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Abstract

We study the stochastic linear bandits with heavy-tailed noise. Two principled strategies
for handling heavy-tailed noise, truncation and median-of-means, have been introduced to
heavy-tailed bandits. Nonetheless, these methods rely on specific noise assumptions or bandit
structures, limiting their applicability to general settings. The recent work [Huang et al., 2024]
develops a soft truncation method via the adaptive Huber regression to address these limitations.
However, their method suffers undesired computational cost: it requires storing all historical
data and performing a full pass over these data at each round. In this paper, we propose a
one-pass algorithm based on the online mirror descent framework. Our method updates using
only current data at each round, reducing the per-round computational cost from O(t log T ) to
O(1) with respect to current round t and the time horizon T , and achieves a near-optimal and

variance-aware regret of order Õ
(
dT

1−ε
2(1+ε)

√∑T
t=1 ν

2
t + dT

1−ε
2(1+ε)

)
where d is the dimension and

ν1+ε
t is the (1 + ε)-th central moment of reward at round t.

1 Introduction

Stochastic Linear Bandits (SLB) models sequential decision-making process with linear structured
reward distributions, which has been extensively studied in the literature [Dani et al., 2008, Abbasi-
Yadkori et al., 2011, Li et al., 2021]. Specifically, in general SLB the observed reward at time t
is the inner product of the arm’s feature vector Xt and an unknown parameter θ∗, corrupted by
sub-Gaussian noise ηt, namely,

rt = X⊤
t θ∗ + ηt. (1)

However, in many real-world scenarios, the noise in data often follows a heavy-tailed distribution,
such as in financial markets [Cont and Bouchaud, 2000, Hull, 2012] and online advertising [Choi
et al., 2020, Jebarajakirthy et al., 2021]. This motivates the study of heavy-tailed linear bandits
(HvtLB) model [Medina and Yang, 2016, Shao et al., 2018, Xue et al., 2020, Huang et al., 2024],
where the noise ηt in (1) satisfies that for some ε ∈ (0, 1], ν > 0,

E[ηt] = 0, E[|ηt|1+ε] ≤ ν1+ε. (2)

To address heavy-tailed noise, statistical methods in estimation and regression often rely on two
key principles: truncation and median-of-means (MOM) [Lugosi and Mendelson, 2019]. Truncation
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Table 1: Comparisons of our regret bounds and computational complexity to previous best-known results for
heavy-tailed linear bandits. For the regret, the logarithmic dependence over T is hidden by Õ(·)-notation; d
is the dimension, νt is the moment bound. For the computational cost, we only keep the dependence on the
time step t and overall time step T .

Method Algorithm Regret Comp. cost Remark

MOM
MENU [Shao et al., 2018]

CRMM [Xue et al., 2023]
Õ

(
dT

1
1+ε

) O(log T )

O(1)

fixed arm set and

repeated pulling

Truncation
TOFU [Shao et al., 2018]

CRTM [Xue et al., 2023]
Õ

(
dT

1
1+ε

) O(t)

O(1)

absolute moment

E[|rt|1+ε | Ft−1] ≤ u

Huber HEAVY-OFUL [Huang et al., 2024] Õ
(
dT

1−ε
2(1+ε)

√∑T
t=1 ν

2
t + dT

1−ε
2(1+ε)

)
O(t log T ) instance-dependent bound

Huber Hvt-UCB (Corollary 1) Õ
(
dT

1
1+ε

)
O(1) E[|ηt|1+ε | Ft−1] ≤ ν1+ε

Huber Hvt-UCB (Theorem 1) Õ
(
dT

1−ε
2(1+ε)

√∑T
t=1 ν

2
t + dT

1−ε
2(1+ε)

)
O(1) instance-dependent bound

methods handle outliers by directly removing extreme data points. In the case of soft version
truncation, such as Catoni’s M-estimator [Catoni, 2012], which reduces the impact of outliers by
assigning them lower weights. This ensures robust estimates while maintaining potentially valuable
information from extreme data points. Median-of-means (MOM) methods take a different approach
by dividing the dataset into several groups, calculating the mean within each group, and then using
the median of these group means as the final estimate. This method limits the influence of outliers
to only a few groups, preventing them from affecting the overall dataset.

For HvtLB, Shao et al. [2018] constructed algorithms using truncation and MOM-based least

squares approach for parameter estimation, and achieved an Õ
(
dT

1
1+ε
)
regret bound which is proven

to be optimal. However, these approaches have some notable issues: truncation methods require
the assumption of bounded absolute moments for rewards, which cannot vanish in deterministic
case, making them suboptimal in noiseless scenarios; MOM methods rely on repeated arm pulling
and assumption of a fixed arm set, which is only feasible in bandit settings. These limitations
reveal that methods based on truncation and MOM heavily depend on specific assumptions or the
bandit structure, making them challenging to adapt to broader scenarios, such as online MDPs and
adaptive control. A more detailed discussion of these challenges is provided in Section 5.

Recently, Sun et al. [2020] made remarkable progress in the study of heavy-tailed statistics by
proposing adaptive Huber regression, which leverages the Huber loss [Huber, 1964] to achieve non-
asymptotic guarantees. Li and Sun [2023] further applied this technique to SLB, achieving an optimal
and variance-aware regret bound under bounded variance conditions (ε = 1). Subsequently, Huang
et al. [2024] extended the adaptive Huber regression to handle heavy-tailed scenarios (ε ∈ (0, 1]),

achieving an optimal and instance-dependent regret bound of Õ
(
dT

1−ε
2(1+ε)

√∑T
t=1 ν

2
t + dT

1−ε
2(1+ε)

)
for

HvtLB. Notably, the adaptive Huber regression does not rely on additional noise assumptions or
the repeated pulling of bandit settings. This generality allows the approach to be further adapted
to other decision-making scenarios, such as reinforcement learning with function approximation.

In each round t, the adaptive Huber regression has to solve the following optimization problem:

θ̂t = argmin
θ∈Θ

λ ∥θ∥22 +
t−1∑
s=1

ℓs(θ), (3)

where Θ is the feasible set of the parameter, λ is the regularization parameter, and ℓs(θ) represents
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the Huber loss at round s. Unlike the OFUL algorithm [Abbasi-Yadkori et al., 2011] in SLB with sub-
Gaussian noise, which uses least squares (LS) for estimation and can update recursively based on the
closed-form solution, the Huber loss is partially quadratic and partially linear. Solving (3) requires
storing all historical data and performing a full pass over all historical data at each round t to update
the parameter estimation. This results in a per-round storage cost of O(t) and computational cost
of O(t log T ) with respect to the current round t and the time horizon T , making it computationally
infeasible for large-scale or real-time applications. Thus, we need a one-pass algorithm for HvtLB
that is as efficient as OFUL in SLB with sub-Gaussian noise, updating the estimation at each round
t using only the current data, without storing historical data. While one-pass algorithms based on
the truncation and MOM approach have been proposed by Xue et al. [2023], but as noted earlier,
these methods heavily rely on specific assumptions or the bandit structure. Given the attractive
properties of Huber loss-based method [Huang et al., 2024], a natural question arises: Is it possible
to design a one-pass Huber-loss-based algorithm that achieves optimal regret?

Our Results. In this work, we propose a Huber loss-based one-pass algorithm Hvt-UCB utilizing

the Online Mirror Descent (OMD) framework, which achieves the optimal regret bound of Õ(dT
1

1+ε )
while eliminating the need to store historical data. Additionally, our algorithm can further achieve

the instance-dependent regret bound of Õ
(
dT

1−ε
2(1+ε)

√∑T
t=1 ν

2
t +dT

1−ε
2(1+ε)

)
, where ν1+εt is the (1+ε)-th

central moment of reward at round t. Our approach preserves both optimal and instance-dependent
regret guarantees achieved by Huang et al. [2024] while significantly reducing the per-round
computational cost from O(t log T ) to O(1) with respect to the current round t and the time horizon
T . Moreover, our algorithm does not rely on any additional assumptions, making it more broadly
applicable. A comprehensive comparison of our results and previous works on heavy-tailed linear
bandits is presented in Table 1.

Techniques. Our main technical contribution is adapting the OMD framework, originally developed
for regret minimization in online optimization, to parameter estimation in HvtLB. This adaptation
requires linking the parameter gap (estimation error) with the loss value gap (regret) and involves
two key components: (i) handling heavy-tailed noise: Zhang et al. [2016] have adopted a variant
of Online Newton Step (ONS) to Logistic Bandits settings, but their method cannot be applied
to HvtLB since their method relies on the global strong convexity of the logistic loss, whereas the
Huber loss is partially linear. We generalize their approach to the OMD framework and introduce
a recursive normalization factor that ensures normal data stays in the quadratic region of the
Huber loss with high probability, maintaining robustness in estimation. This normalization factor
also introduces a negative term in the estimation error, which is crucial for controlling stability;
(ii) supporting one-pass update: The OMD framework introduces a stability term in estimation
error, which represents the impact of online updates. The adaptive normalization factor adds a
multiplicative bias to this term, resulting in a positive Õ(

√
T ) term that weakens the bound. This

requires a careful design of the normalization factor and learning rate of OMD to cancel out the
positive term using the negative term, ensuring stability and maintaining a tight bound.

Notations. For a vector x ∈ Rd and postive semi-definite matrix V ∈ Rd×d, we denote ∥x∥V =√
x⊤V x. For a strictly convex and continuously differentiable function ψ : W → R, the Bregman

divergence is define as Dψ(w1,w2) = ψ(w1)− ψ(w2)− ⟨∇ψ(w2),w1 −w2⟩.
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2 Related Work

Heavy-Tailed Bandits. The multi-armed bandits (MAB) problem with heavy-tailed rewards,
characterized by finite (1 + ε)-moment, was first studied by Bubeck et al. [2013]. They introduced
two widely used robust estimation and regression methods from statistics into the heavy-tailed
bandits setting: truncation and median-of-means (MOM). Medina and Yang [2016] extended these
methods to heavy-tailed linear bandits (HvtLB) and proposed two algorithms: the truncation-based

CRT algorithm and the MOM-based MoM algorithm, achieving Õ
(
dT

2+ε
2(1+ε)

)
and Õ

(
dT

1+2ε
1+3ε

)
regret

bounds, respectively. Later, Shao et al. [2018] established an Ω
(
dT

1
1+ε
)
lower bound for HvtLB and

introduced the truncation-based TOFU algorithm and the MOM-based MENU algorithm, both

achieving an Õ
(
dT

1
1+ε
)
regret bound. For HvtLB with finite arm set, Xue et al. [2020] established

an Ω
(
d

ε
1+εT

1
1+ε
)
lower bound, and proposed the truncation-based BTC algorithm and MOM-based

BMM algorithm, both of which achieve an Õ
(√
dT

1
1+ε
)
regret bound, reducing the dependence on

the dimension d under the finite arm set setting. To the best of our knowledge, the two works [Kang
and Kim, 2023, Li and Sun, 2023] first introduce Huber loss to linear bandits. Specifically, Kang
and Kim [2023] studied the heavy-tailed linear contextual bandits (HvtLCB) with fixed and finite
arm set, where the context Xt at each round is independently and identically distributed from a
fixed distribution. They proposed the Huber-Bandit algorithm based on Huber regression, achieving

an Õ
(√
dT

1
1+ε
)
regret bound. On the other hand, Li and Sun [2023] were the first to apply adaptive

Huber regression technique [Sun et al., 2020] to SLB, focusing on noise with finite variance (namely,
HvtLB with ε = 1). They proposed AdaOFUL algorithm, achieving an optimal variance-aware

regret of Õ(d
√∑T

t=1 ν
2
t ), where νt is the upper bound of the variance. This result is subsequently

improved by Huang et al. [2024], which is also the most related work to ours. Huang et al. [2024]
considered general heavy-tailed scenarios with ε ∈ (0, 1] and proposed HEAVY-OFUL with an

instance-dependent regret of Õ
(
dT

1−ε
2(1+ε)

√∑T
t=1 ν

2
t + dT

1−ε
2(1+ε)

)
where ν1+εt is the (1 + ε)-th central

moment of reward at round t. We emphasize that all the above Huber regression-based algorithms
for heavy-tailed bandits are not updated in a one-pass manner.

One-Pass Bandit Learning. In SLB, Abbasi-Yadkori et al. [2011] proposed the OFUL algorithm,
achieving an O(d

√
T ) regret bound. It uses Least Squares (LS) for parameter estimation, naturally

supporting one-pass updates with a closed-form solution. As an extension of SLB, Generalized Linear
Bandits (GLB) were first introduced by Filippi et al. [2010]. Their proposed GLM-UCB algorithm
achieves an O(κ−1d

√
T ) regret bound, where κ measures the non-linearity of the generalized linear

model. This algorithm relies on Maximum Likelihood Estimation (MLE) which doesn’t have a
closed-form solution like LS in SLB and requires storing all historical data, resulting in a per-round
computational cost of O(t). To this end, Zhang et al. [2016] proposed OL2M, the first one-pass
algorithm for Logistic Bandits (a specific class of GLB), achieving an O(κ−1d

√
T ) regret bound

with per-round computational cost of O(1). Later, Jun et al. [2017] explored one-pass algorithms for
GLB by introducing the online-to-confidence-set conversion. Using this conversion, they developed
GLOC, a one-pass algorithm that achieves the same theoretical guarantees and per-round cost as
OL2M but is applicable to all GLB. Xue et al. [2023] considered heavy-tailed GLB and proposed two
one-pass algorithms: truncation-based CRTM and mean-of-medians-based CRMM, both achieving

an Õ
(
κ−1dT

1
1+ε
)
regret bound. Subsequent works have tackled more challenging topics, such
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as reducing the dependence on κ with one-pass algorithms or designing one-pass algorithms for
more complex models like Multinomial Logistic Bandits and Multinomial Logit MDPs [Zhang and
Sugiyama, 2023, Li et al., 2024, Lee and Oh, 2024, Li et al., 2025].

3 One-Pass Heavy-tailed Linear Bandits

In this section, we present our one-pass method for handling linear bandits with heavy-tailed noise.
Section 3.1 introduces the problem setup. Section 3.2 reviews the latest work and identifies the
inefficiency of the previous method. Section 3.3 introduces the OMD-type estimator based on Huber
loss, along with the UCB-based arm selection strategy and the regret guarantee.

3.1 Problem Setup

We investigate the heavy-tailed linear bandits. At round t, the learner chooses an arm Xt from the
feasible set Xt ⊆ Rd, and then the environment reveals a reward rt ∈ R such that

rt = X⊤
t θ∗ + ηt, (4)

where θ∗ ∈ Rd is the unknown parameter and ηt ∈ R is the random noise. We define the filtration
{Ft}t≥1 as Ft ≜ σ ({X1, r1, ..., Xt−1, rt−1, Xt}). The noise ηt ∈ R is Ft-measurable and satisfies for
some ε ∈ (0, 1], E[ηt | Ft−1] = 0 and E[|ηt|1+ε | Ft−1] = ν1+εt with νt being Ft−1-measurable. The
goal of the learner is to minimize the following (pseudo) regret,

RegT =

T∑
t=1

max
x∈Xt

x⊤θ∗ −
T∑
t=1

X⊤
t θ∗.

We work under the following assumption as prior works [Xue et al., 2023, Huang et al., 2024].

Assumption 1 (Boundedness). The feasible set and unknown parameter are assumed to be bounded:
∀x ∈ Xt, ∥x∥2 ≤ L, θ∗ ∈ Θ holds where Θ ≜ {θ | ∥θ∥2 ≤ S}.

3.2 Reviewing Previous Efforts

In this part, we review the best-known algorithm of Huang et al. [2024]. They leveraged the adaptive
Huber regression method [Sun et al., 2020] to tackle the challenges of heavy-tailed noise. Specifically,
adaptive Huber regression is based on the following Huber loss [Huber, 1964].

Definition 1 (Huber loss). Huber loss is defined as

fτ (x) =

{
x2

2 if |x| ≤ τ,

τ |x| − τ2

2 if |x| > τ,
(5)

where τ > 0 is the robustification parameter.

The Huber loss is a robust modification of the squared loss that preserves convexity. It behaves
as a quadratic function when |x| is less than the threshold τ , ensuring strong convexity in this range.
When |x| exceeds τ , the loss transitions to a linear function to reduce the influence of outliers.
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At round t, building on the Huber loss, adaptive Huber regression estimates the unknown
parameter θ∗ of linear model (4) by using all past data up to t as

θ̂t = argmin
θ∈Θ

{
λ

2
∥θ∥22 +

t∑
s=1

fτs

(
rs −X⊤

s θ

σs

)}
, (6)

where λ is the regularization parameter, fτs(·) represents the Huber loss with dynamic robustification
parameter τs, and σs denotes the normalization factor. Based on the adaptive Huber regression,
their proposed Heavy-OFUL algorithm achieves the optimal and instance-dependent regret bound.

Efficiency Concern. When the robustification parameter τs = +∞, Huber regression (6) reduces
to least square, allowing one-pass updates with a closed-form solution. However, for finite τs, which
is essential for handling heavy-tailed noise, (6) requires solving a strongly convex and smooth
optimization problem, which needs to store all past data resulting in a storage complexity of O(t).
Using Gradient Descent (GD) to achieve an ϵ-accurate solution requires O(log(1/ϵ)) iterations, with
per-iteration computational cost of O(t) to compute the gradient over all past data. To ensure an
optimal regret, ϵ is typically set to 1/

√
T , leading to a total computational cost of O(t log T ) at

round t. This would be infeasible for a large-scale time horizon of T .

3.3 Hvt-UCB: Huber loss-based One-Pass Algorithm

The adaptive Huber regression method proposed by Huang et al. [2024] incurs significant computa-
tional burden in each round and requires storing all past data, which is impractical in real-world
applications. Thus, we aim to design a one-pass algorithm for HvtLB based on the Huber loss (5).

For simplicity, let zt(θ) ≜
rt−X⊤

t θ
σt

, we introduce the loss function ℓt(θ) based on (5) as follows,

ℓt(θ) =


1
2

(
rt−X⊤

t θ
σt

)2
if |zt(θ)| ≤ τt,

τt| rt−X
⊤
t θ

σt
| − τ2t

2 if |zt(θ)| > τt,

(7)

where σt is the normalization factor and τt is the robustification parameter, both for controlling the
impact of heavy-tailed noise.

To enable a one-pass update, instead of solving Huber regression (6) using all historical data,
we will adopt the Online Mirror Descent (OMD) framework [Orabona, 2019]. As a general and
versatile framework for online optimization, OMD has been widely applied to various challenging
adversarial online learning problems, such as online games [Rakhlin and Sridharan, 2013, Syrgkanis
et al., 2015], adversarial bandits [Abernethy et al., 2008, Wei and Luo, 2018], and dynamic regret
minimization [Jacobsen and Cutkosky, 2022, Zhao et al., 2024], among others. In contrast, we leverage
its potential to address stochastic bandit problems, drawing inspiration from recent advancements
in the study of logistic bandits [Zhang and Sugiyama, 2023]. Specifically, we propose the following
OMD-based update to estimate the unknown parameter,

θ̂t+1 = argmin
θ∈Θ

{〈
θ,∇ℓt(θ̂t)

〉
+Dψt(θ, θ̂t)

}
, (8)

where Θ is the feasible set defined in Assumption 1 and Dψt(·, ·) is the Bregman divergence associated
to the regularizer ψt : Rd 7→ R. The choice of the regularizer is crucial because, in stochastic bandits,
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parameter estimation is subsequently used for confidence set construction. Therefore, we define the
regularizer using the local information of the current round t as

ψt(θ) =
1

2
∥θ∥2Vt , with Vt ≜ λI +

1

α

t∑
s=1

XsX
⊤
s

σ2s
, V0 ≜ λId. (9)

The choice of this local-norm regularizer is both practical and compatible with the self-normalized
concentration used to construct the Upper Confidence Bound (UCB) of the estimation error. Here,
the coefficient α in Vt essentially represents the step size of OMD, which will be specified later.

Computational Efficiency. Clearly, the estimator (8) can be solved with a single projected
gradient step, which can be equivalently reformulated as:

θ̂t+1 = θ̂t − V −1
t ∇ℓt(θ̂t), θ̂t+1 = argmin

θ∈Θ

∥∥θ − θ̂t+1

∥∥
Vt
,

where the main computational cost lies in calculating the inverse matrix V −1
t , which can be efficiently

updated using the Sherman-Morrison-Woodbury formula with a time complexity of O(d2). The
projection step adds an additional time complexity of O(d3). Focusing on one-pass updates and
considering only the dependence on t and T , our estimator achieves a per-round computational
complexity of O(1), representing a significant improvement over previous methods with a complexity
of O(t log T ). Moreover, it eliminates the need to store all historical data, requiring only O(1)
storage cost throughout the learning process.

Statistical Efficiency. As mentioned earlier, OMD is a general framework that has demonstrated
its effectiveness in adversarial online learning for regret minimization. Nonetheless, in stochastic
bandits, a more critical requirement is the accuracy of parameter estimation. In the following,
we demonstrate that OMD also performs exceptionally well in this regard. The key lemma below
presents the estimation error of estimator (8) based on OMD-typed update.

Lemma 1 (Estimation error). If σt, τt, τ0 are set as

σt = max
{
νt, σmin,

√
2βt−1

τ0
√
αt

1−ε
2(1+ε)

∥Xt∥V −1
t−1

}
, τt = τ0

√
1 + w2

t

wt
t

1−ε
2(1+ε) , τ0 =

√
2κ(log 3T )

1−ε
2(1+ε)(

log 2T 2

δ

) 1
1+ε

,

where σmin is a small positive constant which will be specified later and wt ≜ 1√
α

∥∥∥Xt
σt

∥∥∥
V −1
t−1

. Let the

step size α = 4, then with probability at least 1− 4δ, ∀t ≥ 1, we have
∥∥∥θ̂t+1 − θ∗

∥∥∥
Vt

≤ βt with

βt ≜ 107 log
2T 2

δ
τ0t

1−ε
2(1+ε) +

√
λ (2 + 4S2), where κ ≜ d log

(
1 +

L2T

4σ2minλd

)
. (10)

The proof of Lemma 1 is provided in Appendix B.5. Notably, both of our method and the
HeavyOFUL algorithm of Huang et al. [2024] require the input of σt, τt. In fact, our parameter
setting for σt is simpler. HeavyOFUL requires maintaining two complex lower bounds for σt to
satisfy: ∀θ ∈ Θ,

∣∣(X⊤
t θ −X⊤

t θ∗
)
/σt
∣∣ ≤ τt ensuring that the loss remains quadratic for noiseless data.

In contrast, our analysis focuses on a refined condition to guarantee the quadratic loss property
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involving only the current estimate θ̂t:
∣∣(X⊤

t θ̂t −X⊤
t θ∗)/σt

∣∣ ≤ τt. This refinement enables us to
design a recursive parameter setting that directly incorporates the upper confidence bound βt−1

from the previous round into the configuration of σt for the current round. Furthermore, this
parameter setting can be directly applied to the adaptive Huber regression. Similar to Huang et al.
[2024], our method requires the knowledge of the moment νt of each round t. If νt is not available
but a general bound ν is known, such that E[|ηt|1+ε | Ft−1] ≤ ν1+ε, we can still trivially achieve the
same estimation error bound by replacing νt with ν in the setting of σt.

UCB Construction. Based on the one-pass estimator (8) and Lemma 1, we can specify the arm
selection criterion as

Xt = argmax
x∈Xt

{〈
x, θ̂t

〉
+ βt−1 ∥x∥V −1

t−1

}
. (11)

Algorithm 1 summarizes the overall algorithm, and enjoys following instance-dependent regret.

Theorem 1. By setting σt, τt, τ0, α as in Lemma 1, and let λ = d, σmin = 1√
T
, δ = 1

8T , with

probability at least 1− 1/T , the regret of Hvt-UCB is bounded by

RegT ≤ Õ

dT 1−ε
2(1+ε)

√√√√ T∑
t=1

ν2t + dT
1−ε

2(1+ε)

 .

The proof of Theorem 1 can be found in Appendix C.1. Compared to Huang et al. [2024], our
approach achieves the same order of instance-dependent regret bounds, while significantly reducing
the per-round computational complexity from O(t log T ) to O(1).

When the moment νt of each round t is unknown, but a general bound ν is known, such that
E[|ηt|1+ε | Ft−1] ≤ ν1+ε, we can achieve the following regret bound.

Corollary 1. Follow the parameter setting in Theorem 1, and replace the νt with ν in the σt setting,
the regret of Hvt-UCB is bounded with probability at least 1− 1/T , by

RegT ≤ Õ
(
dT

1
1+ε

)
.

The proof of Corollary 1 can be found in Appendix C.2. This bound matches the lower bound

Ω(dT
1

1+ε ) [Shao et al., 2018] up to logarithmic factors. Moreover, when ε = 1, i.e., the bounded
variance setting, our approach recovers the regret bound Õ(d

√
T ), which nearly matches the lower

bound Ω(d
√
T ) [Dani et al., 2008].

4 Analysis Sketch

In this section, we provide a proof sketch for Lemma 1, where we adapt the analysis framework of
Online Mirror Descent (OMD) to the SLB setting. To simplify the presentation, we first illustrate
this framework using a simpler case where the noise follows a sub-Gaussian distribution in Section 4.1.
We then discuss the challenges of extending this framework to heavy-tailed case and present our
refined analysis in Section 4.2.
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Algorithm 1 Hvt-UCB

Input: time horizon T , confidence δ, regularizer λ, σmin, bounded parameters S, L, parameter for
estimation c0, c1, τ0, α, ε.

1: Set κ = d log
(
1 + L2T

σ2
minλαd

)
, V0 = λId, θ̂1 = 0 and compute β0 by (10)

2: for t = 1, 2, ..., T do

3: Select Xt = argmaxx∈Xt

{〈
x, θ̂t

〉
+ βt−1 ∥x∥V −1

t−1

}
4: Receive the reward rt, and νt

5: Set σt = max
{
νt, σmin,

√
2βt−1

τ0
√
αt

1−ε
2(1+ε)

∥Xt∥V −1
t−1

}
6: Set τt = τ0

√
1+w2

t

wt
t

1−ε
2(1+ε) with wt =

1√
α

∥∥∥Xt
σt

∥∥∥
V −1
t−1

7: Update Vt = Vt−1 + α−1σ−2
t XtX

⊤
t

8: Compute θ̂t+1 by (8) and βt by (10)
9: end for

4.1 Case study of sub-Gaussian noise

We first consider that the noise ηt in model (4) follows a R-sub-Gaussian distribution. Then the
robustification parameter τt should be set as +∞ and the Huber loss recovers the squared loss by
ℓt(θ) =

1
2((rt −X⊤

t θ)/σt)
2.

Estimation error decomposition. We begin by decomposing the estimation error into the
following three components:

Lemma 2. Let ℓ̃t(θ) =
1
2(X

⊤
t (θ∗ − θ)/σt)

2 be the denoised Huber loss function, then the estimation
error of estimator (8) with α = 2 can be decomposed as follows,

∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

≤ 2
t∑

s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
︸ ︷︷ ︸

generalization gap term

+
t∑

s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s︸ ︷︷ ︸

stability term

− 1

2

t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s︸ ︷︷ ︸

negative term

+4λS2,

Proof Sketch. First based on the standard analysis of OMD [Orabona, 2019, Lemma 6.16], we can
have the following inequality,〈

∇ℓt(θ̂t), θ̂t − θ∗

〉
≤ 1

2

∥∥∥θ̂t − θ∗

∥∥∥2
Vt

− 1

2

∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

+
1

2

∥∥∥∇ℓt(θ̂t)∥∥∥2
V −1
t

.

Based on the quadratic property of the denoised loss function ℓ̃t(·), we have the following equality,

ℓ̃t(θ̂t)− ℓ̃t(θ∗) =
〈
∇ℓ̃t(θ̂t), θ̂t − θ∗

〉
− 1

2

∥∥∥θ̂t − θ∗

∥∥∥2XtX
⊤
t

σ2
t

.

Since θ∗ is the minimizer of ℓ̃t(·), ℓ̃t(θ̂t) − ℓ̃t(θ∗) ≥ 0, which implies that 1
2

∥∥θ̂t − θ∗
∥∥2
XtX⊤

t /σ
2
t
≤

⟨∇ℓ̃t(θ̂t), θ̂t − θ∗⟩, then substituting this into the OMD update rule and we can achieve the iteration
inequality for the estimation error, further with a telescoping sum, and we finish the proof.
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Stability term analysis. The first step is to extract stochastic term and deterministic term at
each step s as follows, ∥∥∥∇ℓs(θ̂s)∥∥∥2

V −1
s

=

(
X⊤
s (θ∗ − θ̂s)

σs
+
ηs
σs

)2 ∥∥∥∥Xs

σs

∥∥∥∥2
V −1
s

.

Setting σt = 1, we have
∣∣X⊤

s (θ∗ − θ̂s)
∣∣ ≤ 2LS. Then based on the sub-Gaussian property, we have

|ηs| bounded by O(
√
log T ) with high probability, and

∑t
s=1 ∥Xs∥2V −1

s
can be bounded by O(log T )

with Lemma 7 (potential lemma), which means
∑t

s=1

∥∥∇ℓs(θ̂s)∥∥2V −1
s

≤ O(log2 T ).

Generalization gap term analysis. By taking the gradient of the loss function, we have

t∑
s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
=

t∑
s=1

ηs

〈
Xs, θ̂s − θ∗

〉
,

then we can directly apply the 1-dimension self-normalized concentration (Theorem 2), further based
on AM-GM inequality, we can bound the general gap term by a O(log T ) term and 1

4

∑t
s=1

∥∥θ̂s −
θ∗
∥∥2
XsX⊤

s
, which can be further canceled by the negative term.

By integrating the stability term and generalization gap term into Lemma 2, we can achieve the
upper bound for the estimation error as

∥∥θ̂t+1 − θ∗
∥∥2
Vt

≤ O(log T ).

4.2 Analysis for heavy-tailed noise

In this section, we extend our analysis to the heavy-tailed case. The presence of heavy-tailed noise
and the partially linear structure of the Huber loss introduces new challenges in the three key
analyses mentioned above. We will address these challenges one by one in the following discussion.

Estimation error decomposition. With the presence of heavy-tailed noise, the denoised Huber

loss function with noise-free data z̃t(θ) ≜
X⊤

t θ∗−X⊤
t θ

σt
is defined as

ℓ̃t(θ) ≜


1
2

(
X⊤

t (θ∗−θ)
σt

)2
if |z̃t(θ)| ≤ τt,

τt

∣∣∣X⊤
t (θ∗−θ)
σt

∣∣∣− τ2t
2 if |z̃t(θ)| > τt.

Now ℓ̃t(θ) is partially quadratic and partially linear, to further utilize the OMD-based estimation
error decomposition, we need to make sure θ̂t and θ∗ both lie in the quadratic region of the
loss function ℓ̃t(·). Assuming the event At =

{
∀s ∈ [t],

∥∥θ̂s − θ∗
∥∥
Vs−1

≤ βs−1

}
holds, we set

σ2t ≥ (2 ∥Xt∥2V −1
t−1

βt−1)/(
√
ατ0t

1−ε
2(1+ε) ), we can ensure

∣∣(X⊤
t θ̂t − X⊤

t θ∗)/σt
∣∣ ≤ τt

2 . This guarantees

that ℓ̃t(θ̂t) is always in the quadratic region, allowing us to continue using the previous decomposition.
The negative term from the decomposition will then be used for subsequent cancellation.

Stability term analysis. Similar to the sub-Gaussian case, we can decompose the stability term
into two stochastic and deterministic terms as follows,

t∑
s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

≤ 2

t∑
s=1

(
min

{∣∣∣∣ηsσs
∣∣∣∣ , τs})2 ∥∥∥∥Xs

σs

∥∥∥∥2
V −1
s︸ ︷︷ ︸

stochastic term

+2

t∑
s=1

(
X⊤
s θ∗ −X⊤

s θ̂s
σs

)2 ∥∥∥∥Xs

σs

∥∥∥∥2
V −1
s︸ ︷︷ ︸

deterministic term

.

10



Note that the stochastic term is no longer inherently bounded. To address this, we utilize a

concentration technique (Lemma 6) to bound it by Õ(t
1−ε
1+ε ). For the deterministic term, X

⊤
s θ∗−X⊤

s θ̂s
σs

is bounded by 2LS/σmin, where σmin is the minimum of σt, which can be as small as 1/
√
T . If

we continue using the analysis based on potential lemma, this term will grow to Õ(
√
T ), which is

undesirable. Based on the settings of σt, we ensure that
∥∥Xs
σs

∥∥2
V −1
s

≤ 1
8 . Therefore, this term can be

bounded by 1
4

∑t
s=1

∥∥θ∗ − θ̂s
∥∥2
XsX⊤

s /σ
2
s
, which can be further canceled out by the negative term.

Generalization gap term analysis. The non-linear gradient of the Huber loss in the heavy-tailed
setting makes it impossible to directly obtain a one-dimensional self-normalized term. We first
decompose it into two distinct components as follows,

2
t∑

s=1

〈
∇ℓ̃s(θ̂s) +∇ℓs(θ∗)−∇ℓs(θ̂s), θ̂s − θ∗

〉
︸ ︷︷ ︸

Huber-loss term

+2
t∑

s=1

〈
−∇ℓs(θ∗), θ̂s − θ∗

〉
︸ ︷︷ ︸

self-normalized term

,

where Huber-loss term represents the influence of the Huber loss structure on the estimation error.
Specifically, when all three gradient terms are within the quadratic region of the Huber loss, i.e.,
when |zt(θ∗)| ≤ τt

2 , this term becomes zero. Consequently, this term reduces to a sum involving the

indicator function
∑t

s=1 1
{
|zs(θ∗)| > τs

2

}
, which can be bounded by Õ

(
t

1−ε
2(1+ε)βt

)
using Eq. (C.12)

of Huang et al. [2024]. Then the self-normalized term corresponds to the 1-dimensional version of

the self-normalized concentration can be bounded by an Õ(t
1−ε
1+ε ) term and 1

2

∑t
s=1

∥∥θ̂s− θ∗∥∥2XsX⊤
s /σ

2
s

will be canceled by the negative term.
By combining the analysis for stability term and generalization gap term and substituting back

to the estimation error decomposition, we obtain:∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

≲ t
1−ε

2(1+ε)βt + t
1−ε
1+ε .

To ensure the event At holds, βt must satisfy:

β2t ≳ t
1−ε

2(1+ε)βt + t
1−ε
1+ε .

Finally, solving for βt, we get βt = O
(
t

1−ε
2(1+ε)

)
. Thus we finish the proof of Lemma 1.

5 Discussion

In this section, we discuss the potential applications of our approach and highlight its advantages
compared to previous methods in broader scenarios involving heavy-tailed noise. Specifically, we
focus on two settings: heavy-tailed linear MDPs and adaptive control under heavy-tailed noise.

5.1 Online Linear MDPs

In the setting of heavy-tailed linear MDPs [Li and Sun, 2023, Huang et al., 2024], the realizable
reward for taking action a in state s at the h-th episode is given by:

Rh(s, a) = ⟨ϕ(s, a),θ∗
h⟩+ ϵh(s, a),

11



where ϕ(s, a) ∈ Rd is known feature map, θ∗
h ∈ Rd is the unknown parameter, and ϵh(s, a) is the

heavy-tailed noise with Eh[ϵh](s, a) = 0 and Eh[|ϵh|1+ε](s, a) ≤ ν1+εR .
Linear MDPs often adopt techniques from linear bandits, including estimating unknown parame-

ters in a linear model and constructing an upper confidence bound (UCB) based on estimation error
analysis. For heavy-tailed linear MDPs, [Huang et al., 2024] employs adaptive Huber regression to
estimate the unknown parameter θ∗

h in the reward function. This introduces a challenge similar to
that in HvtLB: adaptive Huber regression is an offline algorithm, while an online setting requires
a one-pass estimator. Existing one-pass estimators for HvtLB, such as the truncation-based and
MOM-based algorithms proposed by Xue et al. [2023], are not applicable to heavy-tailed linear
MDPs. Truncation-based algorithms rely on assumptions about absolute moments, which are not
suitable in this context. MOM-based methods require multiple reward observations for a fixed
ϕ(s, a), but this is infeasible in linear MDPs since state transitions occur probabilistically, preventing
repeated observations for the same state-action pair.

In contrast, our proposed Hvt-UCB method can be directly applied to this scenario without
requiring additional assumptions. Its estimation error bound analysis naturally extends to linear
MDPs, enabling the construction of UCBs for the value function. By leveraging the UCB-to-regret
analysis in [Huang et al., 2024], Hvt-UCB has the potential to achieve the same theoretical guarantees
as adaptive Huber regression, while significantly reducing computational costs.

5.2 Online Adaptive Control

The online adaptive control of Linear Quadratic Systems [Abbasi-Yadkori and Szepesvári, 2011]
considers the following state transition system,

xt+1 = Axt +But + wt+1,

where xt ∈ Rn represents the state at time t, ut ∈ Rd is the control input at time t, A ∈ Rn×n and
B ∈ Rn×d are unknown system matrices, and wt+1 is the noise. The online adaptive control requires
estimating the unknown parameters A and B (also known as system identification), and constructing
finite-sample guarantees for estimation error. To this end, Abbasi-Yadkori and Szepesvári [2011]
transformed the system into the following linear model:

xt+1 = Θ⊤
∗ zt + wt+1,

where Θ∗ = [A;B], zt = [xt;ut] and the noise wt in each dimension is assumed to be sub-Gaussian.
Then, they used a least squares estimator and leveraged the self-normalized concentration technique
from linear bandit analysis [Abbasi-Yadkori et al., 2011] to estimate Θ∗ and provide finite-sample
estimation error guarantees.

As noted by Tsiamis et al. [2023], finite-sample guarantees for system identification under
heavy-tailed noise remain an open challenge. Inspired by Abbasi-Yadkori and Szepesvári [2011]’s
application of linear bandit techniques to sub-Gaussian cases, we believe methods from HvtLB can
similarly benefit adaptive control in heavy-tailed settings. However, MOM methods are infeasible as
the feature zt, which includes the evolving state xt, cannot be repeatedly sampled, and truncation-
based methods rely on assumptions of bounded absolute moments for states, which may not hold.
While adaptive Huber regression [Li and Sun, 2023, Huang et al., 2024] offers promising theoretical
guarantees for heavy-tailed linear system identification, its computational inefficiency makes it
unsuitable for adaptive control. In contrast, our proposed Hvt-UCB algorithm provides efficient,
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Figure 1: Student t: regret and time cost.
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Figure 2: Gaussian: regret and time cost.

one-pass updates without additional assumptions and has the potential to deliver finite-sample
guarantees for adaptive control under heavy-tailed noise.

6 Experiments

In this section, we empirically evaluate the performance and time efficiency of our proposed algorithm
under two different noise distributions: Student’s t and Gaussian.

Settings. We consider the linear model rt = X⊤
t θ∗ + ηt, where the dimension d = 2, the number

of rounds T = 18000, and the number of arms n = 50. Each dimension of the feature vectors for the
arms is uniformly sampled from [−1, 1] and subsequently rescaled to satisfy L = 1. Similarly, θ∗ is
sampled in the same way and rescaled to satisfy S = 1. We conduct two synthetic experiments with
different distributions for noise ηt: (a) Student’s t-distribution with degree of freedom df = 2.1 to
represent heavy-tailed noise; and (b) Gaussian noise sampled from N (0, 1) to represent light-tailed
noise. For the heavy-tailed experiment, we set ε = 0.99 and ν = 1.31, while for the light-tailed
experiment, we set ε = 1. We compare the performance of our proposed Hvt-UCB algorithm with
the following baselines: (a) the OFUL algorithm [Abbasi-Yadkori et al., 2011]; (b) the one-pass
truncation-based algorithm CRTM [Xue et al., 2023]; (c) the one-pass MOM-based algorithm
CRMM [Xue et al., 2023]; and (d) the Huber-based algorithm HEAVY-OFUL [Huang et al., 2024].
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Results. We conducted 10 independent trials and averaged the results. Figure 1 shows the
cumulative regret and computational time under Student’s t noise, while Figure 2 presents the same
metrics under Gaussian noise, with shaded regions indicating the variance across trials. Under
both noise settings, our algorithm demonstrates comparable regret performance to Heavy-OFUL
while achieving remarkable computational efficiency, with a speedup factor exceeding 800×. This
efficiency advantage becomes more important as the number of rounds T increases. Notably, among
the one-pass algorithms, CRMM exhibits the fastest runtime because it updates only every O(log T )
rounds rather than at each round. In the heavy-tailed noise scenario (Figure 1), the performance
of OFUL drops significantly, demonstrating its sensitivity to heavy-tailed distributions. In the
Gaussian noise setting (Figure 2), our algorithm maintains competitive performance alongside
OFUL. However, the truncation-based CRTM algorithm shows suboptimal performance due to
excessive reward truncation in light-tailed noise scenarios, which leads to the loss of valuable data.
These experimental results validate that our Hvt-UCB algorithm achieves robust performance across
different noise environments while maintaining low computational cost.

7 Conclusion

In this paper, we investigate the heavy-tailed linear bandits problem. We identify the advantages of
Huber loss-based methods over the truncation and median-of-means strategies, while also pointing
out the inefficiencies of previous Huber loss-based methods. We then propose the Huber loss-based
one-pass algorithm Hvt-UCB based on the Online Mirror Descent (OMD) framework. Hvt-UCB

achieves the optimal and instance-dependent regret bound Õ
(
dT

1−ε
2(1+ε)

√∑T
t=1 ν

2
t + dT

1−ε
2(1+ε)

)
while

only requiring O(1) per-round computational cost. Furthermore, it can be extended to online
linear MDPs and online adaptive control, broadening its applicability. The key contribution is our
adaptation of the OMD framework to stochastic linear bandits, which addresses the challenges
introduced by heavy-tailed noise and the structure of the Huber loss.

Both Huang et al. [2024] and our work rely on knowledge of the moment νt to achieve instance-
dependent regret guarantees. Extending these Huber loss-based methods to handle unknown νt
while maintaining instance-dependent guarantees is an interesting problem for future investigation.
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A Properties of Huber Loss

Property 1 (Property 1 of Huang et al. [2024]). Let fτ (x) be the Huber loss defined in Definition 1,
then the followings are true:

1. |f ′τ (x)| = min{|x|, τ},

2. f ′τ (x) = τf ′1
(
x
τ

)
,

3. − log
(
1− x+ |x|1+ε

)
≤ f ′1(x) ≤ log

(
1 + x+ |x|1+ε

)
for any ε ∈ (0, 1],

4. f ′′τ (x) = 1{|x| ≤ τ}.

Furthermore, the gradient of the loss function (7) is,

∇ℓt(θ) =


−zt(θ)Xt

σt
if |zt(θ)| ≤ τt,

−τt Xt
σt

if zt(θ) > τt,

τt
Xt
σt

if zt(θ) < −τt.
(12)

Based on Property 1, we have

∥∇ℓt(θ)∥ =

∥∥∥∥min {|zt(θ)| , τt}
Xt

σt

∥∥∥∥ , ∇2ℓt(θ) = 1 {|zt(θ)| ≤ τt}
XtX

⊤
t

σ2t
. (13)

B Estimation Error Analysis

For the analysis of estimation error, we begin by defining the following denoised loss function based

on noise-free data z̃t(θ) ≜
X⊤

t θ∗−X⊤
t θ

σt
,

ℓ̃t(θ) ≜


1
2

(
X⊤

t (θ∗−θ)
σt

)2
if |z̃t(θ)| ≤ τt,

τt

∣∣∣X⊤
t (θ∗−θ)
σt

∣∣∣− τ2t
2 if |z̃t(θ)| > τt.

The gradient and Hessian of the denoised loss function ℓ̃t(θ) can be writen as

∇ℓ̃t(θ) =


−z̃t(θ)Xt

σt
if |z̃t(θ)| ≤ τt,

−τt Xt
σt

if z̃t(θ) > τt,

τt
Xt
σt

if z̃t(θ) < −τt.
∇2ℓ̃t(θ) = 1 {|z̃t(θ)| ≤ τt}

XtX
⊤
t

σ2t
. (14)

We further set the robustification parameter τt as following,

τt = τ0

√
1 + w2

t

wt
t

1−ε
2(1+ε) , τ0 =

√
2κ(log 3T )

1−ε
2(1+ε)(

log 2T 2

δ

) 1
1+ε

, where wt ≜
1√
α

∥∥∥∥Xt

σt

∥∥∥∥
V −1
t−1

, (15)

and we denote event At =
{
∀s ∈ [t],

∥∥θ̂s− θ∗
∥∥
Vs−1

≤ βs−1

}
. Based on the parameter setting and the

event At, we derive three useful lemmas for the analysis of estimation error in the following section.
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B.1 Useful Lemmas

In this section, we provide some useful lemmas for the estimation error analysis. We provide the
estimation error decomposition in Lemma 3, the stability term analysis in Lemma 4, and the
generalization gap term analysis in Lemma 5.

Lemma 3 (Estimation error decomposition). When event At holds, by setting τt as (15), and σt as

σ2t ≥
2 ∥Xt∥2V −1

t−1
βt−1

√
ατ0t

1−ε
2(1+ε)

, (16)

then the estimation error can be decomposed as following three terms,∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

≤ 4λS2 +

t∑
s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

+ 2

t∑
s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
+

(
1

α
− 1

) t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s

.

Lemma 4. By setting τt as (15) and σt = max
{
νt, σmin, 2

√
2 ∥Xt∥V −1

t−1

}
, with probability at least

1− δ, we have ∀t ≥ 1,

t∑
s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

≤ 6α

(
t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

2T 2

δ

) ε
1+ε

)2

+
1

4

t∑
s=1

∥∥∥θ∗ − θ̂s

∥∥∥2XsX
⊤
s

σ2

.

where α is the learning rate need to be tuned and κ ≜ d log
(
1 + L2T

σ2
minλαd

)
.

Lemma 5. By setting τt as (15) and σt as following,

σt = max

νt, σmin, 2
√
2 ∥Xt∥V −1

t−1
,

√√√√2 ∥Xt∥2V −1
t−1

βt−1

√
ατ0t

1−ε
2(1+ε)

 , (17)

with probability at least 1− 3δ, we have ∀t ≥ 1,

t∑
s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
1As ≤ 23

√
α+

1

8
log

2T 2

δ
τ0t

1−ε
2(1+ε) max

s∈[t+1]
βs−1

+
1

4

(
λα+

t∑
s=1

〈
Xs

σs
, θ̂s − θ∗

〉2
)

+

(
8t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

(
2T 2

δ

)) ε
1+ε

)2

.

B.2 Proof of Lemma 3

Proof. Since At =
{
∀s ∈ [t],

∥∥θ̂s − θ∗
∥∥
Vs−1

≤ βs−1

}
holds, τt and σt satisfies (15) and (16), we have∣∣∣∣∣X⊤

t θ̂t −X⊤
t θ∗

σt

∣∣∣∣∣ ≤
∥∥∥∥Xt

σt

∥∥∥∥
V −1
t−1

∥∥∥θ∗ − θ̂t

∥∥∥
Vt−1

≤ τ0t
1−ε

2(1+ε)

2wtβt−1
βt−1 ≤

1

2
τ0

√
1 + w2

t

wt
t

1−ε
2(1+ε) =

τt
2
, (18)
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where wt =
1√
α

∥∥∥Xt
σt

∥∥∥
V −1
t−1

. Then, based on definition of z̃t(·), we have z̃t(θ∗) = 0 ≤ τt, and (18) shows

that z̃t(θ̂t) ≤ τt
2 ≤ τt, which means both points θ∗ and θ̂t lie on the quadratic side of the denoised

loss function ℓ̃t(·). This allows us to apply Taylor’s Formula with lagrange remainder to obtain

ℓ̃t(θ∗) = ℓ̃t(θ̂t) +
〈
∇ℓ̃t(θ̂t), θ∗ − θ̂t

〉
+

1

2

∥∥∥θ̂t − θ∗

∥∥∥2
∇2ℓ̃t(ξt)

, (19)

where ξt = γθ̂t + (1− γ)θ∗ for some γ ∈ (0, 1), which means ξt also lie on the quadratic side of the
denoised loss function:

|z̃t(ξt)| =
∣∣∣∣X⊤

t ξt −X⊤
t θ∗

σt

∣∣∣∣ =
∣∣∣∣∣X⊤

t (γθ̂t + (1− γ)θ∗)−X⊤
t θ∗

σt

∣∣∣∣∣ = γ

∣∣∣∣∣X⊤
t θ̂t −X⊤

t θ∗
σt

∣∣∣∣∣ ≤ γ
τt
2

≤ τt,

where the first inequality comes from (18). Then we have ∇2ℓ̃t(ξt) = 1 {z̃t(ξt) ≤ τt} XtX⊤
t

σ2
t

=
XtX⊤

t

σ2
t

.

At the same time, since θ∗ = argminθ∈Rd ℓ̃t(θ), we have 0 ≤ ℓ̃t(θ̂t) − ℓ̃t(θ∗). Substituting these
into (19), we have

0 ≤ ℓ̃t(θ̂t)− ℓ̃t(θ∗) =
〈
∇ℓ̃t(θ̂t), θ̂t − θ∗

〉
− 1

2

∥∥∥θ̂t − θ∗

∥∥∥2XtX
⊤
t

σ2
t

, (20)

which means 1
2

∥∥∥θ̂t − θ∗

∥∥∥2XtX
⊤
t

σ2
t

≤
〈
∇ℓ̃t(θ̂t), θ̂t − θ∗

〉
, then we have

1

2

∥∥∥θ̂t − θ∗

∥∥∥2XtX
⊤
t

σ2
t

≤
〈
∇ℓt(θ̂t), θ̂t+1 − θ∗

〉
+
〈
∇ℓt(θ̂t), θ̂t − θ̂t+1

〉
+
〈
∇ℓ̃t(θ̂t)−∇ℓt(θ̂t), θ̂t − θ∗

〉
,

(21)

where the first term can be bounded by the Bregman proximal inequality (9), we have〈
∇ℓt(θ̂t), θ̂t+1 − θ∗

〉
≤ Dψt(θ∗, θ̂t)−Dψt(θ∗, θ̂t+1)−Dψt(θ̂t+1, θ̂t)

=
1

2

∥∥∥θ̂t − θ∗

∥∥∥2
Vt

− 1

2

∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

− 1

2

∥∥∥θ̂t+1 − θt

∥∥∥2
Vt
,

substituting the above inequality into (21), we have

1

2

∥∥∥θ̂t − θ∗

∥∥∥2XtX
⊤
t

σ2
t

≤ 1

2

∥∥∥θ̂t − θ∗

∥∥∥2
Vt

− 1

2

∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

− 1

2

∥∥∥θ̂t+1 − θt

∥∥∥2
Vt

+
〈
∇ℓt(θ̂t), θ̂t − θ̂t+1

〉
+
〈
∇ℓ̃t(θ̂t)−∇ℓt(θ̂t), θ̂t − θ∗

〉
.

(22)

Rearranging the above inequality and using AM-GM inequality, we have∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

≤
∥∥∥θ̂t − θ∗

∥∥∥2
Vt

+
∥∥∥∇ℓt(θ̂t)∥∥∥2

V −1
t

+ 2
〈
∇ℓ̃t(θ̂t)−∇ℓt(θ̂t), θ̂t − θ∗

〉
−
∥∥∥θ̂t − θ∗

∥∥∥2XtX
⊤
t

σ2
t

≤
∥∥∥θ̂t − θ∗

∥∥∥2
Vt−1

+
∥∥∥∇ℓt(θ̂t)∥∥∥2

V −1
t

+ 2
〈
∇ℓ̃t(θ̂t)−∇ℓt(θ̂t), θ̂t − θ∗

〉
+

(
1

α
− 1

)∥∥∥θ̂t − θ∗

∥∥∥2XtX
⊤
t

σ2
t

,
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where the last equality comes from that Vt = Vt−1 +
1
α
XtX⊤

t

σ2
t

. Taking the summation of the above

inequality over t rounds and we have∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

≤
∥∥∥θ̂1 − θ∗

∥∥∥2
V0

+
t∑

s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

+ 2
t∑

s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
+

(
1

α
− 1

) t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s

≤ 4λS2 +
t∑

s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

+ 2
t∑

s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
+

(
1

α
− 1

) t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s

,

where the last inequality comes from V0 = λId and Assumption 1, thus we complete the proof.

B.3 Proof of Lemma 4

Proof. We first analyze the upper bound of single term ∥∇ℓt(θ̂t)∥2V −1
t

, based on the definition of

loss function (13), we have

∥∥∥∇ℓt(θ̂t)∥∥∥2
V −1
t

=

∥∥∥∥∥min

{∣∣∣∣∣rt −X⊤
t θ̂t

σt

∣∣∣∣∣ , τt
}
Xt

σt

∥∥∥∥∥
2

V −1
t

=

∥∥∥∥∥min

{∣∣∣∣∣ηtσt + X⊤
t θ∗ −X⊤

t θ̂t
σt

∣∣∣∣∣ , τt
}
Xt

σt

∥∥∥∥∥
2

V −1
t

≤

(
min

{∣∣∣∣ηtσt
∣∣∣∣+
∣∣∣∣∣X⊤

t θ∗ −X⊤
t θ̂t

σt

∣∣∣∣∣ , τt
})2 ∥∥∥∥Xt

σt

∥∥∥∥2
V −1
t

≤

(
min

{∣∣∣∣ηtσt
∣∣∣∣ , τt}+min

{∣∣∣∣∣X⊤
t θ∗ −X⊤

t θ̂t
σt

∣∣∣∣∣ , τt
})2 ∥∥∥∥Xt

σt

∥∥∥∥2
V −1
t

≤ 2

(
min

{∣∣∣∣ηtσt
∣∣∣∣ , τt})2 ∥∥∥∥Xt

σt

∥∥∥∥2
V −1
t

+ 2

(
X⊤
t θ∗ −X⊤

t θ̂t
σt

)2 ∥∥∥∥Xt

σt

∥∥∥∥2
V −1
t

. (23)

We define Ṽt ≜ λαI +
∑t

s=1
XsX⊤

s
σ2
s

= αVt, then we have wt =
1√
α

∥∥∥Xt
σt

∥∥∥
V −1
t−1

=
∥∥∥Xt
σt

∥∥∥
Ṽ −1
t−1

. Based on

Sherman-Morrison-Woodbury formula of Ṽ −1
t we have∥∥∥∥Xt

σt

∥∥∥∥2
Ṽ −1
t

=
X⊤
t Ṽ

−1
t Xt

σ2t
=

1

σ2t
X⊤
t

(
Ṽ −1
t−1 −

Ṽ −1
t−1XtX

⊤
t Ṽ

−1
t−1

σ2t (1 + w2
t )

)
Xt = w2

t −
w4
t

1 + w2
t

=
w2
t

1 + w2
t

,

thus
∥∥Xt
σt

∥∥2
V −1
t

= α
w2

t

1+w2
t
, then taking the summation over inequality (23) over t rounds and we have

t∑
s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

≤ 2α

t∑
s=1

(
min

{∣∣∣∣ηsσs
∣∣∣∣ , τs})2 w2

s

1 + w2
s︸ ︷︷ ︸

term (a.1)

+2α

t∑
s=1

(
X⊤
s θ∗ −X⊤

s θ̂s
σs

)2
w2
s

1 + w2
s︸ ︷︷ ︸

term (a.2)

.
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For term (A.1). By appling Lemma C.5 of Huang et al. [2024], restated in Lemma 6, with

τt = τ0

√
1+w2

t

wt
t

1−ε
2(1+ε) and b = maxt∈[T ]

νt
σt

≤ 1, we have with probability at least 1− δ, ∀t ≥ 1,

t∑
s=1

(
min

{∣∣∣∣ηsσs
∣∣∣∣ , τs})2 w2

s

1 + w2
s

≤

[
t

1−ε
2(1+ε)

(√
τ1−ε0 (

√
2κ)1+ε(log 3T )

1−ε
2 + τ0

√
2 log

2T 2

δ

)]2
,

by choosing τ0 =
√
2κ(log 3T )

1−ε
2(1+ε)(

log 2T2

δ

) 1
1+ε

, we have

√
τ1−ε0 (

√
2κ)1+ε(log 3T )

1−ε
2 = τ0

√
log 2T 2

δ , which means

t∑
s=1

(
min

{∣∣∣∣ηsσs
∣∣∣∣ , τs})2 w2

s

1 + w2
s

≤ 6

(
t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

2T 2

δ

) ε
1+ε

)2

. (24)

For term (A.2). Since σt ≥ 2
√
2 ∥Xt∥V −1

t−1
, which means αw2

t =
∥∥∥Xt
σt

∥∥∥2
V −1
t−1

≤ 1/8, then we have

2α

t∑
s=1

(
X⊤
s θ∗ −X⊤

s θ̂s
σs

)2
w2
s

1 + w2
s

≤ 1

4

t∑
s=1

(
X⊤
s θ∗ −X⊤

s θ̂s
σs

)2

=
1

4

t∑
s=1

∥∥∥θ∗ − θ̂s

∥∥∥2XsX
⊤
s

σ2

, (25)

Combining (24) and (25), we have with probability at least 1− δ, ∀t ≥ 1

t∑
s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

≤ 6α

(
t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

2T 2

δ

) ε
1+ε

)2

+
1

4

t∑
s=1

∥∥∥θ∗ − θ̂s

∥∥∥2XsX
⊤
s

σ2

.

Thus we complete the proof.

B.4 Proof of Lemma 5

Proof. We first analyze the upper bound of single term,〈
∇ℓ̃t(θ̂t)−∇ℓt(θ̂t), θ̂t − θ∗

〉
1At

=
〈
∇ℓ̃t(θ̂t)−∇ℓt(θ∗) +∇ℓt(θ∗)−∇ℓt(θ̂t), θ̂t − θ∗

〉
1At

=
〈
∇ℓ̃t(θ̂t) +∇ℓt(θ∗)−∇ℓt(θ̂t), θ̂t − θ∗

〉
1At︸ ︷︷ ︸

term (b.1)

+
〈
−∇ℓt(θ∗), θ̂t − θ∗

〉
1At︸ ︷︷ ︸

term (b.2)

.

For term (B.1). We define ψt(z) as the gradient of Huber loss function (5), then we have

ψt(z) =


z if |z| ≤ τt,

τt if z > τt,

−τt if z < −τt.
(26)
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Based on (12) and (14), ∇ℓt(θ) = −ψt(zt(θ))Xt
σt

and ∇ℓ̃t(θ) = −ψt(zt(θ)− zt(θ∗))
Xt
σt
, which means〈

∇ℓ̃t(θ̂t) +∇ℓt(θ∗)−∇ℓt(θ̂t), θ̂t − θ∗

〉
1At

=
(
ψt(zt(θ̂t))− ψt(zt(θ∗))− ψt(zt(θ̂t)− zt(θ∗))

) 〈Xt, θ̂t − θ∗

〉
σt

1At ,

we first analyze term ψt(zt(θ̂t)) − ψt(zt(θ∗)) − ψt(zt(θ̂t) − zt(θ∗)). When event At holds, similar
to (18), we have

∣∣∣zt(θ̂t)− zt(θ∗)
∣∣∣ = ∣∣∣∣∣X⊤

t θ̂t −X⊤
t θ∗

σt

∣∣∣∣∣ ≤ τt
2
,

then based on (26), we have ψt(zt(θ̂t) − zt(θ∗)) = zt(θ̂t) − zt(θ∗). Next, we analyze the different
situation of zt(θ∗). When |zt(θ∗)| ≤ τt

2 , we have∣∣∣zt(θ̂t)∣∣∣ = ∣∣∣zt(θ̂t)− zt(θ∗) + zt(θ∗)
∣∣∣ ≤ ∣∣∣zt(θ̂t)− zt(θ∗)

∣∣∣+ |zt(θ∗)| ≤
τt
2
+
τt
2

= τt, (27)

based on (26) we have

ψt(zt(θ̂t))− ψt(zt(θ∗))− ψt(zt(θ̂t)− zt(θ∗)) = zt(θ̂t)− zt(θ∗)− zt(θ̂t) + zt(θ∗) = 0.

For another situation such that |zt(θ∗)| > τt
2 , based on (26) we have

ψt(zt(θ̂t))− ψt(zt(θ∗))− ψt(zt(θ̂t)− zt(θ∗))

≤
∣∣∣ψt(zt(θ̂t))∣∣∣+ |ψt(zt(θ∗))|+

∣∣∣ψt(zt(θ̂t)− zt(θ∗))
∣∣∣ ≤ 3τt.

(28)

Combine this two situations (27) and (28), we have for term (b.1),〈
∇ℓ̃t(θ̂t) +∇ℓt(θ∗)−∇ℓt(θ̂t), θ̂t − θ∗

〉
1At

=
(
ψt(zt(θ̂t))− ψt(zt(θ∗))− ψt(zt(θ̂t)− zt(θ∗))

) 〈Xt, θ̂t − θ∗

〉
σt

1At

≤
∣∣∣ψt(zt(θ̂t))− ψt(zt(θ∗))− ψt(zt(θ̂t)− zt(θ∗))

∣∣∣ ∥∥∥∥Xt

σt

∥∥∥∥
V −1
t−1

∥∥∥θ̂t − θ∗

∥∥∥
Vt−1

1At

≤ 1
{
|zt(θ∗)| ≤

τt
2

}
0 + 1

{
|zt(θ∗)| >

τt
2

}
3τt

∥∥∥∥Xt

σt

∥∥∥∥
V −1
t−1

∥∥∥θ̂t − θ∗

∥∥∥
Vt−1

1At

≤ 1
{
|zt(θ∗)| >

τt
2

}
3τ0

√
1 + w2

t

wt
t

1−ε
2(1+ε)

√
αwtβt−1

= 1
{
|zt(θ∗)| >

τt
2

}
3τ0

√
α+ αw2

t t
1−ε

2(1+ε)βt−1

≤ 1
{
|zt(θ∗)| >

τt
2

}
3

√
α+

1

8
τ0t

1−ε
2(1+ε)βt−1,
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where the third inequality comes from the definition of event At and the last third inequality comes

from σt ≥ 2
√
2 ∥Xt∥V −1

t−1
, such that αw2

t =
∥∥∥Xt
σt

∥∥∥2
V −1
t−1

≤ 1/8. Then sum up for t round, and we have

t∑
s=1

〈
∇ℓ̃s(θ̂s) +∇ℓs(θ∗)−∇ℓt(θ̂s), θ̂s − θ∗

〉
1As ≤ 3

√
α+

1

8
τ0

t∑
s=1

s
1−ε

2(1+ε)βs−1 1
{
|zs(θ∗)| >

τs
2

}
≤ 3

√
α+

1

8
τ0t

1−ε
2(1+ε)

(
max
s∈[t+1]

βs

) t∑
s=1

1
{
|zs(θ∗)| >

τs
2

}
.

where the last inequality comes from that maxs∈[t] βs−1 ≤ maxs∈[t+1] βs−1 Same as Eq. (C.12)
of Huang et al. [2024], by setting τ0 as (17), with probability at least 1− δ, for all t ≥ 1, we have

t∑
s=1

1
{
|zs(θ∗)| >

τs
2

}
≤ 23

3
log

2T 2

δ
,

then we have for term (b.1), with probability at least 1− δ, for all t ≥ 1,

t∑
s=1

〈
∇ℓ̃s(θ̂s) +∇ℓs(θ∗)−∇ℓt(θ̂s), θ̂s − θ∗

〉
1At ≤ 23

√
α+

1

8
log

2T 2

δ
τ0t

1−ε
2(1+ε)

(
max
s∈[t+1]

βs−1

)
. (29)

For term (B.2). We first have

t∑
s=1

〈
−∇ℓs(θ∗), θ̂s − θ∗

〉
1As =

t∑
s=1

ψs(zs(θ∗))

〈
Xs

σs
, θ̂s − θ∗

〉
1As

≤

∣∣∣∣∣
t∑

s=1

ψs(zs(θ∗))

〈
Xs

σs
, θ̂s − θ∗

〉∣∣∣∣∣ ,
(30)

where the last inequality comes from that 1As ≤ 1. Then, Lemma C.2 of Huang et al. [2024]
(Self-normalized concentration) shows that by setting τ0 as (17) and b = maxt∈[T ]

νt
σt

≤ 1, we have
with probability at least 1− 2δ, ∀t ≥ 1,∥∥∥∥∥

t∑
s=1

ψs(zs(θ∗))
Xs

σs

∥∥∥∥∥
Ṽ −1
t

≤ 8t
1−ε

2(1+ε)
√
2κ(log 3T )

1−ε
2(1+ε)

(
log

(
2T 2

δ

)) ε
1+ε

. (31)

where Ṽt = λαI +
∑t

s=1
XsX⊤

s
σs

and κ = d log
(
1 + L2T

σ2
minλαd

)
. Now we need to convert it into a

1-dimensional version, if Zs is scalar, we have:∥∥∥∥∥
t∑

s=1

ψs(zs(θ∗))
Zs
σs

∥∥∥∥∥
2

Ṽ −1
t

=

(∑t
s=1 ψs(zs(θ∗))

Z2
s
σ2
s

)
λα+

∑t
s=1

Z2
s
σ2
s

,
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Based on inequality (31), we have(∑t
s=1 ψs(zs(θ∗))

Zs
σs

)2
λα+

∑t
s=1

Z2
s
σ2
s

≤

(
8t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

(
2T 2

δ

)) ε
1+ε

)2

∣∣∣∣∣
t∑

s=1

ψs(zs(θ∗))
Zs
σs

∣∣∣∣∣ ≤
√√√√(λα+

t∑
s=1

Z2
s

σ2s

)(
8t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

(
2T 2

δ

)) ε
1+ε

)2

.

Then based on AM-GM, we have∣∣∣∣∣
t∑

s=1

ψs(zs(θ∗))
Zs
σs

∣∣∣∣∣ ≤ 1

4

(
λα+

t∑
s=1

Z2
s

σ2s

)
+

(
8t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

(
2T 2

δ

)) ε
1+ε

)2

,

where we use
√
ab ≤ 1

4a+ b. Let Zs =
〈
Xs, θ̂s − θ∗

〉
, then put it back to (30), for term (2), we

have with probability at least 1− 2δ, ∀t ≥ 1,

t∑
s=1

〈
−∇ℓs(θ∗), θ̂s − θ∗

〉
≤ 1

4

(
λα+

t∑
s=1

〈
Xs

σs
, θ̂s − θ∗

〉2
)

+

(
8t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

2T 2

δ

) ε
1+ε

)2

.

(32)

Combine (29) and (32) together, with union bound we have with probability at least 1− 3δ ,∀t ≥ 1

t∑
s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
1As ≤ 23

√
α+

1

8
log

2T 2

δ
τ0t

1−ε
2(1+ε)

(
max
s∈[t+1]

βs−1

)

+
1

4

(
λα+

t∑
s=1

〈
Xs

σs
, θ̂s − θ∗

〉2
)

+

(
8t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

2T 2

δ

) ε
1+ε

)2

.

B.5 Proof of Lemma 1

Proof. Combining the results of Lemma 4 and Lemma 5, with applying the union bound, we obtain
that, with probablity at least 1− 4δ, the following holds for all t ≥ 1,

4λS2 +
t∑

s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

+ 2
t∑

s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
1As +

(
1

α
− 1

) t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s

≤ 4λS2 + 6α

(
t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

2T 2

δ

) ε
1+ε

)2

+
1

4

t∑
s=1

∥∥∥θ∗ − θ̂s

∥∥∥2XsX
⊤
s

σ2

+ 46

√
α+

1

8
log

2T 2

δ
τ0t

1−ε
2(1+ε)

(
max
s∈[t+1]

βs−1

)
+

1

2

(
λα+

t∑
s=1

〈
Xs

σs
, θ̂s − θ∗

〉2
)
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+ 2

(
8t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

2T 2

δ

) ε
1+ε

)2

+

(
1

α
− 1

) t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s

≤ 94 log
2T 2

δ
τ0t

1−ε
2(1+ε)

(
max
s∈[t+1]

βs−1

)
+ λ(2 + 4S2) + 152

(
log

2T 2

δ
τ0t

1−ε
2(1+ε)

)2

,

where the least inequality comes from that α = 4, and

log
2T 2

δ
τ0t

1−ε
2(1+ε) = t

1−ε
2(1+ε)

√
2κ(log 3T )

1−ε
2(1+ε)

(
log

2T 2

δ

) ε
1+ε

.

Then we choose ∀t ≥ 1,

βt = 107 log
2T 2

δ
τ0t

1−ε
2(1+ε) +

√
λ (2 + 4S2),

and we can varify that with probablity at least 1− 4δ, the following holds for all t ≥ 1,

β2t ≥ 4λS2 +

t∑
s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

+ 2

t∑
s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
1As

+

(
1

α
− 1

) t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s

.

(33)

Let B denote the event that the conditions in (33) hold ∀t ≥ 1, then P(B) ≥ 1 − 4δ. We now
introduce a new event C that is define as

C ≜

{
∀t ≥ 1,

∥∥∥θ̂t − θ∗

∥∥∥
Vt−1

≤ βt−1

}
=

∞⋂
t=0

At.

In the following we will show that if B is true, C must be true, which means P(C) ≥ P(B) ≥ 1− 4δ

by mathematical induction. When t = 1, A1 is true by definition such that
∥∥∥θ̂1 − θ∗

∥∥∥
V0

≤
√
4λS2 ≤√

λ(2 + 4S2) = β0. Suppose that at iteration t, for all s ∈ [t], As is true, then we are going to show
that At+1 is also true.∥∥∥θ̂t+1 − θ∗

∥∥∥2
Vt

≤ 4λS2 +

t∑
s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

+ 2

t∑
s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
+

(
1

α
− 1

) t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s

= 4λS2 +

t∑
s=1

∥∥∥∇ℓs(θ̂s)∥∥∥2
V −1
s

+ 2

t∑
s=1

〈
∇ℓ̃s(θ̂s)−∇ℓs(θ̂s), θ̂s − θ∗

〉
1As +

(
1

α
− 1

) t∑
s=1

∥∥∥θ̂s − θ∗

∥∥∥2XsX
⊤
s

σ2
s

≤ β2t ,

where the first inequality comes from Lemma 3, the second equality comes from that ∀s ∈ [t], As
holds, and the last inequality comes from condition (33). As a result, we can conclude that all
{At}t≥1 is true and thus we have P(C) ≥ 1− 4δ. And further we can find that√√√√2 ∥Xt∥2V −1

t−1
βt−1

√
ατ0t

1−ε
2(1+ε)

=

√√√√107 log 2T 2

δ τ0t
1−ε

2(1+ε) +
√
λ (2 + 4S2)

τ0t
1−ε

2(1+ε)

∥Xt∥V −1
t−1

≥
√
107 ∥Xt∥V −1

t−1
≥ 2

√
2 ∥Xt∥V −1

t−1
,
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thus by setting

σt = max

νt, σmin,

√√√√∥Xt∥2V −1
t−1

βt−1

τ0t
1−ε

2(1+ε)

 , τt = τ0

√
1 + w2

t

wt
t

1−ε
2(1+ε) , τ0 =

√
2κ(log 3T )

1−ε
2(1+ε)(

log 2T 2

δ

) 1
1+ε

,

we obtain for any δ ∈ (0, 1), with probablity at least 1− 4δ, the following holds for all t ≥ 1,∥∥∥θ̂t+1 − θ∗

∥∥∥
Vt

≤ 107 log
2T 2

δ
τ0t

1−ε
2(1+ε) +

√
λ (2 + 4S2).

C Regret Analysis

C.1 Proof of Theorem 1

Proof. Let X∗
t = argmaxx∈Xt

x⊤θ∗. Due to Lemma 1 and the fact that X∗
t , Xt ∈ Xt, each of the

following holds with probability at least 1− 4δ

∀t ∈ [T ], X∗⊤
t θ∗ ≤ X∗⊤

t θ̂t + βt−1 ∥X∗
t ∥V −1

t−1

∀t ∈ [T ], X⊤
t θ∗ ≥ X⊤

t θ̂t − βt−1 ∥Xt∥V −1
t−1

.

By the union bound, the following holds with probability at least 1− 8δ,

∀t ∈ [T ], X∗⊤
t θ∗ −X⊤

t θ∗ ≤ X∗⊤
t θ̂t −X⊤

t θ̂t + βt−1

(
∥X∗

t ∥V −1
t−1

+ ∥Xt∥V −1
t−1

)
≤ 2βt−1 ∥Xt∥V −1

t−1
,

where the last inequality comes from the arm selection criteria (11) such that

X∗⊤
t θ̂t + βt−1 ∥X∗

t ∥V −1
t−1

≤ X⊤
t θ̂t + βt−1 ∥Xt∥V −1

t−1
.

Hence the following regret bound holds with probability at least 1− 8δ,

RegT =

T∑
t=1

X∗⊤
t θ∗ −

T∑
t=1

X⊤
t θ∗ ≤ 2βT

T∑
t=1

∥Xt∥V −1
t−1

= 4βT

T∑
t=1

σtwt,

where βT = 107T
1−ε

2(1+ε) τ0 log
2T 2

δ +
√
λ (2 + 4S2).

Next we bound the sum of bonus
∑T

t=1 σtwt separately by the value of σt. Recall the definition
of σt in Algorithm 2, we decompose [T ] as the union of three disjoint sets J1,J2,

J1 = {t ∈ [T ] | σt ∈ {νt, σmin}} , J2 =

t ∈ [T ]

∣∣∣∣∣∣∣ σt =
√√√√∥Xt∥2V −1

t−1
βt−1

τ0t
1−ε

2(1+ε)

 . (34)

For the summation over J1, since σmin = 1√
T
,

∑
t∈J1

σtwt =
∑
t∈J1

max {νt, σmin}wt ≤

√√√√ T∑
t=1

(
ν2t + σ2min

)√√√√ T∑
t=1

w2
t ≤

√
2κ

√√√√ T∑
t=1

ν2t + 1,
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where the last inequality comes from Lemma 7.
For the summation over J2, we first have

w−2
t =

βt−1

τ0t
1−ε

2(1+ε)

=
107t

1−ε
2(1+ε) τ0 log

2T 2

δ +
√
λ (2 + 4S2)

τ0t
1−ε

2(1+ε)

≤
√
λ (2 + 4S2)

τ0
+ 107 log

2T 2

δ
,

we denote c =

√
λ(2+4S2)

τ0
+ 107 log 2T 2

δ and have∑
t∈J2

σtwt =
∑
t∈J2

1

w2
t

∥Xt∥Ṽ −1
t−1

w2
t ≤

cL

2
√
λ

∑
t∈J2

w2
t ≤

cLκ√
λ
. (35)

where the last inequality comes from Lemma 7. Combine these two cases together, by choosing
δ = 1

8T , λ = d, we have

RegT ≤ 4βT

√
2κ

√√√√ T∑
t=1

ν2t + 1 +
cLκ√
λ

 ≤ Õ

√
dT

1−ε
2(1+ε)


√√√√d

T∑
t=1

ν2t +
√
d


= Õ

dT 1−ε
2(1+ε)

√√√√ T∑
t=1

ν2t + dT
1−ε

2(1+ε)

 .

Thus we complete the proof.

C.2 Proof of Corollary 1

Proof. Proof of Corollary 1 is similar to Theorem 1, only need to change the condition J1 in (34)
to J1 = {t ∈ [T ] | σt ∈ {ν, σmin}} and for the summation over J1, since σmin = 1√

T
,

∑
t∈J1

σtwt =
∑
t∈J1

max {ν, σmin}wt ≤

√√√√ T∑
t=1

(
ν2 + σ2min

)√√√√ T∑
t=1

w2
t ≤

√
2κν

√
T + 1, (36)

where the last inequality comes from Lemma 7. Then combine condition (36) with condition (35),
by choosing δ = 1

8T , λ = d, we have

RegT ≤ 4βT

T∑
t=1

σtwt ≤ 4βT

(√
2κν

√
T + 1 +

cLκ√
λ

)
≤ Õ

(√
dT

1−ε
2(1+ε)

(√
dν

√
T +

√
d
))

= Õ
(
dνT

1
1+ε

)
.

Thus we complete the proof.

D Technical Lemmas

This section contains some useful technical lemmas that are used in the proofs.
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D.1 Concentrations

Theorem 2 (Self-normalized concentration for scalar [Abbasi-Yadkori et al., 2012, Lemma 7]).
Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=0 be a real-valued stochastic process such that ηt is Ft-
measurable and R-sub-Gaussian. Let {Zt}∞t=1 be a sequence of real-valued variables such that Zt is
Ft−1-measurable. Assume that V > 0 be deterministic. For any δ > 0, with probability at least 1− δ:

∀t ≥ 0,

∣∣∣∣∣
t∑

s=1

ηsZs

∣∣∣∣∣ ≤ R

√√√√√2

(
V +

t∑
s=1

Z2
s

)
ln


√
V +

∑t
s=1 Z

2
s

δ
√
V

.
Lemma 6 (Lemma C.5 of Huang et al. [2024]). By setting τt = τ0

√
1+w2

t

wt
t

1−ε
2(1+ε) , assume E

{
ηt
σt

∣∣∣ Ft−1

}
=

0 and E
{∣∣∣ ηtσt ∣∣∣1+ε

∣∣∣∣ Ft−1

}
≤ b1+ε. Then with probability at least 1− δ, we have ∀t ≥ 1,

t∑
s=1

(
min

{∣∣∣∣ηsσs
∣∣∣∣ , τs})2 w2

s

1 + w2
s

≤ t
1−ε
1+ε

(√
τ1−ε0 (

√
2κb)1+ε(log 3t)

1−ε
2 + τ0

√
2 log

2t2

δ

)2

.

D.2 Potential Lemma

Lemma 7 (Elliptical Potential Lemma). Suppose U0 = λI, Ut = Ut−1 +XtX
⊤
t , and ∥Xt∥2 ≤ L,

denote ∀t ≥ 1,
∥∥∥U− 1

2
t−1Xt

∥∥∥2
2
≤ cmax, then

T∑
t=1

∥∥∥U− 1
2

t−1Xt

∥∥∥2
2
≤ 2max{1, cmax}d log

(
1 +

L2T

λd

)
. (37)

Proof. First, we have the following decomposition,

Ut = Ut−1 +XtX
⊤
t = U

1
2
t−1(I + U

− 1
2

t−1XtX
⊤
t U

− 1
2

t−1)U
1
2
t−1.

Taking the determinant on both sides, we get

det(Ut) = det(Ut−1) det(I + U
− 1

2
t−1XtX

⊤
t U

− 1
2

t−1),

which in conjunction with Lemma 8 yields

det(Ut) = det(Ut−1)(1 + ∥U− 1
2

t−1Xt∥22) ≥ det(Ut−1)

(
1 +

1

max{1, cmax}
∥U− 1

2
t−1Xt∥22

)
≥ det(Ut−1) exp

(
1

2max{1, cmax}
∥U− 1

2
t−1Xt∥22

)
.

Note that in the last inequality, we utilize the fact that ∥U− 1
2

t−1Xt∥22 ≤ cmax and 1 + x ≥ exp(x/2)
holds for any x ∈ [0, 1]. By taking advantage of the telescope structure, we have

T∑
t=1

∥U− 1
2

t−1Xt∥22 ≤ 2max{1, cmax} log
det(UT )

det(U0)
≤ 2max{1, cmax}d log

(
1 +

L2T

λd

)
,

where the last inequality follows from the fact that Tr(UT ) ≤ Tr(U0) + L2T = λd+ L2T , and thus
det(UT ) ≤ (λ+ L2T/d)d.
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Lemma 8 (Lemma 5 of Zhao et al. [2020]). For any v ∈ Rd, we have

det(I + vv⊤) = 1 + ∥v∥22 .

D.3 Useful Lemma for OMD

Lemma 9 (Bregman proximal inequality [Chen and Teboulle, 1993, Lemma 3.2]). Let X be a
convex set in a Banach space. Let f : X 7→ R be a closed proper convex function on X . Given a
convex regularizer ψ : X 7→ R, we denote its induced Bregman divergence by Dψ(·, ·). Then, any
update of the form

xk = argmin
x∈X

{f(x) +Dψ (x,xk−1)} ,

satisfies the following inequality for any u ∈ X ,

f (xk)− f(u) ≤ Dψ (u,xk−1)−Dψ (u,xk)−Dψ (xk,xk−1) .
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