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Abstract

The dimensional collapse of representations in self-supervised learning is an ever-present issue.
One notable technique to prevent such collapse of representations is using a multi-layered
perceptron network called Projector. In several works, the projector has been found to
heavily influence the quality of representations learned in a self-supervised pre-training task.
However, the question still lingers. What role does the projector play? If it does prevent the
collapse of representations, then why doesn’t the last layer of the encoder take up the role of
projector in the absence of an MLP one? In this work, we intend to study what happens
inside the projector by examining the rank dynamics of the same and the encoder through
empirical study and analyses. Through mathematical analysis, we observe that the effect of
rank reduction predominantly occurs in the last layer. Furthermore, we show that applying
weight regularization only in the last layer yields better performance than when used on the
whole network (WeRank), both with and without a projector. Empirical results justify that
our interpretation of the role of the projector is correct.

1 Introduction

Self-supervised learning aims to learn representations without any human annotations. Recent works like
SimCLR (Chen et al., |2020a), MoCov2 ((Chen et al., [2020bf), DCL (Yeh et al. 2022)), BYOL (Grill et al.|
2020)), Barlow Twins (Zbontar et al., [2021), etc. present frameworks which allow learning of representations
which are similar for semantically similar samples. However, this objective may lead to a complete collapse
of representations, when the representations of all samples get mapped trivially to a single point in the
representation space.

Various techniques such as using a large batch size (Chen et all[2020al), momentum encoder (Chen et al.,
2020b; |Grill et al., 2020)), stop gradient (Chen & Hel [2020), feature whitening (Bardes et al. 2022; |Zbontar
et al, [2021)) and clustering (Caron et al.,|2020)). have been used to prevent complete collapse of representations.
However, contrastive self-supervised learning still suffers from dimensional collapse, where the embedding
vectors only span a lower-dimensional subspace. Dimensional collapse occurs when the variance of information
along some dimensions becomes insignificant. We avoid saying that variance will be zero because information
content along any dimension can never be entirely zero in practical terms.

In Hua et al.| (2021)), the author discusses that dimensional collapse is mainly related to a strong correlation
between information flowing through different dimensions. This challenging issue of dimensional collapse has
also been addressed in works like [Balestriero & LeCun| (2022), RankMe (Garrido et al.| [2023), DirectCLR
(Jing et all 2022) and WeRank (Pasand et all |2024)). These works also stress the importance of full-
rank representations for better performance on downstream tasks. However, WeRank does not provide
any mathematical insight into the dimensional collapse of representation. In DirectCLR, the attempt at
investigating the causes of the dimensional collapse is only limited to toy examples, and only uses a truncated
vector for training, leaving the last few dimensions non-trainable. This, however, is not fully capable of
preventing dimensional collapse. We instead use the full output vector for both training and evaluation as
well. Furthermore, we show that unlike WeRank (Pasand et al., 2024]), it is not necessary to apply the weight
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regularisation on the whole network, thereby reducing the computation overhead from O(L - n?) to O(n?),
where L is the scalar factor that comes naturally as shown in the later section Sec.

Even though dimensional collapse still occurs even when a projector is used, we understand that the projector
plays an important role in reducing dimensional collapse. The role of the projector has been studied previously
in works like |Gupta et al.|(2022)); Song et al.| (2023); Xue et al.| (2024)). However, none of the above works
explores how the use of projectors diminishes the effect of dimensional collapse.

In this work, we first empirically verify the decorrelating effect of InfoNCE loss. Next, we try to determine
what happens inside the projector and its role in self-supervised contrastive learning. We further investigate
the phenomenon occurring in the encoder layer that causes degradation in performance in case of dimensional
collapse resulting from negligible variance along some feature dimensions, both with or without a projector.
Finally, we employ a simple strategy for self-supervised learning, both with and without using a projector
which verifies our mathematical conclusion. We summarize our contributions as follows:

» We investigate the role of the projector in self-supervised contrastive learning in the light of dimensional
collapse. To our knowledge, this is the first work to do so.

o We further investigate the phenomenon in the encoder when not using a projector for contrastive
self-supervised pre-training, giving us more insight into the phenomenon of dimensional collapse.

e Based on our findings, we propose a simple strategy to improve performance in contrastive self-
supervised pre-training by applying weight regularization only on the last layer.

2 Related Works

SSL methods take different approaches to prevent a complete collapse of representations. Instance discrimina-
tion methods like SimCLR (Chen et al., 2020a)), MoCov2 (Chen et al., |2020b), and DCL (Yeh et al., 2022)
use repulsion between negative samples to prevent complete collapse. However, in addition to the negative
repulsion in the InfoNCE loss, they also use a projector which projects the encoder output representations
into a lower dimensional space before computing the InfoNCE loss. Methods like DeepCluster (Caron et al.)
2018) and SwAV (Caron et al.| [2020)) use a clustering-based instance-group discrimination approach. However,
dimensional collapse persists according to (Garrido et al.|(2023) and |Jing et al.| (2022)).

Architectures similar to the above are also seen in dimension contrastive methods like BYOL (Grill et al.)
2020) where the extra projector for predicting the output of the projector from the momentum updated
target encoder and 12-normalization prevents complete collapse. SimSiam (Chen & Hel [2020) on the other
hand uses a stop-gradient method to prevent the same. WMSE (Ermolov et all |[2021)), ZeroCL (Zhang et al.l
2022b)) uses feature whitening to prevent collapse.

Non-contrastive methods like Barlow Twins (Zbontar et al., [2021)) aim to decorrelate the feature dimensions
to reduce redundancy in the output embeddings, thereby preventing dimensional collapse. However, Barlow
Twins fails to perform without the projector as we will see in the later subsections. VICReg (Bardes et al.,
2022) uses a covariance term in the loss to do feature decorrelation like Barlow Twins. However, according to
Garrido et al.| (2023), even these methods are not free from dimensional collapse.

Hua et al.| (2021) discusses that the strong correlation between dimensions of the representation vector is the
primary cause of dimensional collapse, and uses feature decorrelation to prevent it and improve performance.
Balestriero & LeCun| (2022)) also uses a decorrelation loss in place of the hinge loss originally used in VICReg
as a method to prevent dimensional collapse. |Gupta et al.| (2022) shows that a projector prevents low-rank
backbone features, thereby preventing dimensional collapse. However, it does not explore the reason behind
it. This work primarily discusses that a learnable projection head is a way of mitigating the shortcomings of
contrastive loss and helps in learning generalizable representations. A detailed discussion of the relationship
between downstream performance and embedding rank is also presented in |Garrido et al.| (2023)). WeRank
(Pasand et al., [2024]) uses the same feature decorrelation strategy to deduce that the weight norm of each
layer should be as close to the identity matrix as possible to prevent dimensional collapse.

DirectCLR (Jing et al., 2022) achieved considerable success in preventing collapse. This work mainly
proposed two findings as the possible causes of dimensional collapse: (1) implicit regularization due to
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over-parametrization of networks, and (2) strong augmentations. However, in terms of performance (linear
evaluation accuracy), it falls short of SimCLR with a non-linear projector.

3 Methodology

3.1 Preliminaries

In this work, we consider SSL pre-training with SimCLR as the baseline. Let us denote f and the g as
the encoder and the projector, respectively. The encoder output and the projector output embeddings are
denoted by h = f(x) and z = g(f(z)), respectively, where = denotes the input sample. The total number of
dimensions in the encoder output embedding is given by D. dy and d, denote the number of dimensions of
the encoder output embedding which are trainable and non-trainable or fixed to a constant value. To learn
the representations, the InfoNCE loss is given by,

emp(sii+) (1)

B
exp(siiy) + Zy‘_? exp(sij)
VE

»Cinfonce = *Ei

where s;;+ and s;; are the cosine similarity between the projector output embeddings of the samples of
positive pair (z;, z;4+) obtained by augmentations applied on the sample z;, and the samples of negative pair
(x;,2;), respectively, and B denotes the batch size.

In the later subsections, we divide the output embeddings into 2 parts which we refer to as trainable and
non-trainable dimensions. We define the trainable part of an embedding to be constituting of those dimensions
through which the gradient propagation is allowed to flow. Whereas, the non-trainable part of the embedding,
simply means the opposite.

3.2 Motivation

In this work, the main motivation is to study the phenomenon occurring inside the projector in the self-
supervised contrastive learning scenario and what happens in the absence of it. In DirectCLR (Jing et al.,
2022), it is stated that in instance discrimination-based contrastive learning, even though the presence of
positive and negative samples should prevent the dimensional collapse of representations intuitively, it still
occurs.

We find this to be true empirically as shown in Fig. [Ta] where we observe that the magnitudes of the sorted
eigenvalue spectrum dip considerably when the encoder is trained without a non-linear projector than when
trained with one. Similar findings are also reported in |Gupta et al. (2022)). Furthermore, methods using
feature decorrelation to prevent dimensional collapse like Balestriero & LeCun| (2022)) or [Hua et al| (2021)),
still suffer from dimensional collapse. This is primarily due to the low-rank embeddings of earlier layers,
that is, from the encoder (Pasand et al., |2024). To determine the role of the projector, we empirically study
whether the InfoNCE loss has a decorrelating effect. Then we try to analyze the dynamics of the projector
through rank decomposition of the covariance matrix and how it prevents dimensional collapse.

3.3 Does InfoNCE have a decorrelating effect?

According to |Zhang et al.| (2022a)), InfoNCE also acts as a decorrelating loss, similar to Barlow Twins (Zbontar
et al., [2021) or Balestriero & LeCun| (2022)). In Fig. and we show the covariance matrix of the output
feature dimensions. From the covariance matrix of the embeddings of the CIFAR100 and ImageNet100
datasets, we can see that the magnitudes of the diagonal elements of the covariance matrix are much higher
than the non-diagonal ones. This shows that the InfoNCE loss has a decorrelating effect as shown in [Zhang
et al.| (2022a)). However, from Fig. |2d and we see that the diagonal nature of the covariance matrix of the
encoder output embeddings is not present. This proves that even if the loss enforces feature decorrelation on
the projector output embeddings, it is possible to obtain low-rank output embeddings from the encoder.
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Figure 1: (a) Singular value plots of the covariance matrix of ResNet50 encoder output embeddings pre-trained
on ImageNet100 using SimCLR with and without a projector. ‘Layer4’ indicates the last layer in the ResNet50
encoder. ‘blue’: without (wo) projector, ‘red’:with projector. (b) Singular value plots of Barlow Twins and
SimCLR encoders compared with DirectCLR.
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Figure 2: Covariance matrices of output embedding of the projector for SimCLR trained on (a) CIFAR100
and (b) Imagenet100. Covariance matrices of embeddings from SimCLR encoder trained on (c¢) CIFAR100
and (d) ITmageNet100. Best viewed at 300%.

3.4 Understanding the events in Projector in case of Dimensional Collapse

It is empirically observed in DirectCLR and RankMe (Garrido et al., 2023)), that InfoNCE
loss fails to properly optimize the parameters of a network without a projector and results in dimensional
collapse. Barlow Twins (BT) (Zbontar et al.,|2021) performs better than most contrastive learning frameworks
on benchmark datasets, but not when implemented without a projector, even though a decorrelation loss is
applied. The singular value spectrum in Fig. plots the singular values of BT (w/o projector), SimCLR
(w/o projector), and DirectCLR. We can see that the dimensional collapse effect in BT is greater than in
SimCLR w/o projector, even though it is trained directly using a decorrelation-based loss. According to
|Zhang et al| (2022a)), the projector is essential for a decorrelation-based framework too, even though both
InfoNCE and the loss used in [Zbontar et al| (2021]), have a decorrelating component. So, the question arises,
what exactly happens after the addition of a non-linear projector towards the prevention of
dimensional collapse?.

A Linear Algebraic perspective: In RankMe |Garrido et al. (2023) and DirectCLR |Jing et al| (2022]),
the authors have shown that without a projector, the embeddings from the pre-trained encoder have a low
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rank. Does a low-rank embedding indicate that the useful information can be approximated using fewer
dimensions? But then, why does it lead to worse performance, if that is the case? How is it different
from the information bottleneck theory of the projector? (Ouyang et al., [2025)).

It is important to note that in DirectCLR Jing et al.| (2022)), a part of the output vector z is left unchanged,
that is, the kernels leading to the unchanged part of z still have the randomly initialized weights at the end
of pre-training. Now, these randomly initialized weights have non-zero variance. However, when the rank of
the encoder output embeddings is reduced, it practically means that the variance of the information along
those dimensions is very low. A very low variance means there is almost no useful information available
in that dimension. Thus, when not using a projector, the reduction in rank in the last layer embedding
covariance matrix indicates that there is little variance of information along some of the embedding dimensions.
Consequently, this indicates that the norm of the weights in the last layer ||[W}[|? < ¢, where € is very small,
and var(VVf) — 0, where Wli is the layer weights corresponding to the i-th output embedding dimension of

layer 'I'. However, the reverse is not true, since W} = k.1 can also have var(W}) = 0, but |W}|| # 0.
Proposition 1 : The norm of the weight vectors associated with the collapsed dimensions becomes zero.

Proof: We can prove the above proposition by a simple deduction. Let = be the embeddings with dimensions
N x D;, and W be the weight matrix with dimensions D, x D;. To consider only a single dimension %, we
take the i-th row of the weight matrix as W?.

Cov(hi, h; ) = var(hl) 0

— (Wi.xT 2T (Wi —EWaT]) =0
= (W W E,[27])" ( ~W'E,[z7]) =0 (2)
(xT E[ T) WEWE (2" z’]) =0
= (7 —E[T)" W2 (2T ,E[z ]):0 = [WI? =0

The relation obtained from the above equation is based on a stronger assumptlon var(h;) = 0. A weaker case
can be considered by setting var(h;) < §. In that case, |[W||? < < ¢ for non-constant

OET ]E[IT])T (zT -E[z7])
x. For i.i.d weight initialization, since, mean is zero, var(W?) < ¢, where € is very small.

In the general case, if we consider Cov(h;, hj), we can deduce the following,

(WiaT —EWwia™)" . (Wil — B[W 27])
= (Wi,xT — Wi.E[:cT})T . (Wj.a:T — Wj.E[JCTD (3)
= (7 — ElT])" WTWI. (27 —E[27))

OO’U(hi, h])

For non-constant = with large enough variance, Cov(h;, h;) will be very small or close to zero, only if
WTWI < €, where € is very small. As per our previous deduction in Eqn. if [|[W|> < e, then
Cov(hi, hj) < 6, irrespective of the fact that ||[W7]|? < € or not. In this case, a row of the covariance matrix
becomes small or close to zero. Hence, the rank reduction effect or dimensional collapse occurs.

However, in the reverse case if var(W?) < ¢ but |[W¢||? is not small, we can trivially deduce that, var(h;) or
Cov(h;, h;) is also large. Therefore, the contribution of the dimension ¢ to the rank of the covariance matrix
cannot be ignored.

Key Takeaway 1: Weights with near-zero norm prevent learning of high-level representations
Thus, if the norm of the weights and the variance of the weights both become close to zero, it prevents
the high-level kernels in the backbone encoder from learning high-level representations, which are more
class-specific, consequently hampering the downstream performance, as the reduced variance of the weights
reduces their representation learning capacity.
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Figure 3: Singular values plots of the penultimate and final layers of encoder with and without the projector.
Best viewed at 300%.

In the case of a perfect decorrelating effect of the InfoNCE loss as discussed in the previous subsection, the
flow of information would be maximized resulting in better semantic representation learning and consequently
better downstream performance. But the decorrelation effect of the InfoNCE on the encoder output embeddings
does not mazimize the flow of information through the encoder output dimensions. A similar approach to
prevent dimensional collapse was also presented in a concurrent work WeRank [Pasand et al.| (2024]), where
the authors used weight regularization by whitening the weight covariance matrix.

Why are full-rank embeddings better than low-rank embeddings? The trick used in DirectCLR
is to leave a part of the output vector z randomly initialized, theoretically making the variance of those
dimensions non-zero. This causes the encoder to learn representations that are effectively higher dimensional.
Therefore, separability is also better in this case according to Cover’s theorem |Cover| (1965). Whereas, when
the rank gets reduced, the representations are mapped to a low-dimensional subspace which should reduce the
probability that the mapped instances are linearly separable while still being embedded in a high-dimensional

space.

Empirical justification and observations : We study the singular value plots of the penultimate and
final layer of the encoder backbone in Fig. [3] We see an increase in the number of high-valued singular
values in the final layer of the backbone when using a projector. However, the eigenvalue spectrum is almost
unchanged with or without a projector in the penultimate layer of the ResNet backbone encoder. Thus,
we can say that the effect of rank reduction is observed only on the final layer, when not using a separate
projector, and the final layer of the backbone acts as the make-shift or pseudo projector. However, according
to our observation, it is wise to say that, the rank reduction effect is observed on the layer from which the
final embedding is taken for contrastive loss computation, while the eigenspectrum of the previous layer
output embeddings shows almost no change. This is confirmed from the plots of eigenvalues in Fig. [@] where
we observe that the eigenvalues for the last layer of the projector are significantly low in magnitude.
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Figure 4: Singular values plots of the penultimate and final layers of the projector. Best viewed at 300%.
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Proposition 2: Low-rank embeddings from earlier layers are responsible for dimensional collapse despite
decorrelating effects of InfoNCE loss.

Proof: Assuming that the norm of the weight matrices in the last layer is not zero, to investigate the reason
for dimensional collapse we need to look into the earlier layers and investigate the characteristics of the layer
weights to prove Proposition 2. Assuming W; and W;_; are the weight matrices of two consecutive layers,
Wli is the i-th row of the weight matrix of the I-th layer. Taking x; and z;_; are the inputs to the [-th and
(I — 1)-th layers, following Eqn. [2| we can directly get the result,

Cov(hi, hi) = var(h) = (&F — EzT))" (W)TW; (aF — E[2T))

Now, if Cov(h;, h;) for collapsed dimension of the output embedding h becomes zero or very close to zero,
then

CO’U(hi, hz)
T i
= (xlT—l - ]E[sz—ﬂ) W W2 (xlT—l - E[xlT—lD =0 (5)
= Wi Wia|? = Q_WiWL,)? =0 = > Wiwl, =0

J J

We can have two cases here. Either both |[W/||? = 0 and ||[W}_,||> = 0, or if |[W}|? # 0, then it implies from

Eqn. |5] that ||VV1]71||2 = 0 and vice versa. Now, a dimension-collapsed representation from a previous layer
will also diminish the covariance of the next layer output embedding. From Eqn. [3]

Cov(hi,hg) = (2T —Elel))" WiTWE. («f — E[2]]) (6)

Now, Hle_1||2 = 0 results in (m{T — E[x{T])T(mgT — E[m{T]) =0 and E,, [x{T] = 0. Thus, the magnitude of
Couv(h;, hy) decreases, resulting in a dip in the singular values of the embedding covariance matrix and rank,
indicating dimensional collapse.

Key Takeaway 2: Dimensional collapse does not necessarily result from low-rank Embeddings
propagated from earlier layers One of the reasons for correlated dimensions despite the decorrelation
effect of InfoNCE loss can be attributed to the fact that the singular values of the earlier layers (blue graph
in Fig. [3|and [4) are not very affected due to absence of projector, hinting that a low-rank output embedding
is obtained from the earlier layers is not entirely true. The authors of WeRank [Pasand et al.| (2024]) propose
their solution based on the fact that the primary reason for the dimensional collapse is due to low-rank weight
matrices in the earlier layers, which does not align with our findings here. Unlike WeRank, we provide a
mathematical explanation for this phenomenon.

Does stopping information flow along some dimensions of the encoder output result in a better
information bottleneck than using a Projector? We try to prove our aforementioned statements more
concretely and propose a simple trick to improve performance on self-supervised contrastive learning tasks
without using a projector. According to Property 5 described in [Fang et al.| (2024)), a subvector of fixed value
is the same as dimensional collapse along the dimensions of the subvector. We intend to stop the information
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flow resulting in an enforced dimensional collapse to cause an information bottleneck without the projector
by fixing the output of the embeddings along a few dimensions to a constant k. First, let us go through the
notations. We only keep dy out of a total of D dimensions as dynamic, while making the rest (D — dy = d,.)
static by assigning a constant output value to those dimensions of the embedding. Making the i-th dimension
of the encoder output h, that is, h; static with a constant k = 0 stops the gradient flow through all paths
connected directly or indirectly to h;, and the rank of the covariance matrix C follows Eqn. However, the
weights W* which result in h; are still randomly initialized. Whereas, in DirectCLR, due to the randomized
subvector, the rank of the covariance matrix does not collapse drastically (Eqn. .

rank(C) < dgy (7a)

d, <rank(C) <d, +dy (7b)

Thus, when a constant value is not assigned to the static d, dimensions, the rank of the encoder output
embedding h or consequently the random variable H is less than when the static d, dimensions are left
untouched.

Increasing the value of dy reduces the explicit dimensional collapse enforced on the representation space by
allowing the rank of the embedding covariance matrix to increase according to Eqn. [Ta] Let us denote the new
value of dy and d, be indicated by dj and d., where dj > dy and d]. < d,. The rank of the new embedding
covariance matrix also increases. So, we may think that we are effectively increasing the shattering capacity
by (a) increasing the rank of the embedding covariance matrix, (b) decreasing the degree of dimensional
collapse [Fang et al.| (2024), and also (c¢) increasing the dimensionality of the representation learning subspace
Cover| (1965)). However, it is not the case as observed from Table [l} The gradient of the InfoNCE loss £ with
respect to an embedding z;, is given by the Eqn. |8 (Detailed derivation in Appendix ?7).

Zit | 8.+ N Zj . pSij
—etit 4 ) 5= e’ N i -
0 I A S T
0z T esiit 4 Zé\;l esij = e’iit + fozl eSik
J#i i k#j ()
Zi+ + diy
= _ ; (1 _pllﬂ ) _ E ?] <p2uj +p1ul)
j=1
J#i

The quantity p'*7 is the probability of the pair (z;,z;) being predicted as a positive pair with the sample z;
as the anchor. The gradient along each dimension can be written as follows,

—E (L —pit) — S (pivd 4 pivi }
(- S )
oL for dy < d < do+d.
920 — - “ (9)
7| ) T F ]
i#i
for d < d

Therefore, % = 0 if k = 0 for the subvector hldy : dy + d,], whereas the gradient flows normally through

the rest of the dimensions. Using a constant other than 0, causes a small gradient to flow through all d,.
dimensions. This gradient disrupts proper training of the kernel weights, since the gradient of the d,. subvector
(h[do : do + d,]) points toward 14, , which will eventually lead to dimensional collapse or may lead all points
to lie within an open ball of finite radius along each of the d,. dimensions. The performance, in this case, is
worse than training with zero value in the d,. dimensions and did not contribute towards maximizing the flow
of information through the dy dimensions, as in DirectCLR or our framework with & = 0, due to the injection
of a non-converging gradient. Empirical results for the CIFAR datasets are provided in Tables
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Table 1: 200-NN Accuracy for different values of dy and d,, on CIFAR10 and CIFAR100 dataset.

CIFAR10 | CIFARL100

do ‘ d, ‘ Fixed Value } 500-NN Acc
200 | 312 | 0 | 8320 | 49.4
200 ‘ 312 ‘ 1 ‘ 82.5 ‘ 48.6
512
200 ‘ 312 ‘ 1 ‘ 78.9 ‘ 41.1
400 | 112 | 0 | 842 | 52.2
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Figure 5: Singular values plots of encoder outputs embeddings when using our proposed approach for different
values of dy on CIFAR10 and CIFAR100 datasets. Best viewed at 300%.

Key Takeaway 3: Forced Collapse does not enforce an Information Bottleneck The empirical
results provided in Tables [I] combined with Fig. [f| indicate that we cannot observe the same information
bottleneck effect without a projector. From the discussion in this subsection, we can safely say that the role
of the projector is not only that of an information bottleneck, which is observed from the ineffectiveness of
the forced collapse on the encoder output. The driving factor behind the effectiveness of the projector is that
it allows the encoder to learn more high-level representations and, consequently, better separability with a
higher rank of the embedding covariance matrix. Whereas a collapse in the last layer of the encoder prevents
it from learning useful representations, which are essential for the effective classification of the input samples,
as the norm of several kernels will be reduced to zero. With a constant subvector in the output, the weights
are not updated to learn useful representations. Furthermore, being unable to learn essential representations
also diminishes the mutual information between the input and the output and the generalization error bound,
which we prove in the next subsection.

3.5 Proposed Method: Remedy based on the Takeaways

For all the above key takeaways, we devise a single solution. We apply a weight regularization loss similar to
WeRank but only on the last layer. Applying this weight regularization in the last layer prevents the norm
of the weights from dropping to zero and thus prevents the significant drop in the variance of the output
embeddings along the collapsed dimensions. Without loss of generality, applying induction logic from Eqn.
we can say that these high-rank embeddings prevent the collapse of representations in the previous layers.
Thus, applying weight regularization remedies the low-rank embedding propagation. Lastly, an information
bottleneck is ensured by maximizing the mutual information between the input and the output. Preventing
the weight norm from dropping to zero, maximizes the learning capacity of the network, thereby increasing
the information flow between the input and the output.
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Proposition 3 : A non-negligible weight matrix norm facilitates more effective mutual information
maximization.

Proof: Let us consider the last d dimensions to be susceptible to collapse, such that [|[W;|| < e for
1 € [D—d+1,D] and € is arbitrarily small. The mutual information between two samples z; and z;, can be
expressed as,

D D o( )
2, 21) = zi 20) 1o o
o) = 33 ottt (2520

D—d D—d _ (24, 27) D D p(zi, )
= p(zh, 2] ) log (%)4— Z Zp 2,2 log< = ’;’zl )) (10)

p(Zk)p(Zl i=D—d+1 j=1 p(Zl

D i d
+ Z p(z,i,z{)log (p(Z’“ZZ)>
i=1 j=D—d+1 p(z1)p(#)
If |W;||> < e for i € [D—d+ 1,D], then the second and third terms in the RHS of Eqn. also
becomes very small, as p(z},) < e for arbitrary small e. On the contrary, if the square of the weight
norm is not arbitrarily small, then the second and third terms in Eqn. [I0] are not small. In that case,
I(Zk, Zl)HWi||2<s < I(Zk, Zl)WiWiT:I’

Hence, we can safely say, that a non-negligible weight matrix norm facilitates better mutual information

I(zk,z1)+1

maximization. As per |Kawaguchi et al.| (2023), the generalization error scales as O < -

>. Hence, a
negligible weight norm resulting from dimensional collapse also degrades the generalization error bound.

To prove that our interpretation of the role of the projector in self-supervised contrastive learning is
correct, we regularize the weight matrix W of the last layer only by minimizing the regularization loss
Lreg = [[WWT — I]|2, in addition to the conservative loss in Eqn. [} Thus, the final loss is described as,

‘Ctotal = ['infonce + £7'eg (11)

3.6 Comparison with state-of-the-art Contrastive learning frameworks

In this subsection, we analyse the efficacy of the proposed solution on different self-supervised frameworks,
both with and without a projector. From Table 2] we can observe that the proposed solution successfully
improves the kNN accuracy of all the SSL frameworks used and also reduces the dimensional collapse issue
due to the low variance of feature dimensions in Fig. [6] (in Section [3.7).

3.7 Eigenvalue plots comparing SimCLR Encoder and our method

From Fig[] we can see that when weight regularization is performed on the last layer of the encoder network,
the singular values of the output embeddings improve across all dimensions. Thus, our method can reduce the
effect of dimensional collapse due to the low variance of feature dimensions and provide better performance.

4 Implementation Details

Datasets: We primarily used three datasets, for our study: CIFAR10, CIFAR100 Krizhevsky| (2009)), and
ImageNet100 Tian et al.| (2020). CIFAR10 and CIFAR100 datasets consist of 10 and 100 classes, respectively,
with HOK samples in the training set. ImageNet100 contains 1300 images in each of the 100 classes.

Pre-training Details: For experiments on CIFAR Krizhevsky| (2009) and ImageNet, we used ResNet18 and
ResNet50 as a backbone with the same modifications as done in SimCLR (Chen et al.| (2020al) for small-scale
datasets (CIFAR). We used a batch size of 128 and 256 for CIFAR and ImageNet, respectively. For the
CIFAR and ImageNet datasets, we used SGD and LARS optimizer, respectively. All the implementations

10
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Table 2: Comparison of results obtained by applying WeRank variations to SimCLR with and without
Projector, Direct CLR and our proposed strategy on CIFAR10 and CIFAR100 datasets. Here, ‘LL’ refers to
‘Last Layer’. ‘CS’ refers to ‘Constant Subvector’. (+/- -): change from previous model variation.

Method | CIFAR10 | CIFAR100
SimCLR (vanilla) \ 86.1 \ 56.3
SimCLR + WeRank (Pasand et al] [2024) | 86.5 (+0.4) | 56.8 (+0.5)
SimCLR + Wt. Reg. LL (Ours) | 86.3(-0.2) | 57.5 (+0.7)
SimCLR (vanilla) w/o Projector | 84.5 | 52.8
SimCLR w/o Proj. + WeRank (Full Enc.) | 84.9 (+0.4) | 52.6 (-0.2)
SimCLR w/o Proj. + Wt. Reg. LL (Ours) | 85.1(4+0.2) | 53.1 (+0.5)
DirectCLR (vanilla) | 85.2 | 58.2
DirectCLR+ WeRank (Full Enc.) | 85.4 (+0.2) | 53.0 (-0.2)
DirectCLR+ Wt. Reg. LL (Ours) | 85.5 (4+0.1) | 53.2 (+0.2)
SimCLR w/o Proj (w/ CS) | 84.7 | 52.5
SimCLR w/o Proj (w/ CS) + WeRank (Full Enc.) | 85 (+0.3) | 53 (40.5)
SimCLR w/o Proj (w/ CS) + Wt. Reg. LL (Ours) | 85.5 (+0.5) | 53.1 (+0.1)
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Figure 6: Singular values plots of encoder outputs embeddings of SimCLR without a projector and our
method (last layer weight regularization) on CIFAR10 and CIFAR100 datasets.

were done using lightly-ai [Susmelj et al.| (2020) library. The value of the temperature hyper-parameter was
set to 0.2 for all experiments.

For the computation of the SVD decomposition, we simply used the svd function from numpy library, following
DirectCLR |Jing et al.| (2022)).

5 Conclusion

In this work, we investigate the main reason behind the effectiveness of the projector in preventing dimensional
collapse. We analyze mathematically, the phenomenon that happens inside the projector and the encoder
when trained without a projector. We find that the projector not only creates an information bottleneck
but also facilitates the learning of high-level representations in the encoder, which does not occur without
the projector, as a dimensional collapse occurring at the output of the encoder output prevents the learning
of high-level representations. We also devise a solution to improve performance by only using a weight
regularization in the last layer, be it with or without a projector, and achieve performance better than WeRank
which uses weight regularization over the whole network. We leave the study of the cause of dimensional
collapse for our future work.
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