −θj
θj 0

]
. exp (B (θj)) = R (θj).

If C ′ = kC ,we can gather:

C ′ = Q · diag (0, ..., 0, B (θ1) , ..., B (θm)) ·QT , (22)
since B is linear, B (kθj) = kB (θj). Then:

exp (kC) = exp (C ′) = Q · exp (diag (0, ..., 0, B (kθ1) , ..., B (kθm))) ·QT (23)

= Q · diag (1, ..., 1.B (kθ1) , ..., B (kθm)) ·QT .

And the exp (B (kθj)) is as follow:

exp (B (kθj)) =

[
cos (kθj) − sin (kθj)
sin (kθj) cos (kθj)

]
= R (kθj) . (24)

Due to the Equation 25 and Equation 24, we can get as follow:

exp (kC) = Q · diag (0, ..., 0, R (kθ1) , ..., R (kθm)) ·QT , (25)
here means the rotation angle of exp (kC) are kθ1, ..., kθm.

Theorem 2: when R = exp (A) and R′ = exp (A′) , A⊥A′, then the rotation axes of R and R′ are
perpendicular to each other.

Proof 2: Let A and A′ be skew-symmetric matrices with their rotation faces P and P ′, respectively.
Assume that P and P ′ are orthogonal to each other (A and A′ are perpendicular). Since P⊥P ′,
there are P ⊆ ker (A′) and P ′ ⊆ ker (A). (Here, ker (·) refers to the null space.) Thus, for any
vector v, A′Av = 0 and AA′v = 0 , which is AA′ = A′A = 0.

Now, R = exp (A) = I +A+ A2

2! + .... Similarly, R′ = exp (A′).

The rotation face of R is P (the eigenspace corresponding to the nonzero eigenvalues of A), since
exp (A) is the usual rotation on P and identity elsewhere. Similarly, the surface of rotation of R′

is P ′. Since P and P ′ are orthogonal, the spaces of rotation of R and R′ are perpendicular to each
other.

Thus, when the rotation faces of the skewsymmetric matrices A and A′ generating rotations are
perpendicular to each other, the rotation spaces of the corresponding rotation matrices R′ and R are
also perpendicular to each other.
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(a) (b)

Figure 4: Experimental results on the ScienceQA dataset. (a) The results of C.QA.. (b)The results
of O.QA..

A.2 MORE EXPERIMENTAL RESULTS

The detailed results of our work on the ScienceQA dataset are shown in Table 3. Based on the
results, we can observe that compared to o3, our method is more stable and has a better ability to
resist cumulative catastrophic utility loss. Here, the U2R of our method is 65.79, and the U2R of
the other method is 48.46.

Table 3: Performance Comparison between our method and other baselines when continually un-
learning biology, physics, chemistry, economics and earth-science in Fictitious Knowledge Gener-
ation. The unlearning effectiveness is measured by the generation accuracy of the unlearning train
data and unlearning test data denoted as S.U. and D.U., CommonsenseQA (C.QA.), OpenbookQA
(O.QA.) respectively. Utility preservation is evaluated by the generation accuracy of Retained Dis-
tribution (R.D.). The * represents the results we achieved in our own experimental environment.

Method Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑ S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑ S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑

Base * 100 99.24 92.61 79.19 83.2 99.66 98.3 92.17 79.192 83.2 99.73 98.02 91.82 79.19 83.2

o3 * 9.73 27.4 92.15 79.19 83.0 4.19 20.03 91.11 79.19 83.0 4.38 20.48 90.25 79.19 83.0
Ours 0.05 0.12 92.5 79.19 83.2 0.17 2.45 91.75 79.19 83.2 0.33 6.13 90.5 79.19 83.2

Method Unlearning Request 4 Unlearning Request 5
S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑ S.U.↓ D.U.↓ R.D.↑ C.QA.↑ O.QA.↑

Base 99.75 98.23 91.34 79.19 83.2 99.77 98.25 91.0 79.19 83.2

o3 8.07 23.98 90.17 79.19 83.0 11.8 28.0 89.52 79.19 83.0
Ours 0.49 9.56 90.5 79.19 83.2 0.98 10.29 89.753 79.19 83.2

The specific results are shown in Figure 4.

A.3 LARGE LANGUAGE MODEL USAGE DECLARATION

During this research process, the LLM provided significant assistance in organizing the logic of the
paper and improving the language expression. Here, we express our gratitude for the role that the
LLM played in enhancing the logicality and clarity of this research.

A.4 HYPERPARAMETER ANALYSIS ON THE TOFU DATASET

The results on TOFU dataset are shown in Figure 5. We found that the change of β shifted slightly to
the right for a short period, but the overall change was still concentrated in a certain area. Therefore,
when designing the distributional shift compensator for TOFU dataset, we also tried to mapM (γt)
to the range of 0.2 to 0.6.
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(a) (b)

Figure 5: The relationship between the β process and the unlearning process. (a) The results of S.U.
on the TOFU dataset. (b) The results of D.U. on the TOFU dataset.

A.5 CALCULATION OF OOD SCORE

We follow the method for obtaining the output of OOD detection as described in o3. Our method
for calculating the OOD score is as follows:

s (x)l =
(
fw[1:l] − µl

)T ∑−1
l

(
fw[1:l] − µl

)
+ γ ·

(
− αNU

max
i=1

{
fw[1:l]

(x) · fw[1:l]

(
xU
i

)∣∣fw[1:l]
(x)
∣∣ ∣∣fw[1:l]

(
xU
i

)∣∣
})

,

(26)

µl =
1

αNU

αNU∑
i=1

fω[1:l]

(
xU
i

)
,Σl =

1

αNU

αNU∑
i=1

(
fω[1:l]

(
xU
i

)
− µl

) (
fω[1:l]

(
xU
i

)
− µl

)⊤
, (27)

here, r = 1000, fwl
representing the parameter of layer l. DU,t

used refers to one of the two subsets
randomly divided from the training dataset DU,t, which contains αNU,t samples.

When the T -th re-learning request is completed, each test input x is input into the OOD detection to
calculate the score vector, and the distance between x and the hyper-spherical Ht (ct, rt) boundary
is obtained using one-class SVM. The final score is:

dH⊔ (x) =
∣∣∣s (x)t − ct

∣∣∣− rt, (28)

γt = δ {ζ [1−max (p, p′) + min (p, p′)]} , p = Pt
mix ( dHt(x)) , p′ = Pt

mix

(
2 d0Ht − dHt(x)

)
,

(29)

here, ct and rt represent the center vector and radius of the hypersphere. Pmix is the mixed gaussian
distribution function.

A.6 RESEARCH ON OUR METHOD

Table 4: On the ScienceQA dataset, the parameter ΘBA

maintained a stable performance at the 10−6 scale in mul-
tiple unlearning requests (block 1 in attention layers)

Unlearning Request Param B Param A

biology 10−6 10−5

physics 10−5 10−5

chemistry 10−5 10−5

economics 10−6 10−5

earth-science 10−6 10−5

Starting from the intrinsic characteris-
tics of the model parameters, we an-
alyzed the proposed method. Specifi-
cally, the magnitude of the learnable pa-
rameter ΘBA in each training round is
shown in Table 4. The study found that
when the parameters ΘBA << 1, the
matrix I+BA always has a correspond-
ing cognitive rotation space. In the
ablation experiments (Table 2), when
we remove the designed LoRA update
paradigm, the unlearning effect mea-
sured by D.U. is relatively ideal when
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the unlearning request is 1 to 2. How-
ever, when the unlearning request reached 3 or higher, due to the cumulative catastrophic utility
loss, the unlearning performance reflected by D.U. significantly decreased. The core of this method
lies in introducing the Lsk loss, which can constrain the parameters ΘBA to continuously maintain a
small amplitude, thereby maintaining the effectiveness of the cognitive rotation space and ensuring
the continuous efficacy of the method in handling the continuous unlearning. The results shown in
Table 4 pertain to the queries layer of the attention layers (block 1). The other results generally vary
within the range of 10−6 to 10−5.

Furthermore, Figure 6 (a)(b) present the evolution of parameters ΘA and ΘB throughout the experi-
ment. The results indicate that the magnitudes of both ΘA and ΘB remain significantly smaller than
those of parameter I during the entire training process.

(a) (b)

Figure 6: The results of 5 continuous unlearning processes on the ScienceQA dataset. (a) The
changes in the ΘA. (b) The changes in the ΘB .

A.7 HYPERPARAMETER ANALYSIS

We conducted a comprehensive hyperparameter analysis on λ1, λ2, and λ3 across two datasets. The
results, presented in Figure 7 and Figure 8, demonstrate that our chosen hyperparameter configura-
tion consistently achieves optimal performance.

A.8 COMPUTATION OVERHEAD ANALYSIS.

During the reasoning process, the computational cost for LLM to update using the lora update
paradigm proposed by us is 45.10 GFLOPs, the computational cost for OOD Detection is 709
MFLOPs, and the computational cost for the Distributional Shift Compensator is 13255 MFLOPs.
The total computational cost is 59.064 GFLOPs. In addition, our method requires less storage space.
The storage space required by lora in o3 is 39MB, while our method only requires 16MB, reducing
the additional storage space requirement by 58%.

A.9 THE COMPARISON RESULTS OF THE EVALUATION INDICATORS ON THE TOFU DATASET.

We choose the Truth Ratio and ROUGE-L as the indicators for evaluating the utility on the TOFU
dataset.

The results of the Truth Ratio (Maini et al. (2024)) are presented in Table 5. From these results, it
can be seen that our method is superior to the comparison methods. The formula for the Truth Ratio
is as shown in Equation 30.

Rtruth =

1
Apert

∑
â∈Apert

P (â | q)1/|â|

P (ã | q)1/|ã|
, (30)

where ã is a paraphrased version of the correct original answer a, ã ∈ Apert are deliberately per-
turbed (incorrect) answers derived from ã, and |ã| denotes the number of tokens in ã.

We compute the ROUGE-L recall score (Maini et al. (2024)), which acts as a surrogate for accuracy
on the question answering task, as it accounts for the output phrasing to be slightly different than

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Experimental results on the ScienceQA dataset. The left column shows the results of S.U.,
the middle column shows the results of D.U., and the right column shows the results of R.D.. (a) (b)
(c)The result of the hyperparameter λ1. (d) (e) (f)The result of the hyperparameter λ2(S.U.). (g) (h)
(i)The result of the hyperparameter λ3(S.U.).

Table 5: The results here are all the Truth Ratio (Maini et al. (2024)) corresponding to the aforemen-
tioned indicators.

Method Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
Truth Ratio S.U.↑ D.U.↑ R.D.↓ R.A.↓ W.F.↓ S.U.↑ D.U.↑ R.D.↓ R.A.↓ W.F.↓ S.U.↑ D.U.↑ R.D.↓ R.A.↓ W.F.↓

o3 0.74 0.66 0.57 0.54 1.54 0.65 0.65 0.57 0.54 1.54 0.66 0.65 0.57 0.54 1.54

Ours 1.00 1.11 0.56 0.54 1.22 0.99 0.97 0.56 0.54 1.22 0.97 1.01 0.56 0.54 1.22

the ground truth. The results of the ROUGE-L (Maini et al. (2024)) are presented in Table 6. From
these results, it can be seen that our method is superior to the comparison methods.

Table 6: The results here are all the ROUGE-L (Maini et al. (2024)) corresponding to the aforemen-
tioned indicators.

Method Unlearning Request 1 Unlearning Request 2 Unlearning Request 3
ROUGE-L S.U.↓ D.U.↓ R.D.↑ R.A.↑ W.F.↑ S.U.↓ D.U.↓ R.D.↑ R.A.↑ W.F.↑ S.U.↓ D.U.↓ R.D.↑ R.A.↑ W.F.↑

o3 0.0771 0.0627 0.9675 0.9330 0.8960 0.1939 0.1255 0.9677 0.9330 0.8960 0.1843 0.5189 0.9675 0.9330 0.8960

Ours 0.0425 0.0365 0.9675 0.9330 0.9083 0.1333 0.1044 0.9683 0.9330 0.9083 0.1322 0.1062 0.9683 0.9330 0.9083
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Experimental results on the TOFU dataset. The left column shows the results of S.U., the
middle column shows the results of D.U., and the right column shows the results of R.D.. (a) (b)
(c)The result of the hyperparameter λ1. (d) (e) (f)The result of the hyperparameter λ2(S.U.). (g) (h)
(i)The result of the hyperparameter λ3(S.U.).
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