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ABSTRACT

We study online adversarial imitation learning (AIL), where an agent learns from
offline expert demonstrations and interacts with the environment online without
access to rewards. Despite strong empirical results, the benefits of online inter-
action and the impact of stochasticity remain poorly understood. We address
these gaps by introducing a model-based AIL algorithm (MB-AIL) and estab-
lish its horizon-free, second-order sample-complexity guarantees under general
function approximations for both expert data and reward-free interactions. These
second-order bounds provide an instance-dependent result that can scale with the
variance of returns under the relevant policies and therefore tighten as the sys-
tem approaches determinism. Together with second-order, information-theoretic
lower bounds on a newly constructed hard-instance family, we show that MB-AIL
attains minimax-optimal sample complexity for online interaction (up to logarith-
mic factors) with limited expert demonstrations and matches the lower bound for
expert demonstrations in terms of the dependence on horizon H, precision e and
the policy variance 0. Experiments further validate our theoretical findings and
demonstrate that a practical implementation of MB—ATIL matches or surpasses the
sample efficiency of existing methods.

1 INTRODUCTION

Imitation learning (IL) focuses on learning a policy that mimics expert behavior for sequential
decision-making using demonstrations. Unlike reinforcement learning (RL), IL learns from expert
trajectories without the reward signals. This advantage has drawn substantial attention to IL, with
demonstrated successes across diverse real-world applications, including robot learning (Chi et al.,
2024 Shi et al.,|2023)) and autonomous driving (Couto & Antonelol 2021} |Cheng et al.,2024) where
the reward signal is hard to design or implicit to learn.

Among the many variants of imitation learning, methods largely fall into two families: behavioral
cloning (BC) and adversarial imitation learning (AIL). In particular, BC applies supervised learn-
ing to fit the expert policy directly from demonstrations (Florence et al., [2022; |Chi et al.| [2024),
while AIL employs an adversarial framework to align the state-action distributions of expert and
learner policies (Ho & Ermon, 2016; Garg et al., [2021)). Importantly, AIL can also leverage online,
reward-free interactions during training. This online interaction will allow the agent to collect the
environment dynamics information in order to better align with the behavioral policy. To explain
empirical findings that AIL often outperforms BC in low expert demonstration regimes (Ho & Er-
mon), 2016} |Garg et al., 2021)), Xu et al.| (2022) analyzed this phenomenon under a specific MDP
structure, relating it to the expert sample complexity results of [Rajaraman et al.| (2020). Naturally,
we have the following question:

What is the tight characterization of the benefits of online interaction in imitation learning?

In order to obtain a tight characterization, two aspects need to be addressed. First, a line of research
has extended the model-based framework in RL (Sun et al.,[2019a; Wang et al., [2024) to AIL, both
theoretically (Xu et al.,|2023) and empirically (Baram et al.,[2016;|Kolev et al.,|2024;Yin et al.| 2022
Li et al.l [2025)), partially demonstrating that model-based approaches can yield superior sample
efficiency. However, existing theoretical analyses for model-based IL have not yet clarified why such
approaches are beneficial to AIL under the general setting. Second, it has been observed that the
stochasticity of the experts plays an important role in achieving tight sample complexity. Existing
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works analyze BC and AIL under deterministic versus stochastic experts and have established a
gap: for deterministic experts, Rajaraman et al.|(2020); Foster et al.| (2024) obtain an (’)(6_1) expert

sample complexity, whereas for stochastic experts, existing results typically yield 6(6_2) (Foster
et al., 2024} Xu et al., [2024). Nevertheless, a complete understanding of how stochasticity affects
the sample complexity of AIL remains open.

In this paper, we answer this question affirmingly by presenting a model-based AIL algorithm
(MB-AIL) with a corresponding horizon-free, second-order analysis in general function approxi-
mation to understand the benefits of online interaction and the impact of stochasticity to the sample
complexity to both expert demonstration and online interaction. A second-order bound scales with
the variance of the total return and can be small as the system approaches determinism, providing a
powerful tool for us to demonstrate the effect of stochasticity. Combining with a lower bound on the
minimax sample complexity for both expert and online interaction, we understand the benefit and
barrier of the online interaction statically. In particular, our contributions can be listed as follows:

* We present a model-based adversarial imitation learning algorithm (MB-AIL) inspired by the fact
that the policy class II can be split into the reward class R and the model class P. MB-AIL
decomposes this reward learning and model learning procedure by estimating the reward adver-
sarially using expert demonstration using a no-regret algorithm and learn the model using a simple
MLE estimator for the model and an optimistic exploration stragety for online interaction.

* We present a second-order, horizon-free bound for MB-AIL under general function approximation
on sample complexity for both of the expert demonstration and online interactions. This result re-
veals the benefit of the online interaction and the impact of the variance to the sample complexity.
At the core of our analysis is to decompose the regret into the error of reward and the error of
the model estimation. Then two fine-grained variance-depend analysis is conducted in both of the
part for a horizon-free second-order regret analysis in model-based RL.

* We present a information-theoretic lower bound for both of the expert demonstration and online
interaction on a newly designed hard instance for imitation learning. The lower bound reveals
that the expert demonstration can help with estimating the reward while the online interaction
is tied with learning the transition kernel. This lower bound also suggests that the MB-AIL is
minimax-optimal in terms of the online interaction up to log factors when given limited expert
demonstrations. While MB-AIL leaves only a log |R| gap in terms of the expert demonstrations.

Besides the theoretical advancements in understanding the online interaction in imitation learning,
we also present a practical implementation of the proposed MB—ATIL algorithm to validate our theo-
retical findings. MB-ATIL is also reported with better sample complexity in a various of environment.

Notation. In this paper, we use plain letters such as x to denote scalars, lowercase bold letters such as
x to denote vectors, and uppercase bold letters such as X to denote matrices. Functions are denoted
by bold symbols such as f. Sets and classes are denoted by the calligraphic font such as . For a
vector X, ||x||2 denotes its norm ¢5. For a positive integer N, we use [N] to denote {1,2,..., N}.
We use standard asymptotic notations, including O(-), Q(+), O(-), and O(-), 2(+), ©(-) which will
hide logarithmic factors. For two distribution p and ¢ ,we define the Hellinger distance as H?(p, ¢) =

2
J (\/ dp/dw — \/dq/ dw) dw. We denote the d-dimensional binary set by B¢ = {£1}? that is,

the set of all d-dimensional vectors whose entries are either +1 or —1.

2 RELATED WORKS

Below we provide a comprehensive review of the related work on theoretical understanding of imi-
tation learning. We defer a more detailed discussion on the empirical implementation on imitation
learning, theoretical background of reinforcement learning into Appendix [A]

Theoretical Understanding in Imitation Learning. Imitation learning can be interpreted as a
variant of RL in which the agent learns from expert demonstrations instead of reward signals.
Early works (Abbeel & Ng, 2004} [Syed & Schapirel [2007; [Sun et al., [2019bj Rajaraman et al.,
2020; |(Chen et al., [2020) assumes either known transition dynamics or access to an exploratory
data distribution. More recent studies consider the unknown transitions and provide theoretical
guarantees on the sample complexity of expert data under various structural assumptions. For
example, Xu et al.| (2023)) study the tabular MDP setting with a deterministic expert policy, obtaining
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Table 1: Summary of Existing Results. We summarize existing upper and lower bound results on imitation
learning and compare them with our results. Stoch. Expt? indicates that if the presented analysis can deal
with the stochastic expert or is for deterministic expert only. Demonstration indicates the number of expert
demonstration trajectories required for achieving e-optimal policy. Interaction indicates the rounds of online
interaction which is not required for the algorithms marked with ‘Offline BC’. Algorithms that may require
an online interaction without specifying a bound is left with ‘~’. The sample complexity is evaluated under
the bounded cumulative reward Zthl rr, < 1 and the results with bounded reward assumption r;, < 1 are
translated by letting € <— H e in the original results and marked with (*). Dimension d g and model class log 11|,
log|R|, log |Q|, log |P| in general function approximations inherits their original definitions in the paper, and

it usually corresponds to the dimension of linear function when reduced to linear function approximations.
2

Variance o~ corresponds to the variance of the collected return according to the detailed definition in the paper
and is always bounded by H?. Our results are highlights in boldface and in cyan background.
Setting \ Algorithm \ Stoch. Expt? Demonstration Interaction
Rajaraman et al.|(2020) X O(H|S|e~1)* Offline BC
TV-AIL (Xu et al.|[2022}[1] v O(|8e2)* -
Tabular MDPs MB-TAIL (Xu et al.|[2023) X O(HY?|S|e 1) O(H|SP|Ale2)*
Lower Bound (Rajaraman et al.|[2020) v Q(H|S|e~1)* Offline BC
Lower Bound (Xu et al.|[2022}E] v Q(|Sle=2)* -
Linear MDPs BRIG (Viano et al.|2024) v O(de2)* O(H2d3¢2)*
Linear Mix. MDPs OGAIL (Liu et al.| 2021} v O(Hd?e2)* O(H?d3e2)*
Foster et al.|(2024) v O(a2? log [TT|e~2) Offline BC
General Foster et al.|(2024) X O(log [TTe~1) Offline BC
OPT-AIL (Xu et al.|[2024) v O(log [Rle72)*  O(H2dplog(|R||Q|)e~2)*
Function MB-AIL (Ours) v O(a2log(|R|)e2) O(o2dg log(|P|)e2)
Lower Bound (Foster et al.|[2024) X Qe Offline BC
Approximation Lower Bound (Foster et al.|[2024) v Q(o262) Offline BC
Lower Bound (Ours) v Q(o%e2) Q(o2(log |P|)2e2F]

an expert sample complexity of O(H?3/2|S|/e) and interaction complexity of O(H?3|S|2|A|/e).
Viano et al.| (2024) obtain O(H2d/e?) expert sample complexity with the same O(H*d3/¢?)
interaction complexity for linear MDPs. [Liu et al.| (2021) establish O (H3d?/€?) expert sample
complexity and (5(H 4d3 /€?) interaction complexity for linear mixture MDPs. For general function
approximation, Xu et al.| (2024) provide bounds of O(H?2log(N(R))/e?) on expert sampling
complexity and O((H*dgec log(N (R)N(Q)) + H?)/€%) on interaction complexity.

Information-Theoretic Lower Bounds for Imitation Learning. Several information-theoretic
minimax lower bounds have been established for the number of expert policies. In the tabular MDP

with a deterministic expert, Rajaraman et al.|(2020) prove a lower bound of (|| H2/¢). [Foster et al.

(2024) further derive lower bounds of Q(H /¢) for deterministic experts and 2(e~2) for stochastic
experts. Similar lower bounds has been studied in Xu et al.[(2022) with a minimax-optimal algo-
rithm under a special class of MDPs. However, none of these information-theoretic lower bound
targets for the sample complexity of online interaction. We record these existing results in Table[T]

Variance-aware Second-order Analysis in Reinforcement Learning. Variance-dependent (or
second-order) bounds are instance-dependent guarantees that scale with the variance of the re-
turn. They have been studied in various settings, including tabular MDPs (Zanette & Brunskill,
2019; Zhou et al.| 2023} Zhang et al., 2024c|, Talebi & Maillard, 2018)), linear mixture MDPs (Zhao
et al.,[2023)), low-rank MDPs (Wang et al.,[2023)), and general function approximation (Wang et al.,
2024). In imitation learning, Foster et al.| (2024)) also established variance-dependent upper and
lower bounds for stochastic experts.

3 PRELIMINARIES

Time-homogeneous Episodic MDPs. We consider the time-homogeneous episodic Markov deci-
sion processes (MDPs) denoted by M = (S, A, H, P*,r) by convention. Here, S and A are state
and action spaces, H is the length of each episode, P* : S x A — A(S) is the transition probability
from state s to s’ with actiona. R 3 r : § x A — [0,1] is the reward function. For any policy

'TV-AIL considers a special class of tabular MDP referred to RBAS-MDP.
2The lower bound in Xu et al.| (2022) is only for the TV-AIL algorithm thus not minimax lower bound.
3We report this lower bound under a constant number of expert demonstrations.
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7 = {m, }}_, and reward r, the state-action value function Q7. p..,.(s,a) on stage h is defined as:

QZ;P*;r(Sva) =K Zf{:h r(s¢,ae) |8 = S, an = @, Se41 ~ P*(sg, an), appr ~ m(Se41) |
and the value function is V;"p. ,.(s) = QF. p..,.(s, n(s)). The optimal values are defined by:

Viipep(8) = maxz Vil p. (8); Q. pe.. (85 @) = maxy QF p...(s,a).

For any value function V' : § — R and stage h € [H], we define the first-order Bellman operator
associated with policy 7, reward function r, and transition model P* as

(77L‘/}ZT+1;P*;7‘)(S) = 7‘(3, CL) + ]ES'NP*('|S7G) I:Vhw—&-l;P*;'r‘(S/):I = 7’(8, (1) + [P*‘/}ZT+1;P*;7‘](S7 a)?

The conditional variance of the value function under state-action pair (s, a) is defined as

[Vp-V](s,a) = [P*V?](s,a) — ([P*V](s,a))".

The variance of the cumulative reward collected by policy 7 under reward function r is defined by:

var? = | (i rlonan)) | = (Viper (o)

the expectation is taken with respect to the trajectory distribution induced by the policy 7 and transi-
tion kernel P*,i.e., ap, ~ 7 (- | sp) and sp41 ~ P*(- | sp, an). In this paper, we assume the initial
state is fixed at s;. This can be generalized to a distribution of the initial state w.l.o.g..

Online Adversarial Imitation Learning. In this paper we consider the online adversarial imitation
learning with offline demonstration. To be specific, the agent is given a offline dataset Dp =

{sfl, aﬁl}zee[fg] containing N trajectories rolled out by the expert policy wF. The agent is allowed

to online interact with the environment. Throughout the offline dataset and online interactions, the
agent is performing in a reward-free paradigm such that it has no access to the collected reward in
either offline demonstrations and online explorations.

The goal of the adversarial imitation learning (AIL) is to output a policy 7 such that the policy 7 and
7 have similar behavior over the reward functions, usually defined by the typical AIL objective by
. - T
In#nlrnea%([‘/l;P*;r(S) - Vl;P*;r(S)]v (31)
where the expectation is taken over the initial state distribution. In the online setting, we further
define the regret of this AIL objective over K rounds by

Regret(K) = max 1, [ViTpu, (5) = Viipe, (s)| (3.2)

Model-based reinforcement learning with general function approximation. We consider the
model-based RL with general function approximation. In particular, we assume the function class
of the transition kernel as P € P and define the £, Eluder dimension of a function class

Definition 3.1 (¢, Eluder dimension, Russo & Roy|2013). DEP(Q , X, €) is the Eluder dimension for
X with function class ®, when the longest epsilon-independent sequence x1,--- ,xr C X enjoys
the length L less than DE, (G, X, €). In other words, there exists function g € G such that for all
t <DE,(G, X,€) we have Zf;ll lg(x)|P < €P and |g(z)|P > €P. Through out this paper, we work
with the ¢; Eluder dimension defined by dg = DE; (G, S x A, €) defined over the Hellinger distance
class G : {(s,a) — H2(P*(s,a) || P(s,a)): P € P} and e = 1/(KH).

For the analysis under general function approximation, we leverage the following definitions on
covering and bracketing numbers

Definition 3.2 (¢-covering number). For a function class 7 C (X — R), the e-covering number
of F, denoted N, (F), is the smallest integer n € N such that there exists a subset 7/ C F of size
|F’| = n such that for all f € F, there exists f' € F’ with sup,c» |f(z) — f'(z)| < e

Definition 3.3 (Bracketing number, [van de Geer|[2000). Let G be a function class X — R. Given
two functions [, u such that [(x) < wu(x) for all x € X, the bracket [I, u] is defined as the set of
functions g € G satisfying I(z) < g(x) < u(x) for all z € X. We call [/,u] an e-bracket if
lu —1|| < e. The e-bracketing number of G with respect to a norm || - ||, denoted by Ny (¢, G, || - ||).
is the minimum number of e-brackets needed to cover G.
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Algorithm 1 Model-based Adversarial Imitation Learning (MB-AIL)

Input: Number of iterations K, confidence radius j3, expert dataset Dy, |Dg| =
Input: Policy class II, reward class R, model class P
1: Let 70(:|s) = Umf(A) Y(s,a) =0forall (s,a) € S x A, Dy =0
2. fork=1,2,..., K do
3:  Collect 7,1 = {sk ! ah 1}h using policy 75 _1, update Dk =Dy_ 1 UA{rk-1}
4. Compose the value difference loss £j,_1(r) = 32, 7(sk 1, af 1) — ~ (st ar)
5

Obtain reward function r* by running a no-regret algorlthm t0 solve the online optimization

k—

problem with observed loss {£;(r)}: 0 up to an optimization error tolerance €,

opt
6:  Construct a version space P*:

Pk — {P cP: Z(s,a,s’)EDk log P(s'|s,a) > max s, p Z(s,ms’)e'Dk log ]5(5’|s,a) — ﬁ}

7. Set (7%, P*) + argmax
8: end for
Output: 7 = Unif({7*}£ )

€I, PPk Vl P r"( )

We build our analysis based on the bounded total reward assumption.

Assumption 3.4 (Bounded cumulative rewards). For any reward function » € R, the cumulative
reward collected by any possible trajectory {(sp, an)}n is bounded by 0 < >~ r(sp,an) < 1.

Up to rescaling a factor H, Assumption [3.4] generalizes the standard reward scale assumption where
h € [0,1] for all h € [H]. This assumption also ensures that the value function V7 .. .(s) and

action-value function Q7. p..,.(s, a) belong to the interval [0, 1].

We also make the realizability assumption for both the reward and the transition kernel P.

Assumption 3.5. The ground-truth reward function, transition dynamics, and optimal policy are
realizable, ie.,r* € R, P* € P,n* € Il

These assumptions are common in the literature on model-based reinforcement learning and imita-
tion learning, as they ensure that the learning problem is well-specified.

4 MODEL-BASED ADVERSARIAL IMITATION LEARNING

In this section, we introduce our proposed algorithm Model Based Adversarial Imitation Learning
(MB-AIL). The full procedure is presented in Algorithm[I] The algorithm takes as input an expert
dataset Dg consisting of multiple expert trajectories; three function classes II, R, and P for policy,
reward, and transition model function approximations, respectively; and various hyperparameters,
including the confidence radius for the version space, and the number of iterations. The algorithm
begins by initializing the policy with a uniform distribution and setting the reward function to zero.
In each iteration, it first collects a new trajectory 7;—1 using the current policy m;_1 described in
Line Based on our hypothesis that the learning the expert policy 7 within the policy class II can
be decomposed into two procedure in learning the reward r € R and learning the model P € P
separately, which is described as follows.

Procedure A. Adversarial Reward Learning for » € R. According to the adversarial online
imitation learmng objective in Eq. [3.1] the reward functlon must be optimized at each iteration k
to maximize the value gap between the expert policy 7 and the behavioral pohcles ' generated
in previous iterations % < k. Therefore, the reward optimization aims to maximize the adversarial
objective max, fo;* . Vfr;* , by minimizing the following empirical loss L1 (r) with respect
to the reward functionr € R

Ek_l(r):Zr(s]fL Laph - %Z (sh,ap) = VlP* (s )_‘/}ITP*,T‘(Sl)7 4.1)
n,h

h

where we denote V(- as the empirical estimation of V/(-). Since the series of loss function {£;}F =}
is collected by an adversarial policy {7r 0 ! that is trying to maximize V1 Pror (31), an no regret



Under review as a conference paper at ICLR 2026

online optimization must be called in Line[5to output the reward rk Over the K rounds, the optimal
solution for this reward learning is denoted by max,cr >, ( I pep(51) = Vfrf,* T(51)) and thus
the optimization error is denoted by

T ok ol ok ol
= gemax > (W, (1) = Ve 1 (50)) = (Vpe (1) = Ve (1)) . (42)
k

We note that Follow-the-Regularized-Leader (Shalev-Shwartz & Singer, 2007) can be used as an
practical example of the no-regret online optimization algorithm and can obtain the optimization
eITor €5y = O(V'K) optimization error in this adversarial reward learning procedure. Such an
optimization-based reward learning method is also leveraged in Xu et al.|(2024) where they assume
the optimization is based on the individual reward function in each step Rp. Ours by contrast
assumes the reward function is time-homogeneous and therefore the optimization is based on all
reward function r € R. Despite of this difference, we note that the major difference of our approach
is that MB-AIL is a model-based approach and is provably more efficient to capture the online
interactions with carefully designed learning and analysis, as we will describe in detail below.

Procedure B. Model and Policy Learning for P € P. In parallel with learning the reward, in
Line[6] we rely on an simple maximum likelihood estimator to learn the transition kernel information
P within a version space controlled by parameter 3 described by

P = [P P Y 0anepn 1o P(515,0) > max s p X 0w 108 Pls'ls,0) — B},

where the candidate transition kernel is of at most 8 smaller than the ‘optimal’ version P in terms
of their log likelihood. In practice, this procedure described in Line [6] can be mimic by training a
series of world models by maximizing their likelihood.

Finally, with the obtained reward r;, € R and the model P* C P, the updated policy is obtainedAby
the policy that obtains the maximum cumulative reward with the optimistic estimation over P € P*,
as described in Line[7)in Algorithm[I] We note that similar optimistic-based MLE approach has been
widely applied in the theoretical literature on model-based RL |Liu et al.| (2023); |Zhan et al.| (2022));
Wang et al.|(2024) but with a fixed reward function r. However, in MB-AIL, the ground truth reward
is unknown so that the policy optimization should be based on the current reward 7, estimated
in Line [5] We also note that this procedure can be efficiently implemented by ensembling the
estimation of several models in practice Ye et al.|(2023));[Zhang et al.| (2024a)); Janner et al.|(2019).

5 THEORETICAL ANALYSIS

We present a detailed theoretical analysis of Algorithm[I] In particular, we establish a horizon-free,
second order bound under general function approximation for both expert demonstrations and the
online interactions. We further present a information-theoretic minimax lower bound to statistically
understand the boundary of the benefit for online interactions and the expert dataset, Based on the
intuition that the policy class IT can be decomposed into the reward R and the model P.

5.1 UPPER BOUNDS FOR MODEL-BASED ADVERSARIAL IMITATION LEARNING (MB-ATIL)

In this subsection, we establish an upper bound on the average regret of our proposed algorithm. We
first start with the regret analysis for the online adversarial imitation learning.

Theorem 5.1. For any § € (0,1), let 3 = 7log (KNp/J§). Under Assumptions [3.4] and [3.5]
if FTRL (Shalev-Shwartz & Singer, 2007) is employed as the no-regret algorithm in Line [5] in
Algorithm|I] the averaged adversarial imitation learning regret defined in (3.2) for MB-AIL satisfies:

K
Regret(K) 1 ¥ ”k
xR V() = Ve (o)
K K & %
. Nz dglog 22 +log 22
<0 E ZVadeElongF* Z VaRy log =5~ + K

k=1 k=1

H

N log 27 1
( VaRg 10g (;R + gN5 + \/}_—{) 5
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where 6() hides the polynominal logarithmic factors on K, H, N. dg is the eluder dimen-
sion defined based on Hellinger distance as described in Definition We denote VaR; =

k . . . .
max,cr VaR" on the maximum variance of the cumulative return for policy 7%, VaRp =

max,eR VaRka is the short hand for the maximum variance collected by the expert policy 7%.
Np is the bracketing number for the model class defined in Definition [3.3] while Az is the covering
number for the reward class in Definition[3.2]

The regret result in Theorem [5.1] can be immediate translated to the sample complexity bound for a
mixed policy as stated in the following corollary.

Corollary 5.2. Let 02 := max e, rer Var,, where II is the policy class induced by the planning
oracle (7, P) = argmax,, p V{"p .(s1) used in Line (7| of Algorithm (I} For the mixed policy 7 =

Unif ({7*}k = 1%) output by Algorithm [1| for any & € [0,1], with probability at least 1 — 4,
Algorithm |1 returns an e—optimal imitator, i.e., max,cr [Vfgﬁr(sl) - Vf:rp*ﬂ,(sl)] < € with
expert and interaction sample complexity as:

~ 1+dEU2log%+U2log% dElog%—Hog% ~ VaRglog% log%
K:(’)( + , N=0O 5 + .

€2 € € €

Remark 5.3 (Expert Sample Complexity). Corollary veals an O (VaR E log(NR)e_Q) sample
complexity for expert demonstrations when VaR g > 0. When the reward is a dz-linear as assumed
in Viano et al. (2024), this matches the |Viano et al.| (2024); [Xu et al.| (2024) as O(d 36’2) with the

second-order information VaRg < 1. We also improve the Hd factor compared with |Liu et al.
(2021)) results for model-based AIL on linear mixture MDPs and makes this horizon-free.

Remark 5.4 (Online Interaction Complexity). When o > 0, Corollary suggests that MB-AIL
enjoys an O (02 (dplog Np + log(NR)) €~2) interaction complexity. When reducing to linear
mixture MDPs with Ap = O(d) and Ng = O(d), this O(d?>2¢2) sample complexity im-
proves Liu et al|(2021) by an H?d factor and obtains the horizon-free result with second order
information. We note that the additional 1/¢? sample complexity comes from the adaption of the
no-regret algorithm (FTRL) with e, = O(1/vK) and is dominated when Ap or N is large.

Besides directly compare our work with existing results, the second-order analysis reveals some
interesting results regarding the deterministic expert or deterministic model.

Remark 5.5 (Deterministic Model and Policy). When both the model class P and the reward
class R only contain deterministic transition kernel and deterministic policies, it’s easy to ver-
ify that 0> = 0 and VaRg = 0. In such a case, the online interaction sample complexity

is significantly reduced to O(e=2 + (dglogNp + Ng)e™!). If we relax the AIL gap to be

E = . .. . .
max,eRr {Vf «r(51) =V p. .(51)| < €+ € to accommodate the optimization error €g,, an

%-order sample complexity is built, which suggests that a deterministic model will benefit online
log Nz )
€

interaction. Similarly, an O( sample complexity is obtained.

opt
term) and an €2 rate in stochastic systems, consistent with [Foster et al.| (2024). Crucially, however,
the meaning of “stochasticity” and the mechanism behind the ¢~ dependence differ fundamentally
between behavioral cloning and adversarial imitation learning as we would like to elaborate more.

Remark indicates an ¢! sample complexity in deterministic systems (disregarding the ¢

Remark 5.6 (Behavioral Cloning (BC) v.s. Adversarial Imitation Learning (AIL)). One fundamen-
tal difference between (offline) behavioral cloning (BC) and (online) adversarial imitation learning
(AIL) is the target of estimation. BC fits the expert policy 7% € II directly from demonstrations,
whereas MB—AIL searches over rewards € R and learns the transition kernel P € P before plan-
ning. Consequently, when additional structure constrains P or R, AIL’s effective hypothesis space
can be much smaller than II, making AIL statistically easier than BC. This distinction is reflected
in the rates: for stochastic policies, our result depends on a sample complexity of O(O_Qloge#)’
whereas |Foster et al.[ (2024) obtain (’)(021"%#). In particular, when N3 is small, our analysis
indicates that AIL needs fewer expert demonstrations with the help of online interaction.
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Remark 5.7 (Stochasticity in BC vs. Table 2: Expert sample complexity under different kinds of
AIL). As summarized in Table?] BC stochasticity between BC (Foster et al.}[2024) and MB-AIL (ours).

. . E
a.n(.i AIL reagt dlfferently to stochas- Model P Policy m Stochastic. ‘ Deterministic. ‘
ticity—especially when the expert ode

policy 7% is deterministic while the ‘ Stochastic. ‘ BC: 022 10g\H|6:z BC:  log |H|6:;
dynamics P are stochastic (high- SéL: a 21;’%/‘\/1_713'672 géh o lfg/‘\fljflil
: : - . . o?log|I]e : og e
lighted in red in Table 2). In this ‘ ‘ ALL: 02 log Nige—? | AIL:  log Age—
regime, |[Foster et al.[(2024) obtain a

sample complexity of (5(10g \H|e*1) for BC with deterministic experts, whereas MB-AIL yields

Deterministic.

O(log NRefz). We interpret this as a fundamental gap between BC and AIL: BC only needs to
match actions and is largely insensitive to transition stochasticity, whereas AIL must match the ex-
pert’s occupancy measure, whose estimation necessarily reflects the stochasticity of P. Additionally,
Rajaraman et al.[(2020) report an O(1/¢) expert-sample complexity in tabular MDPs as a tabular-
specific artifact noted by [Foster et al.| (2024). Outside this specific tabular result, we found that the
€1 (deterministic) vs. e 2 (stochastic) rates remain consistent across imitation-learning analyses.

Taken together, Remark [5.6] and Remark [5.7] described a clear theoretical separation between BC
and AIL in terms of expert sample complexity: AIL is preferable when the reward class R is highly
structured (Remark ; in the extreme case with [R| = 1, AIL reduces to standard RL and no
expert data are needed. Conversely, BC is preferable when the expert policy class II is simple and
deterministic while the transition dynamics are highly stochastic and complex (Remark [5.7)).

5.2 MINIMAX LOWER BOUNDS FOR IMITATION LEARNING

In this subsection we present minimax lower bound on the sample complexity of the offline demon-
strations N = |Dg| and the online interactions K. We start from constructing a hard instance as
described below.

Hard instance. As illustrated in Figure [I] we consider an
(H + 1)-step time-homogeneous MDP. For a reward dimen-
sion dg, kernel dimension dp, and horizon H, The state has
two components S = S x {0, 1}, where the first component

S = B%r U {sy} and the second component is 0 if and only if
the state is the initial state, we write the state as for these
two components. The action space A = B x {—1, 41} con- Figure 1: Structure of the Hard
centration concatenation of two action where a,, € B%" is the [pstance. The reward can only be
first part and ag € {31} as the second part. The agent always ,pheerved in states. The ab-
starts from a state where s ~ Unif.(B%). For the first step sorbing fail state is shown in gray.
h = 1, the agent will either proceed to the same but absorbing

state or fall into the special state . For the rest of the steps h € (1, H], the agent will

stay in their state . The reward is only accessed at these regular absorbing state . The MDP

is parameterized with a parameter § € M?% C B9® for reward and p € BY" for model, where
M is a special almost orthogonal class of binary vectors defined in Appendix For a detailed
formulation of the transition dynamics P(s'[s, a; ;Lithe reward function r(s, a; 0), and the policy

-~

class 7(als; 1, 8), we refer the reader to Appendix

The first important lemma verifies our hypothesis that the necessary condition for learning a near-
optimal imitator policy 7 is to precisely estimate both of the rewards 8 and the model pt.

Lemma 5.8. Consider the model parameter (u*, 8*) and the corresponding expert policy 7 de-

-~

scribed by 7(a | s; u*, 0*), for any 7 € II with parameter (£, 0), the AIL risk is bounded by:
max EVITE. . (8) = Vilp.,(8)] > P28 |0 — Bl + jerr 107 # 6],
where the expectation is taken over the uniform distribution over the state space.

According to Lemma|[5.8] failing to recover the true parameters p* and 0* in AIL incurs a quantifi-
able performance loss. A single dimensional mismatch in g contributes Q(epe,dp) to the subopti-
mality, whereas a mismatch in 6 contributes Q(e,).

Based on this observation, we are ready to present the lower bound for sample complexity.
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Theorem 5.9. Given the hard instance described in Figure and for all 0 < e <
min{1/(4dp),1/(4dr)}, dr > 48, and variance 02 := maxremrer Var, < 1, any (online or
offline) imitation learning algorithm that guarantees to generate an e-suboptimal policy with proba-
bility at least % requires the sample complexity for expert demonstration N and online interaction
K at least:

N = Q (max {o*/€*,0* log? IR[}),
K = Q (max {02 log® |P| exp(—N) /€%, 0*e* log® |R|log™ | P| exp(—N/ log® |P|)})
which can be further summarized by N = Q(02 - ¢~ 2) and K = Q(0? - log? |P| exp(—N)e2).

Proof Sketch of Theorem The detailed proof of Theorem[5.9]is deferred into Appendix [C]which
relates the variance o2 with parameter 7 in the hard instance and the Fano’s inequality. We would
like to highlight that the lower bound is built on two cases from the hard instances where (ep, €,) =
(e,1/(4dR)) when the policy is hard-to-learn and (ep, €;) = (1/(4dp), €) when the model is hard-
to-learn. Then for all algorithm that seeks a uniform performance on all hard instances, the final
lower bound is obtained by taking the maximum of these two cases. O

Remark 5.10. For stochastic policies, [Foster et al.| (2024) suggests an Q(c2e~2) expert demon-
stration. In contrast, Theorem [5.9] presents a fine-grained analysis on the sample complexity for
both expert demonstration and online interaction: When online interaction is allowed, our re-
sults matches [Foster et al.| (2024) with an Q(o2e~2) expert sample complicity with an additional
Q(log? |P|o? exp(—N)e~?2) lower bound for online interaction. This result implies that in the prac-
tical AIL case where the expert demonstration is limited and is much smaller than the model class
with N < log2 |P|, the online interaction conducted in MB-AIL can effectively assist the policy
learning as K = Q(log? |P|o2e~2) with an minimax optimal sample complexity.

Remark 5.11. Together with Theorem Theorem shows that MB-ATIL is minimax-optimal
w.r.t. online interaction K with only a logarithmic gap when given a small number of expert demon-
strations N, and is within a log | R| factor in its dependence on N. We hypothesize that removing this
log | R| gap may be intrinsically difficult as similar gaps (O(log |TI|/€2) vs. Q(e~2) persist in|Foster
et al.| (2024). Specifically, Xu et al. (2022) establish an (|S|e~2) lower bound for their TV-AIL
algorithm in tabular MDPs, yet a minimax lower bound that explicitly exhibits a log |II| or log |R|
dependence remains open even in the tabular setting.

6 EXPERIMENTS

We implement MB-AIL with deep neural networks and evaluate its performance on three stan-
dard MuJoCo benchmarks (Brockman et al.,2016)), covering three environments (Hopper, Walker2d
and Humanoid). We compare its performance against existing offline and online imitation learning
baselines in terms of episode rewards and sample efficiency, showing that our practical algorithm
matches or even surpasses existing approaches while highlighting the superior sample efficiency of
our model-based approach. Details of the practical algorithm implementation are provided in Ap-
pendix D] and the results of the MuJoCo experiments are reported in Appendix In addition,
we conduct empirical analyses in GridWorld environments to examine the effects of different re-
ward classes R, environment stochasticity, and the benefits of online exploration.The corresponding
results are presented in Appendix showing that a smaller reward class can lead to improved
performance for online imitation learning algorithm, thereby supporting our theoretical analysis in
Theorem [5.11

7 CONCLUSION

We introduced MB-ATIL, a model-based adversarial imitation learning algorithm, and established
sharp statistical guarantees. We proved horizon-free, second-order upper bounds under general func-
tion approximation and complementary information-theoretic lower bounds, showing that MB-ATL
is minimax-optimal in its use of online interaction when the expert demo is limited. We also show
that MB-ATL is optimal within a log|R/| factor in its dependence on expert demonstrations. Ex-
periments have been conducted to validate our theoretical claims and demonstrate that the MB-ATIL
matches or exceeds the sample efficiency of strong baselines across diverse environments. Our anal-
ysis clarifies how online interaction and system stochasticity impact the sample complexity of AIL
and delineates regimes where AIL can outperform behavioral cloning.
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A ADDITIONAL RELATED WORKS

RL with General Function Approximation A large body of theoretical work has investigated re-
inforcement learning and imitation learning under general function approximation. To characterize
the theoretical limits and better understand practical RL/IL algorithms, researchers have proposed
a variety of statistical complexity measures, including Bellman Rank (Jiang et al.| [2017), Witness
Rank (Sun et al,[2019a)), Eluder Dimension (Russo & Royl 2013)), Bellman Eluder Dimension (Jin
et al., 2021}, Decision Estimation Coefficient (DEC) (Foster et al.,[2021), Admissible Bellman Char-
acterization (Chen et al., [2022), Generalized Eluder dimension (Agarwal et al., 2023), and Gener-
alized Eluder Coefficient (GEC) (Zhong et al.,|2022), among others. For imitation learning, related
works have considered general function approximation in the context of behavior cloning (Foster,
et al.,[2024)) and optimization-based adversarial imitation learning (Xu et al., 2024)).

Model-based Reinforcement Learning Many works have conducted theoretical analyses of model-
based reinforcement learning. Prior studies have examined model-based frameworks with rich func-
tion approximation in both online RL (Sun et al.,|2019a}; [Foster et al.| 2021;|Song & Sun, 2021;|Zhan
et al.} 2022; Wang et al.,|2024) and offline RL (Wang et al., 2024} [Uehara & Sun, [2021). In partic-
ular, [Wang et al.| (2024) derived a nearly horizon-free second-order bound for model-based RL in
both online and offline settings, where the upper bound depends only logarithmically on H. In addi-
tion to theoretical analysis, numerous studies have investigated practical algorithms for model-based
RL (Janner et al.,|2019; |Yu et al., 2020; |[Feinberg et al.,[2018};|Zhang et al.,|2024b).

B PROOF OF THE UPPER BOUNDS

B.1 UPPER BOUND WITH FINITE FUNCTION CLASS

We first aim to upper bound the average regret of our proposed algorithm under finite function
classes, i.e., when both P and R are finite. Formally, this upper bound can be stated in the following
theorem:

Theorem B.1. For any § € (0,1), let 3 = 4log (K|P|/5). Under Assumptions [3.4] and [3.3] if
FTRL (Shalev-Shwartz & Singer;, 2007)) is employed as the no-regret algorithm, and R and P are
finite function classes, the average adversarial imitation learning regret defined in[3.1] satisfies:

K
1 v L
(I/K)Regret(K) = ? Iglea:[%( E I:‘/l;P*;T’(S) - Vl;P*;r(S)]
k=1

K
< _ V: LA _ 71 _ AN S Vs
O( 2 aRﬂ,k dE log 5 + dE log 5 =+ \/7 +

5(los(IRI/S) | | 1 5 \/1
+O<N+ E;VaRﬂ,k log(|R|/0) + NVaRTrE log(|R[/4) |,

where 6() hides the polynominal logarithmic factors on K, H, N. dg is the eluder dimen-
sion defined based on Hellinger distance as described in Definition We denote VaR;, =

ke . . . .

max,cr VaR, on the maximum variance of the cumulative return for policy 75 VaRgp =
k

max,cr VaR" is the short hand for the maximum variance collected by the expert policy 7%.

B.2 PROOF OF THEOREM

According to the definition of average regret in Eq. we can decompose it into two compo-
nents—reward learning and policy learning—and analyze them separately:

1 1 B ok
?Regret(K) = max ? Z (Vl;P*;F — Vrl;P*;,F)

1 E
E k k
— E V7 V7 V7 V7
= max ( 1;P*;7 1;P* ;7 ( 1;P*:rk 1;P*;Tk))

T1: reward error
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K
1 E k
+ E § : (‘/17;rP*;rk - VlTP*;rk) :
k=1

T2: policy error

This regret decomposition is standard in AIL analysis. Since the learned reward is not required to
exactly match the ground-truth reward function r*, it is natural to define the reward error as the
difference in value gaps between the expert and behavioral distributions. We provide upper bounds
for the reward and policy errors under finite function classes in the following lemmas:

Lemma B.2 (Reward Error Upper Bound). For any 6 € (0, 1), using FTRL (Shalev-Shwartz &
Singer}, 2007) as the no-regret algorithm, given a finite reward function class R, with probability
1 — 9, the average regret for reward optimization is bounded:

1 K
E k E k
E T ™ ™ T
max ‘/1;13*;’7T - Vl;P*;F - (VI'P*'T’k - Vl:P*"r”“)
rer K P T 2

B, log(|R|/9)
N O(m 5 (o Vo) sty + 25T

K
1 log(|R[/9)
+ I7e kEZIITnez% VaR ., log(|R|/6) + K )

where VaR., denotes the variance of accumulative rewards over a horizon H.

Lemma B.3 (Policy Error Upper Bound). For any § € (0, 1), with a finite model class P, let
B = 4log (K|P|/d). With probability 1—4, the average regret of the policy optimization is bounded:

RS "
> (Vi = Vipen )
k=1

K
1
< — oo
S O<K ;mea% VaR,.., - dp log(K H|P|/5) log(K H)

+ g log(KHIP|/6) log(KH)> ,

where dg = DE1(G,S x A,1/KH) is the Eluder dimension and VaR, ; = max,cr VaR.x ,. is
the maximum variance for 7.

In the proof steps of Lemma[B.2] the reward error T1 is decomposed into an optimization error and
a value estimation error. The optimization error, stemming from the no-regret algorithm in Line 5

of Algorithmm and related to €g, in Eq. is bounded by O(1/v/K) when using FTRL (Shalev-

Shwartz & Singer, 2007). The value estimation error, which represents the difference between the
empirical value Vl’:;*;,, and the true value function Vl’:;*;,,, is bounded using standard Bernstein-
style techniques and union bounds for a finite reward class. For an infinite reward class, as detailed
in Appendix [B.5] we establish the bound by constructing a p-cover using the covering number from
Definition which enables the use of union bounds followed by a Bernstein-style analysis. We
present the analysis for the finite reward class in the proof of Lemma[B.2] and the analysis for the
infinite reward function class in Lemma[B.14]

Regarding the policy error T2, we generally follow the proof steps in|Wang et al.|(2024) but with a
changing * during iterations instead of a fixed r*. Overall, the bound is constructed by first applying
the standard MLE analysis on the estimation of transition model and a careful analysis on training-
to-testing distribution transfer via Eluder dimension adopted in prior work (Wang et al.,2024). After
this analysis, we can obtain a variance-aware upper bound for the policy error with a logarithmic
dependency on the horizon H. We provide the detailed analysis in the proof of Lemma B.3]for the
finite model class, and in Lemma[B.13]for the infinite model class.

Finally, by combining Lemma [B.2] and Lemma [B.3] we complete the proof of Theorem [B.1] which
is the upper bound with finite function classes. For the results under general function approximation
in Theorem 5.1} we provide the detailed analysis in Appendix
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B.3 UPPER BOUND FOR THE REWARD ERROR
B.3.1 TECHNICAL LEMMAS

In this subsection, we present several technical lemmas that are instrumental in deriving the bound
on the reward error.

Lemma B.4 (Bernstein Inequality, Bernstein 1924) Let X1, Xo, .. X be i.i.d. random variables,
with mean 1 = E[X;], empirical mean i = = >_." | X;, and variance 0 = Var(X;). Then, for any
0 € (0, 1), with probability at least 1 — 4, the following inequality holds:

2
=l < 202 log(2/9) N 210g(2/5)'

n 3n

Lemma B.5 (Azuma-Bernstein Inequality, | Azuma||1967). Let (X})}!_, be a martingale difference
sequence with respect to filtration (Fy)}_, i.e., E[X} | Fr—1] = 0 almost surely, and suppose the
increments satisfy

|Xk| < b almost surely for all &,

and the conditional variances satisfy
=E[X? | Fr_1]-
Define the total conditional variance

n
Vi = g ob.
k=1

Then, for any § € (0, 1), with probability at least 1 — 9,
2 b 2
2V, 1 = =1 = .
Vi 0g<5)+3 og((s)

The reward error can be decomposed into two components: the optimization error of the no-regret
algorithm and the estimation error of the value function. We begin by providing a formal description
on optimization error introduced in Eq.

B.3.2 PROOF OF LEMMA

Definition B.6 (Xu et al. (2024)). Given a sequence of policies {7* }szl, suppose a no-regret reward

optimization algorithm sequentially outputs reward functions r*, 72, ... r®. The reward optimiza-
tion error €g, is defined as:
K
E ~_k ~ FE
‘s o— U T
o= e (Vb = Vi = (Ve = Vi)
k=1

This error can be bounded by O(1/v/K) when using the Follow-the-Regularized-Leader (FTRL)
algorithm (Shalev-Shwartz & Singer, [2007) as the no-regret learner. We then define the empirical
value estimates under both the learned and expert policies to facilitate bounding the value estimation
error:

Definition B.7 (Xu et al[(2024)). The empirical value of policy 7% under reward function € R is

defined as:
H

~_k
VIT;FP*;T = Z 7‘(8270,2)7

h=1
where {(s,af)}L | is a trajectory sampled from policy 7.

For the expert policy 7%, given an expert dataset Dg = {71, 7»,...,7n}, the empirical value is
defined as:
~_E
U -—
Vl;P*;T o N Z Z S}L ah ))
TEDE h=1

17
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With Lemma [B.4] [B.3] and Definition we’re now ready to demonstrate the proof for
Lemma[B.2]

Proof of Lemma We first apply the following decomposition to separate the reward error into a
reward optimization component and a value estimation component, as described in Appendix

1 K
E k B k
z : T ™ 0 g
TR K Vl;P*;"r’ - Vl;P*;F B (Vl;P*;?”’C B Vl?P*”k)
k=1

TER
1 K
. F .k ~._E .k
_ § ™ ™ ™ ™
= max — (Vl;P*;? - VVl;P*;?an - (VI;P*;rk - Vl:P*;rk))
TER Kk—l ’

T3: optimization error

K
E ~_EBE 1 ~_E E ~_k k k ~ &
T ™ § T T 0 T T T
+ Iglef’i%( Vl;P*;? - ‘/vl;P*;;:"‘ K Vl;rk';P* - Vl;rk;P* + Vl;P*;F — Vl;P*;F + Vl;P*;'rk - Vl;P*;Tk .
k=1

T4: estimation error

Term T3 corresponds directly to the optimization error of the no-regret algorithm, as defined in

Definition

1
~ E ~ k ~_E =~k
_ E T s T T
T3 = max 1,P*7 Ll'P*;F (Ll;P*;T"' Ll;P*;’r’k)

Having bounded the optimization error, we now turn to bounding the estimation error:

K
1 B ~_F ~ B B
T4 = max — (Vf:p*;;: - ‘/ITP*;?) + (Vl‘ITP*"r‘"' - Vlﬁp*.rk)
rer K 27: Py Py

k

~ _k K K -~
+ (‘/IT;P*;F - VITP*;F) + (‘/YITP*;T’“ - Vl‘I:P*;rk) :
We aim to derive a variance-aware bound by providing an analysis using a Bernstein-style inequal-
ity. Following the definition of variances in Section |3} we first focus on the estimation error in-
. . E L. .. = E . .,
curred when approximating V7" p. ., with its empirical counterpart V{7 p. ,.. By applying Bernstein’s

inequality, we obtain that, for any fixed reward function r, the estimation error is bounded with
probability at least 1 — 4:

~_E E
T T
‘/I;P*;r - Vl;P*;r -

1 ul 1
i Z Z r(sp(7),an(7)) — Ere [Z r(sn, ah)} ‘
T7€DE h=1

h=1

3 \/ 25, e, Vet [SA, rlsn(r),an(r)] 1o8(2/5) _ 2108(2/9)
- N 3N

]2 2log(2/9)
— \/NVaRﬂ-E;T 10g(2/5) + T

Since here we only consider finite reward class R, by stardard union bound:

(B.1)

21og(2[R|/9)
3N
21og(2[R])/9)
3N

2
‘Vlili*;r - ‘/17;[-2*;7" S \/NvaR‘n'E;r 1Og(2|R|/6) +

2
< \/NVaRWE;,ﬂ log(2|R|)/d) +
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Therefore, we can bound the first two terms in the estimation error:

K
1 <F S B S B <E
I;IIE%%( ? §_ (Vl;P*;? - Vl;P*;F) + (Vl;P*;r"' - Vl;P*;rk)
5 4log(2[R]/6)
< _ .
_2\/]\[(?162% VaR &, )10g(2|R|/§)—|— TN (B.2)

We then focus on the value difference with respect to 7% for any r € R using Azuma-Bernstein’s
inequality, with probability at least 1 — §:

1 X
_}Z

k=1

1 K
~ K k
2 T T
? ’VI;P*;T - Vl;P*;r
k=1

H H
E r sh,ah |: E r sh,ah ]
h=1

h=1

H
Zr (sn,an)]log(2/6) + M
= 3K

IN

K
N
K
= z_: VaR ., log(2/0) + 210572/6).

Following the analysis of the terms involving 7%, we apply the union bound:

2log(2[R[/d)

1&g
K;\VJ:P* Vi e

K
<\ 2 D0 VaR o Tos(2IRI/6) +
k:

In this case, the terms associated with 7% are bounded by Bernstein-style variance-aware upper
bounds, with probability at least 1 — §:

K
= (Ve Vi) + (Wi = Wi
max — pr.E T . PreF Propk T  Pxepk
Fer K L,P*;7 1;,P*;7 1;P*;r 1L,P*;r

k=1

2 41og(2|R]/9)
<92 |Z E —— 7 .
<2 K2 Irnez% VaRx.,.) log(2|R|/0) + Yoo (B.3)

Then finally by union bound, using two high-probability inequalities: Eq. [B.2] and Eq. with
probability at least 1 — §:

K
E Eapy ) B E
™ ™ ™ ™
wt g 2 (Virer = W) + (i = Vi)

D) Alog(4[R|/9)
< — B, —_—
< 2\/N (mé% VaR, )1og(4|R|/5) o

K
1 =k oF oF Sk
max — E Viipes = Vipesw ) + (Vipegr — Viipe
er K . P Py

2 410g(4|R}/5)
< _ . 4log(4[R|/0)
<2\ D VaRow, ) og(aIRI/B) + =50

Combining two high-probability inequalities, with probability 1 — §:

.3 11og(4[R]/8)
T1 < e+ 2\/N ( max VaRﬂE;T) log(4[R|/8) + ——>

K
Z max VaR,,) log(4|R|/6) + 4log(4[R|/9)
k:

3K
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S0 (1 \/1 (‘max VaR s, >1og(|m/5)+w

VK N
+ Z max VaR i) log(|R]/d) + 10g(|}7§|/6)>

when incorporating FTRL as the no-regret algorithm for reward optimization, providing an
O(1/+v/K) bound for Eopt-

O

B.4 UPPER BOUND FOR THE POLICY ERROR
B.4.1 TECHNICAL LEMMAS

In this subsection, we present several technical lemmas that are essential for analyzing the policy
error bound. Our analysis is conducted under the following function class:

G={(s,a) —» H? (P*(s,a)|| P(s,a)): P € P},

where H?(-||-) denotes the squared Hellinger distance and P is the model function class. We now
state a series of key lemmas used in the subsequent analysis.

Lemma B.8 (New Eluder Pigeon Lemma, Wang et al.[|2024). Let the event & be:

k—

H
&€ :Vk € [K] > HP(P*(s},, a) | P*(sh, af) < .
h=1

1
i=1

Then under event &, there exists a set K € [K] such that:
* We have |K| < 13log?(4nK H) - DE1(G,S x A,1/(8nK H)).

* We have
H

ST ST HA(PR(sE,af) | P (sk,af)) < DEW(G,S x A, 1/KH)(2+ Tnlog(KH)) + 1
ke[K]\K h=1

Lemma B.9 (Bounded Hellinger Distance, [Wang et al.| (2024)). By standard MLE generalization
bound and the realizability assumption, by running Algorithm 1] it exists:

. P* e Pk,

* With probability 1 — 8, -5 ST/ H2(P¥(si, i )| P* (s}, ai)) < 221log(K|P|/9).

Lemma B.10 (Bounded Sum of Mean Value Differences, (Wang et al|2024). Given Lemma
happens under high probability, we have:

ok / wk !/
Z Z ‘]Eg NPk(g L)Vh+1;Pk;7‘k(S ) - ES/NP*(S;‘;’/,G.;?)Vh—&-l;Pk;Tk (S )
kE[KI\K h=0

N Z [Vp* T b k)(sh,ah)} DE\(G,S x A, 1/K H)log(K|P|/8) log(K H)
kE[K]\K h=0

+ DE(G,S x A,1/KH)log(K|P|/d)log(KH).

Lemma B.11 (Variance Conversion Lemma, Wang et al.|2024). Letdg = DE1(G,S x A, 1/KH).
If the following events happen with high probability:

Yk e [K]: PrePoand YN SO H2(PR(s), al))|| P (sh, af) < 221log(K|P)|/9).
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« Vm € [0, [logy(BE)]] : Cp £ 2™G + /10g(1/6) - Crny1 + log(1/6). G and C,y, are

defined as:
H—
G = Z (Vo Vit o) (s ab)] - di lom(K1P/5) log(K )
ke[K]\K
+ dp log(K|[P \/5) g(KH),
Z Z |:(VP* ‘/h-&-l Pk rk) m) (S;CN U‘Z):| .
K\K h=0
we have:
H-1 .
[(VP*VhH;Pk;rk)(Shaalﬁ)}
ke[KI\K h=0
H-1 .
0( S (Ve Vit seen ) (shoak)] + dilog(K1PI/9) log(KH)>
kE[K\K h=0

Lemma B.12 (Generalization Bound of MLE for Infinite Model Classes, [Wang et al.|2024). Let
X be the context (feature) space and ) be the label space. Suppose we are given a dataset D =
{(4,y:) }icn) generated from a martingale process, where for each i = 1,2,...,n, the input z;
is drawn from a distribution D;(x1.,—1, y1.5—1), and the output y; is sampled from the conditional
distribution p(- | z;).

Let the true data-generating distribution be denoted as f*(z,y) = p(y | «), and assume the model
class F : X x ¥ — A(R) is realizable, i.e., f* € F. Let F be potentially infinite. Fix any

d € (0,1), and define
—1 .
_ (Nu (.7 |oo)) |

where N ((n|Y|)™, F, || - [ls) denotes the bracketing number as defined in Deﬁnition

Let the version space be defined as

{fe}— ZIng fwyz >maXZIngxmyz) 7ﬁ}
feF

i=1

Then, with probability at least 1 — 9, the following statements hold:

(1) The true distribution lies in the version space, i.e., f* € F.

(2) Every function in the version space is close to the true distribution in Hellinger distance:
ZEM [H? (f(a,) | f*(,))] <288, VfeF.

Lemma B.13. Forany § € (0,1), by applying Bellman equation recursively and with Lemma(B.10}
with probability 1 — 4:
H-1

> (Vi — 20 rM(shab)

ke[K\K h=0

H-1
S S Ve V) (sh af) log(1/6) + log(1/9)
kE[KI\K h=0

H-1
Y Y [(Vp*v}grjl;},w)(sg,ah) - DE{(G,S x A, 1/K H)log(K|P|/5)log(K H)
EE[K]\K h=0
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+ DEW(G,S x A, 1/KH)log(K|P|/d) log(KH),

where (Vp« [Vhﬁfl‘ prr]) (s, ak) is the variance of the value function with respect to the true tran-

sition model P*, and DE4(G,S x A,1/K H) is the Eluder dimension.

Proof of Lemma
H-1
k(. k k
Z ( 1;Pkirk Z r (S}Ha‘h))
ke[K]\K h=0
k ’ k k
Z Z []Es '~ P*( h,ah)vfzr+1;Pk;rk(S ) - fzr+1;Pk;rk (Sh+1):|
ke[K INK h=0

k k
+ Z Z ’Eg Npk(g ‘r,)‘/}zr_;’_l;Pk;Tk (5’) - ES/NP*(SQ,QE)V}:F—&-I;P]C;T"C (S/)‘
kE[KI\K h=0

<2 ¥ Z Vi Vit e (ks @) 0g(1/0) + = log(1/0)

kG[K]\ h=0

ok
+ Z Z ’Es '~ Pk (sk, ah)Vh-i-l Pkiyr k( /) - ES/NP*(sﬁ,afL)Vh-&-l;Pk;rk (S/)
ke[K]\K h=0

H-1

Sl D0 D (Ve VI ) (sh, ak) og(1/6) +log(1/6)

kE[KI\K h=0

+ 3 Z {Vp* T o) (sk.ab)| - DEV(G, S x A, 1/K H)log(K|P|/6) log(K H)
ke[K]\K h=0

+ DE(G,S x A, 1/KH)log(K|P|/d)log(KH).

B.4.2 PROOF OF LEMMA

Proof of Lemma[B.3] Our proof for bounding the pollcy error generally follows the proof steps
in (Wang et al., 2024) but with * instead of a fixed r*. By Line 6 of Algorithm |I} the policy
error can be bounded by the optimism guarantee, and With K C [K] and Lemma

K
1 oE o
T2= K Z (Vl;P*;r"‘ - Vl:P*;T"’)
k=1
K H K

K H
S - LY ) - 525 rHhal) - = Vi

k=1 k=1h=1 =1 k=1

N
\
=
i

1 1 ok K Zk 1 VaRx . log(1/6)  2log(1/4)
K Z (Vl;Pk;r’“_ ZT Shvah \/ K + 3K

H—-1
1 1 : )
S < log’ (4K H) - DEy(G, x A 1/(SnKH) + = > (fo;,k;rk = Tk(sg,aZ))
ke[K\K h=0

[Pk VaRes e log(1/6) | 2l0g(1/3)
K 3K
By Lemma and probability at least 1 — d, set ) := 221og(5K|P|/J), we have:

T2 < %1og2(log(K|P| J8)KH) - DEL(G,S x A,1/(log(K[P|/6)K H))
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H-1
S K VaR .« k ok log(1/0) log(l/d)

Z ( 1Pk,rk - ZTk(Shaah \/ A=l K
ke[K]\IC h—=0

(B.4)

We now bound the second term on the RHS of Eq.[B.4] By Lemma|B.T3] this term admits a variance-
aware upper bound that depends on the Eluder dimension. Substituting this result, together with

Lemma [B.T1] back into Eq. [B.4]yields:

T2 < %logz(log(K|P|/5)KH) -DE(G,8 x A, 1/(log(K|P|/6)KH))

SO, VaR ek log(1/8) 1 H-l
= K Z Z (VP* VhﬂJrkl;Pk';rk)(sﬁ7 a’ﬁ) log(l/é)

K
ke[KI\K h=0
b Y T (Vi o )] - (K P ) osrc ) + 2D
kE[K\K h=0
< %logz(log(KUﬂ /§)KH) - DE\(G,S x A, 1/(log(K|P|/8)KH))
=l (X2 x> (Vo Vit oo ) (s 0b)] + di log(K1P/5) log (K ) ) Tog(1/6)
ke[K]\K h=0
Jr% Z Z [VP* h+1;P; rk)(si’ah)} dplog(K|P|/6)log(K H)
ke[K]\K h=0
N log(1/5 \/Zk 1 VaR .k . log(1/6)
K
< %log (log(K|P|/6)KH) - DE1(G,S x A,1/(log(K|P|/6)K H))
+% ( 3 Z [(Vp* (. k)(sh,ah)} +dE1og(K|7>\/5)1og(KH)1og(1/5)
ke[K]\K h=0
H—
N> > (Vo Vit e ) (55 08)] + di log(KIP/5) log(KCH) ) Tog(1/6)
ke[K\K h=0

log(1/6) |5, VaRpx . log(1/9)
K +

x \/dglog(K|P|/6)log(KH) + K

K
< O( ! \JZVaRWk x - dg - log(K|P|/d)log(K H)

k=1

+ %dE -log(K|P|/9) log(KH)>

K
< O( ! J Zmax VaR k. - dp - log(K|P|/d)log(KH)

4 %dE -log(K|P|/d) log(KH)>7

where dp = DE1(G,S x A,1/KH). Replacing ¢ with § /(5K H) concludes the proof. O
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B.5 UPPER BOUNDS UNDER GENERAL FUNCTION APPROXIMATION

In this section, we extend the our upper bound result to the general function approximation, provid-
ing the proof for Theorem The proof steps generally follow the proof steps for Theorem [B.1]
but with covering number analysis for the reward function class R and bracketing number analysis
for the model function class P. The covering number is defined in Definition[3.2)and the bracketing
number is defined in Definition We present the lemmas for the upper bounds of reward and
policy error under general function approximation as follows:

Lemma B.14 (Reward Error Upper Bound with Infinite Reward Class). For any 6 € (0, 1), using

FTRL (Shalev-Shwartz & Singer, |2007) as the no-regret algorithm, given an infinite reward function
class R, with probability 1 — 9, the average regret for reward optimization is bounded:

1 K
E k E k
™ ™ ™ ™
max —= E Vl;P*;F - ‘/].;P*;F - (‘/I'P*;r"‘ - ‘/LP*'?"’C)
TER Kk*l ’ v

1 log(Nr/6) log(Nwr/d) 1 &
50(\/}?+ ottt ?;%a% VaR .. log(NR /5)

1
+ \/N max VaR, .. log(NR/5)>

where VaR ., denotes the variance of accumulative rewards over a horizon H under 7 and reward
function 7. Nr = max{Ny,kr(R), N1/nu(R)} is the covering number for reward function class
R.

Lemma B.15 (Policy Error Upper Bound). For any 6 € (0, 1), with an infinite model class P,
let 3 = Tlog (K Np/d). With probability 1 — 4, the average regret of the policy optimization is
bounded:

1 K
E k
T T
E : (‘/I;P*;r"‘ - Vl;P*;’I'k>
k=1

=l

A\

K
1
O(K Z;me%%{ VaRoi. ;- d log(K HNp /6) log(K H)

+ %dE log(KHNp /) log(KH)) ,

where dp = DE1(G,S x A,1/KH) is the Eluder dimension, VaR, , = max,cr VaR,x ,. is the
maximum variance for 7, and Np = N} (KH|S|)™",P, || - || is the bracketing number.

By combining Lemmas[B.T4]and[B.15] we complete the proof of Theorem[5.T|under general function
approximation.

B.5.1 UPPER BOUND FOR THE REWARD ERROR

Proof of Lemma|B.14] We first revisit the bound on the reward estimation error under a general
function approximation setting. Our goal is to refine the upper bound established in Lemma[B.2] by
expressing it in terms of the covering number NV, (R) rather than the cardinality |R|. From the regret
decomposition used in the proof of Lemma the reward optimization error remains unchanged,
as it depends solely on eg, and is independent of the reward function class. Therefore, the focus
shifts to revisiting the estimation error:

K
1 E ~_E ~_E E
T4 = max — (Vf:p*;; - ‘/17;—13*;;) + (Vfrp*.rk - ‘/173-P*:T‘k’)
7er K :,: i I

.k k k ~_k
s us T T
+ (VYI;P";F - Vl;P*;F) + (VYI;P*;rk - Vl;P*;rk)

By applying Bernstein’s inequality, we obtain that, for any fixed reward function 7, the estimation
error is bounded with probability at least 1 — 4:

24



Under review as a conference paper at ICLR 2026

1 ul 1
i Z Z r(sp(7),an(r)) — E s [Z r(sp, ah)} |
7€DE h=1

h=1

) \/ 25 ey Ver (i rlon(r)an(r)]10g(2/5) | 2lo(2/0)
B N 3N

]2 21og(2/9)
= \/NVaRﬂE;T log(2/9) + 3N

Unlike the analysis for finite function classes, we cannot directly apply a union bound over the
cardinality |R| since the reward class R is now infinite. To address this, we construct a p-cover of
the reward space, denoted (R )p. Then, for all 7 € (R)p, we can apply the union bound:

<\ ViR s log 1), 1) + 2RI

According to the definition of p-cover, for any r € R, there exists 7 € (R), that satisfies
max (s q)esx.a [7(s,a) —r(s,a)| < p. Therefore, it exists:

(B.5)

~_E E
™ T
Vl;P*;?_ Vl;P*;?‘

H
~._FE ~._FE 1 ~
Vilpes = Vipesl < 5 D2 3 |r(sn(r),an(r)) = sn(r).an(r) | < Hp,
TGDE h=1

E E
|V17;FP*;T - VlfP*;?' <E;s

H
> [rsn(r),an(r) - ?(shm,ahm)\] < Hp.
h=1

Therefore, the value estimation difference of any reward function r can be upper bounded by that of
its representative 7 within the p-cover of the reward function class:

71_E

~ B E ~ E
‘)Tr ‘)Tr ‘)Tr ‘7
1;P*;r 1L;P*;r < ’ 1L;,P*7 1;,P*;7

+2Hp

210g(2[(R),|/9)

2
< \/NVaRWE;;log(2|(R)p|/5) + +2Hp (B.6)

3N
For VaR ;= , we have:
H H 2
VaR, 2 ;= E,p, ( S Fsn(r), an(r) — Enp S Flsns ah))
h=1 h=1
H H 2
< ETNDE(Zr(sh(T), an(r) ~Enp > r(sh,ah)) b H?
h=1 h=1

= VaR, &, + p°H?
We can further bound Eq. [B.6| with VaR & ,.:

E B 2 210g 2(|R 1)
Vb~ Vitkoa| <\ 2 VR, 212 og@l(R), 1)) + 2 ECURDI) o,
B.7)
By plugging in 7 and 7* and selecting p :== 1/N H:
1 K E ~ B ~_FE B
I%'IGE,L’%{ ? kzz:l (VIT;FP*;? - %TP";F) + (‘/17:1:’*;7"’C - ‘/17.:]3*;7‘)“)
2 4log(2|(R )
< 2¢ 2 (mas ViR, + 22) log(2)(R), )/5) + TBRIDIO) Ly,
2 1 4log(2|(R)1/nm|/0) 4

25



Under review as a conference paper at ICLR 2026

We then focus on the value difference with respect to 7% for any r» € R using Azuma-Bernstein’s
inequality, with probability at least 1 — §:

1K . | K| A H
?Z’Vﬂp*”,f‘/ffp*;r = ?Z Zr Sh,ap) [Zr Sk, ap ]|
k=1 k=1|h=1 h=1
K H
21og(1/9)
S\KZ };r sn,yap)]|log(1/9) + Kk
K
21og(1/6)
= EZ aRTrk log 1/6) T

Following the analysis for terms related to 7, given a p-cover (R),, for all 7 € (R),, by union
bound:

K K
1 Sk o 2log(2|(R),l/9)
=3 Wi = Vb < Z Rpe;r0g(2] (R),|/8) + ===y =2
k=1 =1
By the definition of p-cover, it exists:
~ k ~ k H
Vb = Vipeiel < Bs | 3 |r(sh, af) = 7t a’i)” < Hp,
h=1

H
> |rshiah) - ?(sf;,aiz)” < Hp.

h=1

k k
|‘/17:P*;r - VlTP*;?l < Eﬂk

Therefore, the average value estimation difference of any reward function 7 can be upper bounded
by that of its representative 7 within the p-cover of the reward function class:

1 K ~._k k 1 K ~._k k
? Z “/17;‘—1:'*;7“ - VngP*;T S ? Z ’mT;P*;? - VlfP*;?
k=1 k=1
2 210g(2|(R),|/9)
P
< z ;VaRﬂk;?log(2|(R)p|/5) + — 3K +2Hp

Similar to the analysis for the terms related to 7E we also have the variance bound:
VaR .« » < VaR . + p* H?

Therefore, we can finally upper bound the rest of the terms in the estimation error:

1 K
~_k k
§ T ™
? ‘Vl;P*;’l‘ - Vvl;P";r
k=1

K
2 2log(2[(R),|/9)
< o . 2 2 S\ eI\"M)pll V)
< K;(Vawa%-p H?)log(2|(R),|/8) + i +2H)p

Thus, the last two terms related to 7% is upper bounded, selecting p := 1/K H, with probability at
least 1 — §:

k

K
1 ~._k k ~
max —— E (VI,P* Vl P ) + (Vf;rp*;rk - V17;rP*;'rk>

FER Kk:1
2 41og(2|(R),|/9)
< 2 172 P
2 g (Irneax VaR k., + p?H ) 1og(2|(R),]/6) + 3 +4Hp (B.9)
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K
2 410g(2|(R)1/KH|/5) 4
R\ ;(%’% VaRosr K2)10g(2|( /rml/0) + +— (B.10)

3K K

Then finally by union bound, using two high-probability inequalities: Eq. [B.8] and Eq. with
probability at least 1 — §:

1 E ~_E ~_E E
E ™ s T T
max — (‘/1;13*;;_ Vl;P*;F) + (‘/1']3*'7"]“ - Vl'P*'T‘k)
rerR K P v v

2 4log(4|(R)1/nul/d)
< 2/ (ma ViR e+ 0 ) 81 /o) + B O]

2|

1
§ T v VT v
K 1;P*;7 1;P*;77> ( 1;P*;rk 1;P*;rk)

K
4log(4[(R) 1/6) = 4
Z max VaR s, K2)10g(4|( )1/ xcal/8) + 3K1/KH +

Combining two high-probability inequalities, let px := 1/K H and py = 1/N H, with probability
1-9:

reR 3N N
K
) ) log(4)(R),c|/8) 4
+2 e Z(Irnez% VaR k.. ﬁ) log(4|(R)ps |/0) + 3K T K
log(|(R),c|/8) | log(|(R)pyl/8) | | 1 & 1
< PK PN _ R J—
< O( e R | D VR + ) o(R) /9

1 1

K

+\/zif(5%a%vaRﬂEr Nz)log(/\/ (R)/5)>

When we incorporate FTRL as the no-regret algorithm for reward optimization, providing an

O(1/v/K) bound for €op and keeping only the dominating terms, we can finally upper bound the
reward error as:

< o(%ﬂg( (R )/9)  los(N, (R)S) Zmax VaR ., Tog(\ . (R)/6)
+ ;gleegValeog( ~(R )/6)) (B.11)

Further upper bounding the estimation error with Nz = max{N,, (R),N,,(R)} concludes the
proof. O

B.5.2 UPPER BOUND FOR THE POLICY ERROR

Proof of Lemma[B.13] For the policy error, by following the approach in [Wang et al.| (2024), and
applying Lemma together with the proof steps in Appendix we obtain a policy error
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bound under general function approximation using bracketing number for model class covering.
Specifically, with

—1 .
B Tlog <KN[] <<KH|S(|$> P |oo)> |

the bound holds with probability at least probability 1 — §:

K
1 —
T2 5 O<K kEﬂglez% VaR v, - d log(KHN(KH|S|)™Y, P, || - [|s0)/6) log(K H)

1
+ 2z e Log(KHN(KHIS) ™, P, || - [l0)/9) 10g(KH)>7
where dg = DF4(G,S x A, 1/KH). O

C PROOF OF THE LOWER BOUNDS

C.1 DETAILS OF THE HARD INSTANCE STRUCTURE

In this subsection, we define the transition dynamics, the reward function of the constructed hard
instance (Figure [I)), and the policy class used in the lower bound analysis. Formally speaking, the
transition dynamics and reward function is written by:

P(s' =[s,1]s =[s,0}a) = § + ep(u,ap), P(s'=[so,1]s =[s,0],a) = § —ep(u,ap),
P(s' =[s,1]s =[s,1],a) = P(s' =[so,1]s =[so, 1] a) =1, Va € A=B*!

r(s = , a)=Z%(5+ 34-(0,8))  P(s'[s,a) = 0,7(s,a) = 0 otherwise if not stated.

It’s easy to verify that the reward class log |R| = ©(dr) and the model class log |P| = O(dp) in
this setting, while log |S| = ©(dg) and log | A| = ©(dp).

~

Policy class. We define a stable stochastic policy class parameterized by (i,0). The policy
outputs an action a € B??*!, sampled from a Rademacher distribution biased by i and 6:

~

m(a | s; i, 0) = Rademacher ([% 14, + exdrpt] ® [% + ex (s, §>D ) (C.1)

where @ denotes concatenation, zi € B and 6 € M9z, For an action a generated by the policy

(- | s; 1, @), we can find that the first component a p is governed by g, while the second component
ap is determined by both the state s and the parameter 8. For any instance defined by parameters

(pn*, 0%), the offline expert demonstrations are generated by the expert policy g = 7(a | s; u*, 0*).
C.2 TECHNICAL LEMMAS

To construct the proof of the lower bounds, we first present a few technical lemmas that will be
used during the proof. We first provide a lemma for the existence and property regarding the reward
parameter space M7 C B?r:

Lemma C.1. Given v € (0, 1), there exists a M C B?% such that for any two different vec-
tors x,x’ € M9® and (x,x’) < dgr", and the log-cardinality of the proposed set is bounded as
log M7 | < dpvy?/4.

Proof of Lemma[C.]] To begin with, we assume that x ~ Unif(B?%), i.e. [x]; ~ {—1,1}. Thus
given any x,x’ ~ Unif(B?%), we have

dr
P((x,x") > dry) = P, ~Unit{-1,1} (Zzl > dR’Y)
i1
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1 &
=P, ~Unit{-1,1} (dR Z zi 2 ’Y)
i=1

< exp(—drv?/2),

The last inequality follows from the Azuma-Hoeffding inequality, noting that z; ~ Unif{—1,1} isa
bounded random variable. Consider a set M%7 of cardinality |M%%|; there are at most |[M%#|2 pairs
(x,x’). Applying a union bound over all such vector pairs, we obtain

P(3x,x’ € M9", x # %', (x,x') > dpy) < [M9%|? exp(—dry?/2),
thus
P(vx,x' € M9% x # %/, (x,%') < dgry) > 1 — M |? exp(—dry?/2),
Once we have that |[M9%|2 exp(—dp7y?/2) < 1, there exists a set M%7 such that for any two different
vector x,x’ € M (x,x') < dgy. O

By Lemma for any x, x’ € M%%, we have ||x —x'||; > dr 1 [x # x'], since at least one coordi-
nate differs between the two vectors, contributing at least dp, to the ¢; distance.By LemmalC.1] we
can construct a parameter set M%7 with [M“?%| = [exp(dgy?/4)] — 1 and v = 1. The constructed

set indeed satisfies Lemma and thus we obtain the following lower bound on log |M :
Lemma C.2. Given y = %, for dg > 48, we have the following lower bound on log |MdR |, where
M7 | = [exp(dry?/4)] — 1:

d 2
log [M“%| > RT7 -3

Proof of Lemma|C.2]
log [M?%| > log(exp(dry®/4) — 1)
dr? dr?
= 117 + log (1 — exp (— RZ ))
2
> dry” 3,
where the last inequality holds by applying v = 1/2 and dg > 48. O

We then provide a useful lemma for M% to assist the proof of Lemmal5.8}
Lemma C.3. Consider x,y,y’ € M?%, given y = %, we have the following lower bound:

1
max x'(y —y') = Sdr1ly # ']
xEMIR 2
Proof of Lemma Since we can write the LHS of the inequality as:
max x'(y-y)=y vy -¥) =y -l
xEMR

Consider two cases: (i): y = y’ and (ii): y # y’. For the first case, it’s easy to verify that
ly —¥'|ll1 = 1]y # y’] = 0, which makes LHS = RHS. For the second case, since we have:

1
ly —yi=dr—y'y >dr(1—7) 1y #y'] = 3drlly # y'l,

where the inequality follows from (y,y’) < dr7y and 1[y # y’] = 1, with v = 1 applied in the
final step of the proof. Combining two cases, we conclude the proof. O

We finally present some inequalities that are instrumental in our lower bound analysis:
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Lemma C.4 (KL divergence for Rademacher distribution). Let P, () be two Rademacher distribu-
tions with probability % + € and % — ¢, for e < 1/4, the KL divergence of P and Q can be upper
bounded as:

KL(P,Q) < 16¢*

Proof of Lemma
KL(P,Q) = Eplog(P/Q)

_(;+6)10g<%+§> +(%—e)1og <§_6>

1
3= 3 te
1+ 2¢
= 2¢ |
€08 (1 - 26)
< 16627
where the last inequality leverages the property zlog(1 + z)/(1 — z) < 42® when z < 1. O

Lemma C.5 (Fano’s inequality, [Fano|[1961). Consider a finite set of probability measures {P,, :
u € U} on a measurable space 2. Let u be any estimator based on samples drawn from P,. Then,
for any reference distribution Py on €2, the average probability of error satisfies:

1 R log 2+ 1 2, KL(Py, Po)
—N"p, >1-—
g 2 Pl # 1) 2 log 1/

ueld

Lemma C.6 (Bretagnolle-Huber inequality, Bretagnolle & Huber|1979). Let P and () be two prob-

ability measures on the same measurable space, and let A be any measurable event. Then
P(A) +Q(A°) > jexp(-KL(P[Q)),

where KL(P || @) denotes the KL divergence between P and Q).
C.3 PROOF OF LEMMA[5.8]

Proof of Lemma To begin with, for any reward function parameter 6 € M’ and policy 7 with
parameter 1, 6, the value function V'p. ,.(s) can be calculated by

Ve p(s)=Ea [Zthl ST+ (6, s>] =17+ 57(0,5)Ban((s) [ar] = 37+ 5= (6,5)(0, s),

whee the second last equation is due to the implementation of a stable policy and the last equation
is from the definition of the policy class (C.I). The transition probability from the initial state

to the state is:
P(s' =[s,1]|s =[5,0], (8, i) = Ea [§ + ep(u*,ap)] = L +epexdn(n’, @),  (C2)

where the expectation is taken over the action a defined in the policy class. Since Vi p. .(s = )
is always zero, applying Bellman’s equation yields:

Vilpe(s) = (4 + exepdn(n’ 1)) - (7 + 52(6,5)(6,))
= Lr g TexednltB) | & (L7 4 rependp(p®, i) (6,5)(6,5). (C.3)

Repeating the calculation presented in (C.3)) for g parameterized by p*, 8*, the performance gap
between any policy 7 and the expert policy g can be written by:

ViB. () = Vilpe,(s) = Tre=talpttoBl 4 16 s) - (0" — 6, 5)
+ Zepr (1) (0,5)(0",8) — (", 70)(0.5)(0.5))
> Tducpes B | e (g 5) . (0% — 0,5) + re2epdp(B,s) - (0% — B,5), (C4)

€xT
2dr
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where the last inequality uses the fact that (u*, pi) < (u*, u*) = dp. Therefore, taking the adver-
sarial reward by maximizing this gap over all possible 8 € M?%, (C.4) and taking an expectation
over the state space yields

Es[VIE, . (s) — Vi b
Iglea% s 1;P ,7(5) 1;P ,T(S)]

> H@XESW + 55T 6 ssT (6" —0) +Té2epdpb ss| (6° —0)

6
> HngEee | — il + g (rex + Tehepdp) 107 # 6]
> Tagees || — 1 + gen 1[0" # 6], (C.5)
where we use the property Egss ' =1, Lemrna and in the second inequality. O

C.4 LOWER BOUND FOR REWARD ACCURACY
In order to lower bound the second term in Lemma[5.8|related to the reward parameter 6, we intro-
duce the following lemma:

Lemma C.7 (Lower Bound for Reward Accuracy). Given the defined MDP structure, reward func-
tion, and policy class, for dr > 48, any (offline or online) imitation learning algorithm must suffer
from the reward estimation error by:

Eogyrin [Pg[e?;é e]] >1- (1 + (@1?48)) log2 — 16N €2,

where the expectation is taken over the uniform distribution in & € M?* and Py measures the
probabilities when the reward model is 6.

For the proof of Lemma we start from leveraging the Fano’s inequality as in Lemma[C.5] We
are then ready for the proof.

Proof of Lemma[C.7] We start from the Fano’s inequality with u < @ thus log [U| = log |[M4®| <
dr~y? /4. The reference distribution is defined by Py = Wl\ >y Py. Since the agent can only observe

the reward at step h = H, we denote = {afl},, over n € [N] offline demonstrations. Then for
any v € U, the KL divergence KL(P,, Py) is bounded by:

B Py ()
KL(Py,Po) = E,up, [log 2-loglMR| S~ P, (x)]

Py ()
Pv(m)
= log [M?%|log 2 4+ KL(P,, Py). (C.6)

< log|M%#|log2 + E,p, {log

Then consider u < 8y, let v < 0; € M~ as a vector that only differs in one coordinate, according
to the definition of the policy class, over the action sequence {afl};.x collected over the offline
demonstration with it’s length as N, for €,i < 1/(4dg) and dg > 1, we have:

KL(P({af }1:n160), P({af }1:n161)) = N - Es[KL(P(ar|6o), P(ar|61))]

= NdpKL(Rademacher(} + €,), Rademacher(3 — €))

1+ 2,
= 2Ndpge, log 1+ €

< 16Ndge2, (C.7)

s

where €, < 1, and the last inequality is because of Lemma [C.4] Plugging (C.7) and (C.6) into the
statement of Lemma [C.5]yields:

Egnain |Pol® # 6]] =1~ log™" M| (log2 + 3 KL(Pu, Po) )
>1—log™* M| (log2 + log™ " M2 | log 2 4 KL(Pg,,Po,))
>1— (1+41log™* |M%|)log2 — 16Ne2
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>1— (1 + ) log2 — 16N€2, (C.8)

16
dr — 48
where the last inequality leverages Lemma with v = % according to the construction of M%7
for dr > 48. O]

C.5 LOWER BOUND FOR MODEL ACCURACY
In order to lower bound the first term in Lemma related to the model parameter pu € B, we
introduce the following lemma:

Lemma C.8 (Lower Bound for Model Accuracy). Given the defined MDP structure, reward func-
tion, and policy class, any (offline or online) imitation learning algorithm must suffer from the model
estimation error by

dr, (& K\ _d
>op (Z Ui # i) > 2) >~ exp (<16 - N(16€, + %)),

i=1 k=1

The proof of the estimation error for p follows from an analysis based on the Bretagnolle—-Huber
inequality, as detailed in Lemma [C.6]

Proof of Lemma|[C.8} We start from the Bretagnolle-Huber inequality with u < g thus [U/| = 297,
The agent can infer the model p from two streams: first, the expert demonstration {a}} con-
tains the model information as ap; second, from both the expert demonstration and online ex-

ploration, the agent can observe {, } Therefore, we denote the P(x) as the joint dis-

tribution of {a};,}nem U {a}g,}kE[K]. Consider u + pp and v < p; € B as
Vectors that differ only one dimension. According t0 the chain rule of the KL divergence, let

k\k,{al}k, ) and P, (p) = \ {al}m , we have that

KL(Pu,By) = N - KL(Bu({ab} 0[5, 1] }). By {ap}n,n}»
§ K KL (b} 5 T Polfab b 51, )
= N - (KL (2, ({ab}a). 72, ({ab}a)) + KL (Pa(po), Pu(hn1))
+ K - (KL (me({ab}), me({ab 1)) + KL (Pi(o), Pilp)))
— N - (KL (, ({a'}), w2, ({2 o) + KL (P (p10), Pa(p1))) + K - KL (Pi(o), Pilpr))

where the last equation drops the term KL (7, ({a'}), mx({a'}x)) since the online policy is not
affected by the offline demonstration, in terms of the model-related part. According to the definition
of the expert policy and model, by Lemma|[C.4] for e, < 1/(4dg), ep < 1/(dp) and dg,dp > 1,
we have:

KL (w,’fo({a}a}n),wi({a}a}n)) < 16632
KL (P(5.1], [0, (2" o 10). P(5.1], [5:0], . {a' b)) < 1663

Therefore, we can bound the KL divergence:
KL(Py,Py) < K - 16¢% + N - (16d3e2 + 16¢%). (C.9)

For i € [dp], we define:

K
Pui =P (Zm £l > f) .

k=1

With Lemma and Eq. letting e% = 1/K, we can obtain:
1 1
DPuyi + Dvyi = 5 exp (-16 - N (16d§?€72'r + [?)) .
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By averaging over the parameter space I/, it implies:

dp
d 16
;pu,i > IP exp (—16 - N (166@67% + K)) .

Therefore, we can obtain:

d 16
ZP(ZH B # pi] > ) > Zpexp (—16—N<16d§63+K>),
i=1

which concludes the proof.

C.6 PROOF OF THEOREM

Proof of Theorem[5.9] Let the probability of learning an incorrect reward be P(6* # 5) = 1/2,
from Eq. for dg > 48, it yields:

1 1 16 2
> - o ~ )

The suboptimality gap is lower bounded:
wF wk * 0
I’PG%ES[VLP*;T(S) - Vl;P*; ( )] Z % (0 7& 0)7

which suggest that Q(72/€2) is the lower bound for N. By Lemma [5.8] Lemma and sum-

ming the suboptimality over the iteration, letting ep = 1/+/ K the regret of the imitation learning
algorithm can be lower bounded as:

Regret(K) = maxzk 1 [V1 (S )—Vlf;*;r(s)]

v

: E drllp” — Bl
LI o Y N
2VEK £ Rl R

K dp

2\/>22767rd1%]1 ui # fila

k=11=1

£ZTe,rdRIP’ <Z]l wi # pll > I;)

k=1

dpdpres/E 1
Z#exp (—16—N(16dR6 + ;))

| \/

Y

Let (ep,er) be a problem instance parameterized by two perturbations. For ¢ > 0 and
max,er Es[V]p...(s) = V{Tp...(8)] < e, for two hard instances parameterized by e: (1/(4dp), €)

and (e,1/ (4dR)), the lower bound should be able to apply to both instances. For instance
(e,1/(4dR)), the lower bound for N and K is as follows:

Nz Q(r%d}), K Z Q(r%dbexp(—N)/€).
For instance (1/(4dp), €) the lower bound for N and K is as follows:
Nz Q(r?/), K 2z Q(r?edRhdpexp(—N/d3)).
Combining two lower bounds above, the lower bound must hold for both hard instances:

N Z Q (max {r?/*,7%d% }) , K 2 Q (max {7°d} exp(—N)/€*, 7> dy,dp exp(—N/dp) }) .

Consider the variance of the cumulative rewards:

i 2
~ (ElVip-,(9)])

VaR,,=E l( Zr(sh,ah))Q

h=1
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2
<& [P} 8 (S g + s @)
= (3 + encpdrlfi 1) B (1 + 3(0.5) + 5 (6,9)7)
where we use a% = 1 in the last line. Letep < 1/(2dp) and €, < 1/dg, we have:
VaR,, < 72E (% + 4 (0,8) + 1 (0.9) ) <12

Therefore, the lower bound for N and K can be reformulated using the variance of the accumulated
rewards:

N Z Q (max {VaR,,/e*, VaR, .d% })

K Z Q (max {VaR, ,d} exp(—N)/€*, VaR, .’ d}dp exp(—N/dp) }) .

Substituting VaR, . with o2, together with dp = O(log |R|) and dp = O(log |P|), completes the
proof. O

D PRACTICAL IMPLEMENTATION

In this section, we present a practical implementation of MB-AIL, an optimization-based approach
with neural network parameterizations for the policy mg, reward 7, and transition model ensemble
{P¢,}i=0:p—1. For reward learning, the reward model is optimized using the following training
objective:

rrll[ln LrR(Y) = Esa)~nr T9(8,0) = E(s a)une T4 (5,a) +a ¢(r), (D.1)

where B™ and B¥ denote the replay buffers for the policy and the expert, respectively. The term
¢(r) is a regularization function, for which we adopt the gradient penalty (Arjovsky et al., [2017).

Then for each model P, in the ensemble {P&} , we update it using the maximum likelihood
objective conducted on data sampled jointly from the expert and behavioral replay buffer:
I%in Lp(&) = _]]'-T‘(s,a,s’)NBEUB7T log P, (S,|87 a). (D.2)

The practical implementation of the algorithm is summarized in Algorithm[2} In Line 9, we employ
Soft Actor-Critic (SAC) Haarnoja et al.|(2018)) as the RL algorithm.

Algorithm 2 Model-based AIL (Practical)

Input: Number of iterations K, discount factor -, expert dataset Dg, policy 7y, model ensemble
{P, }i=0:p—1 with ensemble size D and reward model 7.
1: fork=1,2,..., K do

2: Collect trajectones using current policy mg and populate behavioral buffer 57.

3:  Sample behavioral and expert batches B™, BF ~ B™, BF

4:  Update r,, using Eq.[D.1]

5:  Update model ensemble { P, };—0.p—1 using B U BF using Eq. -

6:  Collect D model rollouts {74 }4—0.p—1 using {Pg }i—o:p—1 and my.

7:  Estimate the value of each rollout V (74) = Y, 77y (s1).

8:  Select the rollout with 7* = argmax V' (7,) and store it into the model buffer BM.

9:  Train the RL algorithm on the model buffer B using the reward model r to update the

policy mg.

10: end for

E EMPIRICAL RESULTS

E.1 GRIDWORLD EXPERIMENTS

Environment Setup We conduct a toy experiment on a 9 x 9 GridWorld environment, illustrated in
Figure[3] Rewards of value 1 are available only in the top-right corner of the grid. The state space
corresponds to the 9 x 9 grid, and the action space is .A = {up, down, left, right}. The environment
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Different Sizes of the Reward Space Different Levels of Environment Stochasticity

-- BC --- Expert
-~ Expert 10 —4— online IL
—4— online IL - BC

©

Episode Rewards
Episode Rewards
>
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~

A V
1.0 15 2

.0 2n5 3.0 3.5 4.0 0.45 0.50 0.55 O;D 0.65 0.70 0.75
Figure 2: Results for GridWorld Experiments. We present results analyzing the impact of varying
reward space sizes and different levels of environment stochasticity on adversarial imitation learning
and behavioral cloning, reported over 5 random seeds.

dynamics are stochastic: when an action is taken (e.g., up), the agent transitions to the intended
neighboring cell with probability p; each of the other three neighboring cells is selected with prob-
ability %(1 — p). Each episode lasts 20 steps, and performance is measured by the accumulated
reward. We use a single expert trajectory with a total reward of 8.0 across all experiments. We
initialize the agent in the area {(0, 0), (0,1),(1,0), (1,1)}.

We evaluate behavioral cloning (offline) and online imitation learning in this environment in order
to analyze the benefits of online exploration in the context of imitation learning. Both BC and online
IL agents do not observe rewards directly but have access to the expert trajectory. For BC, the agent
mimics expert actions in states encountered in the trajectory, and acts randomly elsewhere. For
online IL, we maintain both a Q-table and a reward table, initialized with zeros. The Q-learning
agent explores using e-greedy with actions chosen as ¢ = arg max Q(s,a). Whenever the agent
encounters a state-action pair from the expert trajectory, it assigns 7(s,a) = 1 in its reward table;
otherwise, the reward is set to 0. The Q-table is updated from visited experiences using this reward
table.

Experiment Settings We evaluate two settings
in the GridWorld experiment. The first exam- Grid World - Agent: (0, 0), Reward: 0.0
ines the effect of reward space size. Specifi-

cally, we partition the reward table into n X n ‘ M Wl M
regions, assigning the same reward value within 7 R|R|R|R
each region. Thus, the reward space size scales
as |R| o« 1/n?. We fix p = 0.65 and test ’ I
n = 1,2,3,4 to study the impact of varying s = | =
reward space sizes.

a R

The second setting investigates the effect of
environment stochasticity on imitation learn- :
ing performance. We fix n = 4 and control
stochasticity by adjusting the transition proba-
bility p: a larger p corresponds to a more de- 1
terministic environment. We experiment with

p = 0.45,0.55,0.65, 0.75 to analyze this effect. °
Results We present the empirical results of the Tt
two experiment settings in Figure 2] For each Em el

configuration, we evaluate 10 episodes for each

of the 5 random seeds and report the mean and Figure 3: GridWorld Illustration. An illustra-
standard deviation. In the reward space experi- tion of the 9 x 9 GridWorld with the agent initial-
ment, when the reward space is large, online IL  ized at (0, 0) is shown.

performs similarly to BC. However, as the re-

ward space becomes smaller (larger n), online

IL achieves significantly better performance, approaching the optimal value, which is consistent
with our theoretical upper bound in Theorem In the stochasticity experiment, both online IL
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Environment | Expert | BC GAIL OPT-AIL MB-AIL (Ours)
Hopper 3609.2 | 2856.7+42.5 3211.9+38.3 3438.6 + 21.1 3451.3 £ 155
Walker2d 4636.5 | 2697.3 £97.2 3776.5 £ 64.3 4238.4+ 39.2 4169.7 +£48.3
Humanoid 5884.6 | 342.5+238 16144 +118.1 20144 +342.2 58164 + 15.2

Table 3: MuJoCo Results on Cumulative Rewards. We conduct experiments on the Hopper,
Walker2d, and Humanoid environments, evaluating cumulative rewards and comparing our approach
with BC, GAIL, and OPT-AIL baselines. Our method achieves comparable performance on Hopper
and Walker2d, while significantly outperforming all baselines on Humanoid. Results are averaged
over three random seeds.

and BC improve as the environment becomes more deterministic. Across all stochasticity levels,
online IL consistently outperforms BC.

E.2 MuJoCo EXPERIMENTS

We evaluate our practical algorithm on the MuJoCo environments (Brockman et al.,2016)), including
Hopper, Walker2d, and Humanoid. For each environment, we use 64 expert trajectories. Our results
are compared against BC, GAIL (Ho & Ermon, 2016), and OPT-AIL (Xu et al.,2024). We report the
results of cumulative rewards in Table[3] Additionally, we compare the interaction complexity of our
method with OPT-AIL (Xu et al, 2024) in Table [} highlighting the superior interaction efficiency
of our model-based approach.

Environments \ OPT-AIL MB-AIL (Ours)

Hopper ~210K ~60K
Walker2d ~320K ~120K
Humanoid ~220K ~90K

Table 4: MuJoCo Results on Interaction Complexity. We compare the interaction complexity of
our approach with OPT-AIL and show that our method requires significantly fewer interaction steps
to reach optimal performance. This improvement highlights the advantage of model-based learning.

F DETAILS OF THE MUJOCO EXPERIMENTS

Hyperparameter Setting We summarize the hyperparameter settings used in our experiments be-
low:

* Model ensemble size is 7 for all tasks.

* Model optimization: learning rate 3 X 104, weight decay 5 x 1075, batch size 256.

* Policy parameterization: stochastic Gaussian policy.

» Discriminator: ensemble size 7, trained with batch size 4096 and learning rate 8 x 1074,

* SAC training: learning rate 3 x 10~*, batch size 256, entropy coefficient o = 0.2 for all
tasks.

e Network architecture: hidden size 400 for the model network, and 512 for both the dis-
criminator and policy networks.

Environment Details The specifications of the environments are summarized in Table

Baseline Methods For the OPT-AIL baseline (Xu et al.|[2024)), we adopt the official implementation
provided in their repository. For the GAIL baseline (Ho & Ermon, 2016)), we use the open-source
implementation available at this repository. For the BC baseline, we train a two-layer MLP with a
hidden dimension of 256 on the expert dataset for direct behavioral cloning.
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Environment \ Observation Dimension  Action Dimension

Hopper 11 3
Walker2d 17 6
Humanoid 45 17

Table 5: Environment Details. Observation and action dimensions for each environment. The
Humanoid task features a higher-dimensional state and action space, making it significantly more
challenging for imitation learning compared to the lower-dimensional Hopper and Walker2d tasks.

USE OF LARGE LANGUAGE MODELS
We used LLMs solely as a writing assistant for minor grammar and phrasing corrections during

manuscript preparation. LLMs were not involved in research ideation, experiment design, data
analysis, or result interpretation.
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