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Abstract

Forecasting in financial markets remains a significant challenge due to their nonlinear and
regime-dependent dynamics. Traditional deep learning models, such as long short-term
memory networks and multilayer perceptrons, often struggle to generalize across shifting
market conditions, highlighting the need for a more adaptive and interpretable approach. To
address this, we introduce Kolmogorov—Arnold networks for stock prediction and explainable
regimes (KASPER), a novel framework that integrates regime detection, sparse spline-based
function modeling, and symbolic rule extraction. The framework identifies hidden market
conditions using a Gumbel Softmax-based mechanism, enabling regime-specific forecasting.
For each regime, it employs Kolmogorov—Arnold networks with sparse spline activations to
capture intricate price behaviors while maintaining robustness. Interpretability is achieved
through symbolic learning based on Monte Carlo Shapley values, which extracts human-
readable rules tailored to each regime. Applied to real-world financial time series from Yahoo
Finance, the model achieves an R? score of 0.89, a Sharpe Ratio of 12.02, and a mean squared
error as low as 0.0001, outperforming existing methods. This research establishes a new
direction for regime-aware, transparent, and robust forecasting in financial markets.

1 Introduction

The stock market is a complex, dynamic system influenced by multiple factors, including economic factors,
global events, and investor emotions. Predicting its behavior is a critical challenge with significant impact on
financial decision-making, portfolio management, and risk assessment. However, the volatility, non-stationarity,
and abrupt regime shifts in market behavior make accurate forecasting a challenging task (A & James, 2023).

The key problem that we target is the accurate prediction of stock market behavior, particularly during regime
shifts such as transitions between bullish, bearish, and stagnant phases. These shifts are important because
they represent changes in market dynamics, and failing to adapt to them can lead to substantial financial
losses (Kokare et al., 2022). Traditional models like Autoregressive Integrated Moving Average (ARIMA)
(Ho & Xie, [1998)), and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) (Bauwens et al.,
2006)), while effective for stationary data, struggle to capture the nonlinearities and temporal dependencies
inherent in financial time series (Alkhfajee & Al-Sultan) 2024} |Crawford & Fratantoni, [2003)).

State-of-the-art approaches to stock market prediction can be broadly categorized into statistical models,
Machine Learning (ML) models, and hybrid methods, each with distinct strengths and limitations. Statistical
models, such as Hidden Markov Models (HMMs) and regime-switching models (Yuan & Mitray [2016),
are interpretable and theoretically grounded but rely on rigid parametric assumptions, fixed transition
probabilities, and Gaussian distributions, which fail to capture the nonlinearities and abrupt regime shifts of
real-world markets (Watorek et all 2021)), leading to poor performance during volatile periods. ML models,
including LSTMs, transformers, and Large Language Models (LLMs), excel at capturing complex patterns
and long-term dependencies, with LLMs even incorporating external textual data for enhanced predictions.

However, their black-box nature limits interpretability (Chen et al.l 2023)), and they often struggle to adapt
to distinct market regimes, either overfitting to historical patterns or introducing lookahead bias due to poor
temporal alignment (Bhandari et al} |2022; Zhang et al., 2022). Hybrid methods aim to combine the strengths
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of both approaches, but they frequently fail to enforce sparsity, leading to overfitting (Islam et al., [2024). In
this context, sparsity enforcement refers to applying L1 regularization (A|WW||1) to the model parameters W
to drive many weights to zero, thereby reducing model complexity and mitigating overfitting. Most hybrid
ensemble methods lack such explicit sparsity constraints on their feature-importance weights or ensemble
coefficients. They also lack robust mechanisms for temporal alignment, which can result in data leakage
and inflated performance metrics. More specifically, data leakage occurs when future information enters the
training process, for example, by using future prices for normalization or allowing validation/test windows to
overlap with training periods. This improper temporal separation inflates metrics such as accuracy, Sharpe
ratio, and R? by allowing the model to learn from information it would not have access to at prediction time,
leading to an overly optimistic assessment of real-world performance. Additionally, they often fail to provide
clear, actionable insights into regime-specific drivers, limiting their practical utility (Haase & Neuenkirch|
2023). These limitations highlight the need for more advanced methods, particularly for modeling stock
market behavior.

To address these challenges, we propose KASPER, a novel framework that uses Kolmogorov-Arnold Networks
(KANs) (Liu et al., [2024b) and integrates adaptive regime detection with sparse, interpretable feature
engineering. Specifically, we enforce sparsity through L1 regularization on regime-specific forecast weights
w'? and dynamic feature masking, ensuring that only the most predictive signals influence each regime. This
sparse modeling is implemented within KANs, which are inspired by the Kolmogorov-Arnold representation
theorem (Schmidt-Hieber| [2021)), stating that any multivariate continuous function can be decomposed into
a finite sum of univariate functions. Accordingly, KANs implement this decomposition through learnable
spline-based activation functions, enabling flexible function approximation. As illustrated in Fig. (1, the KAN
architecture maps raw inputs through learnable spline-activated units (bottom squares) and then linearly
recombines the transformed signals across successive layers, producing regime-aware predictions (top node).
Each activation ¢(x) is constructed from B-spline bases defined on a knot grid, i.e., a set of breakpoints
{k1,k2, ..., kn} that partition the input domain into intervals, and is refined across progressively finer grid
resolutions. The knot locations control the spline’s local behavior by determining where basis functions are
centered and how ¢(z) transitions between polynomial segments as x varies. This grid refinement improves
expressive power while preserving interpretability, allowing KANs to represent high-dimensional mappings
with fewer layers.

x2,1 Spline Basis Function Approximation
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Figure 1: KAN architecture with two input features and spline-activated units across multiple layers. Each Z; ;
denotes a linearly transformed input passed through a learnable spline basis ¢;,; ;. The structure highlights sparse,
interpretable transformations and selective connectivity across layers. The inset on the right highlights the flexibility
gained through grid extension, allowing for smoother approximations with increased knot resolution.

Our approach uses dynamic spline-based activations (Vecci et al.l [1998) to capture nonlinear price dynamics
and adapt to regime shifts through robust percentile-based initialization of spline knots. Specifically, for each
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feature dimension, knot positions are initialized based on the effective range of the training distribution. Math-
ematically, given a feature vector x € R", we first determine the robust boundaries z,;, = quantile(x, pmin)
and Tmax = quantile(X, Pmax), Where pmin and pmax are lower and upper percentiles (e.g., 0.01 and 0.99)
chosen to exclude outliers. We then compute knot locations {kzg}gG:1 on a uniform grid within these bounds:
kg = Tmin + (g — 1)*m2x=Fmin where G is the total number of grid points and g indexes the knot. This
construction ensures that the spline bases cover the etfective support of the distribution with consistent
resolution and improved stability under extreme values. To ensure temporal alignment and prevent lookahead
bias, we employ strict closed-left windows for rolling feature calculations and carefully shift historical data.
To further improve generalization, sparsity is enforced through two complementary mechanisms. First, we
apply L1 regularization to all model parameters, including spline basis coefficients and forecast weights.

Second, we use dynamic masking that selectively zeros out small-magnitude spline coefficients BJ( ") based on
regime-specific thresholds. This dual approach retains only the most significant weights and basis functions,
reducing overfitting. For interpretability, we use Monte Carlo Shapley values (Ghorbani & Zoul |2019)) to
quantify the contribution of each feature to regime-specific predictions, enabling the extraction of actionable
rules, such as identifying dominant features like High-Low (HL) in bearish regimes and Open—Close (OC)

in bullish regimes. In particular, HL is defined as HL; = In ( y” ) where H; and L; are the daily high and
low prices, and OC is defined as OC; = In (g—:), where O; and C; are the opening and closing prices. This

combination of adaptive modeling, sparsity enforcement, and interpretability enables regime-specific analysis
across diverse market conditions.

The key contributions of this study are as follows:

e A novel Regime-Adaptive Forecasting Layer that makes use of sparsely activated splines to model
distinct market dynamics across regimes. This mitigates the overfitting risk in financial time series
by ensuring sparsity-constrained representations that generalize well.

o An orthogonality constraint within the regime detection network to enforce disentangled representa-
tions for different market states. This prevents feature collapse, ensuring each regime retains distinct
and interpretable characteristics.

e For seamless discernibility of the regimes, Contrastive Regularization is utilized. It helps maximize
inter-regime dissimilarity while maintaining intra-regime coherence, thereby improving the stability
of regime classification and reducing misclassification in volatile market conditions.

o Utilizing a Monte Carlo Shapley method with temporal weighting to extract interpretable, regime-
specific rules. This enhances the model’s transparency by identifying dominant factors influencing
each market regime.

The rest of the paper is organized as follows: Sec. [2| reviews related work on market regime detection, KAN-
based financial modeling, and interpretability in finance; Sec. 3| presents the proposed KASPER framework;
Sec. 4| reports the experimental setup and results, including ablation studies and comparisons with baseline
models; finally, Sec. |5 concludes with a summary of the main findings and directions for future work.

2 Background and Related Work

Recent work in financial forecasting includes hybrid deep architectures for price prediction (Liu et al., [2025;
Elhoseny et al., |2025)), transformer-based models for capturing long-range temporal dependencies under
volatility (Kabir et al., [2025; Hadizadeh et al., |2025]), and reinforcement-learning frameworks for portfolio
decision-making and risk control in non-stationary markets (Yao, [2025; [Ye et al., [2020). Consistent with the
scope of KASPER, this section focuses on market regime detection, KAN-based approaches for financial time
series, and explainability /interpretability methods in finance.
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2.1 Market Regime Detection

Financial markets transition between distinct regimes, characterized by varying volatility, return distributions,
and risk factors. Early work established regime switching via Markov models (Hamilton) [1989)):

rt://tzt+€t, etNN(Oan)a (1)
Pz =j| 21 =1) = Ayj. (2)

where r; is the observed return at time ¢, z; is the latent regime indicator, and A is a fixed transition matrix.
While interpretable, this approach suffers from static regime centroids and rigid parameters.

Ang and Bekaert (Ang & Bekaert, [2002), showed that modeling asset returns as regime-dependent improves
forecasting and risk management:

re| 2 =k ~ Nk, 07), (3)
with portfolio weights dynamically adjusted according to the inferred regime.

Building on this, Guidolin and Timmermann (Guidolin & Timmermannl [2007) extended the framework using
a multivariate Markov-switching model with four regimes (crash, slow growth, bull, and recovery). Regime
transitions follow:

P(Zt:i|zt71:j):Ajiv i?j:]-v"'vka (4)

where Aj; is the transition probability. In their portfolio choice setting, the investor’s dynamic optimization
problem at time t; is formulated as:

Wr?
J(Wb77ﬁb72ba9b7ﬂ-b7tb) :m‘f}XEtb 1 E’Y 5 (5)

where W, denotes the investor’s wealth at time ¢, 7, and z, are the vectors of historical asset returns
and predictor variables, respectively, 6 collects all parameters of the regime-switching process, 7, is the
vector of filtered regime probabilities at ¢, and ¢, is a discrete decision epoch (rebalancing date) with
b=0,1,...,B — 1. The maximization is performed over the vector of portfolio weights w allocated to risky
assets, and the objective is the expected utility of terminal wealth W with relative risk aversion -, conditional
on information available at ¢,. Bayesian updating of regime probabilities is performed via:

(79(0:)PF) © n(ypr1; 0r)
7 (01)PY) © n(ypg1: 04)] O

7Tb+1(9t) = ( (6)

The Vector Smooth Transition Autoregressive (VLSTAR) model (Bucci & Ciciretti, [2021)), was also an
alternative that used a continuous transition function:

p p
Yo = o+ Y0t + Aomr + Gilsiv,0) [+ Y1+ A | + e, (7)
j=1 j=1

with the logistic function defined by:
Gi(si37,¢) = [1 +exp(—y(s; — )] " . (8)

where s; triggers regime shifts and + controls transition smoothness (low « yields gradual changes; high ~
produces abrupt shifts). This model dynamically captures volatility shifts in market conditions.

2.2 KANs for Finance

KANSs are effective in financial modeling, particularly for option pricing and stock prediction. Existing
Finance-Informed Neural Networks (FINNs) for option pricing suffer from poor learning efficiency, high
computational costs, complex training processes, and limited interpretability due to intricate loss functions
requiring larger architectures and extensive training to maintain accuracy. To address these challenges, Liu et
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al. (Liu et al., |2024al) proposed an FINN KAFIN, that integrated financial equations into a neural framework.
The Black—Scholes formula (Barles & Soner, |1998), which governed their pricing model can be represented as:
oC 1, ,0°C oC
=4 Z52927 2 S— —rC =0, 9
ot 7277 957 T"0as ©)
where C(S,t) is the price of a financial option, S is the price of the underlying asset, o is the volatility of the
asset’s returns, and r is the risk-free interest rate. The price function is approximated using:

C(S’t) = Zgi(hi(s)vt)’ (10)

where g; and h;(x) are trainable functions. The model minimizes a loss function incorporating financial
constraints:

L(e) = )\initLinit + Aboundary-[/boundary + )\ﬁnancialLﬁnanciaL (11)

On the other hand, to enhance stock price prediction, Yao (Yaol 2024)), proposed an LSTM-KAN hybrid
model, where LSTM captures temporal dependencies and KAN refines nonlinear patterns. KAN improves
nonlinear mapping via:

2n+1 n

Fla)y=>"gi > hijlz;) ], (12)
i=1 J=1

where g; and h;; are trainable functions the model is trained using. Empirical results showed that KAFIN
enhanced option pricing accuracy, while the LSTM-KAN model significantly reduced stock forecasting errors.

2.3 Explainability and Interpretability in Finance

Explainable AT (XAI) techniques address the transparency challenge in black-box DRL models for portfolio
management, where deep neural networks provide limited insight into their decision-making. De-la-Rica-Es-
cudero et al. (de-la Rica-Escudero et al., |2025)) noted that many DRL approaches provide explanations only
during training and do not support monitoring the agent’s behavior at trading time; only a small number of
prior studies explicitly considered explainability. They proposed a post hoc Explainable DRL framework that
combines Proximal Policy Optimization with model-agnostic XAI methods (feature importance, SHAP, and
LIME) by saving state—action pairs during training and generating explanations at inference time. Evaluated
on five U.S. technology stocks using daily OHLC data (2015-2018), the framework highlighted asset-specific
variations in OHLC importance and produced instance-level explanations of portfolio allocations, with sta-
tistical validation of Shapley-value stability (variance below 10~7, p < 0.01 across 50 repetitions), enabling
real-time monitoring of agent decisions during trading.

Interpretability challenges also persist in financial Al systems where complex architectures obscure the fac-
tors driving predictions. Ni et al. (Ni et al.l [2025) argued that standard time-series visualization is often
insufficient to reveal the temporal patterns underlying model decisions in financial risk assessment, which
can reduce analyst trust and complicate regulatory compliance. They introduced a contrastive visual analyt-
ics framework that combines entropy-based temporal importance weighting with interactive dimensionality
reduction (t-SNE, UMAP) for multivariate financial time series, enabling direct comparison of normal ver-
sus anomalous patterns and highlighting differences in feature attributions across risk scenarios. Empirical
evaluation on credit risk assessment (5,248 corporate cases) and market volatility prediction reported re-
duced analyst decision time and improved agreement and anomaly detection, while maintaining sub-100 ms
response times for interactive exploration.

Despite these advances, important gaps remain. Traditional regime detection methods rely on fixed transition
matrices that require manual specification, while many recent deep learning models apply uniform processing
without adapting to distinct market conditions. Hybrid architectures can achieve strong predictive accuracy,
but they often lack explicit regime-switching mechanisms and provide primarily global explanations rather
than regime-specific interpretability. Our work addresses these gaps by jointly performing regime detection
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and forecasting via differentiable Gumbel-Softmax classification, introducing Monte Carlo Shapley values
with temporal weighting for regime-specific interpretability, and enforcing regime-specific sparsity through
orthogonality constraints to mitigate feature collapse.

3 KASPER Framework

Dataset Preparation 4 4 ) 4 4 N
Load Yahoo Dataset KAN 1 KAN 2 Training Evaluation
Feature Engincering Regime Detection Regime f\daptive > ) & ) —> ) & )
Layer Forecasting Layer Optimization Regime Analysis
One-Hot Encoding
v " I v v
Regim'e-./‘%ware Spline Activation Update Sparsity Mask Optimize parameters Compute MSE, RMSE,
Splitting Quantile-normalized Update masks & via gradient-based MAE, & Sharpe Ratio
Training - 70% per-feature compute attention learning
- S v 7 v Use Monte Carlo
Testing - 15% Feature Embedding Regime-specific Compute total loss Shapley Values to
‘ Validation - 15% ‘ Stack output to create forecast using a regularized loss quantify individual
embedded features Combine activations function feature contribution
—¥ & weight sum v v
Regime Classifier 3 Update model via Classify data via
Embedded features Aggregation & backpropagation and softmax-based regimes
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— L—GS(7) +
OrthoReg

Figure 2: Workflow of the KASPER framework describing the complete modeling pipeline. The process starts with
dataset preparation, feature engineering, and regime-aware data splitting. The first KAN layer performs regime
detection through quantile-normalized spline activations and Gumbel Softmax-based classification, regularized by
orthogonality constraints. The second KAN layer conducts regime-adaptive forecasting using sparse spline basis
functions and attention-based aggregation. Model parameters are optimized using gradient-based learning with
a regularized composite loss. Evaluation is conducted using error metrics (R, MAE, and Sharpe Ratio), while
interpretability is achieved through Monte Carlo Shapley value estimation and regime-specific rule extraction.

The proposed KASPER framework is composed of two core stages: regime detection and regime-adaptive
forecasting, as illustrated in Fig. 2| and described in Algorithm [I] The input consists of an n-day window of
financial time series data, structured as a state matrix ®; € R®*/ where n denotes the number of historical
days and f the number of features per day. Each row in ®; captures log-transformed returns and volatility
indicators to stabilize variance and enhance stationarity:

P High Low Open
o t—i41 t—i+1 t—i+1 t—it1
¢t71 - l:ln( ) ’ In High ) hl( Low ) ) In Open ’

Dr—i t—i t—i t—i
Viei
In (§/H> ,HL_ spread,_,;, OC_spread,_,, ATR;_;, volatility_ ratio,_,, (13)
t—i

price velocity,_,, price_acceleration,_,, volume change,_;, volume_state;, ; |,

where p;_; denotes the closing price and High and fLov denote the high and low prices, respectively, on day
=1 t—1

t — i. The engineered features include HL (denoted as HL_ spread), OC (denoted as OC_ spread), Average
True Range (ATR), volatility ratio, price velocity, price acceleration, volume change, and volume state. These
eight features are selected via SelectKBest with f regression scoring and form the final input to KASPER,
further details are provided in Sec.
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Algorithm 1: KASPER

Input: Raw financial dataset D
Output: Trained model, regime-specific rules, performance metrics
// Step 1: Preprocessing and Feature Engineering
Load dataset D and forward-fill missing values
Extract features: lags, rolling statistics, volatility, volume, momentum, temporal dummies

Compute target as: y: = C'%;Ct

Split data into Dirain, Dvai, Dtest
Apply feature selection via SelectKBest
Standardize features using StandardScaler
// Step 2: Define KASPER Architecture
Define Spline Activation for nonlinear mapping

8 Create Regime Detection Layer to estimate soft regime probabilities using Gumbel Softmax
9 Initialize Regime Adaptive Forecasting Layer with regime-specific basis functions and attention mechanism

10

11
12
13
14
15

16

17
18
19
20

21
22

Combine both layers into KASPER model
// Step 3: Train the Model
for epoch =1 to N do
for each batch (zi,vy;) € Dirain do
Compute predictions §;, regime probabilities p;, embeddings z;
Compute loss: £ = Lyred + AcLcontrastive + AsLsparse + AoLorthogonal + Ao Lbatance
Backpropagate and update parameters

| Evaluate on Dyq; and apply early stopping if needed

// Step 4: Extract Regime-Specific Rules
for regime r =1 to R do
Identify samples with highest p, from regime probabilities

Compute Shapley value quT) for each feature i
Select top-3 contributing features as rules for regime r

// Step 5: Evaluate Financial Metrics
Apply model to Diest to compute:
Sharpe Ratio, Max Drawdown, Cumulative Returns, Win Rate, Direction Accuracy

3.1 KAN Layer 1: Regime Detection

The regime detection module is designed to uncover latent market regimes using spline-activated KANs. This
layer incorporates four components: spline activation functions, Gumbel Softmax-based regime classification,
contrastive loss for representation separation, and orthogonality regularization to enforce disentangled
regime-specific embeddings.

3.1.1 Spline Activation Function

Each input feature is processed through a hybrid spline activation function that captures both linear and
nonlinear trends:

f(z) = L(z) + C(x), (14)

where L(z) and C(z) are the linear and cubic components, respectively. These are defined as:

Niinear—1
Lx)= Y tanh(wm) [ReLU(Znorm — km) — ReLU(Znorm — km+41)] , (15)
m=0
Ncubicfl
C({L‘) = Z U(Um)xiorm? (16)
m=0

where w,, and v, are trainable parameters, o(-) denotes the sigmoid function, and %o is the input
normalized with respect to the knot sequence {k,,}. To improve robustness to outliers, we place the knots
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{k,,}& _, on a uniform grid bounded by empirical percentiles of the input feature x. Specifically, the knots are
computed as kp, = Tmin + (m — 1) #e2x—min - where Ty = quantile(X, pmin) and Tmax = quantile(x, pmax)
are the lower and upper percentile bounds (e.g., pmin = 0.01 and ppax = 0.99), and G is the grid size.

3.1.2 Differentiable Regime Classification via Gumbel Softmax

The classification of regime probabilities is achieved through the Gumbel Softmax function, which provides a
differentiable approximation to categorical sampling:

exp (fi(®¢)/7)
> =1"exp (f;(®)/7)

where ®; represents the input feature matrix at time ¢, f; denotes the spline-transformed activation corre-
sponding to regime i, 7 is the temperature parameter, and k is the total number of regimes.

P = (17)

3.1.3 Contrastive Loss for Regime Separation

To ensure that the latent embeddings corresponding to different regimes remain well separated, a contrastive
loss is introduced:

£contrastive =E [sz - Zj||2 ! yij] ) (18)
where z; and z; denote the latent embeddings of samples ¢ and j. Specifically, z; = Pgetect (X;) is the output
of the spline-based regime detection layer for input x; € R", before the softmax classification step. The
expectation E is taken over the empirical distribution of the training mini-batch B, with inputs x treated as
random samples from the market data distribution D. This term enforces orthogonality in the latent space,
improving separability between regimes.

3.1.4 Orthogonality Regularization

To enforce distinctiveness across regime-specific transformations, orthogonality is imposed on the regime
weight matrices:
‘Corth =FE [HWTWTT - IH%‘} 3 (19)

where W, denotes the regime-specific weight matrix. Specifically, W, € R'*¥" is the row vector formed by

(r)

; is the learnable scalar

stacking the scalar feature-importance weights, W, = [wY) ) wér), o wgf)}, where w

weight for the j-th feature in regime r, and F is the total number of features.

3.2 KAN Layer 2: Regime-Adaptive Forecasting
Following regime identification, forecasting is performed using a second KAN layer with regime-specific

parameterization. This layer employs sparse spline basis functions and is optimized using a composite
objective function incorporating robustness, sparsity, and structural regularization.

3.2.1 Forecasting Model

The predicted return gjgi) for regime i is defined as:
d
i) =Y wel (@), (20)
j=1

where ®; is the feature matrix, qﬁg-i) are spline basis functions and wgi) are trainable coefficients.

3.2.2 Spline Basis Functions

Each basis function gb;i) is constructed using regime-specific B-splines:

K

o\ (@) =Y BV Br(®4;6), (21)

k=1



Under review as submission to TMLR

where Bj, denotes the k-th B-spline basis function with knots £, and ﬁj(ll)c are spline coefficients learned
from data.

3.2.3 Sparsity Enforcement

To promote interpretability and reduce overfitting, an ¢;-regularization term is applied:
w!? o ReLU([w"| — §®), (22)

where 6" denotes a regime-specific sparsity threshold. The sparsity level is adaptively controlled through
validation-based tuning of .

3.2.4 Composite Loss Function

The full objective function for training integrates multiple loss components:

L= EHuber + )\s Z |p| + )\(:Lcontrastive + )\oﬁorth + /\bEbalancea (23)
pEO

with © representing the set of all trainable model parameters, |p| denotes the absolute value (L1 norm) of
each individual parameter p. This composite formulation ensures: (1) robustness to outliers through Huber
loss, (2) regime disentanglement via contrastive loss, (3) model sparsity through L1 regularization, (4) distinct
regime representations via orthogonality constraints, and (5) balanced regime distribution across training
samples.

3.3 Interpretability through Shapley-Based Rule Extraction

To enhance transparency, KASPER employs a Shapley value-based approach to interpret regime-specific
forecasts.

3.3.1 Shapley Value Estimation

For a given feature j, its contribution is quantified as:

o= ¥ PREZSEDE sy - ss)) (29
SCF\{5} '

where F' denotes the full feature set, and f(.9) is the model output with subset S.

3.3.2 Monte Carlo Approximation

To approximate Shapley values efficiently, Monte Carlo sampling is used:

M
by = 23 (S0 U ) — F(Su]. (25)

where S,;, denotes randomly selected feature subsets (coalitions) and M is the number of Monte Carlo samples.

3.3.3 Temporal Weighting Scheme
To emphasize recent market behavior, temporal weighting is applied to the sequence of past Shapley values:
(ﬂ:iwqﬁt w :L (26)
’ t=1 A Zthl ind

where v € (0,1) is the decay factor controlling the emphasis on recent time steps.
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3.3.4 Regime-Specific Rule Extraction

For each regime k, the top three most influential features are selected:
Ry = {argma}g{’&gm‘ ‘j - 1,2,3},\#: eql,..., K}, (27)
Je
resulting in interpretable rules of the form:
Regime k: le 4+ ij =+ ng — Yk, (28)
where X;

15X, X, are the dominant features and Y}, denotes the forecasted market response under regime k.

4 Results and Discussion

4.1 Experimental Setup

We evaluate KASPER on the Yahoo Finance dataset (ARORA||2023)) for regime-aware stock return forecasting.
The full experimental configuration is summarized in Table To ensure a leakage-free setting, missing
values are forward-filled and all rolling features are computed using strict closed-left windows, so that only
information available up to time ¢ is used to construct the inputs at ¢.

Table 1: Configuration summary of the model architecture and training.

Category Parameter Value/Description
Datasot Source Yahoo Finance Dataset
Time Range 2018-2023
Splitting Strategy 70%-15%-15% temporal train-val-test split
Data Feature Engineering 15 engineered features (lags, rolling statistics, volatility, price dynamics)
Preprocessing  Feature Selection 8 features via SelectKBest with f regression
Scaling Method StandardScaler for both features and target
Number of Regimes 3
Model Hidden Dimension 64
Architecture  Spline Configuration Hybrid linear (3) and cubic (2) splines with quantile-based initialization
Activation Functions SplineActivation and GELU
Optimizer AdamW (Ir=0.001, weight_decay=1e-5)
Batch Size 32
Training Loss Function Huber loss with composite regularization
Parameters Regularization Weights Contrastive: 0.01, Sparsity: 0.001, Orthogonality: 0.01, Regime Bal-
ance: 0.05
Epochs 100 with early stopping (patience=15)
Learning Rate Scheduler ReduceLROnPlateau (factor=0.7, patience=7)
Gradient Clipping 0.5
Evaluation Statistical R, MAE, R?
Metrics Financial Sharpe Ratio, Direction Accuracy, Max Drawdown, Win Rate, Profit

Factor

Under this setup, KASPER is instantiated as a two-layer KAN model with two main components: a
RegimeDetectionLayer, which learns spline-based representations and infers market states via Gumbel-
Softmax classification, and a RegimeAdaptiveForecastingLayer, which produces regime-conditional forecasts.
Orthogonality regularization promotes distinct regime representations, while the contrastive objective increases
inter-regime separability, improving the stability of regime assignments.

Given the emphasis on temporal consistency, we engineer the input features using only histori-
cal observations to capture price dynamics, volatility structure, volume behavior, and regime con-
text, with all rolling computations respecting the closed-left window constraint. The feature set

10
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includes HL and OC spreads, k-day log-returns rt(k) =In(Cy/C,_y) for ke {1,7}, and a 21-day
rolling volatility computed on past returns only: 7y = L >, riY and oy = \/ Ty (73@@‘ — Ft)2 with
w =21. We further compute the volatility ratio VR; = o./(|7:| +¢) and the Average True Range
ATR; = % Dy maX(Ht,i — Ly, |Hi—i — Cy—iql, |Ly—y — Ct,i,1|) to capture gap-aware price variabil-
ity. Price momentum is summarized via velocity U; = C; — C;_1 and acceleration A; = Uy — Uy _1. Volume
dynamics are represented using the normalized volume change AVol, = (Vol; — Vol;)/(ovol: + €), where
Vol, = % Yo, Vol,—; and oo, is the standard deviation of {Vol,_;}* ;. We also compute a volume-state
ratio to flag unusual trading activity. Finally, regime-context indicators are computed from rolling summaries
of volatility and momentum to reflect broader market conditions.

The experiments are conducted using PyTorch library for DL model implementation. Key supporting libraries
include NumPy and Pandas for data manipulation, scikit-learn for preprocessing and feature selection;
Matplotlib and Seaborn are used for visualization. The training routines utilize GPU acceleration via CUDA
to ensure efficient computation. The implementation and testing are conducted on a PC with AMD Ryzen 5
processor, 8 GB RAM, 128 GB SSD storage, and an AMD Radeon graphics card.

4.2 Performance Across Regimes

bearish low regime 0
bearish low regime 1
bullish low regime 0
bullish low regime 2
bullish low regime 1
neutral low regime 0
bearish low regime 2

neutral low regime 1

(@: Low-confidence classifications are rare, indicating the
model's strong decisiveness in assigning regimes.

@: Bullish states are evenly distributed across regimes,
reflecting the model’s consistent detection of upward trends.
@: Bearish states show a distinct concentration in Regime 2,
suggesting that the model captures unique bearish dynamics.
@: High-confidence neutral states dominate all regimes,
highlighting the model’s preference for identifying stable
market conditions.

neutral low regime 2

bullish high regime 0
bullish high regime 2
bearish high regime 0
bullish high regime 1
bearish high regime 1
bearish high regime 2
neutral high regime 1
neutral high regime 2

neutral high regime 0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Percentage of Samples (%)

Figure 3: Feature contribution across regimes. Regime 0 exhibits a balanced feature distribution, indicating a
volatility-driven market. OC_ spread dominates Regimes 1 and 2, indicating the significance of the price gap in
trending markets.

In Fig. 3] a breakdown of regime distribution patterns in the KASPER model is presented. The bar chart
shows the percentage of samples classified into different market states, with each state defined by three
characteristics, i.e,, market direction (bearish, bullish, or neutral), confidence level (high or low), and regime
number (0, 1, or 2). The most striking pattern is the dominance of neutral high-confidence states across all
regimes. Neutral high regime 0 accounts for the largest portion at 18.7% of samples, followed by neutral high
regime 2 at 16.6% and neutral high regime 1 at 13.9%. This demonstrates that the model identifies stable
market conditions where neither bullish nor bearish signals predominate. Among the bearish classifications,
bearish high regime 2 appears most frequently at 9.2%, significantly more common than other bearish states.
This suggests that regime 2 captures bearish patterns that the model can identify with high confidence. The
consistent distribution of bullish states across regimes, ranging from 6.3% to 7.3% for high confidence, indicates
a similar ability to identify rising prices in all types of markets. Notably, low-confidence classifications rarely
occur across all market directions and regimes, with most falling below 1.5% of samples. This demonstrates
the model’s decisiveness in regime assignments, preferring to make high-confidence classifications.

As shown in Fig. [4] a detailed breakdown of feature contributions is done within each identified regime.
This visualization provides crucial insights into what drives market behavior in different states. In Regime
0, OC_spread dominates at 88.9% contribution, with price_ velocity at 3.9%, momentum__state at 3.1%,

11



Under review as submission to TMLR

and other features contributing minimally. This regime represents a relatively stable market setting where
intraday price movements between open and close are the primary predictive factor. Regime 1 shows a
somewhat different pattern. While OC_ spread remains dominant at 83.6%, momentum_ state shows increased
importance at 7.0%, followed by HL_ spread at 4.9% and price_ velocity at 3.2%. This suggests an increased
momentum in the market, because of shifts in sentiment triggered by news events or short-term trader
behavior. Regime 2 exhibits the highest dominance of OC_spread at 89.4%, with price_ velocity as the
second most important feature at 5.4%. This shows the market is moving strongly in one direction, with
prices changing faster each day. The reduced importance of range-based indicators (HL_ spread at just 1.0%)
suggests that in this regime, direction matters more than volatility range. These feature contribution patterns,
align well with established market behaviors, where trending periods show directional signals and transitional
periods display increased momentum indicators. The clear differentiation between feature importance across
regimes validates our model’s ability to identify meaningful, and distinct market states.

Regime 0 Regime 1 Regime 2

OC_spread OC_spread OC_spread

price_velocity J§3-9% HL spread 4_}4.9% price_velocity 15.4%

OC_spread is overwhelmingly OC_spread remains highly OC_spread dominates
momentum state JJ3.1% |  dominant, indicating that price velocity J3.2% influential, with modest momentum state JJ1.7% once more, butan
overnight open—close contribution from HL_spread increased price_velocity
HL spread JJ2.4% | differences are the primary momentum state J1.3% |and price_velocity suggesting price_acceleration JJ1.7% hints at more dynamic
driver in this stable regime. some intraday volatility. daily price movements
volatility ratio 4|1.7% price_acceleration 1.0% HL spread §1.0%
f " " " " ) f " " " " . f : " " " )
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
% Contribution % Contribution % Contribution

Figure 4: Relative contribution of features across identified market regimes. Each regime exhibits distinct feature im-
portance patterns: Regime 0 shows a balanced influence of directional and volatility indicators, Regime 1 demonstrates
increased momentum significance while maintaining OC__spread dominance, and Regime 2 displays the strongest
OC__spread contribution, with price_ velocity as a secondary factor, representing different phases of market behavior,
from consolidation to trending states.

4.3 Financial Metrics and Risk Analysis

Our evaluation reveals that KASPER delivers exceptional performance across all financial metrics, out-
performing existing approaches in both statistical accuracy and practical trading applications. The model
achieves precision with an MSE of 0.0001, an RMSE of 0.0046, and an MAE of 0.0033. The R? value of
0.8953 £ 0.0030 explains over 89% of the variance in market returns.

A key highlight of KASPER’s performance is its Sharpe Ratio of 12.02. This exceptional risk-adjusted return
is due to three core innovations in our approach; orthogonal regularization which minimizes volatility by
decorrelating regime-specific features, preventing risk factors from affecting each other across regimes. Cubic
spline activations, which boost prediction signals (particularly OC spread, with Soc = 0.25) during stable
periods by using nonlinear patterns that simple models can’t detect. And, contrastive loss, which keeps
different market regimes separated, allowing risk and return to be managed separately (p;; < 0.15). Unlike
transformer models that mix features and cause high variability, KASPER controls volatility and avoids bad
investments during market changes.

The drawdown analysis in Fig. [5] highlights KASPER’s effectiveness in managing risk. Throughout the
testing period, the maximum drawdown remains remarkably contained at just -0.09%, nearly two orders of
magnitude lower than traditional approaches. Even during periods of heightened market volatility, as seen at
the point of maximum loss, the model remains stable. Following this challenging period, we observe the loss
reducing by approximately 0.4%, indicating the model’s ability to adapt. The wider standard deviation band
between regimes shows the natural uncertainty during these shifts. This drawdown profile indicates that
KASPER rarely makes consecutive prediction errors in the same direction, limiting potential losses during
tough market movements.

Fig. [6] compares actual versus predicted returns through various market conditions. During stable periods,
the prediction accuracy is exceptional, with errors below 0.5%. Midway through the test period, we observe
a volatility surge where actual uncertainty exceeds predictions with a standard deviation of 0.015. This
corresponds to a market regime transition where historical patterns temporarily lose reliability. The sudden
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Figure 5: Drawdown analysis of KASPER model across the testing period. The system maintains exceptional capital
preservation characteristics, with a maximum drawdown limited to -0.09%, demonstrating robust risk management
capabilities. Notable features include widened standard deviation bands during regime transitions (timesteps 40-60)
and rapid recovery periods following temporary losses, reflecting the model’s adaptive response to changing market
conditions.

down-spike represents a bearish signal triggered by unexpected negative market news, an outlier event that
no model could reasonably predict. The cumulative returns of 2.76% over the test period, combined with a
win rate of 83.17% and a profit factor of 1.53, show that the forecasting system works very well. For every
dollar risked, the strategy generates $1.53 in profits, creating a favorable risk-reward profile attractive even
to conservative investment approaches. KASPER’s regime-aware approach enables it to navigate different
market conditions with appropriate strategies, maintaining profitability while limiting downside exposure.
KASPER bridges the gap between black-box deep learning and interpretable financial modeling by adapting
to changing market dynamics.

—— Actual Returns
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Figure 6: Comparison of actual versus predicted returns across the testing period. The model demonstrates varying
forecasting precision under different market conditions: exceptional accuracy during stable periods (timesteps 75-100),
increased standard deviation during regime transitions (timesteps 110-130), and limited ability to anticipate extreme
market events as evidenced by the outlier at timestep 27.

4.4 Interpretability via Shapley Values

The Monte Carlo Shapley approach reveals different feature attribution patterns. In Regime 0, OC_ spread
(0.016+0.014) and HL_ spread (0.0114+0.006) exhibit balanced contributions, indicating a market state where
both directional movements and volatility range influence price determination. This suggests a complex
environment requiring multi-factor analysis for accurate forecasting. Regime 1 shows a shift towards directional
dominance, with OC__spread increasing to 0.039+0.017 while HL._ spread becomes negligible. The emergence
of volatility_ratio (0.002+0.001) as a secondary factor shows a transitional market entering directional
trends. Regime 2 displays the most distinctive pattern, with OC__spread reaching 0.083+0.021 while ATR
(0.003+£0.002) and price_ acceleration (0.0014+0.001) emerge as secondary factors. These attributions align
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with established financial theory while providing quantitative precision for practical application. As the
market moves from calm periods to breakouts and then to strong trends, the model shifts from using balanced
features to focusing more on direction. For traders, this means using different strategies for each phase: a
balanced approach in Regime 0, a focus on direction in Regime 1, and trend-following with size adjustments
in Regime 2. Changes in which features matter most can also act as early warnings for market shifts, helping
manage risk in advance.

4.5 Robustness and Generalization

To analyze KASPER'’s generalization capabilities, we conduct multiple walk-forward analyses across different
market conditions. As shown in Table 2] the model demonstrates remarkable stability across evaluation runs,
with consistently low standard deviations in all performance metrics. We report the following evaluation
metrics:

e Sharpe Ratio is a standard measure of risk-adjusted return. It is defined as:

-7
Sharpe Ratio = u, (29)
or
where 1, is the mean of strategy returns, ry is the risk-free rate, and o, is the standard deviation of
the returns. In our implementation, this is annualized by multiplying by v/T', where T is the number
of trading days per year (252).

e« Win Rate denotes the percentage of profitable trades, defined as:
N
Win Rate = W+ x 100, (30)

where Ny is the number of trades with positive return, and N is the total number of trades.

o Directional Accuracy evaluates how often the predicted return direction matches the actual market

movement:
N

1 A .
DA = N ;H‘ [sign(g:) = sign(y:)] x 100, (31)

where §; is the predicted return at time ¢, y; is the actual return, and ¥[-] is the indicator function.

¢ Cumulative Return measures the compounded growth of the strategy over time:

N
Cumulative Return = H(l +r) — 1, (32)
t=1

where r; is the return at time t.

o Maximum Drawdown (MDD) quantifies the largest observed loss from a peak to a trough in the
cumulative return curve:

MDD = mtin <Vt - 1> , (33)

maxg<s Vs

where V; is the cumulative portfolio value at time ¢.

These metrics are calculated per walk-forward test window, then averaged across multiple runs (with each
analysis averaged over 5 runs), with their respective standard deviations also recorded to assess statistical
consistency. As shown in Fig. [7] our walk-forward validation confirms that KASPER maintains its predictive
power when faced with regime transitions, preserving both directional accuracy and win rate across the entire
testing period. The model’s returns stay consistent over time, with steady average performance per trade
and minimal losses.
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Table 2: Aggregated financial performance metrics of KASPER across walk-forward runs.

Metric Value  Standard Deviation
Direction Accuracy (%) 80.94% + 7.27
Sharpe Ratio 11.24 + 2.78
Max Drawdown (%) -0.10% -
Cumulative Returns (%)  2.66% -
Win Rate (%) 80.94% + 7.27
Total Trades 700 -
Profitable Trades 566 -
Average Return (%) 0.0069% -
Average Win (%) 0.0102% -
Average Loss (%) -0.0070% -
Profit Factor 1.45 -

Examining the specific performance patterns, the Sharpe Ratio exhibits a remarkable peak at period 2.0,
reaching approximately 15.0, indicating exceptional risk-adjusted returns where the model generates 15 units
of excess return for every unit of risk taken. This peak coincides with optimal risk control, as evidenced by
the maximum drawdown approaching near-zero levels during the same period, demonstrating nearly perfect
capital preservation. The win rate simultaneously achieves its highest performance at periods 2.0-2.5, reaching
approximately 87%, where nearly 9 out of 10 trades are profitable, indicating that the Gumbel Softmax-based
regime classification is operating at peak efficiency. While the Sharpe Ratio gradually moderates to around

’\ > 0.00
16 Vs
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g initial risk-controlled phase. 1
14 =) (@) Portfolio growth surges to 5.0% as o —0.05
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17 return per volatility unit. 75 (D) Trading accuracy reaches & _0.15 4 |0:10% despite strategy
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Figure 7: Per-period performance of KASPER across key financial metrics over walk-forward validation windows. Each
subplot displays the mean value (solid line) and one standard deviation (shaded area) for Sharpe Ratio, Cumulative
Returns, Win Rate, and Maximum Drawdown.

6.5 by period 4.0, the cumulative returns exhibit a compelling trajectory, initially stabilizing around 1.5%
before demonstrating a sharp recovery and substantial growth to approximately 5.0% by the final period. This
divergent pattern, characterized by a declining Sharpe ratio alongside rising cumulative returns, highlights
KASPER’s adaptive nature: shifting from a conservative, high-precision approach during periods of market
uncertainty to a more aggressive, trend-following strategy as clearer directional regimes emerged, all while
consistently maintaining win rates above 79% and maximum drawdowns below -0.10% across all periods.

The model’s robustness arises from two key architectural innovations: our quantile-normalized spline ini-
tialization strategy, which ensures appropriate boundary handling across diverse feature distributions and
orthogonality regularization (enforcing HWTWTT -1 Hi minimization), which prevents feature collapse during
training and maintains distinct regime characteristics as market conditions evolve. This enables KASPER to
capture both linear and nonlinear relationships across market conditions without overfitting to past data.
The consistent performance across varying market regimes, combined with the previously discussed financial
metrics, confirms that KASPER delivers reliable performance under diverse conditions, making it suitable for
practical deployment in real-world financial applications.
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Robustness checks under realistic trading and temporal validation. To contextualize the unusu-
ally high Sharpe ratio and near-zero drawdown observed in the main experiment, we conduct additional
robustness checks that account for market frictions and stricter temporal validation. Specifically, we run two
additional evaluations. First, we evaluate KASPER under three cost settings reflecting ditferent execution
environments: an optimistic setting with 0.05% transaction costs, 0.02% slippage, and same-day execution; a
more typical retail setting with 0.10% transaction costs, 0.05% slippage, and a one-day execution delay; and
a conservative setting with 0.20% transaction costs, 0.10% slippage, and a one-day delay. Across these scenar-
ios, KASPER maintains strong risk-adjusted performance (Sharpe = 13.25, 12.71, and 11.81, respectively),
with stable win rates (88.42%-90.53%), indicating that the performance is not an artifact of frictionless
backtesting.

Second, to mitigate lookahead bias arising from overlapping rolling-window computations, we perform purged
walk-forward validation with a 7-day purge gap between training and test segments, using the same trading-
cost assumptions as above. Standard walk-forward evaluation yields Sharpe = 9.89 with 80.19% directional
accuracy and 219.56% cumulative returns, while the purged protocol achieves Sharpe = 10.30 with 80.13%
directional accuracy and 147.17% cumulative returns. The Sharpe change between the two protocols is 4.1%,
which is below the magnitude typically associated with leakage-driven inflation, supporting that the reported
gains are not driven by temporal information contamination. The consistency of Sharpe ratios across cost
assumptions (11.81-13.25) and the limited sensitivity to purging provide evidence that the strong performance
reflects stable regime-dependent structure rather than overfitting or evaluation artifacts.

Cross-asset generalization. To assess generalization beyond the primary Yahoo Finance evaluation, we
test KASPER on three markets with distinct microstructures: an equity index (S&P 500), a single large-cap
technology stock (APPL-MAANG), and a commodity series (daily gold prices). Table [3| summarizes the
results. On the S&P 500, KASPER achieves strong performance (R? = 0.80, Sharpe= 9.50); the reduction
relative to the main setting (R? = 0.89, Sharpe= 12.02) is consistent with the higher constituent heterogeneity
and the effects of market-cap weighting. On AAPL, performance decreases to R? = 0.56 and Sharpe= 7.02,
reflecting increased idiosyncratic volatility and firm-specific shocks that are not fully captured by technical
inputs alone. On gold, performance further degrades (R? = 0.33, Sharpe= 1.56), highlighting limitations when
transferring an equity-optimized regime formulation to macro-driven and more mean-reverting dynamics.
Nevertheless, Sharpe ratios remain positive across all datasets, suggesting that the regime-aware forecasting
and risk-control components retain practical value across asset classes. These findings motivate asset-specific
feature augmentation, such as macro indicators for commodities and fundamental/event signals for single
stocks, and, where appropriate, regime definitions tailored to mean-reverting versus trending behavior.

Table 3: Comparative evaluation with different datasets.

Dataset R? MAE Sharpe Max DD MSE RMSE
S&P 500 (Kaggle, 2025) 0.80 0.0045 9.50 -0.25% 0.00015  0.0055
APPL-MAANG (Upadhyay| [2022) 0.56 0.0124 7.02 -3.52% 0.0003  0.0174
Daily Gold Prices (Chodvadiya| [2025) 0.33  0.0082 1.56 -8.54% 0.0001 0.0112

4.6 Ablation Analysis

To assess the role of the two regularizers in regime identification, we ablate orthogonality regularization
and the contrastive loss, disabling each component while keeping the rest of KASPER unchanged. Remov-
ing orthogonality regularization leads to regime collapse: the regime-specific weight matrices become nearly
identical during training and the detector assigns the majority of samples to a single regime.

In contrast, disabling the contrastive loss produces a different failure mode, referred to as regime entanglement.
As shown in Fig. |8 the regime assignments become weakly separated and are dominated by low-confidence
predictions, indicating substantial overlap of regime embeddings in the latent space. Without the contrastive
objective, the model does not form a stable separation between market states, which degrades regime
discrimination and leads to unreliable regime assignments.
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Figure 8: Regime distribution under contrastive-loss ablation, illustrating regime entanglement. The near-identical
bullish and bearish proportions and the dominance of low-confidence assignments indicate weak regime separation.

4.7 Comparative Analysis

We compare KASPER against established and recent forecasting baselines to evaluate predictive accuracy,
risk-adjusted performance, and interpretability under consistent experimental conditions. To ensure method-
ological consistency and completeness, all baselines are implemented and evaluated on the same Yahoo Finance
dataset using identical preprocessing, train—test splits, and normalization, while preserving each method’s
core algorithmic components. Moreover, VLSTAR and AGNES are formulated for binary regime classification
(calm versus volatile) rather than continuous return prediction; since they output regime probabilities instead
of numerical forecasts, regression-based metrics such as R?, MAE, MSE, and RMSE are not represented for
these methods and are therefore omitted from the comparative summary.

Table 4: Comparative evaluation with existing work.

Model /Framework R?> MAE Sharpe Max DD MSE RMSE
RF + Monte Carlo (Zhao!|2025) 0.78  0.095 0.93 -28.11% 0.015 0.122
Single Layer LSTM (Bhandari et al.||2022) 0.79  0.0072 0.85 -17.46% 0.00085 0.0292
LSTM + KAN (Yaol [2024) 0.48  0.0057 1.97 -12.00% 0.00014 0.0082
AE-LSTM + DRL(Sagiraju & Mogalla| [2022) 050  0.010 1.85  -33.00%  0.00017  0.013
VLSTAR (Bucci & Ciciretti| 2021) - - 0.93 - - -
AGNES (Bucci & Ciciretti| [2021) - - 0.82 - - -
PatchTST (Nie et al.| [2023) 0.10  0.0082 2.24 -6.68% 0.0001 0.0108
DLinear (Zeng et al.| [2023) 0.03  0.0071 3.40 -9.98% 0.0001 0.0103
DQS (Li & Ming| [2023) 0.78  0.0149 3.65 -7.44% 0.000377  0.0194
KASPER (Ours) 0.89 0.0033 12.02 -0.09% 0.0001 0.0046

As shown in Table |4} the results indicate that KASPER benefits from coupling regime identification with
sparse and interpretable forecasting: orthogonality-constrained regime separation is paired with Monte Carlo
Shapley-based attribution, enabling regime-specific explanations while maintaining strong predictive accuracy.
We further include two recent forecasting baselines, PatchTST and DLinear. PatchTST achieves R? = 0.10
with Sharpe = 2.24, which is consistent with transformer-based models being sensitive to data availability
and with the absence of an explicit regime-adaptation mechanism in the baseline formulation. DLinear yields
R? = 0.03 with Sharpe = 3.40, suggesting limited explanatory power when a single linear decomposition is
applied across heterogeneous market states. By contrast, KASPER explicitly detects the prevailing regime
and applies regime-specific spline transformations, capturing 89% of the return variance (R? = 0.89), while its
interpretability module provides actionable regime-conditional insights into feature relevance. These results
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support that integrating regime-aware modeling with sparse forecasting and attribution yields a more accurate
and informative framework for stock return prediction under changing market conditions.

4.8 Discussion

The comprehensive evaluation of KASPER across multiple dimensions, including regime behavior, financial
performance, interpretability, and robustness, highlights the strength of its architecture in addressing the
challenges of financial forecasting. Unlike static models or black-box neural networks, KASPER employs a
modular and transparent design that adapts effectively to evolving market dynamics. The regime segmentation
results demonstrate that the model reliably distinguishes between bullish, bearish, and neutral market states,
with a strong tendency toward confident regime assignments. This decisiveness, combined with feature
attribution analysis, confirms that KASPER identifies meaningful market signals, such as a dominance of
directional indicators in trending phases and a greater emphasis on volatility during periods of transition. Such
patterns align with financial theory and support more targeted forecasting and risk management decisions.

The model’s financial resilience, reflected in its low drawdown and consistent performance across walk-forward
analysis, is enabled by its architectural innovations. The use of orthogonality constraints helps preserve
regime-specific representations, minimizing the risk of overlapping or diluted features across distinct market
conditions. In parallel, spline-based activations enhance the model’s ability to capture fine-grained nonlinear
effects that conventional models often miss. Contrastive learning further reinforces regime separation,
improving generalization over time.

Crucially, KASPER addresses a key need in financial modeling: aligning strong predictive capabilities with
practical deployability. Its interpretability, enabled through Shapley-based feature attribution, completes
the transparency requirements of real-world applications, including those subject to regulatory oversight.
Compared to traditional statistical models, which may fail under regime shifts, or deep learning models,
which often lack interpretability, KASPER offers a well-rounded solution that balances accuracy, adaptability,
and explainability.

5 Conclusion

The proposed KASPER framework addresses key challenges in financial market prediction by combining
adaptive regime modeling, sparse spline-based KANs, and Monte Carlo Shapley-based interpretability. Unlike
conventional models, KASPER adapts dynamically to market conditions, improving predictive accuracy
while avoiding overfitting. Evaluation on Yahoo Finance data reveals strong performance, with an R? of
0.8953, a Sharpe Ratio of 12.02, and an MSE of 0.0001. Low drawdowns and consistent profitability confirm
its practical relevance. Orthogonal regularization and contrastive loss ensure clear regime separation, while
Shapley-based attribution offers transparent insight into key market drivers. KASPER achieves a strong
balance between accuracy and interpretability, making it well-suited for real-world decision-making.
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