
Quick SOME/IP – QUIC-based Service-Oriented
Middleware for Software-Defined Vehicles

Yang Wu Chien-Chung Shen
Department of Computer and Information Sciences

University of Delaware, USA
wuyang,cshen@udel.edu

Abstract—Spurred by technological advancements and con-
sumer demands, the automotive industry is moving towards
software-defined vehicles. To accommodate the complexities of
software that execute on a system of networked ECUs (Elec-
tronic Control Units) and sensors, service-oriented architecture
(SOA) becomes a viable architecture. SOME/IP (Scalable Service-
Oriented MiddlewarE over IP) is a middleware standardized
by AUTOSAR that implements SOA for automotive systems.
By leveraging the unique features of the QUIC (Quick UDP
Internet Connections) transport protocol, we design “Quick”
SOME/IP by substituting the TCP used in SOME/IP with QUIC.
In addition to supporting the four communications patterns
offered by SOME/IP, Quick SOME/IP introduces fault tolerance
streaming as the fifth communication pattern, which facilitates
simultaneous data transmissions from one sender to one receiver
over two physically disjoint paths to tolerate the failure of one
path. Using the Nexus open-source C++ library implementation of
QUIC, we modified vsomeip, an open-source C++ implementation
of SOME/IP using TCP, to implement qsomeip. Our experiments
demonstrated that qsomeip outperforms vsomeip in terms of
reduced connection latency and enhanced security with the new
capability of fault tolerant streaming.

Index Terms—SOME/IP, QUIC, Service-oriented Architecture,
Software-defined vehicle

I. INTRODUCTION

Software-defined vehicle (SDV) describes a vehicle whose
features, capabilities, and performance are primarily governed
by software [1]. The shift towards SDV is driven by ad-
vancements in computing power, connectivity, and software
capabilities, and by changing consumer expectations. By incor-
porating software at the core of vehicle design, manufacturers
can leverage these technological advancements to offer new
features and improve performance. For instance, software
can enhance vehicle safety via advanced driver-assistance
systems (ADAS), including features like automatic braking,
lane-keeping assist, and adaptive cruise control. These features
can be improved and updated via Over-the-Air (OTA) software
updates [2], much like updating the operating system or apps
on smartphones, to reduce the costs associated with physical
recalls and mechanical upgrades. The ultimate goal of SDV is
to develop fully autonomous vehicles, which rely on software
to control all aspects of driving and allow vehicles to become
more than just means of transportation [3].

Service-oriented architecture (SOA) [4] is a software design
paradigm where applications are structured as a collection of
loosely coupled, independent services. These services commu-
nicate through a protocol over a network with each other to

perform complex processes. SOA aims to improve software
systems’ agility, efficiency, and maintainability by promoting
modularity and reuse. In the context of SDV, SOA allows for
the creation of modular applications that can be developed,
deployed, and updated independently [5], which is crucial for
SDV as different vehicle functionalities (such as infotainment,
autonomous driving, and telematics) can be deployed and
updated individually without affecting other systems. Ulti-
mately, SOA supports the visions of SDV that are continually
improving, highly customizable, and capable of integrating
with the broader ecosystem of transportation and smart city
technologies.

SOME/IP (Scalable service-Oriented MiddlewarE over IP)
[6] is a middleware standardized by AUTOSAR (AUTomotive
Open System ARchitecture) that implements SOA for auto-
motive systems, where distinct software components provide
SDV above functionalities. SOME/IP is structured around
sending messages over IP networks, utilizing either TCP or
UDP based on the application’s needs, following the four
communication patterns of request/response, fire/forget, event,
and field. Vsomeip [7] is an open-source implementation of the
communication and service discovery functions of SOME/IP.

QUIC (Quick UDP Internet Connections) [8] is an IETF-
standardized transport layer protocol that combines the best
features of TCP and UDP while mitigating their respective
drawbacks. QUIC offers UDP’s speed and simplicity with
TCP’s reliability and sequencing, enriched with security and
performance enhancements. For instance, QUIC combines the
connection establishment and the transport security negotia-
tions into a single step, thereby reducing latency, especially for
new connections over previously established sessions (termed
0-RTT handshake). In addition, QUIC incorporates TLS as a
core protocol part, not an add-on, so that security becomes a
fundamental aspect of QUIC, providing better privacy and se-
curity guarantees compared to TCP, which relies on TLS/SSL
to be layered on top separately.

In this paper, we substitute QUIC for TCP in SOME/IP to
design “Qucik” SOME/IP and to prototype qsomeip and com-
pare its performance with vsomeip. The qsomeip is expected
to incur lower connection delay and provide more robust se-
curity. In addition, by utilizing QUIC’s Connection Identifiers
(CIDs) and stream multiplexing, we also introduce the fifth
communication pattern, termed fault tolerance streaming to
facilitate simultaneous data transmissions from one sender to

979-8-3315-1778-6/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 1
00

th
 V

eh
ic

ul
ar

 T
ec

hn
ol

og
y

C
on

fe
re

nc
e

(V
TC

20
24

-F
al

l)
| 9

79
-8

-3
31

5-
17

78
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
TC

20
24

-F
al

l6
31

53
.2

02
4.

10
75

77
87

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on January 09,2025 at 21:33:50 UTC from IEEE Xplore. Restrictions apply.

one receiver over two physically disjoint paths to tolerate
the failure of one path. Through rigorous experimentation,
we show that qsomeip outperforms vsomeip in terms of
connection setup latency, security, and fault tolerance for in-
vehicle networking systems.

The remainder of the paper is organized as follows. The next
section reviews SOME/IP, QUIC, and vsomeip. Section III de-
scribes the prototype of “Quick” SOME/IP, qsomeip. Section
IV evaluates the performance of qsomeip and compares it with
vsomeip. Section V summarizes the contributions of this work.

II. BACKGROUND

A. Review of SOME/IP

SOME/IP is a middleware standard that supports SOA
for on-board vehicular networks. SOME/IP specifies the API
for applications to communicate through TCP or UDP over
IP. Fig. 1 depicts the four communication patterns sup-
ported by SOME/IP: request/response, fire/forget, event (sub-
scribe/notify), and field. The request/response pattern realizes
remote-procedure call (RPC). When a response is not required
for a request, we have the fire/forget pattern. The event pattern
is used to report the status to interested parties, which is
realized in terms of subscription and notification. In the field
pattern, a field is a property of a service that can be remotely
accessed using getters or setters. Getter is the method to read
field value; setter is the method to set the field value. When
a field’s value changes, a notification event is sent out by the
notifier.

B. Review of QUIC

QUIC is a protocol developed by Google that operates on
top of UDP, as depicted in Fig. 2. Compared to TCP, QUIC

Fig. 1. Communication patterns of SOME/IP

Fig. 2. Comparison between TCP and QUIC in protocol stack [8]

offers numerous advantages, such as zero-round-trip time (0-
RTT) connections, enhanced congestion control, connection
migration, and forward error correction. The 0-RTT connection
is the most significant performance advantage of QUIC [9].
In most circumstances, just 0-RTT is required to perform data
transfer, which is crucial for autonomous driving systems that
make decisions by transmitting data with minimal latency.
Meanwhile, QUIC employs CIDs to decouple connection iden-
tification from specific IP addresses and ports. This architec-
tural choice enables seamless migration of connections across
different network paths without interruption. Consequently,
QUIC possesses the inherent potential for supporting multipath
capabilities.

C. Review of vsomeip Architecture

Vsomeip is an open-source implementation of the commu-
nication and service discovery functions of SOME/IP. Fig. 3
depicts the software architecture of vsomeip [6] with two
ECUs connected by an Ethernet link. The routing manager is
the core of the vsomeip and is responsible for local and remote
communications. It manages transport endpoints (i.e., TCP and
UDP sockets) to communicate with applications residing on
remote devices and local endpoints (i.e., Unix domain sockets)
with other applications residing on the same device.

III. PROTOTYPE OF QUICK SOME/IP (QSOMEIP)

Boost.Asio is a cross-platform C++ library for network
and low-level I/O programming that provides a consistent
asynchronous model. Due to vsomeip’s use of the Boost.Asio
C++ library’s boost:asio::io_service class [6], we
chose Nexus [10] to prototype qsomeip, as Nexus uses
Boost.Asio’s boost::asio::any_io_executor class,
which is constructed using the executor obtained from the
boost:asio::io_service. After modifying vsomeip to
work with Nexus, we build qsomeip, which uses QUIC to
facilitate the four communication patterns of SOME/IP. As the
vsomeip routing manager in each device manages the transport
endpoints, the routing manager of qsomeip binds to the Nexus’
implementation of QUIC as specified by applications. The
qsomeip will still implement the same API as the vsomeip
because the routing manager has the same management logic
for both TCP and QUIC nodes.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on January 09,2025 at 21:33:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Software architecture of vsomeip [6]

For transport layer security, OpenSSL is utilized by
vsomeip, while Nexus employs BoringSSL. To address the
compatibility issue so that OpenSSL and BoringSSL may
coexist in the same process, BoringSSL is compiled as a Git
submodule alongside vsomeip per BoringSSL’s official build
guide [11].

Two-path Fault Tolerance Streaming
As shown in Fig. 4, to provide fault tolerant transmissions

of (streaming) data from vehicle sensors (e.g., camera, li-
dar, radar, etc.) to ECUs (Electronic Control Units), “Quick
SOME/IP” defines the fifth communication pattern of fault
tolerance streaming, to facilitate data streaming from a sender
over two disjoint paths to a receiver. This communication
pattern allows the same data to be transmitted simultaneously
over two physically disjoint paths to the receiver to provide
fault tolerance to data transmission in the event of connection
failure, due to collision, for instance.

There exist multiple designs of multi-path extensions for
QUIC [12]. We have taken inspiration from Alibaba’s xquic
[13] design, which introduces a multiple-port monitoring
mechanism where each worker is assigned a unique port and
a port’s information is embedded in the CID of the returned
packet. This approach enables efficient path identification and
connection management without modifying the kernel.

We tested qsomeip’s two-path design between one sender-

Fig. 4. Two-path Fault Tolerance Streaming Pattern

Fig. 5. Process of vsomeip connection establishment with 3-RTT

receiver pair by simultaneously transmitting a video through
two disjoint paths. The experiments demonstrated that when
one path is cut off, the receiver continues receiving data over
the other path without any interruption.

IV. PERFORMANCE EVALUATION

We compared the performance of qsomeip with vsomeip.

A. Lower latency for connection establishment

Compared to qsomeip, it takes vosmeip 3-RTT to establish a
connection. Fig. 5 illustrates that TCP and TLS establish their
respective connection states in sequence, resulting in 3-RTT
between the client and server for handshake and encryption
negotiation. This process is not suitable for ADAS systems
that require real-time data transmission. By implementing the
qsomeip, latency can be reduced.

The Diffie-Hellman (DH) algorithm is a key exchange
protocol and can realize the secure establishment of the keys
in network communication. Because in many cases, no matter
what method is used for communication, as long as the
channel is insecure, it is difficult to ensure that the data is
protected. So, the QUIC protocol uses the DH algorithm to
ensure data exchange security and combines its encryption
and handshake process to reduce the number of round trips
during the connection establishment process.

For the first connection of the QUIC protocol, its main
content is the key negotiation and data transmission between
the client and the server [8]. The steps for establishing a
handshake in QUIC are shown in Fig. 6. It can be seen
that when the first connection is made, it takes 1-RTT. The
client keeps the server configuration, allowing subsequent
connections to utilize the saved server configuration to bypass
key negotiation directly, so the following connections require
a 0-RTT handshake.

To show the performance difference between qsomeip and
vsomeip, we designed experiments to measure the overall time
required by qsomeip and vsomeip to complete a specified
number of request tasks under the same configuration. Since
QUIC incurs different connection time for 1-RTT and 0-RTT

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on January 09,2025 at 21:33:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Steps for establishing a connection with QUIC

connections, we will measure the overall time to complete a
specified number of requested tasks in the same configuration
to show the different connection establishment time. For the
1-RTT qsomeip experiments, the server config is flushed after
each connection establishment. In contrast, for the 0-RTT
qsomeip experiments, the first request incurs 1-RTT while the
remaining requests incur 0-RTT.

We measured the latency of the request/response and the
event (subscribe/notify) patterns, as the fire/forget and the field
patterns are special forms of the previous two patterns. The
field pattern should have the same connection time as the event
pattern, and the main difference between them is the message
content, which has no significance in the measured connection
time. Also, because the message is ignored, there is no way
to send it back and forth in the fire-forget pattern, so it is
unsuitable for testing the response speed between the server
and the client. We compared qsomeip (0-RTT), qsomeip (1-
RTT), and vsomeip under two identically configured virtual
machines for executing the measurement samples. To get
accurate results, we executed three times for each target time
and took the average.

For the request/response pattern, we wrote response-
measurement and request-measurement samples for testing;
the former was similar to a standard server that will respond
directly to client requests; the latter will determine the total
number of times to perform the request-response cycle based
on the received command line parameters. We can assume that
the server will be started first each time so that the server will
remain listening, and the client will establish a connection and
send it directly each time it starts. For each experiment, the

client repeatedly makes a request and waits for a response for
a certain number of iterations maintained by a counter. We
vary the counter from 10 to 100 with increments of 10. We
measured the time it takes for each experiment via the Unix
gettimeofday function.

For the event pattern, we set notification measurement to
continuously send event messages of a fixed length. Then,
we added a counter to subscribe-measurement to output the
program runtime and terminate it when the target number of
messages was received. We put the target number for this
pattern from 100 to 200 with increments of 10.

Experiment Results. As illustrated in Fig. 7 and 8, qsomeip
demonstrates superior performance at the transport layer in
both communication patterns. This is primarily evidenced by
the reduced overall time required for qsomeip to complete
a specified number of request tasks under identical config-
urations compared to vsomeip. Specifically, for both 0-RTT
and 1-RTT in qsomeip, the 0-RTT configuration exhibits
a lower overall time to complete the specified number of
request tasks. This is because 0-RTT allows the handshake
between client and server to be completed faster to establish
the connection. However, it is noteworthy that qsomeip’s
performance advantage diminishes as the number of requests
increases. With the extension of the overall communication
duration, the performance of qsomeip and vsomeip gradually
converges. This trend is particularly pronounced in the event
pattern, which is not obviously in the request/response pattern.
This is because neither the server nor the client waits for each
other during the event pattern’s data transmission, and the
server transmits data at a high frequency unless it encounters
self-imposed blocking.

Based on the experimental results, qsomeip is well-suited
for Advanced Driver Assistance Systems (ADAS) due to its
operation within a communication environment characterized
by very low and stable latency.

Fig. 7. Experimental results of request-response pattern

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on January 09,2025 at 21:33:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Experimental results of event pattern

B. Stronger security protection for communications

In the context of security, the most significant difference be-
tween qsomeip and other security improvements of SOME/IP
is that qsomeip provides more robust security protection, as
offered by TLS 1.3, while applying the QUIC protocol and not
adding extra communication delays. In some existing designs,
they tried to build a security protocol with authentication and
confidentiality tests to protect the middleware, which improved
security with increased latency [6]. Specifically, according to
their experimental results, the 1-RTT latency increased by
applying local communication to transmit the message to the
remote host, and packets flow over the Internet. Opposite
of this, our result was that the qsomeip’s 1-RTT connection
establishment delay was reduced compared to the vsomeip’s
3-RTT connection establishment delay. Since qsomeip uses
QUIC to replace TCP, the security of the middleware is
enhanced. For instance, QUIC supports forward security when
a connection is established [8]. Forward security signifies that
previously encrypted data will not be compromised even if the
key itself is compromised.

To demonstrate the security feature of qsomeip, we tested
qsomeip to defend against the man-in-the-middle (MITM)
attacks that cause damages to the vsomeip implementation of
SOME/IP [14]. In the MITM attack, the Service offering server
first transmits a service offer message with its endpoint. When
receiving this message, the Attacker, as the middleman, will
send the same service offer with its endpoint to the client. Not
being able to differentiate the two service offers, the client may
choose the attacker as the service provider for its requests.
If the attacker (middleman) is chosen, the attack becomes
successful.

By using the DH algorithm in TLS 1.3 within QUIC, all
data transmitted over QUIC is encrypted with private keys.
This ensures that even if an attacker intercepts the data, she
cannot read the contents without the private keys. Also, during
the TLS handshake, the server presents a digital certificate that
the client verifies. This certificate is signed by a trusted third

party, ensuring the client communicates with the legitimate
server, not an attacker. Our experiments validated that man-
in-the-middle attacks cannot succeed.

V. CONCLUSION

This paper presents “Quick” SOME/IP, which replaces TCP
with QUIC for SOME/IP, and its implementation qsomeip.
In addition, “Quick” SOME/IP introduced fault tolerance
streaming as the fifth communication pattern to facilitate fault
tolerant data transmission between a sender and a receiver.
Based on our evaluation, qsomeip outperforms vsomeip in
terms of lower connection latency, better security without
extra delay, and fault tolerance data transmission for in-vehicle
systems. “Quick” SOME/IP provides a potential alternative to
SOME/IP for the automotive industry.

REFERENCES

[1] S. Lu and W. Shi, “The emergence of vehicle computing,” IEEE Internet
Computing, vol. 25, no. 3, pp. 18–22, 2021.

[2] Y. Qi, G. Yang, L. Liu, J. Fan, A. Orlandi, H. Kong, W. Yu, and Z. Yang,
“5g over-the-air measurement challenges: Overview,” IEEE Transactions
on Electromagnetic Compatibility, vol. 59, no. 6, pp. 1661–1670, 2017.

[3] S. Han, D. Cao, L. Li, L. Li, S. E. Li, N.-N. Zheng, and F.-Y. Wang,
“From software-defined vehicles to self-driving vehicles: A report on
cpss-based parallel driving,” IEEE Intelligent Transportation Systems
Magazine, vol. 11, no. 1, pp. 6–14, 2019.

[4] M. Rumez, D. Grimm, R. Kriesten, and E. Sax, “An overview of
automotive service-oriented architectures and implications for security
countermeasures,” IEEE Access, vol. 8, pp. 221 852–221 870, 2020.

[5] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi,
“Computing systems for autonomous driving: State of the art and
challenges,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6469–
6486, 2021.

[6] M. Iorio, A. Buttiglieri, M. Reineri, F. Risso, R. Sisto, and F. Valenza,
“Protecting in-vehicle services: Security-enabled SOME/IP middle-
ware,” IEEE Vehicular Technology Magazine, vol. 15, no. 3, pp. 77–85,
2020.

[7] A. Ioana and A. Korodi, “Vsomeip - opc ua gateway solution for
the automotive industry,” in 2019 IEEE International Conference on
Engineering, Technology and Innovation (ICE/ITMC), 2019, pp. 1–6.

[8] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC transport
protocol: Design and internet-scale deployment,” in Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 183–196. [Online].
Available: https://doi.org/10.1145/3098822.3098842

[9] F. Chiariotti, A. A. Deshpande, M. Giordani, K. Antonakoglou, T. Mah-
moodi, and A. Zanella, “Quic-est: A QUIC-enabled scheduling and
transmission scheme to maximize voi with correlated data flows,” IEEE
Communications Magazine, vol. 59, no. 4, pp. 30–36, 2021.

[10] C. Bodley, “nexus,” 2021, gitHub repository. [Online]. Available:
https://github.com/cbodley/nexus

[11] D. Benjamin, “boringssl,” 2014, gitHub repository. [Online]. Available:
https://github.com/google/boringssl

[12] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz,
“Multipath QUIC: A deployable multipath transport protocol,” in 2018
IEEE International Conference on Communications (ICC), 2018, pp.
1–7.

[13] W. Zhao, “xquic,” 2021, gitHub repository. [Online]. Available:
https://github.com/alibaba/xquic

[14] D. Zelle, T. Lauser, D. Kern, and C. Krauß, “Analyzing and securing
SOME/IP automotive services with formal and practical methods,”
in Proceedings of the 16th International Conference on Availability,
Reliability and Security, ser. ARES ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3465481.3465748

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on January 09,2025 at 21:33:50 UTC from IEEE Xplore. Restrictions apply.

