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ABSTRACT

Federated learning (FL) has enabled collaborative model training across decen-
tralized data sources or clients. While adding new participants to a shared model
does not pose great technical hurdles, the removal of a participant and their re-
lated information contained in the shared model remains a challenge. To address
this problem, federated unlearning has emerged as a critical research direction,
seeking to remove information from globally trained models without harming the
model performance on the remaining data. Most modern federated unlearning
methods use costly approaches such as the use of remaining clients data to retrain
the global model or methods that would require heavy computation on client or
server side. We introduce Contribution Dampening (CONDA), a framework that
performs efficient unlearning by tracking down the parameters which affect the
global model for each client and performs synaptic dampening on the parameters
of the global model that have privacy infringing contributions from the forgetting
client. Our technique does not require clients data or any kind of retraining and it
does not put any computational overhead on either the client or server side. We
perform experiments on multiple datasets and demonstrate that CONDA is effective
to forget a client’s data. In experiments conducted on the MNIST, CIFAR10, and
CIFAR100 datasets, CONDA proves to be the fastest federated unlearning method,
outperforming the nearest state-of-the-art approach by at least 100×. Our emphasis
is on the non-IID Federated Learning setting, which presents the greatest challenge
for unlearning. Additionally, we validate CONDA’s robustness through backdoor
and membership inference attacks. We envision this work as a crucial component
for FL in adhering to legal and ethical requirements.

1 INTRODUCTION

Federated learning (FL) has enabled the collaborative training of machine learning models across
decentralized data sources or clients, facilitating the development of more accurate and robust models.
Local clients benefit by getting an aggregated and more powerful model without sharing their private
data. However, this collaborative approach also raises concerns about the integrity of the model (Yang
et al., 2019) when requested to unlearn data from certain clients. In federated learning, models are
trained on data from multiple clients, and the global model may inadvertently memorize information
from individual data sources. This poses significant challenges when a client requests to remove
their contribution from the global model due to contractual, legal compliance or privacy reasons.
The global model may retain information about the client. Federated unlearning (Gao et al., 2022;
Liu et al., 2021) seeks to address this challenge by developing methods to remove information from
globally trained models. The unlearning methods play a crucial role in supporting the ’right to be
forgotten’ paradigm as required in various data protection regulations (Voigt & Von dem Bussche,
2017; Harding et al., 2019). Such data removal might also be required when any client’s data is
outdated (Kurmanji et al., 2023), erroneous (Tanno et al., 2022; Schoepf et al., 2024a), or poisoned
(Goel et al., 2024; Schoepf et al., 2024b). However, deleting the client’s contribution effectively is a
difficult task in existing FL frameworks.

Motivation of this work. One of the drawbacks in the existing federated unlearning systems (Gao
et al., 2022; Liu et al., 2021) is that the methods require help of remaining clients (that we wish to
retain) for further updates and retraining purposes. Most of the existing methods have incorporated
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remaining clients so that they can unlearn their global model. This approach is inefficient and
expensive as the burden on unlearning one client or subset of one client’s data should not be
transferred to remaining clients that would lead to multiple steps of retraining and communication
rounds. Moreover, for the retraining or updates, it can not be assumed that remaining clients will
keep holding the data that they used while training their local model. We can choose to remove
the contribution of forgetting client only. But while trying to erase the contribution of the local
model from the global model, it may affect the global model parameters that are contributed by other
clients as well. Another key factor is the clients’ data distribution. In practice, client data is not
independent and identically distributed (IID); instead, it is unevenly distributed across classes (Zhao
et al., 2018). Some methods have improved retraining efficiency. For example, Liu et al. (2021)
reduces the number of retraining rounds, while asynchronous federated unlearning (Su & Li, 2023)
divides clients into clusters, limiting retraining to relevant clusters. Wu et al. (2022) avoids retraining
from scratch but requires the server to perform knowledge distillation with additional unlabeled data.
Federated unlearning with momentum degradation (Zhao et al., 2023) erases the forgetting client’s
contribution, adjusting the model to approach one retrained on the remaining data.

Our work. The existing federated unlearning methods rely on costly approaches, such as retraining
the global model using the remaining clients’ data (Gao et al., 2022; Su & Li, 2023; Liu et al., 2021)
or employing computationally expensive methods on the client or server side Wu et al. (2022). These
approaches not only incur significant computational overhead but also may compromise the privacy
and security of the remaining clients’ data. To overcome these limitations, there is a pressing need
for efficient and privacy-preserving federated unlearning methods that can effectively remove client-
specific information from the global model without compromising its performance. In this paper, we
propose Contribution Dampening (CONDA) that enables efficient federated unlearning by tracking
the parameters that affect the global model for each client and performing synaptic dampening on
the parameters of the global model that have privacy-infringing contributions from the forgetting
client. CONDA unlearns a client’s contribution from the global model without the need to retrain
with remaining clients data as well as not put significant computation or communication overhead
to the remaining clients. Federated unlearning may take place on three levels: class unlearning,
client unlearning, and sample unlearning. Our method focuses on client-level unlearning. If similar
classes of data (as the forget client) are available with other clients as well, the accuracy intuitively
decreases for those clients as well. We demonstrate the effectiveness of CONDA through experiments
on multiple datasets, showcasing its ability to efficiently forget a client’s data while maintaining the
model’s performance.

The main contributions are summarized as follows:

• CONDA Framework for Federated Unlearning: CONDA enables efficient removal of
client-specific information from the global model by tracking and selectively dampening
parameters updated by the ”forget” client while preserving those updated by retained clients.

• Data-Free and Efficient Unlearning: CONDA achieves unlearning without retraining
or needing access to the training data from remaining clients, minimizing computational
overhead and maintaining client privacy.

• Experimental Validation: Our experiments on multiple datasets demonstrate CONDA’s
ability to effectively remove client data while maintaining model performance, outperform-
ing existing unlearning methods.

2 PRELIMINARIES

Federated learning (FL) is a machine learning approach where multiple clients (e.g., organizations,
mobile devices, etc.) collaboratively train a model while keeping their data stored locally. A central
federated server orchestrates the process by selecting eligible clients for each training round, receiving
their locally computed model updates, and aggregating these updates to refine the global model. This
process continues iteratively until the model converges. We briefly introduce the unlearning problem
within a FL framework which we denote as Federated Unlearning (FUL) throughout this paper. We
examine a situation where a single or multiple clients request a service provider to remove their data
from the model to safeguard user privacy and mitigate legal risks. We define the issue of unlearning
the target clients in FL in this context.
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Figure 1: The process of Client unlearning in a federated learning (FL) setting is depicted. We also
show the efficient nature of the proposed CONDA for federated unlearning.

Federated Unlearning. We initialize a global model M on the central server with parameters θk,
where k spans the set E representing the global communication rounds. The model is then dispatched
to clients for local training, where each client updates the model independently. Following local
optimization, the client models are aggregated to form the updated global model. Each iteration,
this process is repeated using the new aggregated global model. We visually depict the process of
unlearning in FL in Figure 1.

Consider a global model M trained on data D distributed across N clients C = {c1, c2, . . . , cN},
where each client cn contributes local updates θn obtained by minimizing a local loss function
L(θk; dn) on their respective data dn:

θn = argmin
θ

L(θk; dn), ∀n ∈ {1, 2, . . . , N}. (1)

These local updates are aggregated to update the global model at each communication round t as:

M(θ)k+1 =
1

N

N∑
n=1

θkn. (2)

Definition 1. Let ci be the forget client who opts out of the FL setup and wants its data removed
from the global model M. Then federated unlearning method FUL aims to update the global model
such that it behaves as though the training data di from client ci was never used. This requires
adjusting the global model parameters θ by removing the influence of θi from the aggregation process,
represented as:

M(θ)k+1
unlearned =

1

N − 1

N∑
n=1
n ̸=i

θkn (3)

where the contributions of client ci are excluded, effectively reconstructing the model as if client ci’s
data had not been incorporated into the training.

Challenges. Following are the crucial challenges in FUL: 1 Machine Unlearning Vs Federated
Unlearning: Machine unlearning methods typically rely on having access to the complete training
data. However, this assumption is invalid in FL, where the number of participating clients/devices is
often significantly smaller than the total available clients/devices. 2 IID Vs non-IID training data:
The IID data ensures that each client has data that represents the overall population, making it easier
for the global model to aggregate local updates effectively. Training is faster, and the global model
converges with fewer conflicts. In contrast, non-IID data occurs when clients have vastly different
or skewed data distributions, which can lead to biased local models. These biases make it difficult
for the global model to generalize well across all clients, resulting in slower training, inconsistent
updates, and lower overall performance. In this paper, we work with non-IID FL setup which is
extremely challenging for unlearning.

3 PROPOSED METHOD

We present CONDA, a rapid federated unlearning technique utilizing contribution dampening, which
eliminates the need for fine-tuning the global model and significantly reduces computational overhead.
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Figure 2: The proposed Contributed Dampening (CONDA) method for federated unlearning.

Intuition. This work builds upon the concept of Selective Synaptic Dampening used in traditional ma-
chine unlearning (Foster et al., 2024; Feldman, 2020; Stephenson et al., 2021) to create a lightweight
machine unlearning method that overcomes the additional challenges introduced by the decentralized
federated unlearning setting. The existing work leverages the intuition that specific model parameters
are crucial for memorizing certain training examples (forget set, Df ) but are not as significant for the
remaining data (retain set, Dr) (Feldman, 2020). These specialized parameters, which essentially
memorize specific data that falls outside of model generalization, are essential for forgetting targeted
data without compromising model performance on the broader dataset. In federated unlearning,
however, the challenge is compounded by the decentralized nature of data, with information dis-
tributed across multiple clients. Our approach adapts this principle to selectively dampen parameters
influenced by individual clients while preserving the generalization ability of the global model. This
allows for efficient unlearning in federated environments, ensuring compliance while maintaining
model performance across diverse client data.

CONDA identifies the global model parameters most impacted by the forget client and dampens
them to achieve effective unlearning while preserving the parameters essential for maintaining the
model’s performance on the retained data. The unlearning process operates entirely on the server side,
placing no computational or data-related burden on the clients. The goal is to remove the influence
of the forget client without compromising the accuracy of the updated global model. The complete
framework is depicted in Figure 2.

We collect each client’s contribution to the global model in the form of gradient updates from every
communication round in which they participate. Let ∇θ represent the average of the gradient updates
(contribution) from each client over E commnuication rounds.

∇θn =
1

E

E∑
k=1

∇θkn ∀n ∈ N (4)

where ∇θkn = θkn − θk is the gradient update made by client n at communication round k.

When a client requests to revoke their data and discontinue participation in FL, we leverage the stored
gradient updates collected during the learning process to efficiently unlearn the client’s contributions.
To differentiate between contributions from all clients and those specifically from the forget clients, we
define two sets: Let C denote the set of all clients and Cf denote the subset of clients requesting their
data/contribution removal from the global model i.e., set of forget clients. The average contribution
of all clients, ΦC , is computed as:

ΦC =
1

|C|
∑
c∈C

∇θc (5)

Similarly, the average contribution of forget clients, ΦCf , is computed as:
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Algorithm 1 CONDA Federated Unlearning

1: θ: global model parameters
2: ∇θn: average gradient updates for each

client
3: C: set of clients
4: Cf : set of forget clients
5: λ: dampening constant
6: α: cut-off for dampening
7: U : dampening upper bound
8: ΦC = 1

|C|
∑

n∈C ∇θn (average for all
clients)

9: ΦCf
= 1

|Cf |
∑

n∈Cf
∇θn (average for

forget clients)
10: Compute ratio = ΦC

ΦCf

11: Compute ζ = λ · ratio
12: Set β = min(ζ, U)
13: for each i ∈ |θ| do
14: if βi < (α · ratioi) then
15: θ′i = βi · θi
16: end if
17: end for
18: return θ′

Figure 3: We show the runtime comparison
of the proposed CONDA and with the re-
trained model, negative gradient, PGA, and
FedEraser on ResNet18+CIFAR-10. The Y-
axis is on log scale and time is reported in
seconds

ΦCf =
1

|Cf |
∑
c∈Cf

∇θc (6)

To facilitate the unlearning process, we introduce a dampening factor, denoted as ζ , which is calculated
based on the contributions of both the forget clients and all clients. An important consideration in FL
is that clients may possess overlapping data, meaning their contributions to the model are not entirely
independent. This overlap complicates the unlearning process, as simply removing the net influence
of forget clients may leave residual effects from similar data held by retained clients. It is crucial to
retain the beneficial contributions from these clients to preserve model accuracy. To address this, we
compute the gross influence of the forget clients, isolating their total contribution to the global model
while ensuring that the retained clients’ influence is preserved.

ζ = λ ∗ ΦC

ΦCf

(7)

Here, λ is dampening constant which is hyperparameter to control amount of forgetting in the global
model.

Though we utilize a dampening factor to unlearn the contributions of forget clients, dampening
the entire models parameters would lead to catastrophic forgetting and render the resulting model
useless. To address this, we introduce new selection criterion in our dampening factor to control
which parameters should be dampened for efficient unlearning while preserving the contributions of
retain clients. We introduce a cut-off ratio α to control the extent of modification on the global model.
This hyperparameter serves as a regularization term in our method to ensure that only parameters that
are disproportionally influenced by the forget client are dampened. It represents a boundary between
significant and insignificant contributions from forget clients.

ζ =

{
λ ∗ ΦC

ΦCf
if ΦC

ΦCf
< α

0 if ΦC

ΦCf
≥ α

(8)
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Table 1: Distribution of data samples (CIFAR-10)
from each class across 10 different clients in a
federated learning setup.

Class 0 1 2 3 4 5 6 7 8 9
Client 0 385 13 117 397 380 405 61 905 1213 1803

Client 1 79 72 424 17 2615 2 986 208 1401 0

Client 2 1193 60 260 16 990 25 522 22 337 860

Client 3 1808 72 29 200 2 47 395 54 11 670

Client 4 143 1798 1474 62 38 871 147 15 35 312

Client 5 120 147 908 2157 106 235 53 45 1411 0

Client 6 126 9 117 236 163 1671 1263 2591 0 0

Client 7 494 464 389 38 195 186 177 828 268 1332

Client 8 523 1827 71 150 481 756 403 332 323 23

Client 9 129 538 1211 1727 30 802 993 0 1 0

Table 2: Distribution of data samples (MNIST)
from each class across 10 different clients in a
federated learning setup.

Class 0 1 2 3 4 5 6 7 8 9
Client 0 24 16 1150 73 77 247 558 798 867 953

Client 1 264 102 378 342 27 645 833 521 2020 411

Client 2 478 1000 758 964 418 371 215 150 744 511

Client 3 211 245 55 305 2746 389 363 28 346 2421

Client 4 1119 1893 1087 1167 183 30 127 641 0 0

Client 5 459 653 4 1418 70 1097 564 52 119 1140

Client 6 1023 497 126 257 859 204 2495 1963 0 0

Client 7 1147 1864 300 174 1450 440 81 2084 0 0

Client 8 959 89 1813 1026 9 1466 414 17 433 0

Client 9 239 383 287 405 3 532 268 11 1322 513

We constrain these dampening factors to not exceed the upper bound of U to prevent model parameters
from exploding in case of a user selecting λ >> U values.

β = min(ζ, U) (9)

The global model parameters are adjusted using this dampening factor as shown in equation 7,
effectively removing the influence of the forget clients’ data from the global model while preserving
the updates of retained clients.

θ′i = βi · θi ∀i ∈ |θ| (10)
where θi is the ith parameter of the global model, and βi is its corresponding dampening factor. The
step-by-step workflow of the proposed method is outlined in Algorithm 1.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Dataset and Baselines. We assess the proposed method for client unlearning in a Federated Learning
setup using various datasets, including MNIST LeCun (1998), CIFAR-10, and CIFAR-100 Krizhevsky
et al. (2009). Our approach is compared against existing federated unlearning algorithms Fed-
Eraser Liu et al. (2021) and PGA Halimi et al. (2022). The baselines also consist of a retrained model
(by removing the forget client data) and a model trained with gradient ascent/negative gradient. The
NegGrad is obtained by retraining the original model, where regular optimizers (such as Adam and
SGD) are applied to the remaining clients, while gradient ascent is specifically used for the client
whose data is to be forgotten. We use AllCNN+MNIST, Resnet18+CIFAR-10 and Resnet18+CIFAR-
100 in our experiments. Our focus is on client unlearning, which is the primary form of unlearning
required in non-IID Federated Learning setups.

Evaluation Metrics. We assess the effectiveness of a federated unlearning (FU) scheme by measuring
its runtime and the accuracy with retrained model (by removing the forget client data) on both the
retain (R-Set) and forget sets (U-Set). We further assess the unlearned models using two privacy
attacks: backdoor attacks and membership inference attacks (MIA).

Client-level Unlearning (non-IID FUL). This paper addresses the challenge of client/sample-level
unlearning, which is particularly difficult in a federated learning (FL) setup. Most existing research
has focused on class-level unlearning, which is comparatively easier to manage. As a result, some
of the performance outcomes and comparisons in our work may not seem as compelling, since
sample-level unlearning is harder to validate. As noted in Wang et al. (2022),“the sample-level
unlearning task requires the model to remove specific data samples while maintaining the model’s
accuracy”. Despite these challenges, our results remain robust when this criterion is used for
evaluation, demonstrating the effectiveness of our approach.

Experiment Settings. We created a set of 10 clients for each dataset. The data distribution inside
each client for CIFAR-10, MNIST, and CIFAR-100 is given in Table 1, Table 2, Table 4, and Table 5,
respectively. The hyper-parameters for FL are: the learning rate = 0.001, number of epochs = 100,
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Table 3: Unlearning results in a federated learning setting. We use 10 client for CIFAR-10+ResNet18,
MNIST+AllCNN and CIFAR-100+ResNet18. We forget Client 0 in this experiment. The cutoff
ratio in CONDA is set to 0.3 for CIFAR10 and 0.4 for MNIST and CIFAR-100 dataset. accuracy &
backdoor attack: value closer to retrained model is better, membership inference attack (MIA): value
close to 50% or close to retrained model is better.

Dataset Metrics Original Retrained NegGrad PGA FedEraser CONDA
Model Model Halimi et al. (2022) Liu et al. (2021) (OURS)

CIFAR-10

Accuracy (R-Set) 46.84 ± 0.36 44.96 ± 0.03 12.21 ± 0.02 40.56 ± 1.20 28.33 ± 1.79 41.44 ± 1.55
Accuracy (U-Set) 25.05 ± 1.71 20.59 ± 0.75 2.02 ± 0.09 15.64 ± 1.60 12.03 ± 2.21 21.86 ± 2.03
Backdoor Attack 35.41 ± 0.55 21.20 ± 0.09 0.00 ± 0.00 32.94 ± 0.01 18.82 ± 0.03 22.10 ± 0.01

MIA 94.85 ± 0.03 49.87 ± 0.5 49.96 ± 0.05 49.74 ± 0.04 50.09 ± 0.04 50.22 ± 0.02

MNIST

Accuracy (R-Set) 97.85 ± 0.00 97.93 ± 0.05 83.54 ± 0.35 94.96 ± 0.40 46.43 ± 0.00 95.41 ± 1.02
Accuracy (U-Set) 83.99 ± 0.01 80.08 ± 0.06 57.19 ± 0.25 76.76 ± 1.00 39.98 ± 0.47 81.65 ± 2.13
Backdoor Attack 24.11 ± 1.11 0.21 ± 0.21 1.42 ± 0.12 1.21 ± 0.06 60.61 ± 1.37 22.16 ± 0.02

MIA 95.18 ± 0.01 51.04 ± 0.01 50.17 ± 0.02 49.94 ± 0.00 48.36 ± 0.00 50.00± 0.01

CIFAR-100
Accuracy (R-Set) 31.21 ± 0.01 31.52 ± 0.04 5.50 ± 0.27 30.10 ± 0.13 8.54 ± 0.05 28.67 ± 1.31
Accuracy (U-Set) 29.54 ± 1.00 22.78 ± 0.03 0.56 ± 0.00 22.00 ± 0.10 8.73 ± 0.00 26.99 ± 2.64

MIA Accuracy 94.82 ± 0.01 50.43 ± 0.04 49.88 ± 0.00 50.22 ± 0.00 50.00 ± 0.00 52.11 ± 0.02

Figure 4: We show the results of CONDA on several Unlearning metrics: Accuracy (R-Set), Accuracy
(U-Set), Backdoor Attack, and MI attack at different cut-off ratio α. We visualize the unlearning
plateau where R-Set accuracy, U-Set accuracy, Backdoor attack and MIA are near ideal values.
Setting the α above or below the plateau leads to drop in desired unlearning performance. Results are
shown in the order, CIFAR-10, MNIST, CIFAR-100 (left-to-right).

number of local epochs = 2. The remaining hyper-parameters follow state-of-the-art methods for
fair comparison. For ConDa, the cut-off (α) varies across datasets and distributions, the dampening
constant (λ) is set to 10 for MNIST and 1 for CIFAR-10 and CIFAR-100, and the dampening upper
bound (U ) is 10 for MNIST and 1 for CIFAR-10 and CIFAR-100. We conduct an empirical analysis
to examine the effect of varying the cut-off ratio α on the unlearning process across different datasets.
We repeat each experiment three times and report the results along with the ± variance to account for
fluctuations in performance.

Challenges of Non-IID Federated Unlearning vs. IID Federated Unlearning. A key challenge
in federated learning is the varying data distribution among clients. In an IID distribution, where
data from all classes is uniformly spread across clients, optimizers like SGD perform well, and
unlearning is relatively straightforward, as it involves removing a small, evenly distributed subset
of data. However, in real-world scenarios, assuming an IID distribution is unrealistic. In non-IID
settings, certain classes may be concentrated within specific clients, leading to model biases. This
makes unlearning more complex, as removing one client’s data can disproportionately impact the
model’s learned features and overall accuracy. Additionally, interdependencies between clients’ data
further complicate isolating and unlearning specific contributions without adversely affecting others.
While IID federated unlearning has been explored extensively, our experiments focus on tackling the
complexities of non-IID federated unlearning.

4.2 RESULTS

The unlearning performance of CONDA is compared with existing methods in Table 3. A detailed
discussion of the results and their significance is provided below.

Accuracy. The effectiveness of CONDA’s unlearning is evaluated by comparing its accuracy on
the forget client’s data (U-Set) and the average accuracy for the retained clients (R-Set) against
several baseline methods. Table 3 displays the results of our experiments across three different
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Figure 5: We present the results of CONDA for unlearning various clients (client 1 - client 9 in
CIFAR-10) from the global model. These results are compared with the retrained model, which
serves as the ground truth for unlearning. The performance of CONDA at different cut-off ratios α is
displayed, with the optimal trade-off highlighted in the graph.

datasets where Client 0 was designated for unlearning (U-Set). In CIFAR-10, the retrained model
achieved an accuracy of 44.96% on the R-Set and 20.59% on the U-Set. CONDA obtains similar
results with 41.44% accuracy on R-Set and 21.86% accuracy on U-Set. Compared to NegGrad, PGA,
and FedEraser, our method achieves significantly better accuracy i.e., closer to the retrained model
accuracy in both U-Set and R-Set. Similar trends are observed in both the MNIST and CIFAR-100
datasets. NegGrad, in particular, shows notably poor performance, highlighting its inability in
handling unlearning within the challenging non-IID setting.

Backdoor Attack. To evaluate the privacy aspect of unlearning, we conduct backdoor attacks using
the approach described in Gu et al. (2017). In this setup, backdoor triggers are introduced into part of
the target client’s dataset, making the global model vulnerable to these triggers and compromising its
integrity. A successful unlearning method should reduce the model’s accuracy on data with triggers
while improving its accuracy on clean data. For all datasets, we introduce 500 backdoor samples,
each containing a 40-pixel patch in the corner. The assigned labels are “1” for CIFAR-10 and “0” for
MNIST.

The global model trained on a non-IID data distribution with backdoor triggers achieves a backdoor
accuracy of 35.41% on CIFAR-10, correctly classifying 35.41% of test images with triggers (see
Table 3). The goal of unlearning is to reduce this accuracy to match the retrained model’s 21.20%—the
gold standard. Among the evaluated methods, NegGrad fully neutralizes backdoor triggers with an
accuracy of 0.0%, but it performs poorly on both R-Set and U-Set accuracy, making it impractical.
Our CONDA achieves a backdoor accuracy of 22.10%, closely aligning with the retrained model,
indicating effective backdoor mitigation. In contrast, PGA and FedEraser report backdoor accuracies
of 32.94% and 18.82%, respectively. Similar results are observed on MNIST, confirming CONDA as
an effective approach for mitigating backdoor vulnerabilities.

Membership Inference Attack (MIA). We employ Membership Inference Attacks (MIA) Shokri
et al. (2017) as another evaluation metric, aiming to ensure that, after unlearning, an attacker cannot
distinguish between examples that were unlearned and those that were never part of the training data,
thereby safeguarding the privacy of the client requesting deletion. In an ideal defense, the attacker’s
accuracy would be 50%, signifying their inability to distinguish between the two sets, thus indicating
the success of the unlearning method. Table 3 presents the MIA accuracy results across the three
datasets. We note that all baseline methods achieve MIA accuracies close to 50%. Similarly, the
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Figure 6: We compare the unlearning results of CONDA for various clients (client 0 - client 9 in
CIFAR-10) and compare with the existing state-of-the-art methods. In most cases, CONDA closely
follows the Retrained model in both U-Set and R-Set accuracy and performs much better than existing
methods.

proposed CONDA reports MIA accuracies of 50.22%, 50.00%, and 52.11% for CIFAR-10, MNIST,
and CIFAR-100, respectively.

Runtime Comparison. Runtime speed is crucial in federated machine unlearning because it directly
impacts the system’s ability to promptly remove sensitive or outdated information from the global
model. Rapid unlearning minimizes the downtime of federated models, allowing them to quickly
adapt to updated datasets while maintaining high performance. This is particularly important in
dynamic environments, where data evolves continuously, and compliance with privacy regulations
requires timely and effective data removal. Fast unlearning can also help in ensuring user privacy is
protected in real-time, addressing data deletion requests efficiently.

In Figure 3, we compare the runtime of the proposed CONDA with the existing methods. We
particularly focus on the time taken by different unlearning methods to unlearn the global model
and observe that our method CONDA significantly outperforms other baseline methods. CONDA
is approximately 5,882 × faster than PGA, approximately 3,584 × faster than FedEraser, and
approximately 43,408 × faster than the NegGrad method. Our method is faster than all other methods.
Moreover, unlike PGA and FedEraser, our method doesn’t require data from the forget client and is
free from any kind of fine-tuning. This significantly reduces the runtime of CONDA.

Overview of Results and Take-Aways. Our proposed CONDA demonstrates superior performance
across all key evaluation metrics. It achieves accuracy results that closely match the retrained model
on both the forget and retained sets, outperforming baseline methods while being robust to backdoor
and MI attacks. Notably, it surpasses all methods in runtime efficiency, making it a highly practical
and scalable solution for federated machine unlearning tasks. These results highlight CONDA’s
balance between privacy preservation, computational efficiency, and robust unlearning.

4.3 ABLATION ANALYSIS

Impact of Cutoff-Ratio. In equation 8, we introduced the cut-off ratio α, which regulates the
influence of the unlearning process on the model’s updates, selectively dampening contributions from
the forget clients. Figure 4 demonstrates the impact of varying α across different datasets. Our goal
is to optimize performance by maximizing accuracy on the retained set (R-Set), minimizing accuracy
on the unlearned set (U-Set), and ensuring that backdoor and MIA attack values are comparable to

9
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Figure 7: We show the results of multiple clients unlearning in CONDA and compare with the existing
state-of-the-art methods. In most cases, CONDA closely follows the Retrained model in both U-Set
and R-Set accuracy and performs much better than existing methods.

those of a fully retrained model. For CIFAR-10, the optimal cut-off ratio is α = 0.3, effectively
reducing backdoor effectiveness and bringing MIA accuracy close to the ideal 50%. For both MNIST
and CIFAR-100, the best balance between R-Set and U-Set accuracy, along with optimal backdoor
and MIA performance, is achieved at α = 0.4.

Unlearning Different Clients. In Figure 4, we varied the cut-off ratio α for forgetting client 0
across all datasets. Figure 5 compares the R-Set and U-Set accuracy of the ConDa unlearned model
with the retrained model for different clients on the CIFAR-10 dataset. α is varied from 0.01 to 10
to identify the optimal value under the non-IID data distribution shown in Table 1. The retrained
model consistently serves as a benchmark, achieving maximum R-Set accuracy and minimum U-Set
accuracy.

We find the optimal α for each client in CIFAR-10 and compare the results with the retrained model.
For most clients, the optimal α falls between [0.01, 0.2], while for client 8, it ranges from [0.7, 0.9],
indicating sensitivity to client-specific data distributions.

Next, we compare ConDa with the optimal α against baseline methods in Figure 6. ConDa achieves
results closest to the retrained model, outperforming PGA and FedEraser, while NegGrad struggles
to retain its R-Set accuracy

Unlearning Multiple Clients. In Figure 7, we apply ConDa to unlearn multiple clients on the
CIFAR-10 dataset, comparing its R-Set and U-Set accuracy against baselines and the retrained model.
Our results show that ConDa achieves a balanced trade-off between R-Set and U-Set accuracy when
unlearning multiple clients. In contrast, methods like PGA and FedEraser tend to prioritize either
U-Set accuracy or R-Set performance, often at the other’s expense. NegGrad demonstrates lower
accuracy in both R-Set and U-Set, highlighting the uneven effects of unlearning across different
clients.

Limitations. Our method requires storing client contributions for all iterations on the server, leading
to potential storage overhead, a common challenge in federated learning systems that track client
contributions. Additionally, the cutoff ratio and dampening constant must be empirically selected
for different datasets, introducing a practical limitation. However, our experiments show that these
parameters typically lie within a predictable range, making the selection manageable. Future work
could explore automated techniques for determining optimal parameter values, potentially using
dataset-specific properties. While effective, further optimizations in memory management and
parameter tuning could improve scalability and usability in larger real-world applications.

5 CONCLUSION

We introduced CONDA, a novel framework for fast and efficient federated unlearning through
contribution dampening. Our method successfully removes client-specific information from federated
models without retraining or requiring access to the remaining clients’ data. Through extensive
experimentation on multiple datasets, we demonstrated that CONDA achieves significant speedups
compared to existing methods while maintaining robust model performance. By enabling the erasure
of client data in federated learning systems, this work provides a vital tool for ensuring compliance
with regulatory standards and addressing ethical concerns.
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A APPENDIX

A.1 RELATED WORK

Machine Unlearning. Machine unlearning has gained considerable attention in recent years, driven
by policies that grant users the right to erase their private data. Bourtoule et al. (2021) proposed
SISA, a technique designed to improve unlearning efficiency. Golatkar et al. (2020) introduced
effective unlearning strategies for deep neural networks. Tarun et al. (2023a) uses error maximizing
noise generation and impair-repair weight manipulation techniques for unlearning. Tarun et al.
(2023b) propose Blindspot unlearning method as a novel weight optimization process, useful for
regression unlearning tasks. Chundawat et al. (2023a) proposed a teacher-student framework, where
knowledge is selectively transferred between competent and incompetent teachers, resulting in a
model that no longer retains information from the forget set. Chundawat et al. (2023b) demonstrated
unlearning without relying on the original samples. Cotogni et al. (2023) introduces an unlearning
method that leverages metric learning by guiding forget-set samples toward incorrect centroids in the
feature space, with experimental evaluations demonstrating its effectiveness in both class-removal
and homogeneous sample removal scenarios. Foster et al. (2024) proposes Selective Synaptic
Dampening(SSD) method that identifies specific model parameters crucial for memorizing certain
data, allowing for selective forgetting of targeted examples without compromising overall model
performance. Kurmanji et al. (2024) introduces a scalable unlearning model that overcomes the
limitations of prior methods by using a teacher-student framework to selectively forget data, while
addressing scalability and performance issues in machine unlearning. Huang et al. (2024)proposes
a meta-learning framework that balances forgetting and remembering in machine unlearning by
leveraging feedback from a small subset of the remaining data and membership inference models
to enhance generalization and optimize unlearning performance. More recently, Chatterjee et al.
(2024) integrates continual learning and unlearning, using knowledge distillation to balance new
information acquisition and selective forgetting. Sharma et al. (2024) proposes new evaluation
metrics revealing limitations in current unlearning methods, advancing the understanding of concept
erasure in diffusion models.

Federated Unlearning. Federated unlearning is an emerging field within machine unlearning, aimed
at removing a specific client’s data in federated learning systems due to privacy concerns, legal
requirements, or the irrelevance of contributions. A basic method involves retraining the entire
model from scratch, which is computationally expensive. Liu et al. (2021) introduced FedEraser, a
recalibration method based on retained client contributions but requires client data during unlearning.
Yuan et al. (2024) improves this by enabling the forgetting of multiple clients and dynamically
releasing retained information, though it still involves client-side interaction. Halimi et al. (2022)
employs Projected Gradient Ascent (PGA) for unlearning by maximizing the loss on forget data,
while constraining model parameters within an L2 norm ball around the reference model, followed
by fine-tuning to optimize performance. Su & Li (2023) optimizes retraining by dividing clients into
clusters and only updating affected clusters, enhancing efficiency. Wu et al. (2022) reduced accuracy
by directly subtracting forget client updates from the global model, but mitigated this with knowledge
distillation using unlabeled data on global servers. Zhao et al. (2023) combines knowledge erasure
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Table 4: Distribution of data samples (CIFAR-100) from each class across 10 different clients in a
federated learning setup. Distribution of data from class 0 - class 49 for each client is shown below.

Class Client 0 Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9
0 118 22 29 130 31 36 2 63 64 5
1 135 47 28 182 7 2 68 8 13 10
2 4 7 40 24 5 5 209 140 5 61
3 111 53 128 49 7 17 3 4 98 30
4 15 42 144 0 117 72 2 1 84 23
5 1 17 9 1 23 163 101 159 6 20
6 130 2 44 3 123 1 28 13 127 29
7 0 32 69 8 40 4 92 210 12 33
8 2 119 169 45 2 2 119 19 20 3
9 2 102 106 4 14 51 80 84 16 41

10 100 49 83 16 130 80 0 2 17 23
11 5 206 61 18 2 81 32 10 76 9
12 9 17 25 214 18 20 118 67 2 10
13 80 22 0 13 1 129 3 55 93 104
14 23 164 57 76 73 45 36 23 1 2
15 0 2 2 103 39 21 69 76 13 175
16 57 19 5 1 88 213 50 40 2 25
17 155 102 2 6 24 2 23 80 76 30
18 82 40 5 1 26 56 60 6 141 83
19 1 7 6 7 180 15 1 46 183 54
20 49 9 62 1 65 91 14 143 62 4
21 128 49 84 19 67 6 5 3 95 44
22 45 61 29 33 8 121 57 133 6 7
23 105 4 89 4 27 18 25 121 41 66
24 53 41 1 7 65 15 123 42 32 121
25 54 54 2 15 25 31 3 20 233 63
26 8 57 23 38 28 1 104 85 126 30
27 48 17 22 183 4 47 15 29 134 1
28 18 39 8 15 139 91 86 67 3 34
29 0 39 93 4 70 3 205 5 38 43
30 30 33 47 17 72 77 19 76 60 69
31 0 33 71 20 96 158 61 38 22 1
32 52 17 119 18 7 2 11 30 79 165
33 5 3 24 77 0 36 230 86 22 17
34 44 34 72 35 3 15 213 50 6 28
35 110 5 114 103 11 51 44 23 12 27
36 6 113 1 19 66 32 1 6 82 174
37 27 12 15 19 50 2 19 111 28 217
38 5 77 21 6 86 29 54 8 42 172
39 128 145 95 3 26 3 10 33 24 33
40 1 26 167 119 14 23 8 63 28 51
41 1 44 5 15 72 0 89 44 146 84
42 14 14 2 132 16 61 2 28 23 138
43 55 7 12 122 5 122 4 2 80 49
44 36 1 50 7 72 97 49 23 38 127
45 0 61 48 56 85 123 4 19 55 47
46 10 57 85 13 105 12 95 47 109 8
47 47 2 122 38 76 103 12 47 5 148
48 17 16 16 4 1 24 3 10 9 4
49 99 42 0 0 53 57 145 18 61 21

and memory guidance to reduce discriminability for forgotten data while maintaining accuracy for
retained clients. Li et al. (2023) introduces active forgetting by using randomly initiated teacher
models to generate fake data, accelerating unlearning while preserving knowledge via Elastic Weight
Consolidation (EWC). Fraboni et al. (2024) implements federated unlearning by leveraging an
intermediate global model where client contributions surpass a predefined sensitivity threshold. It
incorporates a novel Gaussian noise mechanism to perturb the intermediate model, ensuring effective
and certified unlearning of the targeted clients.These methods demonstrate the evolving strategies for
efficient unlearning in federated systems without compromising model performance. Other methods
have been proposed for federated unlearning, each addressing different aspects of model optimization
and efficiency (Che et al., 2023; Xiong et al., 2023; Zhang et al., 2023; Liu et al., 2022; Yuan et al.,
2023).
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Table 5: Distribution of data samples (CIFAR-100) from each class across 10 different clients in a
federated learning setup. Distribution of data from class 50 - class 99 for each client is shown below.

Class Client 0 Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9
50 0 33 110 7 183 46 36 3 14 68
51 79 9 1 80 60 14 70 1 88 98
52 95 5 10 6 6 3 17 124 135 99
53 15 3 1 25 68 93 3 119 9 164
54 10 107 98 163 5 35 2 12 1 67
55 101 9 5 45 55 75 130 8 57 15
56 20 42 145 25 14 17 14 40 101 82
57 26 12 116 118 131 2 5 50 37 3
58 102 2 214 31 40 19 16 60 0 16
59 23 11 71 44 8 18 119 68 97 41
60 18 92 12 167 75 4 7 102 13 10
61 82 7 99 113 9 45 17 90 7 31
62 36 4 14 7 68 49 153 42 38 89
63 18 133 18 12 173 3 36 85 1 21
64 31 34 65 119 33 89 34 32 18 45
65 277 24 27 1 10 150 9 0 1 1
66 108 109 38 19 17 41 16 5 125 22
67 1 20 41 91 11 9 0 156 51 120
68 37 104 12 18 36 25 135 0 104 29
69 16 20 192 18 39 12 20 63 11 109
70 71 21 24 5 116 60 96 39 44 24
71 164 32 13 12 3 9 7 41 76 143
72 13 143 140 25 14 56 22 24 5 58
73 9 2 3 4 107 138 88 21 11 117
74 15 68 16 19 86 5 24 93 12 162
75 6 6 42 48 113 77 68 131 4 5
76 228 38 119 11 6 48 0 34 2 14
77 6 21 46 113 28 144 8 28 94 12
78 111 66 49 12 137 5 16 52 34 18
79 22 82 179 1 22 12 58 6 58 60
80 70 1 14 107 21 118 16 6 18 129
81 224 3 15 49 11 29 18 40 29 82
82 32 1 26 9 55 16 21 223 84 33
83 5 46 30 47 30 231 59 2 17 33
84 5 37 154 1 103 10 20 108 60 2
85 5 328 22 5 8 100 0 10 8 14
86 68 117 62 54 25 0 8 58 1 107
87 64 4 34 12 8 51 165 13 1 148
88 14 44 61 15 33 81 129 49 49 25
89 91 99 84 68 89 9 0 12 39 9
90 134 29 11 19 81 14 0 101 13 98
91 41 137 0 4 84 68 0 34 18 114
92 30 12 138 49 4 91 0 9 130 37
93 50 133 0 9 9 55 0 141 76 27
94 169 61 0 100 131 20 0 14 4 1
95 0 221 0 57 13 7 0 52 148 2
96 0 4 0 293 0 18 0 89 72 24
97 0 61 0 80 341 8 0 0 10 0
98 0 24 0 52 130 72 0 0 222 0
99 0 195 0 142 0 66 0 0 97 0
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