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Abstract

Neural networks that regress the displacement and associated covariance of an inertial
measurement unit (IMU) purely from its accelerometer and gyroscope measurements have
become key enablers to low-drift inertial odometry, but still ignore the physical roto-
reflective symmetries inherent in IMU data, thus hindering generalization. In this work, we
show that IMU data, displacements and covariances transform equivariantly, when rotated
around and reflected across planes parallel to gravity. We design a neural network that
equivariantly estimates a gravity-aligned frame from IMU data, leveraging tailored linear
and non-linear layers, and uses it to canonicalize the data. We train an off-the-shelf inertial
odometry network on this data and map its outputs back into the original frame, thus
obtaining equivariant covariances and displacements. To highlight its generality, we apply
the framework to both filter-based and end-to-end approaches and show better performance
on the TLIO, Aria, RIDI and OxIOD datasets than existing methods.
Keywords: equivariance, inertial odometry, subequivariance

1. Introduction
Inertial Measurement Units (IMUs) measure body accelerations and angular velocities and
are widely used to track inertial frames in robot navigation, AR/VR, etc. IMU-based
Inertial Odometry (IO) promises robust tracking which does not suffer from motion blur
and saturation effects as would a Visual Inertial Odometry (VIO) system. Purely IO
can be broadly classified into kinematic, and learning-based approaches. Kinematic-based
approaches Leishman et al. (2014); Titterton et al. (2004); Bortz (1971); Solin et al. (2018);
Groves (2015); Hartley et al. (2020); Brajdic and Harle (2013); Jimenez et al. (2009); Ho et al.
(2016); Foxlin (2005); Rajagopal (2008); Beaufils et al. (2019) leverage analytical solutions,
loop closures or handcrafted pseudo measurements for an Extended Kalman Filter (EKF),
but suffer from drift due to noise. By contrast, learning-based approaches leverage Deep
Neural Networks (NN) to denoise IMU measurements Brossard et al. (2020b); Buchanan et al.
(2023); Brossard et al. (2020a); Steinbrener et al. (2022), regress velocity/displacement Yan
et al. (2018); Asraf et al. (2022); Herath et al. (2020); Chen et al. (2018a); Sun et al. (2021)
or provide motion priors (i.e. displacement and covariances) Liu et al. (2020)(TLIO), Chen
et al. (2021a); Russell and Reale (2021) for EKF/factor-graph based filtering. NN-based
statistical displacement priors (TLIO, Herath et al. (2020)(RONIN)) have been instrumental
in reducing this drift and performing competitively against VIO methods. Yet, these NNs
fail to generalize beyond the particular motion directions and mounting orientations they
were trained on. In this work, we aim to develop generalizable networks by leveraging the
equivariance of IMU data, displacement and covariance when rotated around and reflected
across planes parallel to the gravity axis (i.e. O(2) roto-reflections, an O(3) subequivariance).
Our proposed network enforces this symmetry by design, and produces roto-reflection
consistent trajectories, in contrast to TLIO, RONIN, Russell and Reale (2021), and Cao et al.
(2022)(RIO) (Figure 1) which rely on rotation augmentations or auxiliary losses. Extensive
research has been conducted on how group equivariant networks Cohen and Welling (2016);
Cesa et al. (2021); Xu et al. (2022) process a variety of inputs, including point clouds Thomas
et al. (2018); Chen et al. (2021b); Deng et al. (2021); Villar et al. (2021), 2D Worrall et al.
(2017); Weiler and Cesa (2019), 3D Weiler et al. (2018); Esteves et al. (2019), spherical
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Figure 1: Trajectories and covariances from non-equivariant TLIO (a) and EqNIO (b) for
identical trajectories with different IMU frames. Unlike TLIO’s, our de-rotated trajectories
and ellipsoids are perfectly aligned. c) EqNIO canonicalizes gravity-aligned IMU data via
a frame derived from an equivariant network, and predicts invariant displacement (d′) and
covariance (Σ′) using an off-the-shelf model. Mapping back the outputs into the original
frame, yields equivariant displacement (d) and covariance (Σ).

images Cohen et al. (2018); Esteves et al. (2018, 2020, 2023), graphs Satorras et al. (2021),
and general manifolds Cohen et al. (2019b,a); Weiler et al. (2021); Xu et al. (2024); Finzi
et al. (2021). Related works Han et al. (2022); Chen et al. (2023) tackle subequivariance
using equivariant graph networks. However, since IMU data forms a temporal sequence of
non-trivially transforming vector measurements affected by a global gravity direction, novel
equivariant linear and non-linear layers need to be designed. In particular, gravity reduces
the full O(3) equivariance to O(2) equivariance, and angular rates need to be non-trivially
preprocessed before they can be equivariantly processed. Using these layers we produce
an equivariant frame (F), with which we canonicalize the IMU data, before running an
off-the-shelf network that produces invariant displacements and covariances. Mapping them
into the original frame, produces equivariant outputs.

2. Method
Given a sequence IMU accelerometer and gyroscope measurements {(ai, ωi)}ni=1 (ai, ωi ∈ R3),
expressed in the local IMU inertial frame we regress 3 degrees-of-freedom (DoF) linear
velocities (RONIN) or 3D displacement measurements d ∈ R3 and covariances Σ ∈ R3×3

(TLIO). In the latter case, we treat the network outputs as measurements and fuse them
in an Extended Kalman Filter (EKF) estimating the IMU state, i.e. orientation, position,
velocity, IMU biases, and uncertainties. Preliminaries on inertial odometry and details on
the EKF are given in Appendix A.1.2 and A.4.

We map the IMU data to a gravity-aligned frame by rotating it to a frame with a
gravity-aligned z-axis using the orientation estimated from the current EKF state. This
frame, however, is ill-defined, because it is specified up to an arbitrary yaw rotation and
reflection. This implies the IMU data only behaves equivariantly when roto-reflected around
gravity. These roto-reflections R ∈ Og(3) := {R ∈ O(3)|Rg = g} form a subgroup of O(3)
isomomorphic to O(2), and thus we treat the problem with O(2) equivariance techniques.
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Similarly, R ∈ SOg(3) form a subgroup of SO(3) isomorphic to SO(2) which we call rotation
subequivariance.

Our framework (see Fig. 1 bottom), (i) bijects IMU data into a space that transforms
equivariantly under the specific group representation of O(2), (ii) estimates a canonical
frame using an equivariant neural network to canonicalize the IMU data, (iii) predicts linear
velocity or displacement and covariance with an off-the-shelf neural network Φ, and (iv)
finally remaps the outputs into the original frame, yielding equivariant outputs.
Bijection: Let R2×2 be the roto-reflection around gravity (z-axis) which acts on acceleration
as a′i = (R2×2⊕1)ai, where ⊕ constructs a block diagonal matrix of R2×2 and 1. Unfortunately,
for angular rates, this transformation is different ω′

i = det(R2×2)(R2×2 ⊕ 1)ωi, i.e. it
changes sign upon reflection, therefore we decompose ωi into v1, v2 such that ω = v1 × v2
Selecting v1/2 =

√
∥ω∥w1/2/∥w1/2∥ with w1 = (−ωy, ωx, 0) and w2 = ω × w1, yields the

desired result. The decomposed parts transform as v′1/2 = (R2×2 ⊕ 1)v1/2 under rotation
R2×2, identical to the acceleration, and their cross product has the desirable property
ω′ = v′1 × v′2 = det(R2×2)(R2×2 ⊕ 1)(v1 × v2) = det(R2×2)(R2×2 ⊕ 1)ω.
Equivariant Frame (Eq F.): We use a two-branch architecture inspired by Villar et al.
(2021) (broken down in Appendix A.3) to process n IMU measurements as n × 2 × Cv

0

(Cv
0 = 3) vector features derived from v1,xy, v2,xy, axy each transforming with R2×2, and

n×Cs
0 , (Cs

0 = 9) scalar features, comprised of the invariant norms of these vectors, their dot
products, and the z-components of each vector. While scalars are processed with conventional
MLPs and 1D convolutions, vectors are processed with specifically designed equivariant linear
layers. We then mix scalars and vector features with equivariant non-linearities. Our network
outputs a set of two vector features (see Section A.3 in the Appendix) which are converted
into an orthonormal SO(2) or O(2) frame F via Gram-Schmidt orthogonalization.
Linear Layer: Using Eq. 2 in Finzi et al. (2021), we find the basis of weights that commute
with rotation of vector features vin ∈ R2, i.e. v′out = WR2×2v

in = R2×2Wvin = R2×2v
out

SO(2) : vout = vinW1 +R90v
inW2 O(2) : vout = vinW1 (1)

with vout ∈ R2×Cout , vin ∈ R2×Cin , W1,W2 ∈ RCin×Cout and R90 a 90◦. Summing linear
projections over a temporal receptive field yields 1D convolutions.
Non-Linear Layer: We apply a pointwise nonlinearity inspired by the gated nonlinearity Weiler
et al. (2018). Specifically, for n vector and scalar features vin ∈ Rn×2×C , sin ∈ Rn×C , we
process channel-wise concatenated norm features ∥vin∥ ∈ Rn×C and scalar features sin with
an MLP with output of size n × 2C. We then split this output into new norm features
γ ∈ Rn×C and activations β ∈ Rn×C which we modulate with a non-linearity sout = σ(β)
and use to rescale the original vector features vout = γvin. See Figure 3 for more details.
Remapping of Outputs: Invariant displacement d′ and covariance Σ′ from our base model
are made equivariant via d = (F ⊕ 1)d′, and Σ = (F ⊕ 1)Σ′(F ⊕ 1)⊺. Since F is equivariant
to R2×2 roto-reflection and d′ and Σ′ are invariant, d and Σ transform equivariantly.

3. Experiments and Ablation
Implementation and Training Details: As TLIO we use loss function LMSE(d̂, d) =
∥d − d̂∥2 in the first stage, and LMLE(d̂, d) = (d − d̂)TΣ−1(d − d̂) in the second stage
when LMSE converges. Unlike TLIO we parameterize covariance as a diagonal matrix in
the canonical frame, and we empirically observed that dxy and dz are independent (see
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Dataset TLIO Dataset Aria Dataset

Model MSE* ATE ATE* RTE RTE* AYE MSE* ATE ATE* RTE RTE* AYE

TLIO 3.242 1.812 3.722 0.500 0.551 2.376 5.322 1.285 2.102 0.464 0.521 2.073
TLIO-N 3.333 1.722 3.079 0.521 0.542 2.366 15.2481.969 4.560 0.834 0.977 2.309
TLIO-NQ 3.008 1.429 2.443 0.495 0.496 2.411 2.437 1.213 2.071 0.458 0.508 2.096
TLIO-PCA 3.473 1.506 2.709 0.523 0.535 2.459 6.558 1.717 4.635 0.771 0.976 2.232
Eq CNN 3.194 1.580 3.385 0.564 0.610 2.394 8.946 3.223 6.916 1.091 1.251 2.299

TLIO + Eq F. SO(2) 3.194 1.480 2.401 0.490 0.501 2.428 2.457 1.178 1.864 0.449 0.484 2.084
TLIO + Eq F. O(2) 2.982 1.433 2.406 0.458 0.478 2.389 2.304 1.118 1.849 0.416 0.465 2.059

Dataset RONIN-U RONIN-S RIDI-T RIDI-C OxIOD

Model ATE* RTE* ATE* RTE* ATE* RTE* ATE* RTE* ATE* RTE*

RONIN-100% 5.14 4.37 3.54 2.67 1.63 1.91 1.67 1.62 3.46 4.39
RIO B-ResNet 5.57 4.38 - - 1.19 1.75 - - 3.52 4.42
RIO J-ResNet 5.02 4.23 - - 1.13 1.65 - - 3.59 4.43
RIO B-ResNet-TTT 5.05 4.14 - - 1.04 1.53 - - 2.92 3.67
RIO J-ResNet-TTT 5.07 4.17 - - 1.03 1.51 - - 2.96 3.74
RONIN + Eq F. SO(2) 5.18 4.35 3.67 2.72 0.86 1.59 0.63 1.39 1.22 2.39
RONIN + Eq F. O(2) 4.42 3.95 3.32 2.66 0.82 1.52 0.70 1.41 1.28 2.10

Table 1: Diplacement error on various datasets (red, orange and yellow denote the first,
second and third lowest result). ∗ denote results without EKF. MSE are multiplied by 100.

Appendix A.1.3 for more covariance details and Appendix A.9 for the empirical proof.)
Baseline Models: We apply our framework to RONIN, an end-to-end deep learning
approach RONIN and compare RIO, and a filter-based approach with a learned prior TLIO.
While RONIN regresses only the 2D velocities and integrates them to produce a trajectory,
TLIO estimates orientation, position, velocity, IMU biases, and covariances, which are used
as measurement updates of an extended Kalman filter (EKF). With TLIO-N, TLIO-NQ,
TLIO-PCA, Eq CNN we denote TLIO trained without yaw augmentations, non-equivariant
frames, PCA to predict handcrafted frames and fully equivariant CNN respectively.
Metrics: The NN performance is evaluated with Mean Squared Error (MSE) (m2), Absolute
Translation Error (ATE) (m), and Relative Translation Error (RTE) (m), on trajectories
reconstructed via cumulative summation or EKF filtering (see Appendices A.2, A.3, A.6,
A.9, A.5 for full experiments).
Results: As seen in Table 1, on the Aria Dataset, Eq F. O(2) outperforms other methods by
56%, 12%, and 10% with the baseline TLIO model on MSE*, ATE*, and RTE* respectively.
It outperforms even RIO J-ResNet-TTT by 56% and 43% on ATE* and RTE* on the RIDI-T
and OxIOD Datasets, despite being trained on only 50% of the data. These results highlight
the strong generalization capabilities of our method.
Ablation: Table 1 shows that yaw augmentations improve generalization, non-equivariant
MLP and handcrafted frames (PCA) predict deleterious equivariant, non-smooth frames,
and a fully equivariant CNN using the basic layers described in Section 2 is overly restrictive.
4. Conclusion
Our framework robustly regresses an equivariant frame, capturing the inherent symmetry of
IMU data, and enforcing O(3) subequivariance, i.e. O(2) equivariance, in both predicted
velocity/displacement and covariance. Coupled with off-the-shelf filter-based or end-to-end
models, it improves the state-of-the-art in neural IO.
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Appendix A. Appendix

A.1. Preliminary

A.1.1. Equivariance

In this section, we introduce more preliminaries of group and representation theory which
form the mathematical tools for equivariance.

Group The group G is a set equipped with an associative binary operation · which maps
two arbitrary two elements in G to an element in G. It includes an identity element, and
every element in the set has an inverse element.

In this paper, we focus on the group SO(2) and O(2). SO(2) is the set of all 2D planar
rotations, represented by 2x2 orthogonal matrices with determinant 1. This group operation
is matrix multiplication, and each rotation matrix has an inverse, which is its transpose. The
identity element is the matrix representing no rotation.

O(2) consists of all distance-preserving transformations in Euclidean 2D space, including
both rotations and reflections. Elements of O(2) are 2x2 orthogonal matrices, with the group
operation being matrix multiplication. Each transformation matrix has an inverse, and the
identity element is the matrix representing no transformation.

Group Representation and Irreducible Representation Group representation is a
homomorphism from the group G to the general linear map of a vector space V of a file K,
denoted GL(V ).

An irreducible representation (irrep) of a group G is a representation in which the only
invariant subspaces under the action of G are the trivial subspace {0} and the entire space V .
In other words, an irreducible representation cannot be broken down into smaller, nontrivial
representations,i.e., it cannot be the direct sum of several nontrivial representations.

For SO(2), we can use θ ∈ (0, 2π] to represent SO(2), for any θ, the irreducible represen-
tation of the frequency n ∈ N is:

ρn(θ) =

(
cosnθ − sinnθ
sinnθ cosnθ

)
.

For O(2), we can use r ∈ {−1, 1} to denote reflection and θ ∈ (0, 2π] to denote rotation.
The trivial representation ρ0(r, θ) = 1. For the nontrivial representation of frequency n ∈ N+

ρn(r, θ) =

(
cos(nθ) − sin(nθ)
sin(nθ) cos(nθ)

)(
1 0
0 r

)
There is another one-dimensional irreps for O(2), ρ(r, θ) = r which corresponds to the

trivial representation of rotation.
The introduction to group representations has been covered extensively in previous work

on equivariance Cohen and Welling (2016); Weiler et al. (2018); Xu et al. (2024). Specifically,
for SO(2) and O(2), Weiler and Cesa (2019) provide a detailed introduction.

Invariance and Equivariance Given a network Φ : X → Y, if for any x ∈ X ,

Φ(ρXx) = Φ(x),
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implies the group representation ρY of the output space is trivial, i.e. identity, and the input
does not transform (i.e. the input is invariant) under the action of the group. In our paper,
the coordinates/ projections of 3D vector to the gravity axis z-axis are invariant, therefore
we call them invariant scalars.

A network Φ : X → Y is equivariant if it satisfies the constraint

Φ(ρXx) = ρYΦ(x).

In this paper, when the output is displacement the z− component is invariant while xy−
components are acted under the representation of ρ1 defined in the above section. Hence, for
displacement, ρY = ρ1 ⊕ 1 and for covariance 3D covariance, ρY = (ρ1 ⊕ 1)⊗ (ρ1 ⊕ 1)

Subequivariance As mentioned in prior works Chen et al. (2023); Han et al. (2022),
the existence of gravity breaks the symmetry in the vertical direction, reducing O(3) to its
subgroup O(2). We formally characterize this phenomenon of equivariance relaxation as
subequivariance. We have mathematically defined the subequivariance in Section 2 of the
paper. In simpler terms, the gravity axis is decoupled and treated as an invariant scalar
while the other two axes are handled as a separate 2D vector. Upon rotation, the invariant
scalar remains constant while the other two axes are transformed under rotation. So we are
limited now to SO(2) rotations and roto-reflections. In the general case of equivariance, the
3D vector would be considered three-dimensional and an SO(3) rotation would act on it.
The transformation would be along all three axes.

A.1.2. Inertial Odometry

In this section, we introduce more preliminaries on the terms used in inertial odometry.

Inertial Measurement Unit Inertial Measurement Unit (IMU) is an electronic device that
measures and reports linear acceleration, angular velocity, orientation, and other gravitational
forces. An IMU typically consists of a 3-axis accelerometer, a 3-axis gyroscope, and depending
on the heading requirement a 3-axis magnetometer.

An accelerometer measures instantaneous linear acceleration (ai). It can be thought of
as a mass on a spring, however in micro-electro-mechanical systems (MEMS) it is beams
that flex instead of spring.

A gyroscope measures instantaneous angular velocity (ωi). It measures the angular
velocity of its frame, not any external forces. Traditionally, this can be measured by the
fictitious forces that act on a moving object brought about by the Coriolis effect, when the
frame of reference is rotating. In MEMs, however, we use high-frequency oscillations of a
mass to capture angular velocity readings by the capacitance sense cones that pick up the
torque that gets generated.

World Frame A world frame, also known as a cartesian coordinate frame, is a fixed frame
with a known location and does not change over time.

Gravity-aligned World Frame When the world frame has one of its axes perfectly
aligned with the gravity vector, it is said to be a gravity-aligned world frame. In this paper,
we denote this frame with w.
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Local-gravity-aligned Frame A local-gravity-aligned frame has one of its axes aligned
with the gravity vector at all times but it is not fixed to a known location.

Body Frame A body frame comprises the origin and orientation of the object described by
the navigation solution. In this paper, the body frame is the IMU’s frame. This is denoted
as i for the IMU data.

Gravity-compensation Gravity compensation refers to the removal of the gravity vector
from the accelerometer reading.

Gravity-alignment Gravity-alignment of IMU data refers to expressing the data in the
gravity-aligned frame. This is done by aligning the z-axis of the IMU inertial frame with
the gravity vector pointing downwards and is usually achieved by fixing the roll and pitch
(rotations around the x and y axes) or by applying a transformation estimated by the relative
orientation between the gravity vector and a fixed z-axis pointing downwards. This is usually
achieved with a simple rotation.

A.1.3. Uncertainty Quantification in Inertial Odometry

In this section, we provide more context on uncertainty quantification in odometry and detail
the different parameterizations used for regressing the covariance matrix in the paper.

Homoscedastic Uncertainty Homoscedatic uncertainty refers to uncertainty that does
not vary for different samples, i.e., it is constant.

Heteroscedastic Uncertainty Heteroscedastic uncertainty is uncertainty that is depen-
dent on the sample, i.e., it varies from sample to sample.

Epistemic Uncertainty Epistemic uncertainty is uncertainty in model parameters. This
can be reduced by training the model for longer and/or increasing the training dataset to
include more diverse samples.

Aleatoric Uncertainty Aleatoric uncertainty is the inherent noise of the samples. This
cannot be reduced by tuning the network or increasing the diversity of the data.

Why do we need to estimate uncertainty in inertial odometry? In inertial odometry
when we use a probabilistic filter-based approach like a Kalman Filter, the filter estimates
the probability distribution over the pose recursively. While integrating the neural network
prediction, the filter fuses the prediction with other sensor measurements, like raw IMU
data in TLIO Liu et al. (2020), by weighing it based on the accuracy or reliability of the
measurements. For neural networks, this reliability is obtained by estimating the uncertainty.
If we use a fixed uncertainty (homoscedastic) it is seen to cause catastrophic failures of
perception systems. The uncertainty estimated in TLIO captures the extend to which input
measurements encode the motion model prior.

What is the uncertainty we are estimating in inertial odometry? We are regressing
aleatoric uncertainty using the neural network and training the model till the epistemic
uncertainty is very small as compared to aleatoric uncertainty.
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How is the uncertainty estimated in this paper? We regress aleatoric uncertainty
as a covariance matrix jointly while regressing 3D displacement following the architecture
of TLIO Liu et al. (2020). Since there is no ground truth for the covariance, we use the
negative log-likelihood loss of the prediction using the regressed Gaussian distribution. As
this loss captures the Mahalanobis distance, the network gets jointly trained to tune the
covariance prediction. We do not estimate epistemic uncertainty separately in this paper, but
as mentioned in Russell and Reale (2021) we train the network until the epistemic uncertainty
is small as compared to aleatoric uncertainty.

Diagonal covariance matrix TLIO Liu et al. (2020) regresses only the three diagonal
elements of the covariance matrix as log σxx, log σyy and log σzz and the off-diagonal elements
are zero. This formulation assumes the axes are decoupled and constrains the uncertainty
ellipsoid to be along the local gravity-aligned frame.

Full covariance matrix using Pearson correlation Russell and Reale (2021) define a
parameterization to regress the full covariance matrix. They regress six values of which three
are the diagonal elements log σxx, log σyy and log σzz and the remaining three are Pearson
correlation coefficients ρxy, ρyz, and ρxz. The diagonal elements are obtained by exponential
activation while the off-diagonal elements are computed as follows

Σij = ρijσiσj

where ρij passes through tanh activation.

Diagonal covariance matrix in canonical frame In our approach we regress the three
diagonal elements as log σxx, log σyy and log σzz in the invariant canonical frame. Since
the z-axis is decoupled from the xy-axis, only σxx and σyy are back-projected using the
equivariant frame to obtain a full 2D covariance matrix from the diagonal entries. The
resulting matrix is as follows σxx σxy 0

σxy σyy 0
0 0 σzz


A.2. Dataset Details

In this section, we provide a detailed description of the 4 datasets used in this work - TLIO
and Aria for TLIO architecture, and RONIN, RIDI and OxIOD for RONIN architecture.

TLIO Dataset- The TLIO Dataset Liu et al. (2020) is a headset dataset that consists of
IMU raw data at 1kHz and ground truth obtained from MSCKF at 200 Hz for 400 sequences
totaling 60 hours. The ground truth consists of position, orientation, velocity, IMU biases and
noises in R3. The dataset was collected using a custom rig where an IMU (Bosch BMI055) is
mounted on a headset rigidly attached to the cameras. This dataset captures a variety of
activities including walking, organizing the kitchen, going up and down stairs, on multiple
different physical devices and more than 5 people for a wide range of individual motion
patterns, and IMU systematic errors. We use their data splits for training (80%), validation
(10%), and testing(10%).
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Aria Everyday Dataset- Aria Everyday Dataset Lv et al. (2024) is an open-sourced
egocentric dataset that is collected using Project Aria Glasses. This dataset consists of 143
recordings accumulating to 7.3 hrs capturing diversity in wearers and everyday activities like
reading, morning exercise, and relaxing. There are two IMUs on the left and right side of the
headset of frequencies 800 and 1kHz respectively. They have two sources of ground truth-
open and closed loop trajectory at 1kHz. Open loop trajectory is strictly causal while closed
loop jointly processes multiple recordings to place them in a common coordinate system.
The ground truth contains position and orientation in R3. We use it as a test dataset. The
raw right IMU data is used to compare closed-loop trajectory with EKF results. The data
was downsampled to 200Hz and preprocessed using the closed-loop trajectory to test the
Neural Network trained on TLIO.

RONIN Dataset- RONIN Dataset Herath et al. (2020) consists of pedestrian data with
IMU frequency and ground truth at 200Hz. RONIN data features diverse sensor placements,
like the device placed in a bag, held in hand, and placed deep inside the pocket, and multiple
Android devices from three vendors Asus Zenfone AR, Samsung Galaxy S9 and Google Pixel
2 XL. Hence, this dataset has different IMUs depending on the vendor. We use RONIN data
splits to train and test their model with and without our framework.

RIDI Dataset- RIDI Dataset Yan et al. (2018) is another pedestrian dataset with IMU
frequency and ground truth at 200 Hz. This dataset features specific human motion patterns
like walking forward/backward, walking sidewards, and acceleration/deceleration. They also
record data with four different sensor placements. We report test results of RONIN models on
both RIDI test and cross-subject datasets. RIDI results are presented after post-processing
the predicted trajectory with the Umeyama algorithm Umeyama (1991) for fair comparison
against other methods.

OxIOD Dataset- OxIOD Dataset Chen et al. (2018b) stands for Oxford Inertial Odometry
Dataset consists of various device placements/attachments, motion modes, devices, and
users capturing everyday usage of mobile devices. The dataset contains 158 sequences
totaling 42.5 km and 14.72 hours captured in a motion capture system. We use their unseen
multi-attachments test dataset for evaluating our framework applied to RONIN architecture.

A.3. Equivariant Network Implementation Details

In this section, we describe in detail the equivariant network implementation and how it is
combined with TLIO and RONIN. The input to the framework is IMU samples from the
accelerometer and gyroscope for a window of 1s with IMU frequency 200Hz resulting in n =
200 samples. All IMU samples within a window are gravity-aligned with the first sample
at the beginning of the window, previously referred to as the clone state. During network
training, the samples are aligned using the ground-truth orientation of the clone state. The
network design, as seen in Figure 2 and Figure 3, differs in architecture for SO(2) and O(2)
and hence described separately below.

SO(2)- We decouple the z-axis from the other two axes and treat linear acceleration and
angular velocity along the z-axis as scalars (2). We also take the norm of the 2D accelerometer
and gyroscope measurements (2), their inner product (1) resulting in invariant scalars Rn×5.

13



Extended Abstract Track

Figure 2: The equivariant network architecture preprocesses the inputs to n× Cs
0 scalars,

and n× Cv
0 vectors: Vectors are processed by equivariant linear layers (Eq-L), convolutional

layers (Eq-Conv), and normalization layers (Eq-LN), while scalars are separately processed
with conventional layers. The vector and scalar features interact only in the non-linear layer
in an equivariant way.

Figure 3: Eq-L (bottom, left) uses two weights W1,W2 for SO(2) equivariance, and only W1

for O(2) equivariance. Eq-L (bottom, middle) uses Eq-L to perform 1-D convolutions over
time. The equivariant non-linear layer (bottom, right) mixes the vector and scalar features.

The x and y components of IMU measurements are passed as vector inputs Rn×2×2. The
vectors and scalars are then separately passed to the linear layer described in Section ??. The
equivariant network predicting the equivariant frame consists of 1 linear layer, 1 nonlinearity,
1 convolutional block with convolution applied over time, non-linearity, and layer norm. The
hidden dimension is 128 and the convolutional kernel is 16 x 1. Finally, the fully connected
block of hidden dimension 128 and consisting of linear, nonlinearity, layer norm, and output
linear layer follows a pooling over the time dimension. The output of the final linear layer
is 2 vectors representing the two bases of the equivariant frame. The input vectors of
dimension Rn×2×2 are projected into the invariant space via the equivariant frame resulting
in invariant features in Rn×4. These features are combined with the input scalars and passed
as input (Rn×6) to TLIO or RONIN base architecture. The output of TLIO is invariant
3D displacement and diagonal covariance along the principal axis. The output of RONIN
is 2D velocity. The x and y components are back-projected using the equivariant frame to
obtain displacement vector d in R2 and the covariance in the original frame. The covariance
is parameterized and processed as mentioned in Section ??.

O(2)- The preprocessing is as described in Section ?? where ω is decomposed to two
vectors v1 and v2 that have magnitude |ω|. The preprocessed input therefore consists of 3
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vectors a, v1 and v2. This is then passed to the equivariant network by decoupling the z-axis
resulting in vector input Rn×3×2 which represents 3 vectors in 2D. The scalars passed to
the linear layer described in Section ?? consist of the accelerometer z-axis measurement (1),
the z component of the two vectors v1 and v2 (2), the norm of the vectors (3) and the inner
product of the vectors(3) resulting in Rn×9. The network architecture is the same as SO(2)
with hidden dimension 64 and 2 convolutional blocks in order to make it comparable in the
number of parameters to SO(2) architecture. The invariant features obtained by projecting
the three vectors using the equivariant frame are processed as mentioned in Section ?? to
obtain 2 vectors in 3D that are fed as input to TLIO and RONIN. The postprocessing is the
same as SO(2).

The framework is implemented in Pytorch and all hyperparameters of the base archi-
tectures are used to train TLIO and RONIN respectively. The SO(2) architecture has
1821312 while O(2) has 2378368 number of parameters and the base TLIO architecture has
5424646. The baseline TLIO and our methods applied to TLIO were trained on NVIDIA
a40 GPU occupying 7-8 GB memory per epoch. The training took 5 mins per epoch over
the whole training dataset. We train for 10 epochs with MSE Loss and the remaining 40
epochs with MLE Loss similar to TLIO Liu et al. (2020). RONIN was trained on NVIDIA
2080ti for 38 epochs taking 2 mins per epoch. The loss function used was MSE as mentioned
in Herath et al. (2020). The EKF described in TLIO was run on NVIDIA 2080ti with the
same initialization and scaling of predicted measurement covariance as in TLIO Liu et al.
(2020).

We compare the resource requirements of the SO(2), and O(2) variant of our method
coupled with TLIO, with base TLIO without an equivariant frame. We report the floating
point operations (FLOPs), the inference time (in milliseconds), and Maximum GPU memory
(in GB) during inference, on an NVIDIA 2080 Ti GPU for the neural network averaged over
multiple runs to get accurate results. While base TLIO uses 35.5 MFLOPs, 3.5 ms, and
0.383 GB per inference, our SO(2) equivariant method instead uses 531.9 MFLOPs, 4.3 ms,
and 0.383 GB per inference. Finally, our O(2) equivariant method uses 638.5 MFLOPs, 4.6
ms, and 0.385 GB per inference. We further evaluate the Maximum GPU memory for the
equivariant networks separately and report 0.255 GB per inference for SO(2) equivariant
frame prediction and 0.257 GB per inference for O(2) equivariant frame prediction. The
Maximum GPU memory is unaffected because the equivariant frame computation utilizes
less memory than TLIO.

Finally, we also evaluate our method with a downstream EKF on an NVIDIA 2080 Ti
GPU. The EKF incorporates raw IMU measurements for propagation, and displacement
measurements from the neural network as measurement updates. For every 20 imu samples,
we send the last 200 IMU measurements to the neural network to provide this measurement
update. The original TLIO requires 0.492 seconds and 1.113 GB of memory. For the SO(2)
variant of our method, we require 0.554 seconds and 1.109 GB of memory to process 1 second
of real-world data. For the O(2) variant, we use 0.554 seconds and 1.115 GB of memory,
showing that our method is faster than real-time. The increase in memory for the O(2)
variant is due to the additional preprocessing step.

With comparable computing resources, our equivariant model outperforms TLIO since
we leverage symmetry, which is an intrinsic property in inertial odometry.
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A.4. EKF Details

A.4.1. Process Model

The EKF filter states include orientation, translation, velocity, biases of the imu body. The
EKF propagation uses raw IMU samples in the local IMU frame, following strap-down inertial
kinematics equations:

w

iR̂k+1 =
w

iR̂k expSO(3)((ωk − b̂gk)∆t)

wv̂k+1 = wv̂k + wg∆t+
w
iR̂k(ak − b̂ak)∆t

wp̂k+1 = wp̂k + wv̂k∆t+
1

2
∆t2(wg +

w
iR̂k(ak − b̂ak))

b̂g(k+1) = b̂gk + ηgdk

b̂a(k+1) = âgk + ηadk

where at timestep k,
w
iR̂k is the orientation estimate of the Kalman filter from IMU frame to

the gravity-aligned world frame, b̂gk are the gyroscope biases, ∆t is the time interval, wv̂k is
the velocity estimate, wg is the constant gravity vector, b̂ak are the accelerometer biases, wp̂k
is the position estimate, ηgdk and ηadk are the IMU noises that are assumed to be normally
distributed.

A.4.2. Measurement Model

The measurement model in the EKF uses the displacement estimates provided by the neural
network, aligning them in a local gravity-aligned frame to ensure the measurements are
decoupled from global yaw information:

ĥ(X) = RT
γ (pj − pi) = d̂ij + ηij

where Rγ is the yaw rotation matrix, pi and pj are positions of the past and current states,
and ηij represents the measurement noise modeled by the network’s uncertainty output.

A.4.3. Update Model

The Kalman gain is computed based on the measurement and covariance matrices, and
the state and covariance are updated accordingly. The key update equations involve the
computation of the Kalman gain (K), updating the state (X), and updating the covariance
matrix (P):

K = PHT (HPHT +Σ)−1

X = X+K(ĥ(X)− d̂ij)

P = (I−KH)P

A.5. Evaluation Metrics Definition

We follow most metrics in TLIO Liu et al. (2020) and RONIN Herath et al. (2020), besides
MSE loss we reported in the paper. Here we provide the mathematical details of these
metrics.
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• MSE (m2): Translation error per sample between the predicted and ground truth
displacement averaged over the trajectory. It is computed as 1

n

∑n
i ∥wpi − wp̂i∥.

However, it should be noted that MSE mentioned in TLIO Liu et al. (2020) is the
same as MSE Loss calculated as the squared error averaged separately for each axis
1
n

∑n
i ∥wpi,r − wp̂i,r∥ where r is an axis.

• ATE (m): Translation Error assesses the discrepancy between predicted and ground

truth (GT) positions across the entire trajectory. It is computed as
√

1
n

∑n
i ∥wpi − wp̂i∥

• RTE (m): Following the method described in Cohen and Welling (2016), Relative Trans-
lation Error measures the local differences between predicted and GT positions over a
specified time window of duration δt (1 minute).

√
1
n

∑n
i ∥wpi+δt − wpi − (wp̂i+δt − wp̂i)∥.

• AYE Absolute Yaw Error is calculated as
√

1
n

∑n
i ∥γi − γ̂i∥.

A.6. Visualization of TLIO results

Figure 4: The superior performance of our framework applied to TLIO architecture when
compared to baseline TLIO trained with and without augmentations on TLIO and Aria
Datasets visualized with a box plot. Blue, Orange, Green and Red indicate TLIO, TLIO-N,
TLIO+Eq F. SO(2) and TLIO+Eq F. O(2).

Figure 6 and Figure 7 show only the neural network results compared to ground truth
displacements. The ATE and RTE is calculated on the cumulative trajectory obtained form
the predicted displacements. Figure 7 is with whisker extended to include the outlier which
are commonly calculated as 1.5 * IQR (inter-quartile range). Figure 8 shows the results of
EKF without excluding the outliers. We provide more trajectory visualizations of TLIO test
data in Figure 5, Figure 9 and Figure 10.

A.7. Augmented TLIO Test Dataset Results and Analysis

We also perform an ablation study on test data augmentation for our model. For neural
network results, we apply four random yaw rotations per trajectory and random rotations
plus reflection per trajectory. The results are detailed in Table 2. Except for our equivariant
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Figure 5: Visualization of final estimated trajectories on TLIO Dataset by baseline TLIO
(Blue), our best method applied to TLIO (TLIO+Eq F. O(2))(Red), and the Ground-Truth
trajectory (Black). 1.a and 1.b are easy trajectories; 2.a and 2.b are mid-level hard trajectories;
3.a and 3.b are unusual motions not present in the training set are performed.

Figure 6: The superior performance of our framework applied to TLIO architecture when
compared to baseline TLIO trained with and without augmentations on TLIO and Aria
Datasets visualized with a box plot. Blue, Orange, Green and Red indicate TLIO, TLIO-N,
TLIO+Eq F. SO(2) and TLIO+Eq F. O(2). ATE, RTE and MSE indicate ATE*, RTE*
and MSE* corresponding to only the NN results.

model, all other methods show decreased performance compared to their results on non-
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Figure 7: The superior performance of our framework applied to TLIO architecture when
compared to baseline TLIO trained with and without augmentations on TLIO and Aria
Datasets visualized with a box plot. Blue, Orange, Green and Red indicate TLIO, TLIO-N,
TLIO+Eq F. SO(2) and TLIO+Eq F. O(2). ATE, RTE and MSE indicate ATE*, RTE*
and MSE* corresponding to only the NN results. The whisker is extended to 1.5 * IQR
(inter-quartile range).

Figure 8: The superior performance of our framework applied to TLIO architecture when
compared to baseline TLIO trained with and without augmentations on TLIO and Aria
Datasets visualized with a box plot. Blue, Orange, Green and Red indicate TLIO, TLIO-N,
TLIO+Eq F. SO(2) and TLIO+Eq F. O(2). The whisker is extended to 1.5 * IQR (inter-
quartile range).

augmented test data, whereas our model maintains consistent performance and outperforms
the other methods.

For the Extended Kalman Filter (EKF) results, we augment the test data using random
SO(3) rotations. Notably, we do not include reflections due to the structural constraints of the
Kalman filter. As shown in Table 3, despite the TLIO-NQ model outperforming ours in non-
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Figure 9: More Visualizations of final estimated trajectories on TLIO Dataset by baseline
TLIO (Blue), our best method applied to TLIO (TLIO+Eq F. O(2))(Red), and the Ground-
Truth trajectory (Black).

Figure 10: More Visualizations of final estimated trajectories on TLIO Dataset by baseline
TLIO (Blue), our best method applied to TLIO (TLIO+Eq F. O(2))(Red), and the Ground-
Truth trajectory (Black).

augmented tests on ATE metrics. Our model exceeds TLIO-NQ on the augmented dataset.
Our approach not only sets a new benchmark but also maintains consistent performance
across random rotations.

A.8. Visualization of RONIN

The visualization of trajectories in RONIN is displayed in Figure 11.

A.9. Ablation Study
In this section, we investigate and motivate the necessity for incorporating equivariance in
inertial odometry, the choice of equivariant architecture and covariance. We present all the
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Rotations Rotations + Reflections

Model MSE* ATE* RTE* MSE* ATE* RTE*

TLIO 0.0327 3.3180 0.5417 0.0347 2.9110 0.5654
TLIO-N 0.2828 27.7797 3.1390 0.2989 23.4839 3.1313
Deeper TLIO 0.0306 3.0264 0.5300 0.0332 2.3028 0.5592
TLIO-NQ 0.0302 2.6379 0.5025 0.0331 2.3212 0.5446
TLIO-PCA 0.2286 21.3795 2.5288 0.2467 10.1660 2.2283
†Eq F. SO(2) 0.0319 2.3218 0.4957 0.0339 1.8664 0.5178
†Eq F. O(2) 0.0298 2.3305 0.4719 0.0298 1.6418 0.4361

Table 2: Ablation Study For Neural Network with Random Rotation and Reflection Transfor-
mation (4 per trajectory) on TLIO test dataset. † represents TLIO+. A lower error indicates
a better model. The lowest values are annotated with Red. Our proposed methods are in
bold.

Exp ATE RTE Drift AYE

TLIO 1.6744 0.4944 1.5526 2.7290
TLIO-N 10.3005 3.6263 2.9501 3.3684
Deeper TLIO 1.6447 0.5466 1.2767 2.7279
TLIO-NQ 1.4924 0.5119 1.2721 2.7109
TLIO-PCA 8.5787 2.9962 2.0872 3.0183
†Eq F. SO(2) 1.4850 0.4901 1.3029 2.7615
†Eq F. O(2) 1.4316 0.4592 1.3096 2.7250

Table 3: Results of evaluation of EKF with Random Rotation Transformations (4 per
trajectory) on TLIO test dataset (i.e., results on augmentated test dataset). † represents
TLIO+. A lower error indicates a better model. The lowest values are annotated with Red.
Our proposed methods are in bold.

ablation on TLIO in Table 4 for the neural network and the overall performance when NN is
integrated with the EKF. Appendix A.7 contains the results of evaluating all the above models
separately on a test dataset augmented with rotations and/or reflections. Appendix A.11
presents the ablation on IMU input sequence length and lastly, in Appendix A.12 we present
sensitivity analysis to gravity direction using 5 discrete angles.

Baseline Ablation: Is yaw augmentation needed when the input is in a local
gravity-aligned frame? We trained TLIO both with and without yaw augmentation using
identical hyperparameters and the results in Table 4 revealed that augmentation enhances the
network’s generalization, improving all metrics for the Aria dataset with the lowest margin
of 10% on AYE and highest margin of 65% for MSE*. This underscores the importance
of equivariance for network generalization. Does a Deeper TLIO with a comparable
number of parameters match the performance of equivariant methods? We
enhanced the residual depth of the original TLIO architecture from 4 residual blocks of depth
2 each to 4 residual blocks with depth 3 each to align its number of parameters with our Eq
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Figure 11: Visualization of RONIN Unseen Test Dataset Trajectories for our best method
applied to RONIN, RONIN+Eq F. O(2).

F. SO(2) model. Despite having fewer parameters due to the removal of the orthogonal basis
in the SO(2) vector neuron-based architecture, the Eq F. O(2) model still outperformed
the augmented TLIO. The data from Table 4 demonstrate that merely increasing the
network’s size, without integrating true equivariance, is insufficient for achieving precise
inertial odometry.
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TLIO Dataset Aria Dataset

Model MSE* ATE ATE* RTE RTE* AYE MSE* ATE ATE* RTE RTE* AYE

TLIO 3.242 1.812 3.722 0.500 0.551 2.376 5.322 1.285 2.102 0.464 0.521 2.073
TLIO-N 3.333 1.722 3.079 0.521 0.542 2.366 15.248 1.969 4.560 0.834 0.977 2.309
Deeper TLIO 3.047 1.613 2.766 0.524 0.519 2.397 2.403 1.189 2.541 0.472 0.540 2.081
TLIO-NQ 3.008 1.429 2.443 0.495 0.496 2.411 2.437 1.213 2.071 0.458 0.508 2.096
TLIO-PCA 3.473 1.506 2.709 0.523 0.535 2.459 6.558 1.717 4.635 0.771 0.976 2.232
Eq CNN 3.194 1.580 3.385 0.564 0.610 2.394 8.946 3.223 6.916 1.091 1.251 2.299
TLIO + Eq F. SO(2)+S 3.331 1.626 2.796 0.524 0.536 2.440 2.591 1.146 2.067 0.466 0.517 2.089
TLIO + Eq F. SO(2)+P 3.298 1.842 2.652 0.588 0.523 2.537 2.635 1.592 2.303 0.585 0.539 2.232
TLIO + Eq F. SO(2) 3.194 1.480 2.401 0.490 0.501 2.428 2.457 1.178 1.864 0.449 0.484 2.084
TLIO + Eq F. O(2)+S 3.061 1.484 2.474 0.462 0.481 2.390 2.421 1.175 1.804 0.421 0.458 2.043
TLIO + Eq F. O(2)+P 2.990 1.827 2.316 0.578 0.478 2.534 2.373 1.755 1.859 0.564 0.468 2.223
TLIO + Eq F. O(2) 2.982 1.433 2.406 0.458 0.478 2.389 2.304 1.118 1.849 0.416 0.465 2.059

Table 4: Ablation Studies. TLIO-NQ is TLIO with non-equivariant frames. TLIO-PCA
is TLIO using PCA to predict handcrafted frames. TLIO-N is TLIO trained without yaw
augmentations. Eq F. SO(2)+S is Equivaraiant frame with circular covariance. Eq F.
SO(2)+P is SO(2) equivariant networks with pearson parameterized covariance. Eq CNN
is fully equivariant CNN. The same naming conventions apply to the O(2) variants. A lower
error indicates a better model. The lowest values are annotated with Red, followed by Orange
and Yellow respectively. Our proposed methods are in bold.

Figure 12: Visualization of one neural integrated trajectory in the Aria Dataset: the green
trajectory shows the ground truth, the black trajectories show predictions, and the blue and
red vectors represent the predicted frame’s basis vectors. a) Non-equivariant MLP b) PCA
c) Eq F. SO(2) d) Eq F. O(2)

Frame Ablation: Can a non-equivariant MLP predict meaningful frames? We
trained TLIO with augmentation and identical hyperparameters alongside an additional MLP
mirroring the architecture of our method to predict a frame and term this baseline TLIO-NQ.
We observed that TLIO-NQ tends to overfit to the TLIO dataset, and the predicted frames
were not meaningful, as illustrated in Figure 12. Can frames predicted using PCA
(handcrafted equivariant frame) achieve the same performance? PCA frames
underperform on the Aria dataset and perform worse than the original TLIO, likely due to
PCA’s noise sensitivity and the production of non-smooth frames, as shown in Figure 12.
Additionally, PCA cannot distinguish between SO(2) and O(2) transformations. Figure 12
also shows that O(2) does not have frames as smooth as SO(2) as the reflected bends have
reflected frames.
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Architecture Ablation: Does a fully equivariant architecture perform better

than our frame-based approach ? We trained a fully equivariant convolutional network
using the basic layers described in Section ??. As shown in Table 4, our frame-based methods
are more effective and efficient than the equivariant CNN. We believe the fully equivariant
architecture is overly restrictive, while our approach leverages the power of scalars and
conventional backbones. Additionally, our method integrates easily with any state-of-the-art
neural inertial navigation system, unlike the fully equivariant architecture, which requires
redesigning.

Covariance Ablation: Do we need equivariant covariance? We investigated
the importance of equivariant covariance for both SO(2) and O(2) groups, as described in
Section ??( See Appendix A.1.3 for more details on covariance parameterizations.). In Table 4,
the models Eq F. SO(2)+S and Eq F. O(2)+S are trained with invariant covariance. The
results show that equivariant covariance yields better performance, especially when combined
with EKF, as it provides a more accurate estimate of the measurement covariance. Can a
full covariance matrix predicted via Pearson parameterization further improve
the performance? In Table 3, Eq F. SO(2)+P and Eq F. O(2)+P are outperformed by
our model in most cases. As mentioned in Section ??, this experimental result indicates
that by aligning the principle axis of the covariance into the basis of the equivariant frame,
we intrinsically force the covariance in the equivariant frame to be diagonal, which reduces
the ambiguity while training. Prediction of diagonal covariance improves stabilization and
convergence in the optimization process as stated in TLIO. The visualization of covariance
consistency of our Eq F. O(2) model is in Appendix A.10.

A.10. Covariance Consistency

Figure 13: Consistency of Covariance Prediction in the Invariant Space for TLIO test dataset

Similar to TLIO Liu et al. (2020), we plot the prediction error against standard deviation
(σ) predicted by the network in the invariant space. As seen in Figure 14 and Figure 13
the covariance prediction of our method is consistently within the 3-σ depicted by the red
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Figure 14: Consistency of Covariance Prediction in the Invariant Space for Aria dataset

lines. These results show that our diagonal covariance prediction in the invariant space is
consistent.

A.11. Ablation on IMU sequence length

We aligned the sequence length with baseline models for fair comparison. However, in this
Section, we ablate on the sequence length as shown in Table 5 and Table 6. Table 5 varies
sequence lengths and displacement prediction windows (e.g., 0.5s displacement with 0.5s of
200Hz IMU data results in a sequence length of 100). Table 6 fixes the prediction window at
1s and varies the context window (e.g., a 2s context window with 200Hz IMU data results in a
sequence length of 400). Our results confirm TLIO Liu et al. (2020) Sec. VII A.1: increasing
the context window reduces MSE but not ATE. A lower MSE loss over the same displacement
window does not translate to a lower ATE. Thus, the addition of the equivariant framework
does not change the characteristics of the base (off-the-shelf) model used.

A.12. Sensitivity analysis to gravity direction perturbation

Similar to Wang et al. (2023), which indicates that the equivariance of SO(2) can even help
the rotation around another axis which is close to z, we believe that embedding equivariance
wouldn’t harm the performance of the model when there is a slight perturbation which is
inline with the experimental results as seen in Table 7.

Table 7 presents the sensitivity analysis to gravity direction perturbation, applied for 5
discrete angles. We also present results for Eq F. O(2) model trained without the gravity
direction perturbation of (-5°,5°) during training. We observe the same trend of stability in
MSE* as reported in TLIO Liu et al. (2020) when trained with gravity direction perturbation.
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TLIO Dataset Aria Dataset

Exp Displacement
Window (s)

MSE*ATE* RTE* MSE*ATE* RTE*

TLIO 0.5 1.132 2.029 0.340 1.038 1.489 0.332
TLIO 1 3.242 3.722 0.551 5.322 2.103 0.521
TLIO 2 9.862 5.102 0.944 6.717 3.452 0.970
†Eq F. SO(2) 0.5 1.124 0.711 0.175 1.040 0.673 0.190
†Eq F. SO(2) 1 3.194 2.401 0.501 2.457 1.864 0.484
†Eq F. SO(2) 2 10.0193.862 0.797 6.569 2.745 0.774
†Eq F. O(2) 0.5 1.040 0.595 0.136 1.002 0.589 0.148
†Eq F. O(2) 1 2.982 2.406 0.478 2.304 1.849 0.465
†Eq F. O(2) 2 9.804 4.268 0.762 6.112 2.556 0.709

Table 5: Results for ablation on changing prediction displacement window on TLIO architec-
ture. † represents TLIO+

TLIO Dataset Aria Dataset

Exp Context
Window
(s)

MSE*ATE* RTE* MSE*ATE* RTE*

TLIO 1 3.242 3.722 0.551 5.322 2.103 0.521
TLIO 2 3.199 2.555 0.511 3.790 2.895 0.713
TLIO 3 3.284 4.463 0.617 3.511 3.014 0.738
†Eq F. SO(2) 1 3.194 2.401 0.501 2.457 1.864 0.484
†Eq F. SO(2) 2 2.886 1.837 0.429 2.187 1.533 0.444
†Eq F. SO(2) 3 2.790 3.090 0.492 1.986 1.684 0.447
†Eq F. O(2) 1 2.982 2.406 0.478 2.304 1.849 0.465
†Eq F. O(2) 2 2.382 1.895 0.367 1.307 1.382 0.338
†Eq F. O(2) 3 2.161 2.083 0.366 0.974 1.672 0.366

Table 6: Results for ablation on changing context window with fixed displacement window of
1s on TLIO architecture. † represents TLIO+

A.13. Social Impact

This work aims to utilize deep learning to mitigate drift in inertial integration for purely
inertial odometry, thereby enhancing navigation efficiency and reducing costs. While our
research directly contributes positively to navigation solutions and does not have inherently
negative social applications, it is important to note that improved tracking and navigation
capabilities could potentially be utilized for surveillance purposes, which may raise privacy
concerns.
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TLIO Dataset

Exp Gravity Direc-
tion Perturba-
tion ( in de-
grees)

MSE*ATE* RTE*

†Eq F. SO(2) 0 3.194 2.401 0.501
†Eq F. SO(2) 2 3.201 2.409 0.500
†Eq F. SO(2) 4 3.206 2.404 0.498
†Eq F. SO(2) 6 3.241 2.442 0.501
†Eq F. SO(2) 8 3.298 2.502 0.506
†Eq F. O(2)‡ 0 2.982 2.406 0.478
†Eq F. O(2)‡ 2 3.198 2.663 0.498
†Eq F. O(2)‡ 4 3.742 3.292 0.559
†Eq F. O(2)‡ 6 4.505 4.228 0.659
†Eq F. O(2)‡ 8 5.433 5.218 0.768
†Eq F. O(2) 0 2.982 1.811 0.332
†Eq F. O(2) 2 2.988 1.742 0.321
†Eq F. O(2) 4 3.010 1.718 0.308
†Eq F. O(2) 6 3.060 1.680 0.293
†Eq F. O(2) 8 3.095 1.650 0.283

Table 7: Results for ablation on changing prediction displacement window on TLIO archi-
tecture. † represents TLIO+. ‡ implies the network was trained without gravity direction
perturbation.
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