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ABSTRACT

Function regression/approximation is a fundamental application of machine learn-
ing. Neural networks (NNs) can be easily trained for function regression using a
sufficient number of neurons and epochs. The forward-forward learning algo-
rithm is a novel approach for training neural networks without backpropagation,
and is well suited for implementation in neuromorphic computing and physical
analogs for neural networks. To the best of the authors’ knowledge, the Forward
Forward paradigm of training and inferencing NNs is currently only restricted to
classification tasks. This paper introduces a new methodology for approximating
functions (function regression) using the Forward-Forward algorithm. The pa-
per further evaluates the developed methodology on univariate and multivariate
functions and benchmarks the framework on open source regression data, while
comparing its performance to other regression techniques.

1 INTRODUCTION

The computational demands associated with the training and inference of AI models result in sub-
stantial energy consumption. As the adoption of AI continues to grow exponentially, the associ-
ated escalating energy requirement also poses significant challenges, necessitating the development
of energy-efficient alternatives for computational processes (Mehonic & Kenyon, 2022). Brain-
inspired (Neuromorphic) computing paradigms are designed to mimic the brain’s computing pro-
cesses, in order to translate the energy efficiency of the neural connections in the brain to computing
tasks. Other analog or physical systems can also be considered useful tools for developing energy-
efficient solutions for computing (Zolfagharinejad et al., 2024). An example of a physical computing
device would be the memristor called “dot-product engine” (Li et al., 2023; Zhang et al., 2020; Chen
et al., 2023). It serves as a physical analog for matrix-vector multiplication and performs the mul-
tiplication in a single step instead of the usual n2 steps in traditional computing methods (Sharma
et al., 2024).

Neural Networks (NNs) are fundamental building blocks to deep learning frameworks. Their imple-
mentation on classical digital computers is energy-intensive. To address this high energy consump-
tion, recent trends have focused on exploring physical systems that may serve as analogs to digital
neural networks (Wright et al., 2022). These are popularly called physical neural networks. Physical
neural networks use physical systems or materials to emulate the behavior of neurons and synapses.
Neural networks use complex activation functions to add non-linearity to the system. Similarly,
these physical systems use physical phenomena that help surrogate these activation functions and
layer-wise computations. Recent works have demonstrated that using physical systems for neural
network computations is not only highly energy-efficient but also achieves above 90% classification
accuracy (Wright et al., 2022; Momeni et al., 2023a).

Training of neural networks is popularly done using the backpropagation algorithm (Linnainmaa,
1970; 1976; Griewank, 2012). The backpropagation (BP) algorithm uses supervised learning to op-
timize the loss function using methods like stochastic gradient descent. However, the BP algorithm
is highly energy inefficient because of the need for forward and backward passes for each step of
the optimization. The backward pass calculates the gradient of the loss function with respect to
each parameter in the network. This requires a lot of energy and time, which only increases with
increase in depth and complexity of the NN architecture. In addition, backpropagation-based param-
eter learning is not suitable for multi-layered physical neural networks which are unidirectional in
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time. Earlier works implementing physical neural networks (Wright et al., 2022) used digital twins
of the physical system to achieve backpropagation during training. However, digital twins add to the
energy cost during the training process and are not accurately available for many physical systems.
Therefore, the ability to train NNs without BP has the potential to significantly improve the energy
efficiency of the aforementioned physical NNs.

In 2022, Hinton (2022) proposed a new algorithm called the Forward-Forward (FF) algorithm, which
uses only a forward pass to train the neural networks. This neuromorphic algorithm is based on the
idea of learning by comparing correctly labeled and incorrectly labeled data. As the FF algorithm is
unidirectional, it can be used to train physical neural networks. Layer-wise training in this algorithm
trains each layer of the network to correctly distinguish between correctly labeled and incorrectly
labeled data points. Subsequent to the introduction of the FF algorithm, various researchers have
extended it to various applications like convolutional neural networks (Scodellaro et al., 2023), re-
current neural networks (Kag & Saligrama, 2021), etc. Some have also developed variations of
this algorithm to enhance it for better accuracy (Wu et al., 2024; Lorberbom et al., 2024). Some
researchers have also successfully implemented the FF approach to train neural networks using
physical systems combined with digital linear layers (Momeni et al., 2023a). The FF Algorithm is
designed to solve classification problems and to the best of the authors’ knowledge all of the prior
works only address classification tasks. In this work, we seek to extend the FF algorithm for the
function regression task. In section 2 we discuss the theoretical background of the FF algorithm and
how it can be extended to regression tasks, with section 3 discussing the 1-D, 2-D, 3-D function
benchmarks, and three open source dataset benchmarks for validating the proposed FF-regression
algorithm, and section 4 concluding the manuscript.

2 THEORETICAL BACKGROUND

2.1 FORWARD FORWARD TRAINING

The Forward-Forward algorithm is an approach to train neural networks layer-wise without using
backpropagation, by relying on learning by comparison. This is developed from the idea of con-
trastive learning, where both correct and incorrect data are required for training the model by com-
parison (Khosla et al., 2020). This algorithm takes two types of data– correctly labeled (positive)
and incorrectly labeled (negative) data. A function called “goodness” quantifies each layer’s output.
The input for the goodness function of a layer is the layer’s output. The output of the layer’s good-
ness function is a scalar value. The goodness value for positive and negative datasets is calculated
separately. The weights of the layer are optimized to maximize the difference between the goodness
for the positive data and the goodness for the negative data. Thus, each layer in the network is op-
timized to discriminate between positive (correctly labeled) and negative (incorrectly labelled) data.
Furthermore, this is done serially (layer-by-layer) and independently without any backward propa-
gation of gradients. A schematic of a NN trained and inferred using the FF paradigm is provided in
Fig. 1a.

Datapoint

Label

X

Y

Layer 1

Layer 2

Layer 3

(a)

Random Vecto
r 1

 

Layer output

Negative Pass

Θ

Layer output

Positive Pass

(b)

Figure 1: (a) Schematic diagram of neural network which can be trained using forward forward
algorithm. Note that the last layer is also the same as a hidden layer, i.e., there is no output from
the final layer. (b) Arbitrary vectors used to optimize the difference between positive and negative
goodness.
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2.2 DISCUSSION ON GOODNESS FUNCTION

The goodness function can be any function that receives the outputs of a NN layer as an argument
and returns a scalar value. A higher value of goodness for a layer indicates that the datapoint-
label combination are correct (correctly labeled), while a lower value of goodness indicates that
the combination is incorrect (incorrectly labeled). In Hinton (2022), it was suggested to define
goodness function as the sum of squares of layer output. The outputs of a layer are then normalized
before being passed as inputs to the next layer in order to avoid biasing subsequent layers. Another
more recent work (Momeni et al., 2023a) used cosine similarity as a goodness function. The cosine
similarity is evaluated between a layer output and a fixed random vector of equal dimension. As
illustrated in Fig. 1b, the objective for training the layer is to increase the cosine similarity between
the layer output and the vector for positive data and to reduce it for negative data. This training
increases the gap between goodness associated with positive data (correctly labeled) and negative
data (incorrectly labeled). Note that arbitrary vectors should be different for different layers of the
neural network. The particular definition of the goodness function adopted in Momeni et al. (2023a)
has an added advantage of not requiring renormalization of layer outputs at every layer. In the
current work, the goodness function used in Momeni et al. (2023a) is adopted.

2.3 DISCUSSION ON LOSS FUNCTION AND TRAINING

During training, the dataset is categorized into positive (correctly labeled) and negative (incorrectly
labeled). The goodness associated with the positive and negative data for the ith layer is written as
in Eqs. 1 and 2:

g(i)pos = cossim(y
(i)
θ(i),pos, ζ

(i)) (1)

g(i)neg = cossim(y
(i)
θ(i),neg, ζ

(i)) (2)

where, g(i)pos, g
(i)
neg ∈ IR are the goodness values of positive data and negative data, respectively, asso-

ciated with the outputs y(i)pos,θ(i)
, y

(i)
neg,θ(i)

∈ IRdi of layer i. ζ(i) ∈ IRdi is a fixed arbitrary vector of
dimension di. The goodnesses are evaluated as the cosine similarity (cossim) between the vectors
y
(i)
θ(i)

and ζ(i).

Given that the training is performed layer-wise, the Loss function is defined for each layer. As
discussed in section 2.2, the minimization of the layer’s loss function should lead to the maximiza-
tion of the difference between gpos and gneg. Following Momeni et al. (2023b) the layer-wise loss
function used in the current work is given in Eq. 3

Loss(i) = log(1 + exp(−θδ(i))) (3)

where δ(i) = g
(i)
pos − g

(i)
neg From Eq. 3 it is evident that the layer’s loss is minimized by maximizing

δ(i), i.e, by maximizing gpos and minimizing gneg.

2.4 INFERENCING IN FORWARD FORWARD NEURAL NETWORKS

Regular NNs trained using the BP paradigm have neural connections that flow between the in-
put neuron and the output neuron(s). However, as seen in Fig. 1a, neural networks using the FF
paradigm do not have such input-to-output neural connections. Instead, the “input” data point X
and the “output” data point Y both feature in the input neural layer alongside the label L, i.e, the
classification label for the data point is encoded as a part of the input to the neural network. As
discussed in the previous sections, each layer of the Forward-Forward NNs are trained to provide
low goodness outputs in cases where the datapoint-label combination is incorrect, and provide high
goodness outputs for correct datapoint-label combinations. During forward inferencing, the label
which provides the highest sum of goodness outputs across all layers is selected as the “correct”
label corresponding to the data point. This implies that the forward pass must be performed for all
labels for a given data point in order to identify the correct label/classification for the given data. In
comparison, NNs trained using BP would require a single forward pass during inferencing.
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2.5 FUNCTION REGRESSION USING FORWARD FORWARD APPROACH

As discussed in the preceding sections, the FF algorithm is primarily suited to classification tasks
wherein the input datapoint-label combination is classified as either “correct” or “incorrect” by the
NN. In this context, we can view the task of function regression as classification of datapoints as
either within a preset tolerance level of the training data, or outside of the preset tolerance level of the
training data. The case of training a FF NN to approximate a 1-D function is illustrated in figure 2,
where the training points are highlighted as blue crosses, and the trial points are the colored circles.
The errorbars highlight the user-defined tolerance level (tol), within which a trial point is considered
to belong to the function-value (in-tol). All trial points outside the errorbar are considered to be not
equal to the function-value (out-tol). All in-tol points are colored in green and out-tol points are
colored in red for visual illustration. Next, we chose a labelling scheme that assigns the label 1 to
in-tol points and 0 to out-tol points. Thus, to train a FF NN, the positive (correctly labeled) dataset
will consist of 1 assigned to in-tol points and 0 to out-tol points and the negative dataset will have
1 assigned to out-tol points and 0 assigned to in-tol points. As shown in figure 1a, the inputs to
training a FF NN would be the x and y co-ordinate of the trial points and the associated labels. Each
layer in the FF NN would be trained to minimize Eq. 3, i.e., maximize the difference in goodness
output between the positive and negative dataset. Thus, a well-trained FF NN is expected to classify
any given point in space as either in-tol and out-tol. Algorithm 1 summarizes the training of a FF
NN for regression.

We make use of this ability of the FF NN to discriminate between out-tol and in-tol points to obtain
the mean value and standard deviation of the function at a point that is not in the training data-set.
This forward inferencing of the FF NN for regression is illustrated in figure 3, wherein the value of
the function is obtained at xquery (/∈ training data-set). First, several trial points are generated along
the Y -axis with the X value as xquery. Then we classify these trial points as either in-tol or out-tol
using a forward pass with both labels– 1 (in-tol) and 0 (out-tol) for all the trial points. Trial points
which possess higher goodness for label 1 can be considered in-tol, and those with higher goodness
for label 0 can be considered out-tol (see discussuion in 3.1.2). Next, the mean value for y and the
95% confidence interval (± twice the standard deviation) can be computed using the in-tol points.
This process of function value inference is viable for functions of multiple variables as well, with
xquery being multidimensional. This process of obtaining ymean can be repeated over multiple Xquery
points to obtain a smoother curve for the function. Algorithm 2 details function regression using a
FF NN at a point xquery.
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Figure 2: Schematic diagram for training of a FF NN, with the red crosses indicating the training
data-points, and colored circles indicating the trial points with green corresponding to label 1.0 and
red corresponding to label 0.0. On the left, the positive data has the trial points labeled correctly,
while the right figure shows the negative data with incorrect labeling.
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Figure 3: Schematic diagram of prediction phase while inferencing from the trained forward forward
neural network. Both labels– in-tol (1.0) and out-tol (0.0) are applied to all the trial points. The label
yielding the higher goodness value would ideally be chosen as the correct label for the trial point
(see subsubsection 3.1.2).

Algorithm 1 Forward Forward Regression Training for 1-D functions
Require:

Training dataset: Dtrain =
{(

x
(i)
actual, y

(i)
actual

)
: i ∈ {1, 2, . . . , Nactual}

}
Preset tolerance level: tol

1: Define a Forward Forward NN that takes 3 inputs– x coordinate, y coordinate and label (either 1.0 or 0.0).
The NN has Nlayers number of layers, with parameters θ(i) associated with the ith layer, and the output of
the layer being y

(i)
θ(i)

.

2: Define arbitrary vectors ζ(i) where i ∈ {1, 2, . . . , Nlayers}.
3: Define layer-wise goodness functions g(i)

(
y
(i)
θ(i)

)
= cossim

(
y
(i)
θ(i)

, ζ(i)
)

4: Define ymin and ymax as feasible limits for the range of the function y(x) in the domain of interest.
5: for i = 1, . . . , Nactual do
6: Dtrain = Dtrain ∪ {(x(i)

actual, y
(k)
i ) : k ∈ 1, . . . , Nin-tol}

the points y(k)
i are evenly spaced in the interval

[
y
(i)
actual − tol, y(i)actual + tol

]
7: Dtrain = Dtrain ∪ {(x(i)

actual, y
(k)
i ) : k ∈ 1, . . . , Nout-tol}

the points y(k)
i are evenly spaced in the interval

[
ymin, y

(i)
actual − tol

)
∪
(
y
(i)
actual + tol, ymax

]
8: end for
9: Define correctly labelled (positive) dataset as follows:
Dpositive =

{
(x

(i)
actual, yi, 1.0) :

∣∣∣y(i)
actual − yi

∣∣∣ ≤ tol
}
∪
{
(xi, yi, 0.0) :

∣∣∣y(i)
actual − tol

∣∣∣ > tol
}

Define incorrectly labelled (negative) dataset as follows:
Dnegative =

{
(x

(i)
actual, yi, 0.0) :

∣∣∣y(i)
actual − yi

∣∣∣ ≤ tol
}
∪
{
(x

(i)
actual, yi, 1.0) :

∣∣∣y(i)
actual − yi

∣∣∣ > tol
}

Where (x
(i)
actual, yi) ∈ Dtrain ∀ i ∈ 1, . . . , Nactual

10: Define inputs ξ(0)
pos = Dpositive and ξ

(0)
neg = Dnegative

11: for i=1, . . . , Nlayers do
12: for epoch = 1, . . . , Nepochs do
13: Perform forward pass through layer i with inputs as ξ(i−1)

pos , ξ(i−1)
neg to obtain outputs y(i)

pos,θ(i)
, y(i)

neg,θ(i)
,

respectively.
14: Obtain g

(i)
pos and g

(i)
neg from y

(i)
pos,θ(i)

and y
(i)
neg,θ(i)

, respectively, as explained in step 3.

15: Compute mean Loss(i) across all datapoints (Refer Eq. 3)
16: Update θ(i) to minimize Loss(i) (Any gradient descent will do)
17: end for
18: Set ξ(i)

pos = y
(i)
pos,θ(i)

and ξ
(i)
neg = y

(i)
neg,θ(i)

19: end for
20: return Final trained NN model with parameters θ(i) and arbitrary vectors ζ(i) for i = 1, . . . , Nlayers

5
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Algorithm 2 Forward-Forward prediction of function value at xquery

Require:
Trained FF NN model with Nlayers number of layers and similar number of arbitrary vectors ζ(i).
The x-coordinate at which function (y) value is desired: xquery.
An estimate of the upper (ymax) and lower (ymin) limit of the function’s range Number of trial points to be
generated at each query point: Ntrials

1: Initialize Gin-tol ← zeros(Ntrials,1)
2: Initialize Gout-tol ← zeros(Ntrials,1)
3: Initialize ξ

(0)
in-tol ← zeros(Ntrials,3)

4: Initialize ξ
(0)
out-tol ← zeros(Ntrials,3)

5: for k = 1, . . . , Ntrials do
6: Define y

(k)
trial = ymin +

ymax−ymin
Ntrials−1

(k − 1)

7: ξ
(0)
in-tol[k]← (xquery, y

(k)
trial , 1.0)

8: ξ
(0)
out-tol[k]← (xquery, y

(k)
trial , 0.0)

9: end for
10: for i = 1, . . . , Nlayers do
11: Input ξ(i−1)

in-tol to the ith layer of the FF NN to obtain y
(i)
θi,in-tol as the output.

12: Input ξ(i−1)
out-tol to the ith layer of the FF NN to obtain y

(i)
θi,out-tol as the output.

13: Compute g
(i)
in-tol ← cossim

(
y
(i)
θi,in-tol, ζ

(i)
)

14: Compute g
(i)
out-tol ← cossim

(
y
(i)
θi,out-tol, ζ

(i)
)

15: Gin-tol ← Gin-tol + g
(i)
in-tol

16: Gout-tol ← Gout-tol + g
(i)
out-tol

17: ξ
(i)
in-tol ← y

(i)
θi,in-tol

18: ξ
(i)
out-tol ← y

(i)
θi,out-tol

19: end for
20: Initialize y ← {} (Empty set)
21: for k = 1, . . . , Ntrials do
22: if Gout-tol[k] > Gin-tol[k] then
23: y ← y ∪ {y(k)trial}
24: end if
25: end for
26: Define ymean ← mean(y)
27: Define ystd ← STD(y)
28: return ymean and ystd to obtain 95% confidence interval (±2ystd)

3 RESULTS AND DISCUSSIONS

We validated our proposed FF regression algorithm against various benchmark 1-D, 2-D and 3-D
functions. We chose functions involving combinations of the ubiquitous sinusoidal and exponential
terms. Across all the regression tasks considered in the study we used a similar FF NN (dimension
of input varies) with a total of 3 layers with 64, 128 and 32 neurons in each layer, respectively. We
employ the GELU activation function in each layer. Further details regarding the hyperparameters
employed in each benchmark is available in Table 1.

3.1 1-D REGRESSION

In figure 4 we provide a summary of FF-regression results for three different functions:

• f1(x) = sin(2πx) + 1

• f2(x) = e−0.3xcos(πx2 )

• f3(x) = sin(πx) + 1
2cos(2πx)

The plots provided show the training data points as red crosses, and the mean predicted value (ymean)
of the function as a blue curve with the shaded area denoting the 95% confidence region. Each of
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Figure 4: Results of FF-regrssion on 1D functions– (a) f1(x), (b) f2(x) and (c) f3(x), with the red
crosses indicating the training data points, blue line indicating the mean predicted value, while the
shaded area denotes the 95% confidence interval.

the plots show the predictions at their “best” with convergence evaluated after increasing the number
of training data points and increasing the number of epochs of training per layer. As expected,
increasing the number of training points and the number of training epochs show improvement in
accuracy and reduction in uncertainty to an extent. In figure 4a we notice that FF NN is unable
to approximate all cycles of the sinusoid despite a large number of training datapoints (300) and
training epochs (5000), presumably for want of more complexity in the NN. Interestingly, a similar
effect is observed when using Convolutional Neural Networks (CNNs), which are primarily suited
to classification tasks, to perform regression tasks on periodic functions with many oscillations in
the domain of interest ( Figure 11). However, the other FF NNs are able to approximate the other
functions (figures 4b,4c) ,which contain 1-2 full period cycles of the function, very accurately with
around 20 data points and 500 epochs of training.

3.1.1 COMMENT ON VARYING THE HYPERPARAMETERS

The effect of the following hyperparameters from Algorithms 1 and 2 were studied:

• tol: It was observed that decreasing the tol parameter improved the accuracy and reduced
the uncertainty in the predicted results. However, too small a “tol” can result in breaks in
the function prediction, wherein the entire set of trial points would be classified as out-tol.
An example of this can be seen in figure 12

• ymin and ymax: Figure 13 shows that as ymin gets too close to the least yactual, the FF NN
provides poor prediction at such points as enough number of trial points are not generated
in the interval [ymin, yactual − tol].

• Nin-tol and Nout-tol: During training, at any given xactual the length of the in-tol region is
clearly smaller than the length of the out-tol region. This would mean that we would
need more number of out-tol points as compared to in-tol points, i.e, Nout-tol should be
significantly greater than Nin-tol. Figure 14 provides a plot of MSE vs. Nout-tol for FF-
regression of f3, showing that higher Nout-tol as compared to Nin-tol provides more accuracy.

The hyperparameters relevant to the FF-regression for each of the functions considered in the study
is summarized in Table 1. The convergence of the predicted values with the increase in the number
of training epochs is demonstrated for function f2 in figure 15.

3.1.2 COMMENT ON INVERSION OF GOODNESS

As discussed in subsection 2.5, we train the FF NN to increase its goodness value for correctly
labeled data and decrease its goodness value for incorrectly labeled data. A peculiar discovery we
made during inferencing from a trained FF NN is that the trial points in the vicinity of the in-tol
region have a higher goodness score for the out-tol label as opposed to the in-tol label and the trial
points away from the in-tol region show higher goodness scores for the in-tol label. This is in stark
contrast to the training, where, as shown in figure 16, gpos > gneg. This would mean the FF NN is
working in a manner exactly opposite to what was intended (which is also useful). This is the reason
we use the inequality in line 22 of algorithm 2, wherein we select points with higher goodness for
the out-tol label as the in-tol points.

7
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3.2 2-D AND 3-D REGRESSION

In figure 5 we provide FF-regression results for the 2-D functions:

• f4(x1, x2) = x2
1 + x2

2

• f5(x1, x2) = 2sin(x1) + cos(x2)

We omit the uncertainty surfaces for ease of illustration, and the functions can be seen to be approx-
imated reasonably well after 500 epochs of training per layer, with a 25×25 grid of points on the
x1 − x2 plane used for training.

4
2
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X 4
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Figure 5: FF-Regression results for the 2D functions– (a) f4(x1, x2) and (b) f5(x1, x2), with the
yellow surface indicating the actual function output and the green surface indicating the mean pre-
dicted function values. The training datapoints and confidence bounds are omitted for clarity.

We chose the following 3-D functions as the next benchmark for our proposed FF-regression algo-
rithm:

• f6(x1, x2, x3) = x2
1 + x2

2 + x2
3

• f7(x1, x2, x3) = sin(x1x2

5 ) + cos2(x3

5 ) + x1x2x3

• f8(x1, x2, x3) = e
x2
1
5 sin(x2x3

5 ) + e
x2
2
5 sin(x1x3

5 ) + e
x2
3
5 sin(x2x1

5 )

We used 25×25×25 grid of training points distributed within a cubical domain with x1, x2, x3 ∈
[−3, 3]. Visualizing this result would require a 4-D plot. Instead, noting that the domain of the above
3-D functions is contained within a cube, we chose to compare the true and predicted functions along
certain lines in the domain. As illustrated in figures 6a, 7a and 8a, we chose the 4 body diagonals
and 4 other surface diagonals on the cube to compare the true and predicted values of the functions.
The FF-regression results are shown in figures 6,7 and 8, with 500 epochs of training providing
satisfactory accuracy for all functions. Increasing the number of epochs further seems to marginally
improve the accuracy and the uncertainty. It can be noted that the output corresponding to f8 shows
an unusually high uncertainty along certain lines of data. The uncertainty in f8 can be expected to
reduce with an increase in the number of training points.

3.3 BENCHMARKING AGAINST OPEN SOURCE REGRESSION DATA

We benchmark our FF regression framework on open source regression tasks (noa; Bischl et al.,
2025)– i.) the Boston housing dataset (13 input features, 1 output feature), ii.) Diabetes dataset
(11 input features, 1 output feature), and iii.) wine-quality dataset (11 input features and 1 output
feature). We compare the Mean-Squared Error (MSE) of the FF regression framework, after 5000
epochs of training, with the MSE scores of the Random Forest regression framework that was trained
and inferred for exactly the same datasets. In figures 9(a), (b) and (c), we plot the actual target value
against the target values predicted from the Random Forest framework and the FF regression frame-
work for all three benchmark datasets. It can be seen that the FF regression framework performs
as well as the Random Forest regression framework in all three regression tasks, with similar MSE
scores. This demonstrates the ability of the proposed FF framework to robustly handle multidimen-
sional data.
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Figure 6: (a) Schematic of the domain of training of the FF NN, with the yellow spheres indicating
a few of the training data points, the blue-dashed line indicating the 4 body diagonals of the cube
and the pink lines indicating the 4 particular surface diagonals along which the true and predicted
line plots were compared. (b) Line plots of the FF-Regression result for 3D function f6, with the red
crosses indicating training datapoints and the gray shading indicating the 95% confidence region.

Training Data Points
(Representative)

Body Diagonals

Face Diagonals

Cube domain of 
training with 
center at (0,0,0)

(3,3,-3)

(-3,-3,3)

(-3,3,-3)

(3,-3,-3)

x1

x2

x3(3,-3,3)

(-3,3,3)

(a)

3 2 1 0 1 2 3
t

20

10

0

10

20

30

x4

x1 = x2 = x3
R²: 0.9703

3 2 1 0 1 2 3
t

20

10

0

10

20

30

x4

x1 = x2 = -x3
R²: 0.9378

3 2 1 0 1 2 3
t

30

20

10

0

10

20

x4

-x1 = x2 = x3
R²: 0.9636

3 2 1 0 1 2 3
t

20

10

0

10

20

x4

x1 = -x2 = x3
R²: 0.9688

3 2 1 0 1 2 3
t

0

5

10

15

20

25

30

x4

x1 = x2, x3 = 3
R²: 0.9060

3 2 1 0 1 2 3
t

0

5

10

15

20

25

x4

x1 = -x2, x3 = -3
R²: 0.9187

3 2 1 0 1 2 3
t

0

5

10

15

20

25

30

x4

x1 = x3, x2 = 3
R²: 0.9282

3 2 1 0 1 2 3
t

0

5

10

15

20

25

30

x4

x1 = -x3, x2 = -3
R²: 0.9009

3D Regression - Epochs: 500 True Predicted

(b)

Figure 7: (a) Schematic of the domain of training of the FF NN (same as for figure 6a). (b) Line plots
of the FF-Regression result for 3D function f7, with the red crosses indicating training datapoints
encountered along the line plot and the gray shading indicating the 95% confidence region.
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Figure 8: (a) Schematic of the domain of training of the FF NN ((same as for figure 6a)). (b) Line
plots of the FF-Regression result for 3D function f8, with the red crosses indicating training data-
points encountered along the line plot and the gray shading indicating the 95% confidence region.
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Figure 9: Benchmarking FF algorithm against open source regression datasets. The actual target
values are plotted against the values predicted by FF regression and Random Forest prediction. The
actual target values in dataset (c) are discrete integers, whereas the predicted values are floating point
numbers.

3.4 COMMENTS ON COMPUTATIONAL COMPLEXITY

In figure 10 we provide a plot of the total compute time for training and inferring the FF regression
model for functions f4 and f5. It can be observed that both compute times increase almost linearly
with the number of data points. This is expected, as the computational cost (c) associated with each
data point would be the evaluation of two goodness values at exactly Ntrial number of trial points.
The total computational cost C = cN , where N is the number of data points. Thus, C = 2NtrialN ,
predicts a linear increase in the computational cost with the increase in the number of training and
inferring data points.
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Figure 10: Variation of computation time with number of data points

4 CONCLUSION

In this work we proposed and validated a new algorithm for function regression using the For-
ward Forward method of training NNs. We successfully benchmarked the proposed algorithm
against eight 1-D, 2-D and 3-D functions, and three other open source higher dimensional regression
datasets. We documented the effect of various hyperparameters on the accuracy and uncertainty of
the predictions. In subsubsection 3.1.2 we also noted a peculiarity wherein the trained FF NN works
exactly opposite to its initial design, thereby still being able to perform function regression. We
did not explore the underlying mathematical reason in this work. In Appendix B and Appendix C
we provide preliminary results on extending the FF-regression algorithm to Kolmogorov Arnold
Networks and Deep Physical Neural Networks, respectively. As seen in Table 2, the traditional
backpropagation algorithm significantly outperforms the proposed FF-regression algorithm in terms
of compute time to achieve similar accuracies. However, further studies have to be performed to
ascertain if the FF-regression algorithm consumes significantly lower energy compared to BP when
deployed on a fully Analog/Physical Neural Network framework.
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5 REPRODUCIBILITY STATEMENT

We have taken all measures to ensure that all the figures and results provided in the main text and
appendix are reproducible. The algorithm underlying the training and inferencing of a Forward For-
ward Neural Network for regression are provided in Algorithms 1 and 2 respectively. Furthermore
the code to reproduce all results, alongside a README.md file with minor instructions to execute
the codes is provided in the supplementary files as .zip folder. Due to the use of randomly generated
vectors for evaluating cosine similarity with layer outputs, results may slightly vary from the ones
presented in the main text.
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APPENDIX A FIGURES AND TABLES RELATED TO THE PAPER
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Figure 11: Performing regression using a Convolutional Neural Network for f(x) = sin 2πx + 1.
The CNN fails to predict variation in the function after a few cycles of oscillation.

Hyperparameters f1 f2 f3 f4 f5 f6 f7 f8
Nlayers 3 3 3 3 3 3 3 3
tol 0.02 0.05 0.01 0.1 0.1 0.1 0.1 0.1
Nin-tol 10 10 10 30 30 30 30 30
Nout-tol 10 10 10 50 50 50 50 50
Ntrials 1000 1000 1000 300 300 1000 1000 1000
Nepochs 500 500 500 300 300 500 500 500

Table 1: A list of hyperparameters used for the FF-regression of each function.
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Figure 12: Prediction for function f3 breaks in certain regions as we try to reduce “tol” below a
certain value.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Function approximation
Predicted Curve
Actual Training Points
95% Tolerance Band

(a) FF-regression on y = x2 with ymin = 0.
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(b) FF-regression on y = x2 with ymin = −1.

Figure 13: Comparative study showing that if either ymin or ymax are too close to the training data-
point value (yactual), the FF NN provides poor predictions at such points.
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Figure 14: Plot of MSE for FF-regression of f3 as function of Nout-tol used during training.
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Figure 15: Convergence plots for function f2 for N = 30 number of training points and increasing
number of training epochs– 20, 80, and 150.
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Figure 16: Plot of loss function (Eq. 3) w.r.t (gpos − gneg) for layer 1, layer 2 and layer 3 after
training for f3.

APPENDIX B ATTEMPTS WITH KOLMOGOROV ARNOLD NETWORKS (KANS)

Kolmogorov Arnold Networks are powerful in approximating complex functions with relatively
fewer parameters compared to NNs. Each node of the KAN provides a spline-based approximation
and layers of this network act as composite functions. We employed the proposed FF-regression
algorithm to train and infer a 3-layered KAN to approximate a simple sinusoidal function y =
2 + sin(2πx), with the output of the nodes in each layer of the KAN being used to compute the
goodness of the layer. The results after 5000 epochs of training are shown in figure 17. This
preliminary result seems somewhat encouraging and further studies could provide more insights on
effectiveness of training and infering KANs using the FF-regression approach. (Refer to code in
supplementary material for implementation details)

APPENDIX C RESULTS AND DISCUSSIONS FOR FUNCTION REGRESSION
USING A DEEP PHYSICAL NEURAL NETWORK

We considered a 3 layered DPNN, wherein the trainable parameters are included as part of the
input, and the activation function associated with each “physical layer” is sin(x) + cos(x). We
trained a DPNN for regression using the BP algorithm and another DPNN using the FF algorithm.
A schematic of the architecture for both can be seen in figure 18.

The results for the BP and FF-based regression for the simple function y = x2 can be seen in figures
19 and 20, respectively. While the BP-based regression for DPNNs provide satisfactory convergence
after around 15000 epochs, the FF-based DPNN provides no semblance of convergence after 10000
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FF Algorithm
n epochs = 500

Backpropagation
n epochs = 500

FF Algorithm
n epochs = 5000

Backpropagation
n epochs = 5000

f3 6.62 s 0.5 s 42.34 s 4.67 s
f6 173.11 s 0.59 s 2519.19 s 5.01 s
f7 155.31 s 0.49 s 1264.66 s 5.10 s
f8 305.27 s 0.52 s 2534.62 s 5.15 s

Table 2: Comparison of compute time (training and inference) for NNs with similar number of
parameters using BP and FF, for regression of various functions, using a workstation equipped with
NVIDIA RTX 5000 Ada Generation, an Intel Xeon w5-2565X CPU (18 cores, 36 threads), and 128
GB of RAM.
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Figure 17: Forward Forward Regression implemented using Kolmogorov Arnold Networks(KANs)
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Figure 18: Comparison of Deep Physical Neural Networks trained with (a) backpropagation and (b)
forward-forward algorithm.

epochs of training. This indicates that further studies would be required to extend the FF-regression
algorithms to DPNNs effectively.
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Figure 19: Result after using traditional backpropagation algorithm on physical neural networks
with input layer containing trainable parameters.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Predicted Points vs Original Function

Predicted Points
Original

Figure 20: Result after using forward forward algorithm on physical neural networks with input
layer containing trainable parameters.
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