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Abstract

In recent years, driven by advancements in
diffusion process, Text-to-Image (T2I) mod-
els have rapidly developed. However, evalu-
ating T2I models remains a significant chal-
lenge. While previous research has thoroughly
assessed the quality of generated images and
image-text alignment, there has been little
study on the creativity of these models. In this
work, we define the creativity of T2I models
based on previous definitions of machine cre-
ativity. We also propose corresponding met-
rics and design a method to test the reliability
of the metric. Additionally, we create a fully
automated pipeline that, through text vector
retrieval and the text synthesis capabilities of
large language models (LLMs), can convert
existing image-text datasets into benchmarks
needed for evaluating creativity. Finally, we
conduct a series of tests and analyses on the
evaluation methods for creativity and the fac-
tors influencing the creativity of the models.
The code and benchmark will be released.

1 Introduction

Inspired by diffusion process, researchers have
designed a series of Text-to-Image (T2I) models
based on this theory, which exhibit outstanding
performance and have significantly contributed to
the development of image generation, such as Sta-
ble Diffusion (Rombach et al., 2022; Podell et al.,
2023; Esser et al., 2024), FLUX (Labs, 2024) and
DALL-E3 (Betker et al., 2023), demonstrating pow-
erful capabilities in generating relevant visual im-
ages from textual input. Despite the rapid advance-
ment of image generation, a significant challenge
remains: automated image evaluation (Lin et al.,
2025; Tu et al., 2024), where the primary focus is
typically on image quality and text-image consis-
tency.

In image quality evaluation, Inception Score
(Salimans et al., 2016) measures diversity with a
pre-trained Inception network, while FID (Heusel

et al., 2017) compares the distribution of gener-
ated and real images. For text-image consistency,
approaches typically involve comparing generated
captions with human-annotated ones (Hong et al.,
2018), or utilizing the CLIP Score (Brooks et al.,
2023; Li et al., 2024; Wu et al., 2023; Esser et al.,
2024) adopted CLIP (Radford et al., 2021), which
quantifies the cosine similarity between image and
text embeddings.

T2I models are capable of generating high-
quality, stylistically distinct images, achieving high
scores on existing evaluation metrics, however, the
evaluation perspectives discussed above give lim-
ited attention to the creativity of the model. Evalu-
ating creativity is crucial for measuring a model’s
ability to generate interesting content. This is espe-
cially important in assisting professionals in fields
such as art, design, and innovation. At the same
time, it extends the practical value of the model,
enabling it to contribute to the development of in-
dustries such as advertising, fashion, and entertain-
ment. Karampiperis et al. (2014) demonstrated
that the creativity exhibited in text artifacts can be
predicted using appropriate formulations of com-
putational creativity metrics. Aghazadeh and Ko-
vashka (2024) defined the creativity of images as
their uniqueness in advertisement image generation
and exhibited that current T2I models face chal-
lenges when it comes to generating creative outputs.
Building upon the broader definitions of machine
creativity (Franceschelli and Musolesi, 2024) in
previous works, we extend this concept to T2I mod-
els, providing a specific definition for them, which
is divided into three components: Value, Novelty,
and Surprise. Value refers to whether the images
align to human’s instruction. Novelty refers to the
uniqueness of the image in relation to other images
generated by the same model. Surprise refers to
whether the images contain unexpected or surpris-
ing content.

Based on the definitions we proposed, we estab-



lished corresponding metrics, benchmarks, and a
pipeline capable of automatically generating bench-
marks based on existing image-text datasets, which
create a benchmark where one prompt corresponds
to multiple images by clustering and merging simi-
lar texts from text-image pairs. Through multiple
experiments, we tested the proposed metrics and
demonstrated their feasibility. Additionally, we ex-
plored various factors that influence the evaluation
of model creativity. On the generated benchmark,
we tested the creativity of different versions of Sta-
ble Diffusion and observed that while Value con-
sistently increased with each version, surprisingly,
both Novelty and Surprise did not follow the same
upward trend and, in fact, showed a decline. This
finding underscores the importance of evaluating
model creativity.

In summary, the key contributions of our study
are threefold:

1. Based on the general concept of machine cre-
ativity, we define the creativity of T2I models
as consisting of Value, Novelty, and Surprise,
and have designed evaluation methods along
with relevant metrics.

2. We have designed a fully automated pipeline
that can convert existing image-text datasets
into the benchmark required for evaluating
creativity, without the need for manual inter-
vention.

3. We tested our proposed metrics and demon-
strated their feasibility. Furthermore, we eval-
uated different T21 models on the generated
benchmark and found that Novelty and Sur-
prise did not increase with version updates;
instead, they decreased. This also highlights
the importance of assessing creativity.

2 Related Works
2.1 T2I Models

The development of deep learning has made the
transformation from text to image possible, and the
advancement of T2I models has been rapid. Reed
et al. (2016) was the first to introduce Generative
Adversarial Networks (GANSs) to the text-to-image
task. Subsequently, numerous works (Zhu et al.,
2019; Park et al., 2019; Kang et al., 2023; Sauer
et al., 2023) have been based on GANSs, contin-
uously optimizing the performance of T2I mod-
els for this task. However, T2I models based on

diffusion process soon gained widespread atten-
tion, leading to the emergence of numerous im-
pressive models. Rombach et al. (2022) presented
a latent diffusion model, which significantly im-
proved training efficiency and has the capability
to generate high-quality, high-resolution images.
Compared to previous versions of Stable Diffusion,
Stable Diffusion XL (Podell et al., 2023) designs
a model with more parameters and introduces a re-
finement model to improve details. The model has
achieved significant performance improvements
over past models. Stable Diffusion 3 (Esser et al.,
2024) improves existing noise sampling techniques
and introduces a new transformer-based (Vaswani,
2017) model architecture, resulting in further per-
formance enhancements.

2.2 T2I Metrics & Benchmarks

In recent years, designing automatic evaluation
metrics to assess the quality of machine-generated
images has always been a topic of great interest
among researchers in the field of computer vi-
sion. Inception Score (Salimans et al., 2016) and
Fréchet Inception Distance (Heusel et al., 2017)
are the most widely adopted image quality metrics.
The former extracts visual features from generated
images using a pre-trained Inception-V3 model
(Szegedy et al., 2016) to evaluate image diversity.
The latter compares these extracted features with
those of "gold" images to assess image fidelity.
CLIPScore (Hessel et al., 2021) is based on com-
puting the cosine similarity between image and
text embeddings, as a metric for image-text align-
ment. VQAScore (Lin et al., 2025) evaluates the
alignment between an image and a text prompt
by leveraging the latent knowledge of large mod-
els. It calculates the probability that the model
answers “Yes" to the question “Does this figure
show ‘text’?".

Additionally, a high-quality benchmark is ur-
gently needed for evaluating T2I (Text-to-Image)
models. Visual Genome (Krishna et al., 2017)
and MSCOCO (Lin et al., 2014) are widely used
datasets for computer vision research, consisting
of large-scale real-world scenes annotated for tasks
such as object detection, captioning and also for
evaluating image quality and image-text consis-
tency. TIFA v1.0 (Hu et al., 2023) is a benchmark
that includes 4k diverse text inputs and 25k ques-
tions across 12 categories for T2I faithfulness eval-
uation. DSG-1k (Cho et al., 2023) encompasses a
broad spectrum of fine-grained semantic categories,
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Figure 1: An illustration of metric calculation process, including Value, Novelty and Surprise. Firstly, We encode
the images with Visual encoder and compute the cosine similarity between the vectors of the generated images,
and also compute the cosine similarity between the vectors of the generated images and the reference images.
Simultaneously, we calculate the text-image similarity by CLIP, interpreting this similarity as the proportion of
the semantic content in the prompt relative to the overall visual semantic content. This allows us to estimate
the proportion of the visual semantics that lies outside the scope of the prompt. By using a weighted approach,
we compute a more reasonable distance between the images to measure Novelty and Surprise. Additionally, we

calculate the mean of the VQAScore as Value.

ensuring a balanced distribution throughout.

3 Creativity Evaluation

3.1 Creativity Definition for T2I Model

Franceschelli and Musolesi (2024) considered Bo-
den’s criteria for studying machine creativity de-
fined as “the ability to come up with ideas or arti-
facts that are new, surprising and valuable” (Boden,
2004). Value encompasses utility, performance,
and attractiveness, and is connected to both the
quality of production and its societal acceptance
(Mabher, 2010). Novelty refers to the degree of
difference between the created artifact and others
within its class (Ritchie, 2007). Surprise refers to
how much a stimulus deviates from expectations
(Berlyne, 1973).

Based on the widely accepted definition of cre-
ativity in previous research, we have provided a
specific definition for Text-to-Image models. Value
refers to whether the generated images include the
content mentioned in the prompt. Novelty refers
to the unique aspects of a image compared to other
images generated by the same model. Surprise
refers to whether the generated images contain new
content that exceeds common human knowledge.

3.2 Creativity Metric
3.2.1 Value

To evaluate whether the images generated by a
model effectively capture the content described in
the prompts, we chose to use VQAScore as the
evaluation metric. Compared to the commonly
used CLIP model, CLIP is trained via contrastive
learning to establish a one-to-one correspondence
between images and text. In contrast, VQAScore
evaluates the likelihood of a "Yes" response from
a Large Vision Language Model (LVLM) when
queried with relevant questions. LVLMs are typ-
ically trained on large-scale datasets and support
more flexible question forms, whereas CLIP is lim-
ited to calculating relatively rigid image-text sim-
ilarity. We take the average VQAScore of a set
of generated images as the score of Value for the
model when generating this set of images, the for-
mula as follows.

N
1 .
Value = N EIVQAScore(zZ,t) (1

where 79, represents the n'" generated image,
while ¢ denotes the prompt for image generation,
and N is the number of generated images.



3.2.2 Novelty

According to the definition, we aim to evaluate
whether there are significant differences between
images generated multiple times by the same model
under the same prompt. We measure the visual se-
mantic distance between generated images with
visual encoder, which serves as the basis for cal-
culating Novelty. As shown in Fig. 1, we also
calculate the average of the image-text similarity
between the generated images and the prompt, ap-
proximating this as the proportion of the prompt’s
semantics represented within the visual semantics.
This allows us to derive the proportion of other
semantics excluding the prompt in the visual con-
tent. Since all the generated images include the
content of the prompts, our evaluation focuses on
assessing the content beyond the prompts, which is
our primary focus of interest. Specifically, we aim
to evaluate the semantic distance of non-prompt
content generated across a T2I model’s multiple at-
tempts for generation. By leveraging the semantic
proportion, we approximate the similarity of the
content outside the prompts. Finally, the average
semantic distance of the content out of prompt is
calculated as Novelty score by averaging the simi-
larity scores.

dy = Encoder(i?) (2)

N
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where dj, represents the visual embedding of
the nt" generated image, and Prop,,,, in Novelty
denotes the estimated proportion of similarity for
content outside the prompt.

3.2.3 Surprise

Similar to Novelty, we aim to evaluate whether
the images generated multiple times by the model
under the same prompt can contain content that
exceeds human expectations. The Surprise evalu-
ation process is similar to Novelty, with two main
differences. One difference is that we introduce
a reference image set. As mentioned in section
3.1, the Surprise metric is designed to evaluate
whether the content of an image generated by a

T2I model is beyond common knowledge. The ref-
erence image set consists of real images that not
only contain the prompt’s content but also include
common content associated with the prompt. The
Surprise is calculated by measuring the distance
between the generated images and these reference
images. Similarly to Novelty, we aim to evalu-
ate the distance between the content beyond the
prompt, as the prompt content is mandatory for all
images. Therefore, we also introduce CLIP. The
other difference is that, unlike Novelty, maximum
pooling substitute average pooling when calculat-
ing the similarity between a generated image and
multiple reference images. This is because our ex-
pectation for Surprise is more stringent; once the
content is predictable, it is no longer a Surprise.

N
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N+ 54
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N
max cos_sim(dy, d) * Propsurp

seS
(6)
where i7 and d represent the 5" reference im-
age and its visual embedding respectively, and S is
the number of reference images.

n=1

3.3 Benchmark & Generation Pipeline

To evaluate the model’s creativity, we have con-
structed a fully automated process that can trans-
form existing image-text datasets into benchmarks
required for assessing creativity, as depicted in the
Fig 2.

By encoding the text in the image-text pairs of
the dataset and then clustering them, all text vec-
tors are divided into n categories, where n depends
on the desired size of the benchmark. Next, the
pipeline randomly select one text from each clus-
ter and, based on similarity calculations, find the
k — 1 most similar prompts within the same cluster.
The value of k& depends on the number of reference
images needed for evaluating Surprise. Then re-
trieve the images corresponding to these k& prompts
to serve as reference images. Finally, the pipeline
merge the k prompts into a single prompt with a
LLM, ensuring that the merged prompt corresponds
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Figure 2: An illustration of fully automated benchmark generation pipeline. First, convert the text in the text-image
pairs into vectors. Then, cluster all the texts into multiple categories. From each category, randomly select one text
and find the most similar texts within the same category. Next, find the images corresponding to all these texts.
Finally, to ensure that the prompt can correspond to all images, use a large language model to merge the similar
texts into one. This process creates a benchmark where one prompt corresponds to multiple images.

to all the reference images, with the prompt, “Here
are some captions. ‘{captions}’ Please find what
these captions have in common, don’t have to de-
scribe the difference between them, DO NOT use
generalisations such as various, different and so on
and write it in one caption. Please only answer the
caption without anything else.”. In this paper, the
value of £ is 6, resulting in a benchmark consisting
of 384 prompts and their reference images based
on MSCOCO (Lin et al., 2014).

4 Experiments

4.1 Test for Metric

Through extensive experiments and consistency
tests with human judgments, Fu et al. (2024) found
that the DINO model is capable of capturing sub-
tle differences in visual semantics. Therefore, we
choose the DINOv2 large model (Oquab et al.,
2023) as the visual encoder when the evaluating
the metric. Although DINO has been experimen-
tally proven to capture visual semantics (Fu et al.,
2024), we conducted further tests on our DINO-
based metrics. For the Value metric, we directly
use the VQAScore, so no additional testing is re-
quired. In our subsequent test experiments, we
used the FLUX API provided by Alibaba to gener-
ate high-quality images for testing.

The essence of the evaluation process for Nov-
elty and Surprise is fundamentally consistent, with
the main difference that Novelty involves com-
paring generated images with each other, while
Surprise involves comparing them with references.
We designed a method, illustrated in Fig. 3, to
test whether the Novelty metric can distinguish be-
tween image sets with different levels of Novelty.
For evaluation, we set the T2I model to run six
times to generate six different images. We prede-
fine four levels of Novelty image sets, ranging from
low to high, using an original prompt, two enriched
prompts, three enriched prompts, and six enriched
prompts, respectively. We enrich a prompt through
LLM while retaining its original semantics. By
altering the prompt, we force the T2I model to gen-
erate images containing the original prompt content
in different scenarios. If we generate six images
with an original prompt, these images will be quite
similar. However, if the model generates with six
enriched prompts, each generating one image, these
six images will be significantly different. With two
enriched prompts, each generating three images,
results in six images with two groups, where the
images between the groups are more different and
in the same group are more similar. Similarly, using
three enriched prompts follows the same logic.
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Figure 3: An illustration of the method for testing met-
ric. Enhancing the content of original prompts through
LLM while preserving their original semantics, aiming
to enable the model to generate content that is richer
compared to the original prompts. This approach is de-
signed to simulate the outputs of models with varying
levels of Novelty by controlling the number of enriched
prompts.

To test the Surprise metric, the model gener-
ated two images with original prompt to serve as
reference images. But it is not possible to preset
rankings for Surprise. It’s hard to control Surprise
by adjusting the number of enriched prompts as we
do with Novelty. Novelty involves comparing gen-
erated images with each other, where controlling
the enriched prompts ensures that images generated
under the same enriched prompt are similar, while
images generated under different enriched prompts
are significantly different. However, Surprise in-
volves comparing the generated images with the
reference images which are fixed. As long as the
images generated from the enriched prompts are
significantly different from the reference images
provided by the original prompt, we can only preset
this one ranking, i.e., the 2, 3, and 6 prompts image
sets will rank higher than the 1 prompt image set.
However, we cannot preset the rankings among the
2, 3, and 6 prompts image sets.

As shown in Fig. 4, the ranking of the results
evaluated by the Novelty metric aligns with our
predefined ranking, from low to high, one prompt,
two prompts, three prompts, and six prompts, re-
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Figure 4: Test results for Novelty and Surprise. As the
number of enriched prompts increases, Novelty also
gradually rises. Additionally, Surprise is significantly
enhanced when comparing image sets generated with en-
riched prompts to those generated with a single prompt.
The aforementioned results align with our expectations.

spectively. This demonstrates that our metric can
distinguish the rankings of image sets with differ-
ent levels of Novelty which is defined in section
3.1. As expected, the other image sets have signif-
icantly higher Surprise values compared to the 1
prompt image set, while the Surprise values among
the other image sets are similar. In summary, our
defined metrics can distinguish between the levels
of Novelty and Surprise as defined in the previous
section.

Model Value Novelty Surprise
SD-v1-4 | 0.7858 0.5792  0.6232
SD-XL | 0.8080 0.5511  0.6212
SD-v3med | 0.8283 0.4981  0.6040

Table 1: Experimental results on benchmark. Value,
which refers to the image-text alignment we have previ-
ously focused on, has gradually increased with model
iterations. However, in the context of creativity, the
newly introduced metrics of Novelty and Surprise show
the opposite trend.

4.2 Implementation Details for Benchmark

We conducted the experiments on three typical T2I
models: Stable Diffusion v1.4 (Rombach et al.,
2022), Stable Diffusion XL base 1.0 (Podell et al.,
2023), and Stable Diffusion 3 medium (Esser et al.,
2024). For the visual encoder, as in the previ-
ous section, we selected the DINOv2 large model
(Oquab et al., 2023). For the CLIP model, we
chose to use CLIP ViT-Large Patch 14 created by
OpenAl. We run the experiments on a single RTX
4090D. All models output at default resolutions.
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Figure 5: A generation case of benchmark. Stable Diffusion v1.4 demonstrates considerable variation in the
generated images. Conversely, Stable Diffusion v3 medium exhibits minimal variation, maintaining a consistent
visual angle and color palette for the car, as well as uniformity in the depiction of skateboarders. This suggests that
when evaluating model performance, creativity was rarely considered before.

Specifically, the output resolutions for Stable Diffu-
sion v1.4, XL, and 3 are 512x512, 1024x1024, and
1024x1024, respectively. For calculating VQAS-
core, we chose LLaVA v1.5 7B (Liu et al., 2024)
as the base model. The number of inference steps
is 50. Guidance scale (Ho and Salimans, 2022) is
7.5.

4.3 Results on Benchmark

As shown in Table 1, under the Value metric, the
value increases with the update of stable diffu-
sion versions. This indicates that the model is in-
creasingly able to accurately generate content that
includes the prompt, aligning with the expected
model improvements. However, under the Novelty
and Surprise metrics, the situation is the opposite,
especially for Novelty. The decrease in Novelty (up
to -0.081) means that the content generated by the
model tends to become more homogeneous over
multiple generations and in Surprise (up to -0.019)
indicates that the content generated by the model
is no longer beyond people’s expectations. It is
clearly observed that, from Fig. 5, in the genera-
tion tasks of these two prompts, Stable Diffusion
v1.4 exhibits significant variation in color schemes,
visual angles, and compositional elements across
multiple generations. In stark contrast, Stable Dif-
fusion v3 medium shows little variation, with the
visual angle and color of the car remaining largely
consistent, and the content related to skateboarders
following the same pattern. From this perspective,
it highlights the importance of evaluating creativity.

Value Novelty Surprise

Baseline 0.7858 0.5792  0.6232
w/ different seeds | 0.7854 0.5849  0.6271
w/ 20 images | 0.7863  0.5749  0.6249

w/ guidance 12.5 | 0.7872 0.5645  0.6240
w/ guidance 5 | 0.7782  0.6025  0.6290

w/ guidance 1 | 0.5707 0.7801  0.7749

Table 2: Experimental results on the impact of the num-
ber of images and random seeds on the evaluation, and
the effect of guidance scale on the model’s creativity.
It’s observed that a large number of images and random
seeds have little impact on evaluation. The guidance
scale does influence the model’s creativity; however, a
very low guidance scale negatively affects Value.

4.4 Analysis

In this section, we analyze the impact of the number
of generated images and different textual expres-
sions of the same prompt semantics on the evalua-
tion of creativity, the effect of the guidance scale on
the model’s creativity. We choose the Stable Dif-
fusion v1.4 that Novelty and Surprise perform best
in the benchmark experiment as the base model.

From the experimental results in Table 2, we can
see that changing the random seed to generate im-
ages six times again and generating more images
to evaluate the model’s creativity have a negligible
impact. This indicates that generating six images is
sufficient to reflect the model’s performance, and
the performance is minimally affected by the ran-
dom seed.

The default guidance scale is 7.5. Increasing



Figure 6: Cases of images generated under different guidance scale. It is evident that appropriately reducing
guidance scale can enrich image content, thereby enhancing Novelty and Surprise. However, excessively lowering
guidance scale, while significantly boosting Novelty and Surprise, results in images that are irrelevant to the prompt.

the guidance scale prompts the model to produce
images that are more closely aligned with the text
prompt. In our analysis experiments, we tested
the results with scales of 12.5, 5, and 1, keep-
ing other parameters constant. We observed that
appropriately lowering the guidance scale can in-
creases Novelty while keeping the value relatively
unchanged, with a slight fluctuation in Surprise (up
to -0.007 Value, +0.023 Novelty and +0.006 Sur-
prise). However, if the guidance scale is reduced to
1, although both Novelty and Surprise increase sig-
nificantly, the value drops sharply. This indicates
that the high Novelty and Surprise are due to the
image content deviating too much from the prompt,
as shown in Fig. 6.

We sampled 50 prompts from the benchmark
and used an LLM to rewrite the prompts in each
group into different expressions without changing
the semantics, with the prompt, “Here is a caption.
‘{caption}’. Please rewrite this caption without
changing the meaning of the sentence and only an-
swer the rewritten caption directly without anything
else.”. Each prompt was rewritten twice, resulting
in a total of three versions including the original
prompt. Each prompt generated two images, total-
ing six images. From the Table 3, we can find that
the expression of the prompt has a minimal impact

on evaluating the model’s creativity under the same
semantics. This result also indicates that simply
altering the form of the prompt is not a feasible
approach to enhancing creativity.

‘ Value Novelty Surprise
Baseline | 0.7665 0.5967  0.6503
w/ rewrite | 0.7684  0.6023  0.6399

Table 3: Experimental results on the effect of prompt
expression on evaluation. The prompts were rewrote by
LLM without altering their semantics, and the results
remained largely consistent, indicating minimal impact
of prompt expression.

5 Conclusion

In this paper, we explore the definition of creativity
and its application in T2I models. For evaluation,
we propose creativity metrics, consisting of Value,
Novelty and Surprise, and an fully automatic bench-
mark generation pipeline. Experimental results
across the generated benchmark validate creativity
is a new, valuable perspective for T2I model evalu-
ation. Furthermore, we conducted detailed analysis
experiments on the influences of hyper-parameters
on the evaluation of creativity.



Limitations

Despite the contributions of this work, there are
several limitations that should be acknowledged.
The limitations define the boundaries of our current
work and suggest directions for future research.

1. When assessing the impact of the same set of
images with identical semantics on the evalu-
ation of Novelty and Surprise, we employed
CLIP to approximate the semantic proportion
and evaluate the distance between other se-
mantics in different images in the set, exclud-
ing those with identical semantics. However,
this method is not entirely appropriate, and a
more precise approach is needed to measure
the semantics we intend to compare.

2. This work focuses on evaluating the creativity
of the model. For assessing the creativity of
a single image, current methods may not be
entirely suitable. A larger and more diverse
image dataset might be necessary to support
image creativity evaluation. Additionally, cre-
ative elements such as metaphors embedded
within a single image may require deep explo-
ration by large language models to be better
evaluated.

Ethical Considerations

Our benchmark is derived from MSCOCO, which
is licensed under the Creative Commons Attribu-
tion 4.0 License. Dinov?2 large is distributed under
the Apache License 2.0, while CLIP ViT-Large
Patch 14 adheres to the MIT License. LLaVA 1.5
is governed by the LLAMA 2 Community License.

Our usage of these models and benchmarks in
this study is strictly for academic purposes and
follows license.
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