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Abstract

The dimensional collapse of representations in self-supervised learning is an ever-present issue.
One notable technique to prevent such collapse of representations is using a multi-layered
perceptron network called Projector. In several works, the projector has been found to
heavily influence the quality of representations learned in a self-supervised pre-training task.
However, the question still lingers. What role does the projector play? If it does prevent the
collapse of representations, then why doesn’t the last layer of the encoder take up the role of
projector in the absence of an MLP one? In this work, we intend to study what happens
inside the projector by examining the rank dynamics of the same and the encoder through
empirical study and analysis. Through mathematical analysis, we observe that the e!ect of
rank reduction predominantly occurs in the last layer. Furthermore, we show that applying
weight regularization only in the last layer yields better performance than when used on the
whole network (WeRank), both with and without a projector. Empirical results justify that
our interpretation of the role of the projector is correct.

1 Introduction

Self-supervised learning aims to learn representations without any human annotations. Recent works like
SimCLR (Chen et al., 2020a), MoCov2 (Chen et al., 2020b), DCL (Yeh et al., 2022), BYOL (Grill et al.,
2020), Barlow Twins (Zbontar et al., 2021), etc. present frameworks which allow learning of representations
which are similar for semantically similar samples. However, this objective may lead to a complete collapse
of representations when the representations of all samples get mapped trivially to a single point in the
representation space.

Various techniques, such as using a large batch size (Chen et al., 2020a), momentum encoder (Chen et al.,
2020b; Grill et al., 2020), stop gradient (Chen & He, 2020), feature whitening (Bardes et al., 2022; Zbontar et al.,
2021) and clustering (Caron et al., 2020), have been used to prevent the complete collapse of representations.
However, contrastive self-supervised learning still su!ers from dimensional collapse, where the embedding
vectors only span a lower-dimensional subspace. Dimensional collapse occurs when the variance of information
along some dimensions becomes insignificant. We avoid saying that variance will be zero because information
content along any dimension can never be entirely zero in practical terms.

In Hua et al. (2021), the author discusses that dimensional collapse is mainly related to a strong correlation
between information flowing through di!erent dimensions. This challenging issue of dimensional collapse has
also been addressed in works like Balestriero & LeCun (2022), RankMe (Garrido et al., 2023), DirectCLR
(Jing et al., 2022) and WeRank (Pasand et al., 2024). These works also stress the importance of full-
rank representations for better performance on downstream tasks. However, WeRank does not provide
any mathematical insight into the dimensional collapse of representation. In DirectCLR, the attempt at
investigating the causes of the dimensional collapse is limited to toy examples, and only uses a truncated
vector for training, leaving the last few dimensions non-trainable. This, however, is not fully capable of
preventing dimensional collapse. We instead use the full output vector for both training and evaluation as
well. Furthermore, we show that, unlike WeRank (Pasand et al., 2024), it is not necessary to apply the weight
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regularisation on the whole network, thereby reducing the computation overhead from O(L · n
3) to O(n3),

where L is the scalar factor that comes naturally as shown in the later section Sec. 3.6.

Even though dimensional collapse still occurs even when a projector is used, we understand that the projector
plays an important role in reducing dimensional collapse. The role of the projector has been studied previously
in works like Gupta et al. (2022); Song et al. (2023); Xue et al. (2024). However, none of the above works
explores how the use of projectors diminishes the e!ect of dimensional collapse.

In this work, we first empirically verify the decorrelating e!ect of InfoNCE loss. Next, we try to determine
what happens inside the projector and its role in self-supervised contrastive learning. We further investigate
the phenomenon occurring in the encoder layer that causes degradation in performance in the case of
dimensional collapse resulting from negligible variance along some feature dimensions, both with or without a
projector. Finally, we employ a simple strategy for self-supervised learning, both with and without using a
projector, which verifies our mathematical conclusion. We summarize our contributions as follows:

• We investigate the role of the projector in self-supervised contrastive learning in the light of dimensional
collapse. To our knowledge, this is the first work to do so.

• We further investigate the phenomenon in the encoder when not using a projector for contrastive
self-supervised pre-training, giving us more insight into the phenomenon of dimensional collapse.

• Based on our findings, we propose a simple strategy to improve performance in contrastive self-
supervised pre-training by applying weight regularization only on the last layer.

2 Related Works

SSL methods take di!erent approaches to prevent a complete collapse of representations. Instance discrimina-
tion methods like SimCLR (Chen et al., 2020a), MoCov2 (Chen et al., 2020b), and DCL (Yeh et al., 2022)
use repulsion between negative samples to prevent complete collapse. However, in addition to the negative
repulsion in the InfoNCE loss, they also use a projector which projects the encoder output representations
into a lower-dimensional space before computing the InfoNCE loss. Methods like DeepCluster (Caron et al.,
2018) and SwAV (Caron et al., 2020) use a clustering-based instance-group discrimination approach. However,
dimensional collapse persists according to Garrido et al. (2023) and Jing et al. (2022).

Architectures similar to the above are also seen in dimension contrastive methods like BYOL (Grill et al.,
2020), where the extra predictor for predicting the output of the projector from the momentum updated
target encoder and l2-normalization prevents complete collapse. SimSiam (Chen & He, 2020), on the other
hand uses a stop-gradient method to prevent the same. WMSE (Ermolov et al., 2021), ZeroCL (Zhang et al.,
2022b) uses feature whitening to prevent collapse.

Non-contrastive methods like Barlow Twins (Zbontar et al., 2021) aim to decorrelate the feature dimensions
to reduce redundancy in the output embeddings, thereby preventing dimensional collapse. However, Barlow
Twins fails to perform without the projector, as we will see in the later subsections. VICReg (Bardes et al.,
2022) uses a covariance term in the loss to do feature decorrelation like Barlow Twins. However, according to
Garrido et al. (2023), even these methods are not free from dimensional collapse.

Hua et al. (2021) discusses that the strong correlation between dimensions of the representation vector is the
primary cause of dimensional collapse, and uses feature decorrelation to prevent it and improve performance.
Balestriero & LeCun (2022) also uses a decorrelation loss like VICReg as a method to prevent dimensional
collapse and learn optimal representations. Gupta et al. (2022) shows that a projector prevents low-rank
backbone features, thereby preventing dimensional collapse. However, it does not explore the reason behind
it. This work primarily discusses that a learnable projection head is a way of mitigating the shortcomings of
contrastive loss and helps in learning generalizable representations. A detailed discussion of the relationship
between downstream performance and embedding rank is also presented in Garrido et al. (2023). WeRank
(Pasand et al., 2024) uses the same feature decorrelation strategy to deduce that the weight norm of each
layer should be as close to the identity matrix as possible to prevent dimensional collapse.

DirectCLR (Jing et al., 2022) achieved considerable success in preventing collapse. This work mainly
proposed two findings as the possible causes of dimensional collapse: (1) implicit regularization due to
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over-parametrization of networks, and (2) strong augmentations. However, in terms of performance (linear
evaluation accuracy), it falls short of SimCLR with a non-linear projector.

DINO (Caron et al., 2021) introduced self-distillation without labels, where a student network learns
from a momentum-updated teacher using normalized feature matching, enabling Vision Transformers to
learn semantic features without supervision. iBOT (Zhou et al., 2021) extended DINO by combining self-
distillation with masked image modeling, allowing simultaneous global and local representation learning
through patch-level prediction. DINOv2 (Oquab et al., 2024) further refined the framework with large-
scale curated data, improved regularization, and stronger transferability, yielding universal visual features
competitive with supervised models. I-JEPA (Assran et al., 2023) departed from contrastive and pixel-level
objectives by predicting high-level latent representations of masked regions, emphasizing abstraction and
context understanding. Together, these methods progressively evolve self-supervised learning from instance
discrimination toward semantically rich, transferable, and predictive representations.

Recent work such as VCReg (Zhu et al., 2023) extends the idea of weight and feature regularization by
encouraging high-variance and low-covariance representations to enhance feature diversity and prevent neural
collapse. This approach aligns conceptually with our method and WeRank (Pasand et al., 2024), as both
aim to improve representation quality and transferability through more balanced and decorrelated feature
learning.

3 Methodology

3.1 Notations

In this subsection, we discuss the notations followed in the rest of the paper for mathematical derivations and
discussions.

Table 1: Table for Notations

Symbols What it means
L Loss function
x Input
f Encoder
h output of Encoder f

g Projector
z Output of Projector

sij Cosine similarity between the projector output embeddings of the samples of xi and xj

B Batch Size
D Number of dimensions in the encoder output embedding
d0 Number of trainable dimensions in the encoder output embedding
dr Number of non-trainable dimensions in the encoder output embedding
Wl Weight matrix of l-th layer with dimensions Do → Di

Do Output dimensions
Di Input dimensions
W

i
l i-th row of the weight matrix Wl

I Mutual information

3.2 Preliminaries

In this work, we consider SSL pre-training with SimCLR as the baseline. Let us denote f and g as the
encoder and the projector, respectively. The encoder output and the projector output embeddings are
denoted by h = f(x) and z = g(f(x)), respectively, where x denotes the input sample. The total number of
dimensions in the encoder output embedding is given by D. d0 and dr denote the number of dimensions of
the encoder output embedding, which are trainable and non-trainable or fixed to a constant value. To learn
the representations, the InfoNCE loss is given by,
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Linfonce = ↑Ei




exp(sii+)

exp(sii+) +
∑B

j=1

j →=i
exp(sij)



 (1)

where sii+ and sij are the cosine similarity between the projector output embeddings of the samples of
positive pair (xi, xi+) obtained by augmentations applied on the sample xi, and the samples of negative pair
(xi, xj), respectively, and B denotes the batch size.

In the later subsections, we divide the output embeddings into 2 parts, which we refer to as trainable and
non-trainable dimensions. We define the trainable part of an embedding to consist of those dimensions
through which the gradient propagation is allowed to flow. At the same time, the non-trainable part of the
embedding means the opposite.

3.3 Definitions

(D1) Dimensional Collapse: Dimensional Collapse occurs when the embedding vectors span a lower-
dimensional subspace RD→ instead of the entire embedding space RD, where D

↑
< D.

(D2) Information Bottleneck: The information bottleneck (IB) is a principle for representation learning
that aims to extract a compressed representation of a variable that is as predictive as possible of a target
variable. The IB framework is based on finding a compressed representation, T , of an input variable, X,
that preserves the maximum relevant information about a target variable, Y . This is expressed through a
constrained optimization problem. The goal is to find the representation T that maximizes the relevance
I(T ; Y ) for a given compression level I(T ; X). This can be expressed as a Lagrangian optimization problem:
minp(t|x) I(T ; X) ↑ ωI(T ; Y ), where ω is the Lagrangian multiplier.

(D3) High-level representations: In deep learning, high-level representations are the abstract, complex
features learned by the deeper layers of a neural network. This is because deep networks process information
hierarchically, transforming simple inputs into progressively more complex and meaningful features. The
di!erence between low-level and high-level representations is best understood by following the flow of
information through a deep network; that is, the low-level representations are simple, local patterns detected
by the initial, shallower layers of the network, whereas high-level representations are obtained by combining
the simpler features from shallower layers.

Relevance to Downstream Tasks: The principle of information bottleneck is utilised in the downstream
task to discard irrelevant information while retaining useful information related to the downstream task. The
high-level representations, that is, the task-specific representations in the deeper layers, are also relevant to
the downstream task. Finally, the dimensional collapse, which can occur for both the self-supervised pre-
training and supervised training stages, causes the learning to occur in a lower-dimensional subspace rather
than in the high-dimensional embedding space. A larger utilisation of the learning subspace results in better
performance in the downstream task.

3.4 Motivation

In this work, the main motivation is to study the phenomenon occurring inside the projector in the self-
supervised contrastive learning scenario and what happens in the absence of it. In DirectCLR (Jing et al.,
2022), it is stated that in instance discrimination-based contrastive learning, even though the presence of
positive and negative samples should prevent the dimensional collapse of representations intuitively, it still
occurs.

We find this to be true empirically as shown in Fig. 1a, where we observe that the magnitudes of the sorted
eigenvalue spectrum dip considerably when the encoder is trained without a non-linear projector than when
trained with one. Similar findings are also reported in Gupta et al. (2022). Furthermore, methods using
feature decorrelation to prevent dimensional collapse, like Balestriero & LeCun (2022) or Hua et al. (2021),
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(a) (b)

Figure 1: (a) Singular value plots of the covariance matrix of ResNet50 encoder output embeddings pre-trained
on ImageNet100 using SimCLR with and without a projector. ‘Layer4’ indicates the last layer in the ResNet50
encoder. ‘blue’: without (wo) projector, ‘red’:with projector. (b) Singular value plots of Barlow Twins and
SimCLR encoders compared with DirectCLR. The plot (a) exhibits that without the projector, the singular
values of the covariance matrix drop sharply. A similar observation is also found in Barlow Twins (b), while
the vanilla SimCLR and DirectCLR method prevents the sharp decline.

(a) CIFAR100 (b) ImageNet100 (c) CIFAR100 (d) ImageNet100

Figure 2: Covariance matrices of output embedding of the projector for SimCLR trained on (a) CIFAR100
and (b) Imagenet100. Covariance matrices of embeddings from the SimCLR encoder trained on (c) CIFAR100
and (d) ImageNet100. On both CIFAR100 and ImageNet100, we can observe the projector output embedding
exhibiting low covariance in the o!-diagonal components, which points towards the decorrelation e!ects of
the InfoNCE loss (a and b). Furthermore, the decorrelation e!ect is propagated partially to the encoder
output embeddings, as evident from the uniform nature of the covariance matrix values (c and d). Best
viewed at 300%.

still su!er from dimensional collapse. This is primarily due to the low-rank embeddings of shallower layers,
that is, from the encoder (Pasand et al., 2024). To determine the role of the projector, we empirically study
whether the InfoNCE loss has a decorrelating e!ect. Then we try to analyze the dynamics of the projector
through rank decomposition of the covariance matrix and how it prevents dimensional collapse.

3.5 Does InfoNCE have a decorrelating e!ect?

According to Zhang et al. (2022a), InfoNCE also acts as a decorrelating loss, similar to Barlow Twins (Zbontar
et al., 2021) or Balestriero & LeCun (2022). In Fig. 2a and 2b, we show the covariance matrix of the output
feature dimensions. From the covariance matrix of the embeddings of the CIFAR100 and ImageNet100
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datasets, we can see that the magnitudes of the diagonal elements of the covariance matrix are much higher
than the non-diagonal ones. This shows that the InfoNCE loss has a decorrelating e!ect, as shown in Zhang
et al. (2022a). However, from Fig. 2c and 2d, we see that the diagonal nature of the covariance matrix of the
encoder output embeddings is not present. This proves that even if the loss enforces feature decorrelation on
the projector output embeddings, it is possible to obtain low-rank output embeddings from the encoder.

3.6 Understanding the events in Projector in case of Dimensional Collapse

It is empirically observed in DirectCLR (Jing et al., 2022) that InfoNCE loss fails to properly optimize
the parameters of a network without a projector and results in dimensional collapse. Barlow Twins (BT)
(Zbontar et al., 2021) performs better than most contrastive learning frameworks on benchmark datasets,
but not when implemented without a projector, even though a decorrelation loss is applied. The singular
value spectrum in Fig. 1b plots the singular values of BT (w/o projector), SimCLR (w/o projector), and
DirectCLR. We can see that the dimensional collapse e!ect in BT is greater than in SimCLR w/o projector,
even though it is trained directly using a decorrelation-based loss. According to Zhang et al. (2022a), the
projector is essential for a decorrelation-based framework too, even though both InfoNCE and the loss used
in Zbontar et al. (2021) have a decorrelating component. So, the question arises, what exactly happens
after the addition of a non-linear projector towards the prevention of dimensional collapse?.

A Linear Algebraic perspective: In RankMe (Garrido et al., 2023) and DirectCLR (Jing et al., 2022),
the authors have shown that without a projector, the embeddings from the pre-trained encoder have a low
rank. Does a low-rank embedding indicate that the useful information can be approximated using fewer
dimensions? But then, why does it lead to worse performance, if that is the case?. How is it di!erent
from the information bottleneck theory of the projector? (Ouyang et al., 2025).

3.6.1 Weight Norm Analysis

It is important to note that in DirectCLR (Jing et al., 2022), a part of the output vector z is left unchanged,
that is, the kernels leading to the unchanged part of z still have the randomly initialized weights at the end
of pre-training. Now, these randomly initialized weights have non-zero variance. However, when the rank of
the encoder output embeddings is reduced, it practically means that the variance of the information along
those dimensions is very low. A very low variance means there is almost no useful information available
in that dimension. Thus, when not using a projector, the reduction in rank in the last layer embedding
covariance matrix indicates that there is little variance of information along some of the embedding dimensions.
Consequently, this indicates that the norm of the weights in the last layer ↓W

i
l ↓2

< ε, where ε is very small,
and V ar(W i

l ) ↔ 0, where W
i
l is the layer weights corresponding to the i-th output embedding dimension of

layer l.

Theoretical Setup: The theoretical framework primarily revolves around a black box neural network, which
outputs embeddings, followed by two MLP layers represented by the weight matrices Wl↓1 and Wl or W

for the last layer. The term h represents the output of the final layer, while x represents the input to the
weight matrices. Additionally, for simplicity, we consider no activation or batchnorm for the last two weight
matrices.

Proposition 1 : The norm of the weight vectors associated with the collapsed dimensions becomes zero.

Proof : We can prove the above proposition by a simple deduction. Let x ↗ RDi be the embeddings with
dimensions N → Di, and W ↗ RDo↔Di be the weight matrix with dimensions Do → Di. To consider only a
single dimension i, we take the i-th row of the weight matrix as W

i ↗ R1↔Di . Let, the covariance of x be
defined as

! = Cov(x) = E
[(

x
T ↑ E[xT ])

) (
x

T ↑ E[xT ])
)T

]
(2)

It is to be noted that, since we are dealing with the last layer only, it is to be assumed that the input to
the last layer does not have any collapsed dimension, and ! is positive definite with the smallest eigenvalue
ϑmin > 0.

hi = W
i
l x

T
l = W

i
l .

(
Wl↓1x

T
l↓1

)
=

(
W

i
l Wl↓1

)
x

T
l↓1

(3)
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V ar(hi) =W
i
l

(
x

T
l ↑ E[xT

l ]
) (

x
T
l ↑ E[xT

l ]
)T (W i

l )T = W
i
l !l

(
W

i
l

)T = ↓W
i
l !

1
2
l ↓2

2
< ϖ (4)

Since variance cannot be exactly zero, we consider V ar(hi) < ϖ. In that case, ↓W
i↓2 lies in the approximate

left null space (Ito et al., 2010) of !l. Now, if ϑmin be the minimum eigenvalue of !l, then

ϖ > V ar(hi) = W
i
l !l

(
W

i
l

)T ↘ ϑmin↓W
i
l ↓2 (5)

This gives us,

↓W
i
l ↓2

<
ϖ

ϑmin
< ϖ

↑ (6)

In the general case, if we consider Cov(hi, hj), we can deduce the following,

Cov(hi, hj) =
(
W

j
.x

T ↑ E[W j
.x

T ]
)

.
(
W

i
.x

T ↑ E[W i
.x

T ]
)T

=
(
W

j
.x

T ↑ W
j
.E[xT ]

)
.
(
W

i
.x

T ↑ W
i
.E[xT ]

)T

= W
j

(
x

T ↑ E[xT ]
)

.
(
x

T ↑ E[xT ]
)T

.W
iT = W

j!lW
iT

(7)

This gives us,
|Cov(hi, hj)| = |W j!l(W i)T | ≃ ϑmax↓W

j↓↓W
i↓ (8)

For non-constant x with large enough variance, |Cov(hi, hj)| will be very small or close to zero, if ↓W
i↓ is

small, regardless of ↓W
j↓. In this case, a row of the covariance matrix becomes small or close to zero. Hence,

the rank reduction e!ect or dimensional collapse occurs. (Derivation of Eqn. 8 in Appendix A)

However, in the reverse case if V ar(W i) < ε
↑ but ↓W

i↓2 is not small, we can trivially deduce that, V ar(hi)
or Cov(hi, hj) is also large. Therefore, the contribution of the dimension i to the rank of the covariance
matrix cannot be ignored.

Equation 6 shows that, as the variance of an output dimension approaches zero, the corresponding weight-row
norm must shrink proportionally. Therefore, dimensional collapse in the embedding space of the final layer is
necessarily accompanied by vanishing weight norms for those output coordinates.

(a) CIFAR10 - Last Layer -
1st Block - 2nd Conv

(b) CIFAR10 - Last Layer -
2nd Block - 2nd Conv

(c) CIFAR100 - Last Layer -
1st Block - 2nd Conv

(d) CIFAR100 - Last Layer -
2nd Block - 2nd Conv

Figure 3: Comparison of channel-wise weight norm distribution of SimCLR without projector trained without
(blue) and with (red) our proposed weight regularization in the last layer for the penultimate and final layers
of the projector. The distribution of weight norms of the SimCLR without the projector shows that the
weights of the second convolutional layer of the second resnet block in the last layer (h) go very close to

0.0. Whereas the proposed method (p) can raise the minimum away from 0.0 despite having similar mean
values. Best viewed at 200%.
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(a) CIFAR10 - Last Layer -
1st Block - 2nd Conv

(b) CIFAR10 - Last Layer -
2nd Block - 2nd Conv

(c) CIFAR100 - Last Layer -
1st Block - 2nd Conv

(d) CIFAR100 - Last Layer -
2nd Block - 2nd Conv

Figure 4: Comparison of channel-wise unbiased variance of weight of SimCLR without projector trained
without (blue) and with (red) our proposed weight regularization in the last layer for the penultimate and
final layers of the projector. The distribution of unbiased variances of the weight of the SimCLR without
the projector shows that the weights of the second convolutional layer of the second resnet block in the last
layer (h) go very close to 0.0. Whereas the proposed method (p) can raise the minimum away from 0.0

despite having similar mean values. Best viewed at 200%.

Key Takeaway 1: Weights with near-zero norm prevent learning of high-level representations

Thus, if the norm of the weights and the variance of the weights corresponding to the collapsed dimensions
become close to zero, it prevents the kernels in the deeper layers in the backbone encoder from learning
class-specific high-level representations, consequently hampering the downstream performance, as the presence
of lower values in the weight variances reduces their representation learning capacity.

Empirical Justification: We look at the distribution of the channel-wise weight norms of the convolutional
layers in the penultimate and last layer of the encoder (Fig. 3), trained using the SimCLR framework, but
without a projector. We can observe that there are several samples in the distributions which have values
very close to zero, indicating the presence of collapsed dimensions. Additionally, we also present the e!ect of
applying a weight regularization in the last layer only when trained without a projector in the same figure.

The importance of these empirical findings lies in the fact that they directly corroborate the "Key Takeaway
1" mentioned previously. By definition, the last layer corresponds to learning the high-level and more complex
representations. Having a negligible weight norm and a negligible variance reduces the representation learning
capacity of the layers in concern. From Fig. 3 and 5b, we can combine the empirical results to infer that in
the absence of a projector, both the covariance of the embedding dimensions and the weight norm become
negligible along a few dimensions. Hence, considering that the concerned weights are from the last layer,
we can safely state that the kernels in the deeper layers are incapable of learning useful information in the
absence of a projector.

3.6.2 Propagation of Low-Rank Representations

In the case of a perfect decorrelating e!ect of the InfoNCE loss as discussed in the previous subsection, the
flow of information would be maximized, resulting in better semantic representation learning and consequently
better downstream performance. But the decorrelation e!ect of the InfoNCE on the encoder output embeddings

does not maximize the flow of information through the encoder output dimensions. A similar approach to
prevent dimensional collapse was also presented in WeRank (Pasand et al., 2024), where the authors used
weight regularization by whitening the weight covariance matrix.

Empirical justification and observations : We study the singular value plots of the penultimate and
final layer of the encoder backbone in Fig. 5. We see an increase in the number of high-valued singular
values in the final layer of the backbone when using a projector. However, the eigenvalue spectrum is almost
unchanged with or without a projector in the penultimate layer of the ResNet backbone encoder. Thus,

we can say that the e!ect of rank reduction is observed only on the final layer, when not using a separate

8



Under review as submission to TMLR

(a) CIFAR10 (b) CIFAR100 (c) ImageNet100

Figure 5: Singular values plots of the penultimate and final layers of the encoder with and without the
projector. The plots above show the e!ect of the presence and absence of the projector on the last and the
penultimate layer of the encoder. The last layer (Layer5) shows a clear dimensional collapse without the
projector in all three datasets, CIFAR10, CIFAR100 and ImageNet100. However, there is a negligible change
in the singular value plot for the penultimate layer (Layer4), which agrees with our previous observation that
the decorrelation e!ect is not fully propagated towards the shallower layers. Best viewed at 300%.

projector, and the final layer of the backbone acts as the make-shift or pseudo projector. However, according
to our observation, it is wise to say that the rank reduction e!ect is observed on the layer from which the
final embedding is taken for contrastive loss computation, while the eigenspectrum of the previous layer
output embeddings shows almost no change. This is confirmed from the plots of eigenvalues in Fig. 6, where
we observe that the eigenvalues for the last layer of the projector are significantly low in magnitude.

(a) CIFAR10 (b) CIFAR100 (c) ImageNet100

Figure 6: Singular values plots of the penultimate and final layers of the projector. Best viewed at 300%.

Why are full-rank embeddings better than low-rank embeddings? The trick used in DirectCLR
is to leave a part of the output vector z randomly initialized, theoretically making the variance of those
dimensions non-zero. This causes the encoder to learn representations that are e!ectively higher-dimensional.
Therefore, separability is also better according to Cover’s theorem (Cover, 1965). Whereas, when the rank gets
reduced, the representations are mapped to a low-dimensional subspace which should reduce the probability
that the mapped instances are linearly separable while still being embedded in a high-dimensional space.

A similar approach based on Cover’s theorem has also been taken in RankMe (Garrido et al., 2023) for the
realisation of their framework.

Proposition 2: Low-rank embeddings from shallower layers are not solely responsible for dimensional
collapse despite the decorrelating e!ects of InfoNCE loss.

Proof: Assuming that the norm of the weight matrices in the last layer is not zero, to investigate the reason
for dimensional collapse, we need to look into the shallower layers and investigate the characteristics of the
layer weights to prove Proposition 2. Assuming Wl and Wl↓1 are the weight matrices of two consecutive
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layers in a linear network without skip connection or activation, W
i
l is the i-th row of the weight matrix of

the l-th layer.

Taking xl and xl↓1 are the inputs to the l-th and (l ↑ 1)-th layers, following Eqn. 4, we can directly get the
result,

hi = W
i
l x

T
l = W

i
l .

(
Wl↓1x

T
l↓1

)
=

(
W

i
l Wl↓1

)
x

T
l↓1

(9)

V ar(hi) =W
i
l

(
x

T
l ↑ E[xT

l ]
) (

x
T
l ↑ E[xT

l ]
)T (W i

l )T

=W
i
l .

(
Wl↓1.x

T
l↓1

↑ E[Wl↓1.x
T
l↓1

]
) (

Wl↓1.x
T
l↓1

↑ E[Wl↓1.x
T
l↓1

]
)T

.(W i
l )T

=(W i
l .Wl↓1).

(
x

T
l↓1

↑ E[xT
l↓1

]
) (

x
T
l↓1

↑ E[xT
l↓1

]
)T

.(W i
l .Wl↓1)T

=(W i
l .Wl↓1)!l↓1(W i

l .Wl↓1)T

=↓(W i
l .Wl↓1)!

1
2
l↓1

↓2

2

(10)

where !l↓1 =
(
x

T
l↓1

↑ E[xT
l↓1

]
) (

x
T
l↓1

↑ E[xT
l↓1

]
)T

Now, if V ar(hi) for collapsed dimension of the output embedding h becomes zero or very close to zero, then
we can consider V ar(hi) < ε, where ε > 0 is very small.

V ar(hi) =(W i
l .Wl↓1)!l↓1(W i

l .Wl↓1)T
< ε =⇐

(
W

i
l .Wl↓1

)
!

1
2
l↓1

<
⇒

ε = ε
↑ (11)

Case 1: Now, !l↓1 is positive semi-definite, hence
(
W

i
l Wl↓1

)
lies in the approximate left nullspace (Ito

et al., 2010) N0(!l↓1; ε) = {wi : ϑi < ε} of !
1
2
l↓1

, that is,

W
i
l Wl↓1 ↗ NL(!l↓1; ε) (12)

where ϑi are the eigenvalues of !l↓1, and a few of them are small but not exactly zero. This approximate
nullspace interpretation explains why dimensional collapse in empirical networks is gradual rather than
discrete, corresponding to near-zero singular values of the embedding covariance matrix. Hence, each collapsed
embedding corresponds to a row of the last-layer weight matrix that lies approximately in the left nullspace
of !

1
2
l↓1

.

Case 2: Another case can also occur, where the !l↓1 does not have small eigenvalues.

If ϑmin and ϑmax are the minimum and maximum eignevalues of !l↓1, then,

ϑmin↓W
i
l Wl↓1↓2 ≃ V ar(hi) ≃ ϑmax↓W

i
l Wl↓1↓2 (13)

following Rayleigh quotient bound. So, if V ar(hi) < ε, then

↓W
i
l Wl↓1↓ ≃

√
ε

ϑmin
= εl (14)

Hence, we consider the case where W
i
l lies in the approximate left null space of Wl↓1, that is, W

i
l ↗

N0(Wl↓1, εl).

We can have two cases here.

1. ↓W
i
l ↓ is small.

2. W
i
l aligns with directions of Wl↓1 with small eigenvalues (approximate left nullspace), indicating

collapsed weight dimensions.

10
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3. Combination of both small ↓W
i
l ↓ and alignment with eigen-directions with small eigenvalues.

Now, a dimension-collapsed representation from a previous layer will also diminish the covariance of the next
layer’s output embedding. From Eqn. 7,

Cov(hi, hk) =
(
x

T
l ↑ E[xT

l ]
)T

.W
iT
l W

k
l .

(
x

T
l ↑ E[xT

l ]
) (15)

Key Takeaway 2: Dimensional collapse does not necessarily result from low-rank Embeddings

propagated from shallower layers A low-variance or near-collapsed embedding dimension at layer
l (V ar(hi) ≃ ε) can arise from multiple, non-exclusive factors. First, if the input covariance !l↓1 has small
or zero eigenvalues along certain directions, the corresponding output variance is necessarily small. Second,
even when !l↓1 is full-rank, a small composite norm ↓W

i
l Wl↓1↓ can produce low variance; this can occur

due to small last-layer row norms, alignment with low-energy directions (approximate nullspace) of Wl↓1, or
a combination thereof. Therefore, low-rank or collapsed embeddings at layer l do not automatically imply
low-rank weight matrices in shallower layers — the collapse may result from input degeneracy, composite
alignment, or row weakening in the last layer. This interpretation di!ers from WeRank (Pasand et al., 2024),
which attributes collapse mainly to low-rank weights in earlier layers. Here, we provide a mathematical
explanation showing that the observed collapse arises from the interaction between input covariance structure
and composite layer transformations, rather than being a direct consequence of shallow-layer rank deficiency.

3.6.3 Does stopping information flow along some dimensions of the encoder output result in a better
information bottleneck than using a Projector?

We attempt to substantiate our aforementioned statements more concretely and propose a straightforward
approach to enhance performance on self-supervised contrastive learning tasks without requiring a projector.
According to Property 5 described in Fang et al. (2024), a subvector of fixed value is the same as dimensional
collapse along the dimensions of the subvector. We intend to stop the information flow, resulting in an
enforced dimensional collapse to cause an information bottleneck without the projector by fixing the output
of the embeddings along a few dimensions to a constant k. First, let us go through the notations. We only
keep d0 out of a total of D dimensions as dynamic, while making the rest (D ↑ d0 = dr) static by assigning
a constant output value to those dimensions of the embedding. Making the i-th dimension of the encoder
output h, that is, hi static with a constant k = 0, stops the gradient flow through all paths connected directly
or indirectly to hi, and the rank of the covariance matrix C follows Eqn. 16. However, the weights W

i, which
result in hi, are still randomly initialized. Whereas, in DirectCLR, due to the randomized subvector, the
rank of the covariance matrix does not collapse drastically (Eqn. 17).

rank(C) ≃ d0 (16) dr ≃ rank(C) ≃ dr + d0 (17)

Thus, when a constant value is not assigned to the static dr dimensions, the rank of the encoder output
embedding h or consequently, the random variable H is less than when the static dr dimensions are left
untouched.

Increasing the value of d0 reduces the explicit dimensional collapse enforced on the representation space by
allowing the rank of the embedding covariance matrix to increase according to Eqn. 16. Let us denote the new
value of d0 and dr be indicated by d

↑
0

and d
↑
r, where d

↑
0

> d0 and d
↑
r < dr. The rank of the new embedding

covariance matrix also increases. So, we may think that we are e!ectively increasing the shattering capacity
by (a) increasing the rank of the embedding covariance matrix, (b) decreasing the degree of dimensional
collapse (Fang et al., 2024), and also (c) increasing the dimensionality of the representation learning subspace
(Cover, 1965). However, it is not the case as observed from Table 2. The gradient of the InfoNCE loss L with
respect to an embedding zi, is given by the Eqn. 18.

11
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ϱL
ϱzi

=



↑zi+

ς
+

zi+
ω · e

sii+ +
∑N

j=1

j →=i

zj

ω · e
sij

esii+ +
∑N

j=1

j →=i
esij

+
N∑

j=1

j →=i

zj

ω · e
sji

e
sjj+ +

∑N
k=1
k →=j

esjk





= ↑




zi+

ς

(
1 ↑ p

i↗i+
)

↑
N∑

j=1

j →=i

zj

ς

(
p

i↑j + p
j↑i

)





(18)

The quantity p
i↑j is the probability of the pair (xi, xj) being predicted as a positive pair with the sample xi

as the anchor. The gradient along each dimension can be written as follows,

ϱL
ϱz

d
i

=






↑ k
ω

(
1 ↑ p

ii+
)

↑
∑N

j=1

j →=i

(
p

i↑j + p
j↑i

)

for d0 < d ≃ d0 + dr

↑


zi+d

ω

(
1 ↑ p

ii+
)

↑
∑N

j=1

j →=i

zd
j

ω

(
p

i↑j + p
j↑i

)

for d ≃ d0

(19)

Therefore, εL
εzd

i
= 0 if k = 0 for the subvector h[d0 : d0 + dr], whereas the gradient flows normally through

the rest of the dimensions. Using a constant other than 0, causes a small gradient to flow through all dr

dimensions. This gradient disrupts proper training of the kernel weights, since the gradient of the dr subvector
(h[d0 : d0 + dr]) points toward dr , which will eventually lead to dimensional collapse or may lead all points
to lie within an open ball of finite radius along each of the dr dimensions. The performance, in this case, is
worse than training with zero value in the dr dimensions and did not contribute towards maximizing the flow
of information through the d0 dimensions, as in DirectCLR or our framework with k = 0, due to the injection
of a non-converging gradient. Empirical results for the CIFAR datasets are provided in Tables 2.

Table 2: 200-NN Accuracy for di!erent values of d0 and dr on CIFAR10 and CIFAR100 dataset.

d0 dr Fixed Value
CIFAR10 CIFAR100

200-NN Acc.

200 312 0 83.20 49.4

200 312
1↓
512 82.5 48.6

200 312 1 78.9 41.1

400 112 0 84.2 52.2

400 112
1↓
512 84.0 50.9

400 112 1 79.8 44.3

480 32 0 84.7 52.5

480 32
1↓
512 84.4 51.8

480 32 1 80.9 45.9

Key Takeaway 3: Forced Collapse does not enforce an Information Bottleneck The empirical
results provided in Tables 2 combined with Fig. 7 indicate that we cannot observe the same information
bottleneck e!ect without a projector. From the discussion in this subsection, we can safely say that the role
of the projector is not only that of an information bottleneck, which is observed from the ine!ectiveness of
the forced collapse on the encoder output. The driving factor behind the e!ectiveness of the projector is that
it allows the encoder to learn more high-level representations and, consequently, better separability with a
higher rank of the embedding covariance matrix. Whereas a collapse in the last layer of the encoder prevents
it from learning useful representations, which are essential for the e!ective classification of the input samples,
as the norm of several kernels will be reduced to zero. With a constant subvector in the output, the weights

12
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(a) CIFAR10 (d0 = 200) (b) CIFAR10 (d0 = 400) (c) CIFAR100(d0 = 200) (d) CIFAR100(d0 = 400)

Figure 7: Singular values plots of encoder outputs embeddings when using a constant subvector in the output
embeddings for di!erent values of d0 on CIFAR10 and CIFAR100 datasets. The above figures show the e!ect
on the singular values of the encoder output embeddings, and it is evident that a forced collapse does not
have the same e!ect as a natural dimensional collapse . Best viewed at 300%.

are not updated to learn useful representations. Furthermore, being unable to learn essential representations
also diminishes the mutual information between the input and the output and the generalization error bound,
which we prove in the next subsection.

3.7 Proposed Method: Remedy based on the Takeaways

For all the above key takeaways, we devise a single solution. We apply a weight regularization loss similar

to WeRank but only on the last layer. Applying this weight regularization in the last layer prevents the
norm of the weights from dropping to zero and thus prevents a significant drop in the variance of the output
embeddings along the collapsed dimensions. Without loss of generality, applying induction logic from Eqn.
11, we can say that these high-rank embeddings prevent the collapse of representations in the previous layers.
Thus, applying weight regularization remedies the low-rank embedding propagation. Lastly, an information
bottleneck is ensured by maximizing the mutual information between the input and the output. Preventing
the weight norm from dropping to zero maximizes the learning capacity of the network, thereby increasing
the information flow between the input and the output.

Proposition 3 : A regularized weight matrix norm facilitates more e!ective mutual information maxi-
mization.

Proof: Let us consider the last d dimensions to be susceptible to collapse, such that ↓Wi↓ < ε for
i ↗ [D ↑ d + 1, D] and ε is arbitrarily small. The mutual information between two random vec-
tors zk = {z

1

k, z
2

k, . . . , z
D
k } and zl = {z

1

l , z
2

l , . . . , z
D
l } forming a positive pair, can be expressed as,

I(zk, zl) = H(zk) ↑ H(zk|zl)

=
D∑

d=1

H(zd
k |z<d

k ) ↑
D∑

d=1

H(zd
k |z<d

k , zl)

=
D∑

d=1


H(zd

k |z<d
k ) ↑ H(zd

k |z<d
k , zl)


=

D∑

d=1

I(zd
k ; zl|z<d

k )

(20)

Now, we can do the same decomposition over zl, that is,

I(zk, zl) =
D∑

d=1


H(zd

l |z<d
l ) ↑ H(zd

l |z<d
l , zk)


=

D∑

d=1

I(zd
l ; zk|z<d

l ) (21)

Combining both Eqn. 20 and 21, we can get an,

Idd→ = I(zd
k ; z

d→

l |z<d
k , z

<d→

l ) (22)
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such that,

I(zk; zl) =
D∑

d=1

D∑

d→=1

I(zd
k ; z

d→

l |z<d
k , z

<d→

l ) (23)

Now, if some dimensions of zk or zl are collapsed, then the corresponding conditional mutual information will
vanish. Thus, the total mutual information reduces to contributions only from the non-collapsed dimensions.

Why does the collapsed dimension decrease mutual information? If the collapsed dimensions have
small but non-zero variance (V ar(hi) = φ

2

i < ε, without loss of generality, we can consider those dimensions
to have a constant value c, resulting in z

d
k being a deterministic function of z

<d
k . In that case,

H(zd
k |z<d

k ) = 0 and H(zd
k |z<d

k , zl) = 0 (24)

Hence,
I(zd

k ; zl|z<d
k ) = 0 (25)

Putting Eqn. 25 in Eqn. 23, we get,

I(zk; zl) =
∑

d,d→↘non-collapsed

I(zd
k ; z

d→

l |z<d
k , z

<d→

l ) (26)

Considering the above deductions, we intend to apply weight regularization in the weight matrix of the last
layer, which, by maintaining full-rank covariance, the encoder preserves information across all dimensions,
thereby maximizing mutual information between embeddings.

In that case, I(zk, zl)collapsed < I(zk, zl)WiW T
i =I .

Hence, we can safely say that a non-negligible weight matrix norm facilitates better mutual information
maximization.

To prove that our interpretation of the role of the projector in self-supervised contrastive learning is correct, we
regularize the weight matrix W of the last layer only by minimizing the regularization loss Lreg = ↓WW

T ↑I↓2,
in addition to the conservative loss in Eqn. 1. Thus, the final loss is described as,

Ltotal = Linfonce + ↼Lreg (27)

Based on the above objective function, we optimize the parameters of the neural network following the
implementation details outlined in Sec. 5. The results obtained are presented in the section below. We
present the results on the datasets CIFAR10, CIFAR100, and ImageNet100 and also present eigenvalue
plots for the CIFAR datasets to compare the e!ect of the proposed regularization towards the prevention of
dimensional collapse. For all our experiments, we use ↼ = 0.1 for optimal performance following WeRank.

Table 3: Comparison of results obtained by applying WeRank variations to SimCLR without Projector,
and our proposed strategy on ImageNet100 datasets. Here, ‘LL’ refers to ‘Last Layer’. (+/- ·): change
from the previous model variation. We can observe that the proposed methods outperform the baseline
SimCLR (vanilla) and WeRank on almost all cases (except one). This proves the e!ectiveness of the proposed
regularization strategy on preventing degradation of performance due to dimensional collapse.

Method ImageNet100

SimCLR (vanilla) w/o Projector 45.82

SimCLR w/o Proj. + WeRank (Full Enc.) 44.68 (-1.14)

SimCLR w/o Proj. + Wt. Reg. LL (Ours) 46.82 (+1.0)
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4 Results and Analyses

4.1 Comparison with state-of-the-art Contrastive learning frameworks

In this subsection, we analyse the e"cacy of the proposed solution on di!erent self-supervised frameworks,
both with and without a projector. From Table 4, we can observe that the proposed solution successfully
improves the kNN accuracy of all the SSL frameworks used and also reduces the dimensional collapse issue
due to the low variance of feature dimensions in Fig. 8 (in Section 4.2). We also conduct experiments on the
ImageNet100 dataset, and compare our proposed strategy with vanilla SimCLR and SimCLR added with
WeRank, all trianed without a projector. We observe from Table ?? that the proposed strategy outperforms
the two baselines on ImageNet100.

Table 4: Comparison of results obtained by applying WeRank variations to SimCLR with and without
Projector, DirectCLR and our proposed strategy on CIFAR10 and CIFAR100 datasets. Here, ‘LL’ refers
to ‘Last Layer’. ‘CS’ refers to ‘Constant Subvector’. (+/- ·): change from the previous model variation. We
can observe that the proposed methods outperform the baseline SimCLR (vanilla) and WeRank on almost
all cases (except one). This proves the e!ectiveness of the proposed regularization strategy on preventing
degradation of performance due to dimensional collapse.

Method CIFAR10 CIFAR100

SimCLR (vanilla) 86.1 56.3

SimCLR + WeRank (Pasand et al., 2024) 86.5 (+0.4) 56.8 (+0.5)

SimCLR + Wt. Reg. LL (Ours) 86.3 (+0.2) 57.5 (+1.2)

SimCLR (vanilla) w/o Projector 84.5 52.8

SimCLR w/o Proj. + WeRank (Full Enc.) 84.9 (+0.4) 52.6 (-0.2)

SimCLR w/o Proj. + Wt. Reg. LL (Ours) 85.1 (+0.6) 53.1 (+0.3)

DirectCLR (vanilla) 85.2 53.2
DirectCLR+ WeRank (Full Enc.) 85.4 (+0.2) 53.0 (-0.2)

DirectCLR+ Wt. Reg. LL (Ours) 85.5 (+0.3) 53.2 (+0.0)

SimCLR w/o Proj (w/ CS) 84.7 52.5

SimCLR w/o Proj (w/ CS) + WeRank (Full Enc.) 85.0 (+0.3) 53.0 (+0.5)

SimCLR w/o Proj (w/ CS) + Wt. Reg. LL (Ours) 85.5 (+0.8) 53.1 (+0.6)

4.2 Eigenvalue plots comparing SimCLR Encoder and our method

From Fig.8 we can see that when weight regularization is performed on the last layer of the encoder network,
the singular values of the output embeddings improve across all dimensions. Thus, our method can reduce the
e!ect of dimensional collapse due to the low variance of feature dimensions and provide better performance.

5 Implementation Details

Datasets: We primarily used three datasets for our study: CIFAR10, CIFAR100 (Krizhevsky, 2009), and
ImageNet100 (Tian et al., 2020). CIFAR10 and CIFAR100 datasets consist of 10 and 100 classes, respectively,
with 50K samples in the training set. ImageNet100 contains 1300 images in each of the 100 classes.

Pre-training Details: For experiments on CIFAR (Krizhevsky, 2009) and ImageNet, we used ResNet18 and
ResNet50 as a backbone with the same modifications as done in SimCLR (Chen et al., 2020a) for small-scale
datasets (CIFAR). We used a batch size of 128 and 256 for CIFAR and ImageNet, respectively. For the
CIFAR and ImageNet datasets, we used SGD and LARS optimizer, respectively. All the implementations
were done using lightly-ai (Susmelj et al., 2020) library. The value of the temperature hyper-parameter was
set to 0.2 for all experiments. The value of ↼ was set to 0.1 for all experiments, as using a higher value
degrades performance. For the CIFAR dataset, the initial learning rate was set to 0.06 and decayed following
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(a) CIFAR10 (b) CIFAR100

Figure 8: Singular values plots of encoder outputs, embeddings of SimCLR without a projector, and our
method (last layer weight regularization) on CIFAR10 and CIFAR100 datasets. The plots clearly exhibit an
improvement in the singular values, which indicates that the proposed regularization strategy prevents the
dimensional collapse in the encoder output embeddings, when used without an additional projector.

a cosine schedule, whereas for the ImageNet dataset an initial learning rate of 0.3 was used and decayed
following the same scehdule as the CIFAR datasets. For all the datasets, the training was conducted for 200
epochs only.

For the computation of the SVD decomposition, we simply used the svd function from the numpy library,
following DirectCLR Jing et al. (2022).

6 Conclusion

In this work, we investigate the main reason behind the e!ectiveness of the projector in preventing dimensional
collapse. We analyze mathematically the phenomenon that happens inside the projector and the encoder when
trained without a projector. We find that the projector not only creates an information bottleneck but also
facilitates the learning of high-level representations in the encoder, which does not occur without the projector,
as a dimensional collapse occurring at the output of the encoder output prevents the learning of high-level
representations. We also devise a solution to improve performance by only using a weight regularization in
the last layer, be it with or without a projector, and achieve performance better than WeRank, which uses
weight regularization over the whole network. We leave the study of the cause of dimensional collapse for our
future work.

Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.
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