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Abstract
In recent years, driven by advancements in001
diffusion process, Text-to-Image (T2I) mod-002
els have rapidly developed. However, evalu-003
ating T2I models remains a significant chal-004
lenge. While previous research has thoroughly005
assessed the quality of generated images and006
image-text alignment, there has been little007
study on the creativity of these models. In this008
work, we define the creativity of T2I models009
based on previous definitions of machine cre-010
ativity. We also propose corresponding met-011
rics and design a method to test the reliability012
of the metric. Additionally, we create a fully013
automated pipeline that, through text vector014
retrieval and the text synthesis capabilities of015
large language models (LLMs), can convert016
existing image-text datasets into benchmarks017
needed for evaluating creativity. Finally, we018
conduct a series of tests and analyses on the019
evaluation methods for creativity and the fac-020
tors influencing the creativity of the models.021
The code and benchmark will be released.022

1 Introduction023

Inspired by diffusion process, researchers have024

designed a series of Text-to-Image (T2I) models025

based on this theory, which exhibit outstanding026

performance and have significantly contributed to027

the development of image generation, such as Sta-028

ble Diffusion (Rombach et al., 2022; Podell et al.,029

2023; Esser et al., 2024), FLUX (Labs, 2024) and030

DALL-E3 (Betker et al., 2023), demonstrating pow-031

erful capabilities in generating relevant visual im-032

ages from textual input. Despite the rapid advance-033

ment of image generation, a significant challenge034

remains: automated image evaluation (Lin et al.,035

2025; Tu et al., 2024), where the primary focus is036

typically on image quality and text-image consis-037

tency.038

In image quality evaluation, Inception Score039

(Salimans et al., 2016) measures diversity with a040

pre-trained Inception network, while FID (Heusel041

et al., 2017) compares the distribution of gener- 042

ated and real images. For text-image consistency, 043

approaches typically involve comparing generated 044

captions with human-annotated ones (Hong et al., 045

2018), or utilizing the CLIP Score (Brooks et al., 046

2023; Li et al., 2024; Wu et al., 2023; Esser et al., 047

2024) adopted CLIP (Radford et al., 2021), which 048

quantifies the cosine similarity between image and 049

text embeddings. 050

T2I models are capable of generating high- 051

quality, stylistically distinct images, achieving high 052

scores on existing evaluation metrics, however, the 053

evaluation perspectives discussed above give lim- 054

ited attention to the creativity of the model. Evalu- 055

ating creativity is crucial for measuring a model’s 056

ability to generate interesting content. This is espe- 057

cially important in assisting professionals in fields 058

such as art, design, and innovation. At the same 059

time, it extends the practical value of the model, 060

enabling it to contribute to the development of in- 061

dustries such as advertising, fashion, and entertain- 062

ment. Karampiperis et al. (2014) demonstrated 063

that the creativity exhibited in text artifacts can be 064

predicted using appropriate formulations of com- 065

putational creativity metrics. Aghazadeh and Ko- 066

vashka (2024) defined the creativity of images as 067

their uniqueness in advertisement image generation 068

and exhibited that current T2I models face chal- 069

lenges when it comes to generating creative outputs. 070

Building upon the broader definitions of machine 071

creativity (Franceschelli and Musolesi, 2024) in 072

previous works, we extend this concept to T2I mod- 073

els, providing a specific definition for them, which 074

is divided into three components: Value, Novelty, 075

and Surprise. Value refers to whether the images 076

align to human’s instruction. Novelty refers to the 077

uniqueness of the image in relation to other images 078

generated by the same model. Surprise refers to 079

whether the images contain unexpected or surpris- 080

ing content. 081

Based on the definitions we proposed, we estab- 082
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lished corresponding metrics, benchmarks, and a083

pipeline capable of automatically generating bench-084

marks based on existing image-text datasets, which085

create a benchmark where one prompt corresponds086

to multiple images by clustering and merging simi-087

lar texts from text-image pairs. Through multiple088

experiments, we tested the proposed metrics and089

demonstrated their feasibility. Additionally, we ex-090

plored various factors that influence the evaluation091

of model creativity. On the generated benchmark,092

we tested the creativity of different versions of Sta-093

ble Diffusion and observed that while Value con-094

sistently increased with each version, surprisingly,095

both Novelty and Surprise did not follow the same096

upward trend and, in fact, showed a decline. This097

finding underscores the importance of evaluating098

model creativity.099

In summary, the key contributions of our study100

are threefold:101

1. Based on the general concept of machine cre-102

ativity, we define the creativity of T2I models103

as consisting of Value, Novelty, and Surprise,104

and have designed evaluation methods along105

with relevant metrics.106

2. We have designed a fully automated pipeline107

that can convert existing image-text datasets108

into the benchmark required for evaluating109

creativity, without the need for manual inter-110

vention.111

3. We tested our proposed metrics and demon-112

strated their feasibility. Furthermore, we eval-113

uated different T2I models on the generated114

benchmark and found that Novelty and Sur-115

prise did not increase with version updates;116

instead, they decreased. This also highlights117

the importance of assessing creativity.118

2 Related Works119

2.1 T2I Models120

The development of deep learning has made the121

transformation from text to image possible, and the122

advancement of T2I models has been rapid. Reed123

et al. (2016) was the first to introduce Generative124

Adversarial Networks (GANs) to the text-to-image125

task. Subsequently, numerous works (Zhu et al.,126

2019; Park et al., 2019; Kang et al., 2023; Sauer127

et al., 2023) have been based on GANs, contin-128

uously optimizing the performance of T2I mod-129

els for this task. However, T2I models based on130

diffusion process soon gained widespread atten- 131

tion, leading to the emergence of numerous im- 132

pressive models. Rombach et al. (2022) presented 133

a latent diffusion model, which significantly im- 134

proved training efficiency and has the capability 135

to generate high-quality, high-resolution images. 136

Compared to previous versions of Stable Diffusion, 137

Stable Diffusion XL (Podell et al., 2023) designs 138

a model with more parameters and introduces a re- 139

finement model to improve details. The model has 140

achieved significant performance improvements 141

over past models. Stable Diffusion 3 (Esser et al., 142

2024) improves existing noise sampling techniques 143

and introduces a new transformer-based (Vaswani, 144

2017) model architecture, resulting in further per- 145

formance enhancements. 146

2.2 T2I Metrics & Benchmarks 147

In recent years, designing automatic evaluation 148

metrics to assess the quality of machine-generated 149

images has always been a topic of great interest 150

among researchers in the field of computer vi- 151

sion. Inception Score (Salimans et al., 2016) and 152

Fréchet Inception Distance (Heusel et al., 2017) 153

are the most widely adopted image quality metrics. 154

The former extracts visual features from generated 155

images using a pre-trained Inception-V3 model 156

(Szegedy et al., 2016) to evaluate image diversity. 157

The latter compares these extracted features with 158

those of "gold" images to assess image fidelity. 159

CLIPScore (Hessel et al., 2021) is based on com- 160

puting the cosine similarity between image and 161

text embeddings, as a metric for image-text align- 162

ment. VQAScore (Lin et al., 2025) evaluates the 163

alignment between an image and a text prompt 164

by leveraging the latent knowledge of large mod- 165

els. It calculates the probability that the model 166

answers “Yes" to the question “Does this figure 167

show ‘text’?". 168

Additionally, a high-quality benchmark is ur- 169

gently needed for evaluating T2I (Text-to-Image) 170

models. Visual Genome (Krishna et al., 2017) 171

and MSCOCO (Lin et al., 2014) are widely used 172

datasets for computer vision research, consisting 173

of large-scale real-world scenes annotated for tasks 174

such as object detection, captioning and also for 175

evaluating image quality and image-text consis- 176

tency. TIFA v1.0 (Hu et al., 2023) is a benchmark 177

that includes 4k diverse text inputs and 25k ques- 178

tions across 12 categories for T2I faithfulness eval- 179

uation. DSG-1k (Cho et al., 2023) encompasses a 180

broad spectrum of fine-grained semantic categories, 181
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Generated	Images	(G) Reference	Images	(R)

VQA	Model Visual	Encoder CLIP

Value:	avg( )

COS	Similarity = 1− 𝑜𝑟

= avg(⋅)

= avg(⋅)

Novelty:	1 − avg × Supervise:	1 − avg max ×

Prompt:	The	men
are	playing	a
game	......

Figure 1: An illustration of metric calculation process, including Value, Novelty and Surprise. Firstly, We encode
the images with Visual encoder and compute the cosine similarity between the vectors of the generated images,
and also compute the cosine similarity between the vectors of the generated images and the reference images.
Simultaneously, we calculate the text-image similarity by CLIP, interpreting this similarity as the proportion of
the semantic content in the prompt relative to the overall visual semantic content. This allows us to estimate
the proportion of the visual semantics that lies outside the scope of the prompt. By using a weighted approach,
we compute a more reasonable distance between the images to measure Novelty and Surprise. Additionally, we
calculate the mean of the VQAScore as Value.

ensuring a balanced distribution throughout.182

3 Creativity Evaluation183

3.1 Creativity Definition for T2I Model184

Franceschelli and Musolesi (2024) considered Bo-185

den’s criteria for studying machine creativity de-186

fined as “the ability to come up with ideas or arti-187

facts that are new, surprising and valuable” (Boden,188

2004). Value encompasses utility, performance,189

and attractiveness, and is connected to both the190

quality of production and its societal acceptance191

(Maher, 2010). Novelty refers to the degree of192

difference between the created artifact and others193

within its class (Ritchie, 2007). Surprise refers to194

how much a stimulus deviates from expectations195

(Berlyne, 1973).196

Based on the widely accepted definition of cre-197

ativity in previous research, we have provided a198

specific definition for Text-to-Image models. Value199

refers to whether the generated images include the200

content mentioned in the prompt. Novelty refers201

to the unique aspects of a image compared to other202

images generated by the same model. Surprise203

refers to whether the generated images contain new204

content that exceeds common human knowledge.205

3.2 Creativity Metric 206

3.2.1 Value 207

To evaluate whether the images generated by a 208

model effectively capture the content described in 209

the prompts, we chose to use VQAScore as the 210

evaluation metric. Compared to the commonly 211

used CLIP model, CLIP is trained via contrastive 212

learning to establish a one-to-one correspondence 213

between images and text. In contrast, VQAScore 214

evaluates the likelihood of a "Yes" response from 215

a Large Vision Language Model (LVLM) when 216

queried with relevant questions. LVLMs are typ- 217

ically trained on large-scale datasets and support 218

more flexible question forms, whereas CLIP is lim- 219

ited to calculating relatively rigid image-text sim- 220

ilarity. We take the average VQAScore of a set 221

of generated images as the score of Value for the 222

model when generating this set of images, the for- 223

mula as follows. 224

V alue =
1

N

N∑
n=1

VQAScore(ign, t) (1) 225

where ign represents the nth generated image, 226

while t denotes the prompt for image generation, 227

and N is the number of generated images. 228
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3.2.2 Novelty229

According to the definition, we aim to evaluate230

whether there are significant differences between231

images generated multiple times by the same model232

under the same prompt. We measure the visual se-233

mantic distance between generated images with234

visual encoder, which serves as the basis for cal-235

culating Novelty. As shown in Fig. 1, we also236

calculate the average of the image-text similarity237

between the generated images and the prompt, ap-238

proximating this as the proportion of the prompt’s239

semantics represented within the visual semantics.240

This allows us to derive the proportion of other241

semantics excluding the prompt in the visual con-242

tent. Since all the generated images include the243

content of the prompts, our evaluation focuses on244

assessing the content beyond the prompts, which is245

our primary focus of interest. Specifically, we aim246

to evaluate the semantic distance of non-prompt247

content generated across a T2I model’s multiple at-248

tempts for generation. By leveraging the semantic249

proportion, we approximate the similarity of the250

content outside the prompts. Finally, the average251

semantic distance of the content out of prompt is252

calculated as Novelty score by averaging the simi-253

larity scores.254

dgn = Encoder(ign) (2)255
256

Propnov = 1− 1

N

N∑
n=1

CLIP (ign, t) (3)257

258

Novelty = 1− 2

N2 −N
∗

N∑
n=1

N∑
j=n+1

cos_sim(dgn, d
g
j ) ∗ Propnov

(4)259

where dgn represents the visual embedding of260

the nth generated image, and Propnov in Novelty261

denotes the estimated proportion of similarity for262

content outside the prompt.263

3.2.3 Surprise264

Similar to Novelty, we aim to evaluate whether265

the images generated multiple times by the model266

under the same prompt can contain content that267

exceeds human expectations. The Surprise evalu-268

ation process is similar to Novelty, with two main269

differences. One difference is that we introduce270

a reference image set. As mentioned in section271

3.1, the Surprise metric is designed to evaluate272

whether the content of an image generated by a273

T2I model is beyond common knowledge. The ref- 274

erence image set consists of real images that not 275

only contain the prompt’s content but also include 276

common content associated with the prompt. The 277

Surprise is calculated by measuring the distance 278

between the generated images and these reference 279

images. Similarly to Novelty, we aim to evalu- 280

ate the distance between the content beyond the 281

prompt, as the prompt content is mandatory for all 282

images. Therefore, we also introduce CLIP. The 283

other difference is that, unlike Novelty, maximum 284

pooling substitute average pooling when calculat- 285

ing the similarity between a generated image and 286

multiple reference images. This is because our ex- 287

pectation for Surprise is more stringent; once the 288

content is predictable, it is no longer a Surprise. 289

Propsurp = 1− 1

N + S
[
N∑

n=1

CLIP (ign, t)+

S∑
s=1

CLIP (irs, t)]

(5) 290

291

Surprise = 1− 1

N
∗

N∑
n=1

max
s∈S

cos_sim(dgn, d
r
s) ∗ Propsurp

(6) 292

where irs and drs represent the sth reference im- 293

age and its visual embedding respectively, and S is 294

the number of reference images. 295

3.3 Benchmark & Generation Pipeline 296

To evaluate the model’s creativity, we have con- 297

structed a fully automated process that can trans- 298

form existing image-text datasets into benchmarks 299

required for assessing creativity, as depicted in the 300

Fig 2. 301

By encoding the text in the image-text pairs of 302

the dataset and then clustering them, all text vec- 303

tors are divided into n categories, where n depends 304

on the desired size of the benchmark. Next, the 305

pipeline randomly select one text from each clus- 306

ter and, based on similarity calculations, find the 307

k− 1 most similar prompts within the same cluster. 308

The value of k depends on the number of reference 309

images needed for evaluating Surprise. Then re- 310

trieve the images corresponding to these k prompts 311

to serve as reference images. Finally, the pipeline 312

merge the k prompts into a single prompt with a 313

LLM, ensuring that the merged prompt corresponds 314

4



Text Clustering

Pairs

A man is ......

A man with child

A man with phone ...

...

A woman is ......

A woman with child ...

A woman with phone ...

...

Sample a caption from each cluster 

with similar captions 

Find the image for

each caption

Combine each multiple captions 

into one

Multiple images for one caption
Images

Captions

Two bears in a natural setting.

Figure 2: An illustration of fully automated benchmark generation pipeline. First, convert the text in the text-image
pairs into vectors. Then, cluster all the texts into multiple categories. From each category, randomly select one text
and find the most similar texts within the same category. Next, find the images corresponding to all these texts.
Finally, to ensure that the prompt can correspond to all images, use a large language model to merge the similar
texts into one. This process creates a benchmark where one prompt corresponds to multiple images.

to all the reference images, with the prompt, “Here315

are some captions. ‘{captions}’ Please find what316

these captions have in common, don’t have to de-317

scribe the difference between them, DO NOT use318

generalisations such as various, different and so on319

and write it in one caption. Please only answer the320

caption without anything else.”. In this paper, the321

value of k is 6, resulting in a benchmark consisting322

of 384 prompts and their reference images based323

on MSCOCO (Lin et al., 2014).324

4 Experiments325

4.1 Test for Metric326

Through extensive experiments and consistency327

tests with human judgments, Fu et al. (2024) found328

that the DINO model is capable of capturing sub-329

tle differences in visual semantics. Therefore, we330

choose the DINOv2 large model (Oquab et al.,331

2023) as the visual encoder when the evaluating332

the metric. Although DINO has been experimen-333

tally proven to capture visual semantics (Fu et al.,334

2024), we conducted further tests on our DINO-335

based metrics. For the Value metric, we directly336

use the VQAScore, so no additional testing is re-337

quired. In our subsequent test experiments, we338

used the FLUX API provided by Alibaba to gener-339

ate high-quality images for testing.340

The essence of the evaluation process for Nov- 341

elty and Surprise is fundamentally consistent, with 342

the main difference that Novelty involves com- 343

paring generated images with each other, while 344

Surprise involves comparing them with references. 345

We designed a method, illustrated in Fig. 3, to 346

test whether the Novelty metric can distinguish be- 347

tween image sets with different levels of Novelty. 348

For evaluation, we set the T2I model to run six 349

times to generate six different images. We prede- 350

fine four levels of Novelty image sets, ranging from 351

low to high, using an original prompt, two enriched 352

prompts, three enriched prompts, and six enriched 353

prompts, respectively. We enrich a prompt through 354

LLM while retaining its original semantics. By 355

altering the prompt, we force the T2I model to gen- 356

erate images containing the original prompt content 357

in different scenarios. If we generate six images 358

with an original prompt, these images will be quite 359

similar. However, if the model generates with six 360

enriched prompts, each generating one image, these 361

six images will be significantly different. With two 362

enriched prompts, each generating three images, 363

results in six images with two groups, where the 364

images between the groups are more different and 365

in the same group are more similar. Similarly, using 366

three enriched prompts follows the same logic. 367
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Images	based	on	original	prompt

Enrich	prompt	
by	LLM	multiple	

times

Images	based	on	enriched	prompt

1 Prompt

2 Prompts

3 Prompts

6 Prompts

Figure 3: An illustration of the method for testing met-
ric. Enhancing the content of original prompts through
LLM while preserving their original semantics, aiming
to enable the model to generate content that is richer
compared to the original prompts. This approach is de-
signed to simulate the outputs of models with varying
levels of Novelty by controlling the number of enriched
prompts.

To test the Surprise metric, the model gener-368

ated two images with original prompt to serve as369

reference images. But it is not possible to preset370

rankings for Surprise. It’s hard to control Surprise371

by adjusting the number of enriched prompts as we372

do with Novelty. Novelty involves comparing gen-373

erated images with each other, where controlling374

the enriched prompts ensures that images generated375

under the same enriched prompt are similar, while376

images generated under different enriched prompts377

are significantly different. However, Surprise in-378

volves comparing the generated images with the379

reference images which are fixed. As long as the380

images generated from the enriched prompts are381

significantly different from the reference images382

provided by the original prompt, we can only preset383

this one ranking, i.e., the 2, 3, and 6 prompts image384

sets will rank higher than the 1 prompt image set.385

However, we cannot preset the rankings among the386

2, 3, and 6 prompts image sets.387

As shown in Fig. 4, the ranking of the results388

evaluated by the Novelty metric aligns with our389

predefined ranking, from low to high, one prompt,390

two prompts, three prompts, and six prompts, re-391

0.50

0.55

0.60

0.65

0.70

0.75

1	prompt 2	prompts 3	prompts 6	prompts

Novelty Surprise

Figure 4: Test results for Novelty and Surprise. As the
number of enriched prompts increases, Novelty also
gradually rises. Additionally, Surprise is significantly
enhanced when comparing image sets generated with en-
riched prompts to those generated with a single prompt.
The aforementioned results align with our expectations.

spectively. This demonstrates that our metric can 392

distinguish the rankings of image sets with differ- 393

ent levels of Novelty which is defined in section 394

3.1. As expected, the other image sets have signif- 395

icantly higher Surprise values compared to the 1 396

prompt image set, while the Surprise values among 397

the other image sets are similar. In summary, our 398

defined metrics can distinguish between the levels 399

of Novelty and Surprise as defined in the previous 400

section. 401

Model Value Novelty Surprise

SD-v1-4 0.7858 0.5792 0.6232
SD-XL 0.8080 0.5511 0.6212

SD-v3med 0.8283 0.4981 0.6040

Table 1: Experimental results on benchmark. Value,
which refers to the image-text alignment we have previ-
ously focused on, has gradually increased with model
iterations. However, in the context of creativity, the
newly introduced metrics of Novelty and Surprise show
the opposite trend.

4.2 Implementation Details for Benchmark 402

We conducted the experiments on three typical T2I 403

models: Stable Diffusion v1.4 (Rombach et al., 404

2022), Stable Diffusion XL base 1.0 (Podell et al., 405

2023), and Stable Diffusion 3 medium (Esser et al., 406

2024). For the visual encoder, as in the previ- 407

ous section, we selected the DINOv2 large model 408

(Oquab et al., 2023). For the CLIP model, we 409

chose to use CLIP ViT-Large Patch 14 created by 410

OpenAI. We run the experiments on a single RTX 411

4090D. All models output at default resolutions. 412
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1

A vehicle on or driving down a road or parking lot. Skateboarders are skating at a park.

SD v1.4

Reference

SD 3 Med

SD XL

Figure 5: A generation case of benchmark. Stable Diffusion v1.4 demonstrates considerable variation in the
generated images. Conversely, Stable Diffusion v3 medium exhibits minimal variation, maintaining a consistent
visual angle and color palette for the car, as well as uniformity in the depiction of skateboarders. This suggests that
when evaluating model performance, creativity was rarely considered before.

Specifically, the output resolutions for Stable Diffu-413

sion v1.4, XL, and 3 are 512x512, 1024x1024, and414

1024x1024, respectively. For calculating VQAS-415

core, we chose LLaVA v1.5 7B (Liu et al., 2024)416

as the base model. The number of inference steps417

is 50. Guidance scale (Ho and Salimans, 2022) is418

7.5.419

4.3 Results on Benchmark420

As shown in Table 1, under the Value metric, the421

value increases with the update of stable diffu-422

sion versions. This indicates that the model is in-423

creasingly able to accurately generate content that424

includes the prompt, aligning with the expected425

model improvements. However, under the Novelty426

and Surprise metrics, the situation is the opposite,427

especially for Novelty. The decrease in Novelty (up428

to -0.081) means that the content generated by the429

model tends to become more homogeneous over430

multiple generations and in Surprise (up to -0.019)431

indicates that the content generated by the model432

is no longer beyond people’s expectations. It is433

clearly observed that, from Fig. 5, in the genera-434

tion tasks of these two prompts, Stable Diffusion435

v1.4 exhibits significant variation in color schemes,436

visual angles, and compositional elements across437

multiple generations. In stark contrast, Stable Dif-438

fusion v3 medium shows little variation, with the439

visual angle and color of the car remaining largely440

consistent, and the content related to skateboarders441

following the same pattern. From this perspective,442

it highlights the importance of evaluating creativity.443

Value Novelty Surprise

Baseline 0.7858 0.5792 0.6232
w/ different seeds 0.7854 0.5849 0.6271

w/ 20 images 0.7863 0.5749 0.6249
w/ guidance 12.5 0.7872 0.5645 0.6240

w/ guidance 5 0.7782 0.6025 0.6290
w/ guidance 1 0.5707 0.7801 0.7749

Table 2: Experimental results on the impact of the num-
ber of images and random seeds on the evaluation, and
the effect of guidance scale on the model’s creativity.
It’s observed that a large number of images and random
seeds have little impact on evaluation. The guidance
scale does influence the model’s creativity; however, a
very low guidance scale negatively affects Value.

4.4 Analysis 444

In this section, we analyze the impact of the number 445

of generated images and different textual expres- 446

sions of the same prompt semantics on the evalua- 447

tion of creativity, the effect of the guidance scale on 448

the model’s creativity. We choose the Stable Dif- 449

fusion v1.4 that Novelty and Surprise perform best 450

in the benchmark experiment as the base model. 451

From the experimental results in Table 2, we can 452

see that changing the random seed to generate im- 453

ages six times again and generating more images 454

to evaluate the model’s creativity have a negligible 455

impact. This indicates that generating six images is 456

sufficient to reflect the model’s performance, and 457

the performance is minimally affected by the ran- 458

dom seed. 459

The default guidance scale is 7.5. Increasing 460
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7.5

12.5

5

1

Figure 6: Cases of images generated under different guidance scale. It is evident that appropriately reducing
guidance scale can enrich image content, thereby enhancing Novelty and Surprise. However, excessively lowering
guidance scale, while significantly boosting Novelty and Surprise, results in images that are irrelevant to the prompt.

the guidance scale prompts the model to produce461

images that are more closely aligned with the text462

prompt. In our analysis experiments, we tested463

the results with scales of 12.5, 5, and 1, keep-464

ing other parameters constant. We observed that465

appropriately lowering the guidance scale can in-466

creases Novelty while keeping the value relatively467

unchanged, with a slight fluctuation in Surprise (up468

to -0.007 Value, +0.023 Novelty and +0.006 Sur-469

prise). However, if the guidance scale is reduced to470

1, although both Novelty and Surprise increase sig-471

nificantly, the value drops sharply. This indicates472

that the high Novelty and Surprise are due to the473

image content deviating too much from the prompt,474

as shown in Fig. 6.475

We sampled 50 prompts from the benchmark476

and used an LLM to rewrite the prompts in each477

group into different expressions without changing478

the semantics, with the prompt, “Here is a caption.479

‘{caption}’. Please rewrite this caption without480

changing the meaning of the sentence and only an-481

swer the rewritten caption directly without anything482

else.”. Each prompt was rewritten twice, resulting483

in a total of three versions including the original484

prompt. Each prompt generated two images, total-485

ing six images. From the Table 3, we can find that486

the expression of the prompt has a minimal impact487

on evaluating the model’s creativity under the same 488

semantics. This result also indicates that simply 489

altering the form of the prompt is not a feasible 490

approach to enhancing creativity. 491

Value Novelty Surprise

Baseline 0.7665 0.5967 0.6503
w/ rewrite 0.7684 0.6023 0.6399

Table 3: Experimental results on the effect of prompt
expression on evaluation. The prompts were rewrote by
LLM without altering their semantics, and the results
remained largely consistent, indicating minimal impact
of prompt expression.

5 Conclusion 492

In this paper, we explore the definition of creativity 493

and its application in T2I models. For evaluation, 494

we propose creativity metrics, consisting of Value, 495

Novelty and Surprise, and an fully automatic bench- 496

mark generation pipeline. Experimental results 497

across the generated benchmark validate creativity 498

is a new, valuable perspective for T2I model evalu- 499

ation. Furthermore, we conducted detailed analysis 500

experiments on the influences of hyper-parameters 501

on the evaluation of creativity. 502
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Limitations503

Despite the contributions of this work, there are504

several limitations that should be acknowledged.505

The limitations define the boundaries of our current506

work and suggest directions for future research.507

1. When assessing the impact of the same set of508

images with identical semantics on the evalu-509

ation of Novelty and Surprise, we employed510

CLIP to approximate the semantic proportion511

and evaluate the distance between other se-512

mantics in different images in the set, exclud-513

ing those with identical semantics. However,514

this method is not entirely appropriate, and a515

more precise approach is needed to measure516

the semantics we intend to compare.517

2. This work focuses on evaluating the creativity518

of the model. For assessing the creativity of519

a single image, current methods may not be520

entirely suitable. A larger and more diverse521

image dataset might be necessary to support522

image creativity evaluation. Additionally, cre-523

ative elements such as metaphors embedded524

within a single image may require deep explo-525

ration by large language models to be better526

evaluated.527

Ethical Considerations528

Our benchmark is derived from MSCOCO, which529

is licensed under the Creative Commons Attribu-530

tion 4.0 License. Dinov2 large is distributed under531

the Apache License 2.0, while CLIP ViT-Large532

Patch 14 adheres to the MIT License. LLaVA 1.5533

is governed by the LLAMA 2 Community License.534

Our usage of these models and benchmarks in535

this study is strictly for academic purposes and536

follows license.537
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