
Dynamic Algorithms for the Massively Parallel Computation
Model

Giuseppe F. Italiano

LUISS University, Rome, Italy

Silvio Lattanzi

Google Research, Zurich, Switzerland

Vahab S. Mirrokni

Google Research, New York, USA

Nikos Parotsidis
∗

University of Copenhagen, Denmark

ABSTRACT
The Massive Parallel Computing (MPC) model gained popularity

during the last decade and it is now seen as the standard model

for processing large scale data. One significant shortcoming of the

model is that it assumes to work on static datasets while, in practice,

real world datasets evolve continuously. To overcome this issue,

in this paper we initiate the study of dynamic algorithms in the

MPC model. We first discuss the main requirements for a dynamic

parallel model and we show how to adapt the classic MPC model

to capture them. Then we analyze the connection between classic

dynamic algorithms and dynamic algorithms in the MPC model.

Finally, we provide new efficient dynamic MPC algorithms for a

variety of fundamental graph problems, including connectivity,

minimum spanning tree and matching.

CCS CONCEPTS
•Theory of computation→Dynamic graph algorithms;MapRe-
duce algorithms; Distributed computing models.

ACM Reference Format:
Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis.

2019. Dynamic Algorithms for theMassively Parallel ComputationModel. In

31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
’19), June 22–24, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3323165.3323202

1 INTRODUCTION
Modern applications often require performing computations on

massive amounts of data. Traditional models of computation, such

as the RAM model or even shared-memory parallel systems, are

inadequate for such computations, as the input data do not fit into

the available memory of today’s systems. The restrictions imposed

by the limited memory in the available architectures has led to

new models of computation that are more suitable for processing

massive amounts of data. A model that captures the modern needs

of computation at a massive scale is the Massive Parallel Computing

(MPC) model, that is captured by several known systems (such as

∗
The author is supported by Grant Number 16582, Basic Algorithms Research Copen-

hagen (BARC), from the VILLUM Foundation. Work partially done while the author

was an intern at Google.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6184-2/19/06.

https://doi.org/10.1145/3323165.3323202

MapReduce, Hadoop, or Spark). At a very high-level, a MPC system

consists of a collection of machines that can communicate with each

other through indirect communication channels. The computation

proceeds in synchronous rounds, where at each round the machines

receive messages from other machines, perform local computations,

and finally send appropriate messages to other machines so that

the next round can start. The crucial factors in the analysis of

algorithms in the MPC model are the number of rounds and the

amount of communication performed per round.

The MPC model is an abstraction of a widely-used framework in

practice and has resulted in an increased interest by the scientific

community. An additional factor that contributed to the interest in

this model is that MPC exhibits unique characteristics that are not

seen in different parallel and distributed architectures, such as its

ability to perform expensive local computation in each machine at

each round of the computation. Despite its resemblance to other

parallel models, such as the PRAM model, the MPC model has

different algorithmic power from the PRAM model [23].

The ability of the MPC model to process large amounts of data,

however, comes with the cost of the use of large volumes of re-

sources (processing time, memory, communication links) during the

course of the computation. This need of resources strengthens the

importance of efficient algorithms. Although the design of efficient

algorithms for solving problems in the MPC model is of vital impor-

tance, applications often mandate the recomputation of the solution

(to a given problem) after small modifications to the structure of the

data. For instance, such applications include the dynamic structure

of the Web where new pages appear or get deleted and new links

get formed or removed, the evolving nature of social networks,

road networks that undergo development and constructions, etc.

In such scenarios, even the execution of very efficient algorithms

after few modifications in the input data might be prohibitive due

to their large processing time and resource requirements. Moreover,

in many scenarios, small modifications in the input data often have

a very small impact in the solution, compared to the solution in

the input instance prior to the modifications. These considerations

have been the driving force in the study of dynamic algorithms in

the traditional sequential model of computation.

Dynamic algorithms maintain a solution to a given problem

throughout a sequence of modifications to the input data, such as

insertions or deletion of a single element in the maintained dataset.

In particular, dynamic algorithms are able to adjust efficiently the

maintained solution by typically performing very limited compu-

tation. Moreover, they often detect almost instantly that the main-

tained solution needs no modification to remain a valid solution to

the updated input data. The update time of a dynamic algorithm in

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

49

https://doi.org/10.1145/3323165.3323202
https://doi.org/10.1145/3323165.3323202

the sequential model is the time required to update the solution so

that it is a valid solution to the current state of the input data. Dy-

namic algorithms have worst-case update time u(N) if they spend

at most O(u(N)) after every update, and u(N) amortized update

bound if they spend a total ofO(k ·u(N)) time to process a sequence

of k updates. The extensive study of dynamic algorithms has led to

results that achieve a polynomial, and often exponential, speed-up

compared to the recomputation of a solution from scratch using

static algorithms, for a great variety of problems. For instance, com-

puting the connected components of a graph takes O(m + n) time,

where n andm are the number of vertices and edges of the graph,

respectively, while the most efficient dynamic algorithms update

the connected components after an edge update in O(logn) amor-

tized time [20], or in sub-polynomial time in the worst-case [27].

Similarly, there exist algorithms that maintain a maximal matching

in polylogarithmic time per update in the worst case [10], while

recomputing from scratch requires O(m + n) time.

So far, there has been very little progress on modelling dynamic

parallel algorithms in modern distributed systems, despite their

potential impact in modern applications, with respect to the speed-

up and reduced use of resources. There have been few dynamic

algorithms that maintain the solution to a problem in the distributed

setting. For instance, in [11], Censor-Hillel et al. present a dynamic

algorithm for maintaining a Maximal Independent Set of a graph in

the LOCALmodel. Assadi et al. [7] improve the message complexity

by adjusting their sequential dynamic algorithm to the LOCAL

model. In [2], Ahn andGuha study problems that can be fixed locally

(i.e., within a small neighborhood of some vertex) after some small

modification that has a very limited impact on the existing solution.

This line of work has been primarily concerned with minimizing the

number of rounds and the communication complexity. Moreover,

the algorithms designed for the LOCAL model do not necessarily

take into account the restricted memory size in each machine.

In this paper, we present an adaptation of the MPC model, that

we call DMPC, that serves as a basis for dynamic algorithms in the

MPC model. First, we impose a strict restriction on the availability

of memory per machine, which mandates the algorithms in this

model to operate in any system that can store the input in the

total memory. Second, we define a set of factors that determine the

complexity of a DMPC algorithm. These factors consist of (i) the

number of rounds per update that are executed by the algorithm, (ii)

the number of machines that are active per round, and (iii) the total

amount of communication per round, which refers to the sum of

sizes of all messages sent at any round. A final requirement for our

model is that DMPC algorithms should provide worst-case update

time guarantees. This is crucial not only because of the shared

nature of the resources, but also because it is imposed by many real-

world applications, in which one needs to act fast upon an update

in the data, such as detecting a new malicious behavior, or finding

relevant information to display to a new activity (e.g., displaying

ads, friend recommendations, or products that are relevant to a

purchase).

Inspired by today’s systems that share their resources between

many different applications at any point in time, it is necessary to

design algorithms that do not require dedicated systems to operate

on, and that can be executed with limited amounts of resources,

such as memory, processors, and communication channels. This

necessity is further strengthened by the fact that typically dynamic

algorithms are required to maintain a solution to a problem over

long series of updates, which implies that the application is running

for a long sequence of time. Our model imposes these properties

through the predefined set of restriction. In particular, we focus on

three main dimensions

Memory. Dynamic algorithms in our model are required to use

a very limited amount of memory in each machine. Specifically,

assuming that the input is of size N , each machine is allowed to

use only O(
√
N) memory. Note that this limitation does not aim

at ensuring that the machines are large enough to fit O(
√
N) bits

(as a system with such weak machines would need many millions

of machines to even store the data, given that even weak physical

machines have several GB of memory). Rather, it aims at guaran-

teeing that the allocation of the machines of the model to physical

machines is flexible in terms of memory, allowing the system to

move machines of the model across different physical machines

without affecting the execution of the algorithm. (Notice that the

system can co-locate several machines of the model to a single

physical machine.)

Resource utilization and number of machines. Our model pro-

motes limited processing time in several ways. First, two factors

of evaluation of an algorithm are the number of rounds that are

required to process each update, and the number of machines that

are active at each round of the update. Notice that machines that are

not used by the execution of a dynamic algorithm can process other

applications that co-exist in the same physical machines. More-

over, algorithms with worst-case update time are guaranteed to end

the execution of a particular update in limited time, thus avoiding

locking shared resources for large periods of time.

Communication Channels. In our model, one of the factors that

contributes to the complexity of an algorithm is the amount of

communication that occurs at each round during every update.

Furthermore, the number of machines that are active per round

also contributes to the complexity of an algorithm (namely, the

number of machines receiving or transmitting messages). These

two facts ensure that efficient algorithms in the DMPC model use

limited communication.

Similarly to the sequential model, the goal of a dynamic algo-

rithm in the DMPC model is to maintain a solution to a problem

more efficiently than recomputing the solution from scratch with a

static algorithm. Here, the main goal is to reduce the bounds in all

three factors contributing to the complexity of an algorithm. How-

ever, algorithms reducing some of the factors, without increasing

the others, may also be of interest.

We initiate the study of dynamic algorithms in the DMPC model

by designing algorithms for basic graph-theoretic problems. In par-

ticular, we present fully-dynamic algorithms for maintaining a max-

imal matching, a 3/2-approximate matching, a (2 + ϵ)-approximate

matching, the connected components of a graph, as well as a (1+ϵ)-
approximate Minimum Spanning Tree (MST) of a weighted graph.

Finally, we show that our model can exploit successfully the

techniques that were developed for dynamic algorithms in the se-

quential model. In particular, we present a black-box reduction that

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

50

transforms any sequential dynamic algorithm with p(S) preprocess-
ing time and u(S) update time to an algorithm in the dynamic MPC

model which performs the preprocessing step in O(p(S)) rounds,
uses O(1) machines and O(1) total communication per round, and

such that each update is performed inO(u(S)) number or rounds us-

ing O(1) machines and O(1) total communication per round. With

this reduction, the characteristics (amortized vs. worst-time and

randomized vs. deterministic) of the DMPC algorithm are the same

as the sequential algorithm.

Related work in the classic MPC model. It was known from

the PRAM model how to compute a (1 + ϵ) approximate matching

inO(logn) rounds [26]. Lattanzi et al. [25] introduced the so-called
filtering technique which gives an algorithm for computing a 2-

approximate matching inO(1/c) rounds assuming that the memory

per machine is O(n1+c), for any c > 0. Under the same memory

assumption, Ahn and Guha [2] showed an algorithm running in

O(1/(cϵ)) number of rounds for (1+ϵ) approximate matching. Both

those algorithms run in O(logn) time when the memory in each

machine is Θ(n), which matches the known bound from the PRAM

model. It was only recently that Czumaj et al. [14] overcame the

O(logn) barrier for computing an approximate matching. In partic-

ular, in [14] the authors presented a (1 + ϵ)-approximate matching

inO((log logn)2) time with Õ(n)memory per machine. This bound

has been improved to O(log logn) rounds, under the assumption

of slightly superlinear memory per machine [6, 16]. Very recently,

Ghaffari and Uitto [17] presented an algorithm that uses only sub-

linear memory and can compute a (1+ ϵ)-approximate matching in

Õ(
√
log∆) rounds, where ∆ is the maximum degree in the graph.

Another central problem in the MPCmodel is the computation of

the connected components of a graph. This problem can be solved

inO(logn) rounds [24, 27]. In particular, the algorithm in [24] runs

in O(log logn) rounds on certain types of random graphs. In the

case where each machine contains O(n1+c) memory, it is known

how to compute the connected components of a graph in a constant

number of rounds [25]. Under a well-known conjecture [31], it is

impossible to achieve o(logn) on general graphs if the space per

machine is O(n1−c) and the total space in all machines is O(m).

Very recently Andoni et al. [4] presented a new algorithm that uses

sublinear memory and runs in Õ(logD) parallel rounds, where D
is the diameter of the input graph.

Our results. Throughout the paper we denote by G = (V ,E) the
input graph, and we use n = |V |, m = |E |, and N = m + n. All
bounds refer to worst-case update bounds. Our algorithmic results

are summarized in Table 1. All of our algorithms useO(N)memory

across all machines, and hence make use of O(
√
N) machines.

Maximalmatching. Our first algorithmmaintains fully-dynamically

a maximal matching in O(1) rounds per update in the worst case,

while the number of machines that are active per rounds is O(1),

and the total communication per round isO(
√
N). The general idea

in this algorithm, inspired from [29], is to use vertex-partitioning

across the machines and additionally to store at one machine the

last

√
N updates in a buffer, together with the changes that each

of these updates generated. We call this summary of updates and

the changes that they trigger the update-history. Every time that

an update arrives (i.e., an edge insertion or an edge deletion), the

update-history is sent to the endpoints that are involved in the

update, and each endpoint adjusts its data structure based on the

update-history (that is, it updates its knowledge of which vertices

among its neighbors are free), and further sends back (to the ma-

chine that maintains the update-history) any possible changes that

the update might have triggered. The machines that maintain the

endpoints of the updated edge might further communicate with one

of their neighbors to get matched with them. Additional challenges

arise from the fact that the neighborhood of a single vertex might

not fit in a single machine.

For comparison, the best static MPC algorithm to compute a

maximal matching in the static case runs in O(log logn) when the

space per machine is Õ(n) [16],O(
√
logn) when the space is sublin-

ear [17] and inO(c/δ) rounds when N ∈ Ω(n1+c) and the space per

machine is Ω(n1+δ) [25]. These algorithms use all the machines at

each round and generate Ω(N) communication per round.

We note that although our algorithm has communication com-

plexity O(
√
N) per round in the case where the available memory

per machine is O(
√
N), the communication complexity is actually

proportional to the number ofmachines used by the system. Namely,

if we allow larger memory per machine then the communication

complexity reduces significantly. Hence, in real-world systems we

expect our algorithm to use limited communication per MPC round.

3/2-approximate matching. We further study the problem of

maintaining a maximum cardinality matching beyond the factor

2 approximation given by a maximal matching. We present an al-

gorithm for maintaining a 3/2-approximate matching that runs in

O(1) rounds, usesO(
√
N)machines andO(

√
N) communication per

round. The best known static algorithm for computing aO(1+ϵ) ap-
proximate matching runs in O(log logn) rounds in the case where

the memory available in each machine is Õ(n) [6, 14, 16] or in

O(
√
log∆) rounds when the memory available in each machine is

sublinear [31], where ∆ the maximum degree in the graph.

(2 + ϵ)-approximate matching. Our algorithm for maintaining

a maximal matching requires polynomial communication among

the machines and the use of a coordinator machine. To overcome

those restrictions, we explore the setting where we are allowed to

maintain an almost maximal matching instead of a proper maximal

matching. In other terms, at most an ϵ fraction of the edges of a

maximal matching may be missing. In this setting, we show that

we can adapt the fully-dynamic centralized algorithm by Charikar

and Solomon [12] that has polylogarithmic worst-case update time.

We note that our black-box reduction to the DMPC model yields a

fully-dynamic algorithm with a polylogarithmic number of rounds.

However we show how we can adapt the algorithm to run in O(1)
rounds per edge insertion or deletion, using O(polylog(n)) number

of active machines and total communication per round.
1

Connected components and (1+ϵ)MST. We consider the problem

of maintaining the connected components of a graph and the prob-

lem of maintaining a O(1 + ϵ)-approximate Minimum Spanning

1
We note that one could adopt the algorithm from [10] to maintain a (proper) maximal

matching with the same asymptotic bounds; however, that algorithm does not maintain

a consistent matching throughout its execution, meaning that the maintained matching

could be completely different between consecutive update operations, which is not a

desirable property for many applications.

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

51

Table 1: Algorithmic results achieved in this paper. The bounds presented in the first part of the table hold in the worst-case.

Problem #rounds

#active

machines

Commun.

per round

Comments

Maximal matching O(1) O(1) O(
√
N)

Use of a coordinator,

starts from an arbitrary graph.

3/2-app. matching O(1) O(n/
√
N) O(

√
N) Use of a coordinator.

(2 + ϵ)-app. matching O(1) Õ(1) Õ(1)

Connected comps O(1) O(
√
N) O(

√
N)

Use of Euler tours,

starts from an arbitrary graph.

(1 + ϵ)-MST O(1) O(
√
N) O(

√
N)

The approx. factor comes

from the preprocessing,

starts from an arbitrary graph.

Results from reduction to the centralized dynamic model

Maximal matching O(1) O(1) O(1) Amortized, randomized.

Connected comps Õ(1) O(1) O(1) Amortized, deterministic.

MST Õ(1) O(1) O(1) Amortized, deterministic.

Tree (MST) on a weighted graph. For both problems we present

fully-dynamic deterministic algorithms that run inO(1) rounds per

update in the worst case, with O(
√
N) active machines and O(

√
N)

total communication per round. Notice that, in order to maintain

the connected components of a graph, it suffices to maintain a

spanning forest of the graph. As it is the case also for centralized

algorithms, the hard case is to handle the deletion of edges from the

maintained spanning forest. The main ingredient in our approach

is the use of Euler tour of a spanning tree in each connected com-

ponent. This enables us to distinguish between different trees of

the spanning forest, based on the tour numbers assigned to each of

vertices of the trees, which we use to determine whether a vertex

has an edge to particular part of a tree. Notice that to achieve such

a bound, each vertex needs to known the appearance numbers of

its neighbors in the Euler tour, which one cannot afford to request

at each round as this would lead toO(N) communication. We show

how to leverage the properties of the Euler tour in order to avoid

this expensive step. In the static case, the best known algorithm

to compute the connected components and the MST of a graph

requires O(c/δ) rounds when N ∈ Ω(n1+c) and S ∈ Ω(n1+δ) [25].
In the case where S ∈ o(n), [13] presented an algorithm to compute

the connected components of a graph in O(logn) rounds, with all

the machines and Ω(N) communication per round.

Bounds from the dynamic algorithms literature. We present a re-

duction to dynamic algorithms in the centralized computational

model. More specifically, we show that if there exists a central-

ized algorithm with update time u(m,n) and preprocessing time

p(m,n) on a graph withm edges and n vertices, then there exists a

dynamic MPC algorithm which updates the solution in O(u(m,n))
rounds withO(1) active machines per round andO(1) total commu-

nication, after p(m,n) rounds of preprocessing. The characteristics
of the centralized algorithm (e.g., amortized or worst-case update

time, randomized or deterministic) carry over to the MPC model.

This reduction, for instance, implies an amortized Õ(1) round fully-

dynamic DMPC algorithm for maintaining the connected compo-

nents or the maximum spanning tree (MST) of a graph [20], and

an amortized O(1) round fully-dynamic DMPC algorithm for the

maximal matching problem [30]. These algorithms however do not

guarantee worst-case update time, which is important in applica-

tions. Moreover, the connected components and MST algorithms

have super-constant round complexity.

Road map. In section 2 we introduce the model. Then in Sec-

tion 3 we present our maximal matching algorithm, in Section 4

we present our 3/2-approximation. Our connected component algo-

rithm, and the (1 + ϵ)-MST, are presented in Section 5. Finally, our

(2 + ϵ) approximation algorithm and the reduction are omitted due

to lack of space, and are available in the full version of the paper.

2 THE MODEL
In this work we build on the model that was introduced by Karloff,

Suri, and Vassilvitski [23], and further refined in [3, 9, 18]. This

model is commonly referred to as the Massive Parallel Computing
(MPC) model. In its abstraction, the MPC model is the following.

The parallel system is composed by a set of µ machinesM1, . . . ,Mµ ,

each equipped with a memory that fits up to S bits. The machines

exchange messages in synchronous rounds, and each machine can

send and receive messages of total size up to S at each round. The

input, of size N , is stored across the different machines in an arbi-

trary way. We assume that S, µ ∈ O(N 1−ϵ), for a sufficiently small ϵ .
The computation proceeds in rounds. In each round, each machine

receives messages from the previous round. Next, the machine

processes the data stored in its memory without communicating

with other machines. Finally, each machines sends messages to

other machines. At the end of the computation, the output is stored

across the different machines and it is outputted collectively. The

data output by each machine has to fit in its local memory and,

hence, each machine can output at most S bits.

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

52

Since at each round all machines can send and receive messages

of total size S , the total communication per round is bounded by

S · µ ∈ O(N 2−2ϵ). See [23] for a discussion and justification. When

designing MPC algorithms, there are three parameters that need to

be bounded:

– Machine Memory: In each round the total memory used by

each machine is O(N (1−ϵ)) bits.

– Total Memory: The total amount of data communicated at any

round is O(N (2−2ϵ)) bits.

– Rounds: The number of rounds is O(logi n), for a small i ≥ 0.

Several problems are known to admit a constant-round algo-

rithm, such as sorting and searching [18].

Dynamic algorithms. In the centralized model of computation,

dynamic algorithms have been extensively studied in the past few

decades. The goal of a dynamic algorithm is to maintain the solution

to a problem while the input undergoes updates. The objective

is to update the solution to the latest version of the input, while

minimizing the time spent for each update on the input. A secondary

optimization quantity is the total space required throughout the

whole sequence of updates.

A dynamic graph algorithm is called incremental if it allows edge
insertions only, decremental if it allows edge deletions only, and
fully-dynamic if it allows an intermixed sequence of both edge in-

sertions and edge deletions. Most basic problems have been studied

in the dynamic centralized model, and they admit efficient update

times. Some of these problems include, connectivity and minimum

spanning tree [20, 28], approximate matching [5, 8, 10, 12, 29, 30],

shortest paths [1, 15].

Dynamic algorithms in the DMPC model. Let G = (V ,E) be
a graph with n = |V | vertices andm = |E | edges. In the general

setting of the MPC model, where the memory of each machine

is strictly sublinear in n, no algorithms with constant number of

rounds are known even for very basic graph problems, such as

maximal matching, approximate weighted matching, connected

components. Recomputing the solution for each of those problems

requires O(logn) rounds, the amount of data that is shuffled be-

tween any two rounds can be as large asO(N) , all the machines are

active in each round, and all machines need to communicate with

each other. Therefore, it is natural to ask whether we can update the

solution to these problems after a small change to the input graph,

using a smaller number of rounds, less active machines per round,

and less total communication per round. Notice that bounding the

number of machines that communicate immediately implies the

same bound on the active machines per round. For convenience, we

call active the machines that are involved in communication. The

number of active machines also implies a bound on the amount of

data that are sent in one round, as each machine has information

at most equal to its memory (i.e., O(
√
N) bits). The complexity of

a dynamic algorithm in the DMPC model can be characterized by

the following three factors:

– The number of rounds required to update the solution.

– The number of machines that are active per round.
– The total amount of communication per round.

An ideal algorithm in the DMPC model processes each update

using a constant number of rounds, using constant number of

machines and constant amount of total communication. While such

an algorithm might not always be feasible, a dynamic algorithm

should use polynomially (or even exponentially) less resources than

it’s static counterpart in the MPC model.

Use of a coordinator. Distributed systems often host multiple

jobs simultaneously, which causes different jobs to compete for

resources. Additionally, systems relying on many machines to work

simultaneously are prone to failures of either machines or chan-

nels of communication between the machines. Our model, allows

solutions where all updates are sent to a single (arbitrary, but fixed)

machine that keeps additional information on the status of the

maintained solution, and then coordinates the rest of the machines

to perform the update, by sending them large messages containing

the additional information that it stores. Examples of such an al-

gorithm is our algorithm for the maximal matching, and the 3/2

approximate matching. In practice, the use of a coordinator might

create bottlenecks in the total running time, since it involves trans-

mission of large messages, and also makes the system vulnerable

to failures (i.e., if the coordinator fails, one might not be able to

recover the solution).

We note that the role of the coordinator in our matching al-

gorithms is not to simulate centralized algorithms (as we do in

our reduction from DMPC algorithms to dynamic centralized algo-

rithms), i.e., to perform all computation at the coordinator machine

while treating the rest of the machines as memory. In particular, we

treat the coordinator as a buffer of updates and changes of the so-

lution, and we communicate this buffer to the rest of the machines

on a need-to-know basis.

Algorithmic challenges. The main algorithmic challenges im-

posed by our model are the sublinear memory (most of the al-

gorithm known in the MPC model use memory in Ω(n)) and the

restriction on the number of machines used in every round. This

second point is the main difference between the MPC and DMPC

model and poses a set of new interesting challenges.

3 FULLY-DYNAMIC DMPC ALGORITHM FOR
MAXIMAL MATCHING

In this section we present a deterministic fully-dynamic algorithm

for maintaining a maximal matching with a constant number of

rounds per update and a constant worst-case number of active

machines per update, when the memory of each machine is Ω(
√
N)

bits, where N = (m + n) andm is the maximum number of edges

throughout the update sequence. The communication per round is

O(
√
N). Recall that our model introduces additional restrictions in

the design of efficient algorithms. Specifically, the memory of each

machine might not even be sufficient to store the neighborhood of a

single vertex, which implies that the edges incident to a single vertex

may be stored in polynomially many machines. In this framework,

a scan of the neighbors of a single vertex requires a polynomially

number of active machines in each round.

Our algorithm borrows an observation from the fully-dynamic al-

gorithm for maximal matching of Neiman and Solomon [29], which

has O(
√
m) worst-case update time and O(n2) space, or the same

amortized update bound withO(m) space. Specifically, Neiman and

Solomon [29] observe that a vertex either has a low degree, or has

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

53

only few neighbors with high degree. This allows us to treat ver-

tices with large degree separately from those with relatively small

degree. We call a vertex heavy if it has a large degree and light
if it has a small degree. The threshold in the number of vertices

that distinguishes light from heavy vertices is set to be 2

√
m. As

the memory of each machine is Ω(
√
m), we can fit the light ver-

tices together with their edges on a single machine, but for heavy

vertices we can keep only up to O(
√
m) of their edges in a single

machine. Given that each vertex knows whether it is an endpoint of

a matched edge, the only non-trivial update to be handled is when

an edge e = (x ,y) of the matching is deleted and we have to check

whether there exists an edge adjacent to x or y that can be added

to the matching. Notice that if the neighborhood of each vertex

fits in a single machine, then it is trivial to bound the number of

rounds to update the solution, as it is sufficient to search for free

neighbors of x and y that can be matched to those vertices. Such

a search can be done in a couple of rounds by sending a message

from x and y to their neighbors to ask whether they are free to join

or not. However, this does not immediately bound the number of

active machines per round.

Overview. Our algorithm keeps for each light vertex all the edges

of its adjacency list in a single machine. For every heavy node

we keep only

√
2m edges that we call alive. We call suspended the

rest of the edges of v . We initially invoke an existing algorithm to

compute a maximal matching in O(logn) rounds. Our algorithm
always maintains a matching with the following invariant:

Invariant 3.1. No heavy vertex gets unmatched throughout the
execution of the algorithm2.

If a new edge gets inserted to the graph, we simply check if we

can add it to the matching (i.e., if both its endpoints are free). Now

assume that an edge (x ,y) from the matching gets deleted. If both

the endpoints are light, then we just scan their adjacency lists (that

lie in a single machine) to find a replacement edge for each endpoint

of (x ,y). If x is heavy, then we search the

√
2m alive edges of x and

if we find a neighbor that is free we match it. If we cannot find a free

neighbor of x , then among the (matched)

√
2m alive neighbors of x

there should exist a neighborw with a light mate z (as otherwise
the sum of degrees of the mates of neighbors of x would exceedm),

in which case we remove (w, z) from the matching, we add (x ,w) to

the matching, and we search the neighbors of the (light) vertex z for
a free neighbor to match z. If y is heavy, we proceed analogously.

We build the necessary machinery in order to keep updated the

aforementioned allocation of the adjacency lists to the available

machines. This involves moving edges betweenmachines whenever

this is necessary, which introduces several challenges, since we

cannot maintain updated the information in all machines with only

O(1) message exchange. On the other hand, we cannot allocate

edges to an arbitrary number of machines. We deal with these

issues by periodically updating the machines by taking advantage

of the fact that we can send large messages from the coordinator.

Initialization and bookkeeping. Our algorithm makes use of

O(
√
N) machines. We assume that all vertices of the graph contain

2
After computing the initial maximal matching some heavy vertices might be un-

matched. During the update sequence, once a heavy vertex gets matched, it is not

being removed from the matching, unless it becomes light again

IDs from 1 ton. Our algorithm executes the following preprocessing.

First, we compute a maximal matching (this can be done inO(logn)
rounds with the randomized CONGEST algorithm from [22]). To-

gether with each edge in the graph we store whether an endpoint of

the edge is matched: if it is, we also store its mates in the matching.

In a second phase, we compute the degree of each vertex (this can

be done in O(1) rounds for all vertices). We place the vertices into

the machines in such a way that the whole adjacency list of light

vertices, and arbitrary

√
2m edges from the adjacency list of heavy

vertices, are stored in single machines. The remaining adjacency

list of a heavy vertex is stored in separate exclusive machines (only

store edges of that vertex) so that as few machines as possible are

used to store the adjacency list of a heavy vertex. On the other hand,

the light vertices are grouped together into machines. The machines

that store heavy vertices are characterized as heavy machines, and
those storing light vertices as light machines.

One of the machines acts as the coordinator, in the sense that all

the queries and updates are executed through it. The coordinator

machine, denoted by MC , stores an update-history H of the last

O(
√
N) updates in both the input and the maintained solution, i.e.,

which edges have been inserted and deleted from the input in the

last

√
N updates and which edges have been inserted and deleted

in the maintained maximal matching. Moreover, for each newly

inserted edge that exists in the update-history we store a binary

value for each of its endpoints that indicates if their adjacency list

has been updated to include the edge.

For convenience, throughout this section we say that the algo-

rithm invokes some function without specifying that all the com-

munication is made throughMC . We dedicate O(n/
√
N) machines

to store statistics about the vertices of the graphs, such as their

degree, whether they are matched and who is their mate, the ma-

chine storing their alive edges, the last in the sequence of machines

storing their suspended edges (we treat the machines storing sus-

pended edges as a stack). To keep track of which machine keeps

information about which vertices, we allocate many vertices with

consecutive IDs to a single machine so that we can store the range

of IDs stored in each machine. Hence inMC , except of the update-

history H , we also store for each range of vertex IDs the machine

that contains their statistics. This information fits in the memory of

MC as the number of machines is O(
√
N). Finally,MC also stores

the memory available in each machine.

Maintaining the bookkeeping. In what follows, for the sake

of simplicity, we assume that the update-history H is updated

automatically. Further, we skip the description of the trivial update

or queries on the statistics of a vertex, such as its degree, whether

it is an endpoint of a matched edge, the machine storing its alive

edges, etc. All of these can be done in O(1) rounds via a message

through the coordinator machine MC . After each update to the

graph, we update the information that is stored in a machine by

executing those updates in a round-robin fashion, that is, each

machine is updated after at most O(
√
N) updates. Recall that we

use O(
√
N) machines.

Throughout the sequence of updates we use the following set of

supporting procedures to maintain a valid allocation of the vertices

into machines:

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

54

– дetAlive(x) : Returns the ID of the machine storing the alive

neighbors of x .
– дetDeдInMachine(M,x) : Returns x ’s degree in machineM .

– дetSuspended(x) : Returns the ID of the last in the sequence

of heavy machines storing the edges of x .
– f its(M, s) : Return true if s edges fit into a light machine M ,

and f alse otherwise.
– toFit(s) : Returns the ID of a light machine that has enough

memory to store s edges, and the available space in that machine.

– addEdдe((x ,y)): We only describe the procedure for x , as
the case for y is completely analogous. If x is heavy, add (x ,y)
in the machine дetSuspended(x) if it fits, or otherwise to a new

machine, and set the new machine to be дetSuspended(x). If, on
the other hand, x is light and (x ,y) fits into дetAlive(x), we sim-

ply add (x ,y) in дetAlive(x). If, (x ,y) does not fit in дetAlive(x)
then callmoveEdдes(x , s,Mx , toFit(s),H), where s is the number

of alive edges of x (if x becomes heavy, we mark that). If all of the

remaining edges in the machineMx (of light vertices other than x)
fit into another machine, then move them there (this is to bound

the number of used machines).

– moveEdдes(x , s,M1,M2,H), where x is light: First, remove

frommachineM1 deleted edges of x based onH . Second, send from

M1 up to s edges of x toM2. If the s edges do not fit intoM2, move

the neighbors of x fromM2 to a machine that fits them, i.e., execute

Mx ′ = toFit(s +дetDeдInMachine(M,x)), move the s edges of x in

M1 toMx ′ and callmoveEdдes(x ,дetDeдInMachine(M,x),M2,Mx ′ ,H).

– f etchSuspended(x , s), where x is heavy: Moves s suspended
edges to the machineMx = дetAlive(x). To achieve this we call

moveEdдes(x , s,дetSuspended(x),Mx). While the number of edges

moved toMx is s ′ < s , callmoveEdдes(x , s−s ′,дetSuspended(x),Mx).

–moveSuspended(x , s,L), where x is heavy: Moves the set L of

s edges of x from machine дetAlive(x) to the machines storing the

suspended edges of x . We first fit as many edges as possible in the

machine дetSuspended(x), and the rest (if any) to a new machine.

–updateVertex(x ,H) :Update the neighbors of x that are stored

in Mx = дetAlive(x) based on H . If x is heavy and the number

of edges from the adjacency list of x in M is s <
√
2m, then call

f etchSuspended(x ,
√
2m−s). If x is heavy and the set of alive edges

has size s >
√
2m, then callmoveSuspended(x , s −

√
2m,L), where L

are s −
√
2m edges of x that do not contain the edge (x ,mate(x)). If,

on the other hand, x is light and the set of alive edges of x does not fit

inMx after the update, callmoveEdдes(x , s,Mx , toFit(s),H), where

s is the number of alive edges of x . If all of the remaining edges

in the machineMx (of light vertices other than x) fit into another

machine, then move them there (this is to bound the number of

used machines).

– updateMachine(M,H) : Update all adjacency lists stored in

machine M to reflect the changes in the update-history H . If M
is a heavy machine of a vertex x , we proceed as in the case of

updateVertex(x ,H), but now onmachineM rather thanдetAlive(x).
Now we assumeM is light. First, delete the necessary edges of the

light vertices stored atM based on H . If all of the remaining edges

of the machine fit into another half-full machine, then move them

there (this is to bound the number of used machines).

Handling updates. Now we describe how our algorithm updates

the maintained maximal matching after an edge update.

insert(x ,y). First, execute updateVertex(x), updateVertex(y),
and addEdдe((x ,y)). If both x and y are matched then do noth-

ing and return. If neither x nor y are matched, add (x ,y) to the

matching and return. In the case where x is matched and heavy

and y is unmatched and light then do nothing and return. The

same happens if y is matched and heavy and x is unmatched. If x is

unmatched and heavy, search for a (matched, as this is a maximal

matching) neighborw of x whose mate z is light, remove (w, z) from
the matching, add (x ,w) to the matching, and if z (who is a light

vertex) has an unmatched neighbor q add (z,q) to the matching.

If y is unmatched and heavy proceed analogously. Note that this

restores Invariant 3.1. In any case, the update-history is updated to

reflect all the changes caused by the insertion of (x ,y).

delete(x ,y). First, update H to reflect the deletion of (x ,y) and
call updateVertex(x) and updateVertex(y). If (x ,y) is not in the

matching do nothing and return. (The edge has already been deleted

from the adjacency lists via the calls to updateVertex .) If (x ,y) is
in the matching proceed as follows. First, remove (x ,y) from the

matching. If z ∈ {x ,y} is heavy, search for a neighborw of z whose
mate w ′

is light, remove (w,w ′) from the matching, add (z,w) to

the matching, and ifw ′
(who is a light vertex) has an unmatched

neighbor q add (w ′,q) to the matching. If z ∈ {x ,y} is light, scan
the neighborhoods of z for a unmatched vertexw , and add (z,w) to

the matching. In any case, the update-history is updated to reflect

all the changes caused by the deletion of (x ,y).

Lemma 3.2. The algorithm uses O(
√
N) machines.

Proof. Omitted due to lack of space. □

Lemma 3.3. Both insert(x ,y) and delete(x ,y) run inO(1) rounds,
use O(1) machines, and generate O(

√
N) communication per round.

Proof. Recall that we manage the machines that are used to

store the sequence of machines storing the suspended edges of

heavy vertices as stacks, that is, we store the last machine storing

the suspended edges of a vertex x together with the rest of the

statistics for x , and each machine maintains a pointer to the next

machine in the sequence. Hence, we can access in O(1) rounds the
machine that is last in the sequence of machines maintaining the

suspended edges of a vertex. The only supporting function that

is not trivially executable in O(1) rounds is f etchSuspended . Note
that a call to f etchSuspended makes multiple calls tomoveEdдes
to transfer edges suspended edges of a heavy vertex x . As each

machine is updated everyO(
√
N) rounds, it follows that the number

of edges that have been removed from the graph and the machines

storing those edges are not yet updated, is O(
√
N). As all the calls

tomoveEdдes transfer at most O(
√
N) edges of x , and all but one

machines storing suspended edges of x are full, it follows that there

is at most a constant number of calls tomoveEdдes . □

4 FULLY-DYNAMIC 3/2-APPROXIMATE
MAXIMUMMATCHING

The algorithm for the 3/2 approximate matching builds on top

of the algorithm for maintaining a maximal matching from Sec-

tion 3. Our algorithm is an adaptation of the algorithm from [29]

to our DMPC model. Our algorithm’s approximation is based on

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

55

a well-known graph-theoretic connection between augmenting

paths in an unweighted graph, with respect to a matching, and the

approximation factor of the matching relatively to the maximum

cardinality matching. An augmenting path is a simple path starting

and ending at a free vertex, following alternating unmatched and

matched edges. Specifically, a matching that does not contain aug-

menting paths of length (2k−1) in a graph, is a (1+ 1

k)-approximate

matching [21]. In this section we show that it is possible to use the

technique in [29] to design a simple DMPC algorithm for k = 2. The

additional information that the algorithm needs to maintain, com-

pared to the algorithm from Section 3, is the number of unmatched

neighbors of each vertex. We call these counters free-neighbor coun-
ters of the light vertices. We keep this information in the O(n/

√
N)

machines storing the statistics about the vertices of the graph. Here

assume that the computation starts from the empty graphs (An

initialization algorithm for this problem would require eliminating

all augmenting paths of length 3, but we are not aware of such an

algorithm using O(N) total memory).

Since the algorithm from Section 3 maintains a matching where

all heavy vertices are always matched, we only update the free-

neighbor counters whenever a light vertex changes its matching

status. Recall that a light vertex keeps all of its neighbors in the same

machine. Therefore, we simply update the counters of the neighbors

of the light vertex. This requires a message of size O(
√
N) from the

light vertex v that changed its status to the coordinator and from

there appropriate messages of total size O(
√
N) to the O(n/

√
N)

machines storing the free-neighbor counters of the neighbors of v .
Given that we maintain for each vertex its free-neighbor counter,

we can quickly identify whether an edge update introduces aug-

menting paths of length 3. The modifications to the algorithm from

Section 3 are as follows.

– In the case of the insertion of edge (u,v), if u is matched but v
unmatched, we check whether the mate u ′ of u has a free neighbor

w ; if so, we remove (u,u ′) from the matching and we add (w,u ′)
and (u,v) (this is an augmenting path of length 3). We only update

the free-neighbor counters of the neighbors ofw and v , as no other
vertices change their status, and no new augmenting paths are

introduces as no matched vertex gets unmatched.

– If u and v are free after inserting (u,v), we add (u,v) into the

matching and update the free-neighbor counters of all neighbors of

u and v (who are light vertices, as all heavy vertices are matched).

– If we delete an edge which is not in the matching, then we

simply update the free-neighbor counters of its two endpoints.

– Whenever an edge (u,v) of the matching is deleted, we treat

u as follows. If u has a free neighborw , then we add (u,w) to the

matching and update the free-neighbor counters of the neighbors

ofw (who is light). If u is light but has no free neighbors, then we

search for an augmenting path of length 3 starting from u. To do so,
it is sufficient to identify a neighbor w of u whose mate w ′

has a

free neighbor z , u. If there exists suchw ′
then we remove (w,w ′)

from the matching and add (u,w) and (w ′, z) to the matching, and

finally update the free-neighbor counters of the neighbors of z (who
is light). No other vertex changes its status. If on the other hand, u
is heavy, then we find an alive neighborw ofu with a light matew ′

,

remove (w,w ′) from the matching and add (u,w) to it. (This can be

done in O(1) rounds communication through the coordinator with

the, up to n/
√
N , machines storing the mates of the statistics of the

O(
√
N) alive neighbors of w ′

.) Finally, given that w ′
is light, we

proceed as before trying to either matchw ′
or find an augmenting

path of length 3 starting from w ′
. Then, we proceed similarly to

the case where u was light.

Notice that in all caseswherewe have to update the free-neighbor

counters of all neighbors of a vertex v , v is a light vertex, so there

are at mostO(
√
N) counters to be updated and thus they can be ac-

cessed inO(1) rounds, usingO(n/
√
N) active machines, andO(

√
N)

communication complexity. Hence, given the guarantees from Sec-

tion 3 and the fact that we only take a constant number of actions

per edge insertion or deletion, we conclude that our algorithm

updates the maintained matching in O(1) rounds, using O(n/
√
N)

machines and O(
√
N) communication per round in the worst case.

We conclude this section by proving the approximation factor of

our algorithm.

Lemma 4.1. The algorithm described in this section correctly main-
tains a 3/2-approximate matching.

Proof. Omitted due to lack of space. □

5 FULLY-DYNAMIC CONNECTED
COMPONENTS AND APPROXIMATE MST

In this section we present a fully-dynamic deterministic distributed

algorithm for maintaining the connected components of a graph

with constant number of rounds per edge insertion or deletion,

in the worst case
3
. At the heart of our approach we use Euler

tours, which have been successfully used in the design of dynamic

connectivity algorithms in the centralized model of computation,

e.g., in [19, 20]. Given a rooted tree T of an undirected graph G , an
Euler tour (in short, E-tour) of T is a path along T that begins at

the root and ends at the root, traversing each edge exactly twice.

The E-tour is represented by the sequence of the endpoints of the

traversed edges, that is, if the path uses the edges (u,v), (v,w), then

v appears twice. As an E-tour is defined on a treeT , we refer to the
tree T of an E-tour as the Euler tree (E-tree, in short) of the E-tour.

The root of the E-tree appears as the first and as the last vertex of its

E-Tour. The length of a tour of an E-treeT is ELenдthT = 4(|T | − 1),

the endpoints of each edge appear twice in the E-tour. See Figures 1

and 2 for examples. As the preprocessing shares similarities with the

edge insertion, we postpone the description of the preprocessing

after describing the update procedure to restore the E-tour after an

edge insertion or deletion.

We assume that just before an edge update, we maintain for each

connected component of the graph a spanning tree, and an E-tour

of the spanning tree. Using vertex-based partitioning we distribute

the edges across machines, and each vertex is aware of the ID of its

component, and together with each of its edges we maintain the

ID of the component that it belongs to and the two indexes in the

E-tour (of the tree of the component) that are associated with the

edge. Moreover, we maintain with each vertex v the index of its

first and last appearance in the E-tour of its E-tree, which we denote

3
Note that no constant round algorithm for connected component is known for the

static case. On the downside, the number of active machines per round is not bounded.

We leave as an interesting area of future work to design an algorithm that uses a

smaller number of machines per update

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

56

a

b f

c

d

e g

Euler tour 1: [b,c,c,d,d,c,c,b,b,e,e,b]

[1,8]

1 2 3 4 5 6 7 8 9 10 11 12

[1,12]

[2,7]

[4,5]

[10,11]

[2,7]

[4,5]

Euler tour 2: [a,f,f,g,g,f,f,a]
1 2 3 4 5 6 7 8

a

b f

c

d

e g

Euler tour 1: [e,b,b,c,c,d,d,c,c,b,b,e]

[1,8]

1 2 3 4 5 6 7 8 9 10 11 12

[2,11]

[4,9]

[6,7]

[1,12]

[2,7]

[4,5]

Euler tour 2: [a,f,f,g,g,f,f,a]
1 2 3 4 5 6 7 8

a

b f

c

d

e g

[1,24]

[8,17]

[10,15]

[12,13]

[6,19]

[2,23]

[4,21]

Euler tour: [a,f,f,g,g,e,e,b,b,c,c,d,d,c,c,b,b,e,e,g,g,f,f,a]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 1: (i) A forest and an E-tour of each of its tree below. The brackets represent the first and the last appearance of a vertex
in the E-tour. (ii) The E-tour after setting e to be the root of its tree. (iii) The E-tour after the insertion of the edge (e,д).

a

b f

c

d

e g

Euler tour: [a,b,b,c,c,d,d,c,c,b,b,e,e,b,b,a,a,f,f,g,g,f,f,a]

[1,24]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

[2,15]

[4,9]

[6,7]

[12,13]

[18,23]

[20,21]

a

b f

c

d

e g

Euler tour: [a,b,b,c,c,d,d,c,c,b,b,e,e,b,b,a,a,f,f,g,g,f,f,a]

[1,24]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

[2,15]

[4,9]

[6,7]

[12,13]

[18,23]

[20,21]

a

b f

c

d

e g

Euler tour 1: [b,c,c,d,d,c,c,b,b,e,e,b]

[1,8]

1 2 3 4 5 6 7 8 9 10 11 12

[1,12]

[2,7]

[4,5]

[10,11]

[2,7]

[4,5]

Euler tour 2: [a,f,f,g,g,f,f,a]
1 2 3 4 5 6 7 8

Figure 2: (i) A tree and an E-tour of the tree below it. The brackets represent the first and the last appearance of a vertex in
the E-tour. (ii) An intermediate step of the update of the E-tour after the deletion of the edge (a,b). The red lines in the E-tour
indicate the split points of outdated E-tour. (iii) The E-tour after the deletion of the edge (a,b).

by f (v) and l(v). We denote by indexv the set of all indexes that

v appears in the E-tour of T . Note that |indexv | = 2 · dT (v) in the

E-tour, where dT (v) is the degree of v in the corresponding E-tree

T . We do not explicitly store indexv , this is implicitly stored with

each vertex as information on v’s edges. Therefore, we perform
updates on the indexes in indexv but it is actually the indexes that

are stored at the edges that are updated. To update this information

in a distributed fashion, we leverage the properties of an E-tour

which allows us to change the root of an E-tree, merge two E-trees,

and split an E-tree, by simply communicating the first and last

indexes of the new root, or the endpoints of the inserted/deleted

edge.

Handling updates. The main idea to handle updates efficiently

is that the E-tour of the spanning trees can be updated efficiently

with limited communication. For instance, we change the root of

an E-tree, and update all the information stored in the vertices of

that tree, by sending O(1)-size messages to all vertices. Moreover,

we test whether a vertex u is an ancestor of a vertex v , in their

common E-tree, using only the values f (u) and l(u) and f (v) and
l(v). We handle the edge updates as follows.

insert(x ,y): If x and y are in the same connected component,

we simply add the edge to the graph. Otherwise, we proceed as

follows. We first make y the root of its E-treeTy (if it is not already).

Let ELenдthTy = 4(|Ty | − 1) denote the length of the E-tour of Ty .
For each vertex w in Ty we update each index i ∈ indexw to be

i = ((i + ELenдthTy − l(y)) mod ELenдthTy) + 1. These shifts of

the indexes ofw correspond to a new E-tour starting with the edge

betweeny and its parent, where the parent is defined with respect to

the previous root of Ty . Second, we update the indexes i ∈ indexw
of the verticesw ∈ Ty to appear after the first appearance of x in the

new E-tour. For each vertexw in Ty update each index i ∈ indexw
to be i = i + f (x)+2. Third, set indexy = indexy ∪{ f (x)+2, f (x)+
l(y) + 3} and indexx = indexx ∪ { f (x) + 1, f (x) + l(y) + 4}, where
l(y) is the largest index of y in the E-tour ofTy before the insertion

of (x ,y). Finally, to update the indexes of the remaining vertices in

Tx , for each i ∈ indexw where i > f (x) we set i = i + 4 ·ELenдthTy .
See Figure 1 for an illustration.

Notice that the only information required by each vertexw to

perform this update, besides indexw which is implicitly stored on

the edges ofw and f (w), is ELenдthTy , f (y), l(y), f (x), l(x), which
can be sent to all machines via a constant size message from x and

y to all other machines. Notice that x and y do not need to store

f (x), l(x) and f (y), l(y),ELenдthTy , respectively, as they can simply

learn those by sending and receiving an appropriate message to

all machines. Hence each insertion can be executed in O(1) rounds
using all machines and O(

√
N) total communication per round (as

all communication is between x or y with all other machines, and

contains messages of O(1) size).

delete(x ,y): If (x ,y) is not a tree edge in the maintained forest,

we simply remove the edge from the graph. Otherwise, we first

split the E-tree containing x and y into two E-trees, and then we

reconnect it if we find an alternative edge between the two E-trees.

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

57

We do that as follows.We check whether x is an ancestor ofy or vice

versa by checking whether f (x) < f (y) and l(x) > l(y). Assume

w.l.o.g. that x is an ancestor of y in Tx . First, we set indexx =
indexx \ { f (y)−1, l(y)+1} and indexx = indexy \ { f (y), l(y)} (that
is, we simply drop the edge (x ,y)). Then, for all descendantsw of y
inTy (including y), for each i ∈ indexw set i = i − f (y), where f (y)
is the smallest index of y before the deletion of (x ,y). Update |Ty |
and allocate a new ID for the new connected component containing

y. Second, for all verticesw ∈ Tx \Ty and all i ∈ indexw if i > l(y)
set i = i − ((l(y) − f (y)+ 1)+ 2), where l(y) and f (y) are the largest
and smallest, respectively, index of y before the deletion of (x ,y).
This is to inform all vertices that appear after l(y) that the subtree
rooted at y has been removed, and hence the E-tour just cuts them

off (the +2 term accounts for the two appearances of x in the E-tour

because of (x ,y)). Finally, we find an edge from a vertex v ∈ Ty to

a vertexw ∈ Tx , and execute insert(x ,y).
Similarly to the case of an edge insertion, all of the above op-

erations can be executed in a constant number of rounds as the

only information that is required by the vertices are the ID of the

components of x and y, and the values f (x), l(x), f (y), l(y), which
are sent to all machines. Moreover, the search of a replacement

edge to reconnect the two trees of x and y can be done in O(1)
rounds as we only need to send the IDs of the two components

to all machines, and then each machine reports at most one edge

between these two components to a specific machine (specified also

in the initial message to all machines).

5.1 Extending to (1 + ϵ)-approximate MST
To maintain a minimum spanning tree instead of a spanning tree,

we use the dynamic spanning tree algorithm with the following

two changes. First, whenever an edge (x ,y) is added and the two

endpoints are already in the same tree, we compute the edge (u,v)
with the maximum weight among all the edges whose both end-

points are ancestors of either x or y (but not both) and we compare

it to the weight of (x ,y) (these tests can be done efficiently using the

E-tree). We only keep the edge with the minimum weight among

(u,v) and (x ,y). Second, at Step 3 of the delete operation, instead
of adding any edge between the two trees, the algorithm adds the

minimum among all such edges.

The preprocessing can be adjusted to compute a (1+ϵ)-approximate

MST by doing bucketization, which introduces only a O(logn) fac-
tor in the number of rounds. In fact, it is enough to bucket the edges

by weights and compute connected components by considering the

edges in bucket of increasing weights iteratively and separately.

REFERENCES
[1] I. Abraham, S. Chechik, and S. Krinninger. Fully dynamic all-pairs shortest paths

with worst-case update-time revisited. In Proc. of the 28th Annual ACM-SIAM
Symp. on Discrete Algorithms, pages 440–452, 2017.

[2] K. J. Ahn and S. Guha. Access to data and number of iterations: Dual primal

algorithms for maximummatching under resource constraints. ACM Transactions
on Parallel Computing (TOPC), 4(4):17, 2018.

[3] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for

geometric graph problems. In Proc. of the 46th annual ACM Symp. on Theory of
computing, pages 574–583. ACM, 2014.

[4] A. Andoni, Z. Song, C. Stein, Z. Wang, and P. Zhong. Parallel graph connectivity

in log diameter rounds. In 59th IEEE Annual Symp. on Foundations of Computer
Science, FOCS 2018, pages 674–685, 2018.

[5] M. Arar, S. Chechik, S. Cohen, C. Stein, and D.Wajc. DynamicMatching: Reducing

Integral Algorithms to Approximately-Maximal Fractional Algorithms. In 45th

International Colloquium on Automata, Languages, and Programming (ICALP
2018), volume 107, pages 7:1–7:16, 2018.

[6] S. Assadi, M. Bateni, A. Bernstein, V. Mirrokni, and C. Stein. Coresets meet edcs:

algorithms for matching and vertex cover on massive graphs. In Proc. of the 30th
Annual ACM-SIAM Symp. on Discrete Algorithms, pages 1616–1635, 2019.

[7] S. Assadi, K. Onak, B. Schieber, and S. Solomon. Fully dynamic maximal inde-

pendent set with sublinear update time. In Proc. of the 50th Annual ACM SIGACT
Symp. on Theory of Computing, STOC 2018, pages 815–826, 2018.

[8] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(log

n) update time. In IEEE 52nd Annual Symp. on Foundations of Computer Science,
pages 383–392, 2011.

[9] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query

processing. In Proc. of the 32nd ACM SIGMOD-SIGACT-SIGAI Symp. on Principles
of database systems, pages 273–284. ACM, 2013.

[10] A. Bernstein, S. Forster, and M. Henzinger. A deamortization approach for

dynamic spanner and dynamic maximal matching. In Proc. of the 31st Annual
ACM-SIAM Symp. on Discrete Algorithms, 2019.

[11] K. Censor-Hillel, E. Haramaty, and Z. Karnin. Optimal dynamic distributed MIS.

In Proc. of the 2016 ACM Symp. on Principles of Distributed Computing, PODC ’16,

pages 217–226, 2016.

[12] M. Charikar and S. Solomon. Fully Dynamic Almost-Maximal Matching: Breaking

the Polynomial Worst-Case Time Barrier. In 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018), pages 33:1–33:14, 2018.

[13] L. Chitnis, A. Das Sarma, A. Machanavajjhala, and V. Rastogi. Finding connected

components in map-reduce in logarithmic rounds. In Proc. of the 2013 IEEE
International Conference on Data Engineering, ICDE ’13, pages 50–61, 2013.

[14] A. Czumaj, J. Łącki, A. Mądry, S. Mitrović, K. Onak, and P. Sankowski. Round

compression for parallel matching algorithms. In Proc. of the 50th Annual ACM
SIGACT Symp. on Theory of Computing, STOC 2018, pages 471–484, 2018.

[15] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest

paths. Journal of the ACM (JACM), 51(6):968–992, 2004.
[16] M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, and R. Rubinfeld. Improved

massively parallel computation algorithms for MIS, Matching, and Vertex cover.

In Proc. of the 2018 ACM Symp. on Principles of Distributed Computing, PODC ’18,

pages 129–138, 2018.

[17] M. Ghaffari and J. Uitto. Sparsifying distributed algorithms with ramifications in

massively parallel computation and centralized local computation. In Proc. of the
30th Annual ACM-SIAM Symp. on Discrete Algorithms, pages 1636–1653, 2019.

[18] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting, searching, and simulation in

themapreduce framework. In International Symp. on Algorithms and Computation,
pages 374–383, 2011.

[19] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with

polylogarithmic time per operation. Journal of the ACM (JACM), 46(4):502–516,
1999.

[20] J. Holm, K. De Lichtenberg, and M. Thorup. Poly-logarithmic deterministic

fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and

biconnectivity. Journal of the ACM (JACM), 48(4):723–760, 2001.
[21] J. E. Hopcroft and R. M. Karp. An O(n5/2) algorithm for maximum matchings in

bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.
[22] A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal

matching. Information Processing Letters, 22(2):77 – 80, 1986.

[23] H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce. In

Proc. of the 21st annual ACM-SIAM Symp. on Discrete Algorithms, pages 938–948,
2010.

[24] J. Łącki, V. Mirrokni, and M. Włodarczyk. Connected components at scale via

local contractions. arXiv preprint arXiv:1807.10727, 2018.
[25] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for

solving graph problems in MapReduce. In Proc. of the 23th annual ACM Symp. on
Parallelism in algorithms and architectures, pages 85–94. ACM, 2011.

[26] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate match-

ing. In Proc. of the 20th annual Symp. on Parallelism in algorithms and architectures,
pages 129–136. ACM, 2008.

[27] A. Lulli, E. Carlini, P. Dazzi, C. Lucchese, and L. Ricci. Fast connected components

computation in large graphs by vertex pruning. IEEE Transactions on Parallel &
Distributed Systems, (1):1–1, 2017.

[28] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dynamic minimum spanning

forest with subpolynomial worst-case update time. In 2017 IEEE 58th Annual
Symp. on Foundations of Computer Science (FOCS), pages 950–961, Oct 2017.

[29] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic

maximal matching. ACM Transactions on Algorithms (TALG), 12(1):7, 2016.
[30] S. Solomon. Fully dynamic maximal matching in constant update time. In IEEE

57th Annual Symp. on Foundations of Computer Science, pages 325–334, Oct 2016.
[31] G. Yaroslavtsev and A. Vadapalli. Massively parallel algorithms and hardness for

single-linkage clustering under ℓp distances. In Proc. of the 35th International
Conference on Machine Learning, volume 80, pages 5600–5609, 10–15 Jul 2018.

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

58

	Abstract
	1 Introduction
	2 The model
	3 Fully-dynamic DMPC algorithm for maximal matching
	4 Fully-dynamic 3/2-approximate maximum matching
	5 Fully-dynamic connected components and approximate MST
	5.1 Extending to (1+)-approximate MST

	References

