

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INFLUENCE-PRESERVING PROXIES FOR GRADIENT-BASED DATA SELECTION IN LLM FINE-TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Supervised fine-tuning (SFT) relies critically on selecting training data that most benefits model’s downstream performance. Gradient-based data selection methods such as TracIn and Influence Functions leverage influence to identify useful samples, but their computational cost scales poorly, making them impractical for multi-billion-parameter large language models (LLMs). A common alternative is to use off-the-shelf smaller models as proxies, but they remain suboptimal since their learning dynamics are unclear, their sizes cannot be flexibly adjusted, and they cannot be further aligned with the target model in terms of gradient-based influence estimation. To address these challenges, we introduce IPROX, a two-stage framework that derives influence-preserving proxies directly from the target model. It first applies a low-rank compression stage to preserve influence information of the target model, and then an aligning stage to align both model gradients and logits, thereby constructing proxies that flexibly control computational cost while retaining the target model’s influence. Experimental results across diverse LLM families and evaluation tasks show that IPROX consistently outperforms off-the-shelf proxies and baseline methods. On Qwen3-4B, a 1.5B proxy constructed with IPROX achieves stronger performance than the larger 1.7B off-the-shelf proxy. Notably, on Llama3.2, IPROX achieves better performance than baselines while reducing computational cost by more than half relative to the full 3B model. These results show that IPROX provides effective influence-preserving proxies, making gradient-based data selection more scalable for LLMs.

1 INTRODUCTION

Supervised fine-tuning (SFT) has become the standard approach for adapting Large Language Models (LLMs) to various downstream tasks. However, the effectiveness of SFT hinges critically on the training data. Prior studies (Wang et al., 2023b; 2024a) show that naively combining datasets can even degrade downstream performance. The key challenge, therefore, is not the sheer amount of data available but the identification of a curated subset that most effectively enhances model performance.

A prominent line of work addressing this challenge is gradient-based data selection, where each sample’s importance is estimated through its influence on the model performance. For example, *TracIn* (Pruthi et al., 2020; Xia et al., 2024; Han et al., 2023) estimates the impact of a training sample by accumulating gradient inner products with a validation sample across multiple model checkpoints, while *Influence Functions* (Koh & Liang, 2017; Kwon et al., 2024; Zhang et al., 2024; Wang et al., 2025) approximate the effect of infinitesimally upweighting or downweighting a training sample by scaling its gradient with the inverse Hessian to account for the local curvature of the loss landscape. Despite their success, both methods impose substantial computational overhead, requiring either the storage of numerous checkpoints with repeated backpropagation or the computation of costly inverse-Hessian vector products. This overhead scales poorly with model size, making these methods impractical for multi-billion-parameter LLMs (Grosse et al., 2023).

While there are some efforts focusing on simplifying the influence computation itself (Kwon et al., 2024; Yu et al., 2024; Xia et al., 2024; Lin et al., 2025c), we pivot to an alternative, orthogonal question: *can the expensive influence calculation for a target model be effectively offloaded to a smaller, cost-effective proxy model?* The idea of using smaller models to predict the behavior of larger ones is already prevalent, most notably through scaling laws that estimate a target model’s

054 performance from its smaller counterparts (Kaplan et al., 2020; Shum et al., 2025; Zeng et al.; Lin
 055 et al., 2025b). Motivated by this, we explore whether this proxy paradigm can also be extended to
 056 data selection by leveraging gradient-based influence scores from smaller models as approximations
 057 for larger ones, thereby mitigating the prohibitive cost of full-scale computation.

058 A direct strategy is to use off-the-shelf proxy models (Xia et al., 2024; Yang et al., 2024b), such
 059 as applying Llama3-8B to select data for Llama3-70B. These proxies provide strong baselines and
 060 useful guidance, but remain suboptimal for three main reasons. First, while their task performance is
 061 usually reported, much less is known about their learning dynamics on the data. As a result, choosing
 062 an off-the-shelf proxy for gradient-based influence estimation typically relies on prior knowledge
 063 (e.g., assuming the larger model always behaves similarly to its smaller counterparts), without a
 064 clear understanding of how much benefit is gained by increasing size. Second, the available off-the-
 065 shelf models within each family are restricted to a handful of fixed sizes, which limits flexibility in
 066 adjusting proxy capacity to different computational budgets. Third—and most importantly, there is
 067 no systematic way to better align these proxies with the target model for influence estimation.

068 To address these challenges, we propose IPROX, a principled two-
 069 stage framework that constructs a proxy directly from the target model,
 070 starting with compression and followed by alignment. The key idea is
 071 straightforward: instead of relying on a smaller model with assumed
 072 preferences, we derive a smaller model directly from the target so
 073 that it inherits the gradient characteristics of the original. This design
 074 provides flexibility in controlling computational cost and, more im-
 075 portantly, establishes a principled path to preserve the influence of
 076 the target model. Concretely, we first employ *Influence-Preserving*
 077 *Singular Value Decomposition* (IPSVD), where each weight matrix
 078 of the target model is compressed to retain components most relevant
 079 for gradient-based influence. Building on this, we then introduce an
 080 *aligning stage* that refines the proxy by matching its gradients to those
 081 of the target model within the low-rank space while anchoring its
 082 output logits to remain consistent. Together, these stages yield a proxy
 083 that is both efficient and tailored for gradient-based data selection.

084 Experimental results demonstrate that IPROX achieves consistently
 085 better performance than off-the-shelf proxies across diverse tasks and
 086 model families, and its advantages hold under different gradient-based influence estimators. A
 087 representative example is shown in Fig. 1, where for the Qwen3-4B target model, our 1.5B proxy
 088 constructed by IPROX surpasses a larger 1.7B off-the-shelf proxy in average performance, high-
 089 lighting that a smaller IPROX can outperform larger off-the-shelf ones. In addition to stronger
 090 performance, IPROX is efficient. In our experiments on Llama3.2, it reduces the computational
 091 overhead by more than half relative to the full 3B model, offering a practical and scalable path for
 092 efficient gradient-based data selection in LLM fine-tuning.

093 2 RELATED WORKS

094 **Efficient Data Selection for LLMs.** With the growing size of LLMs, gradient-based data selection
 095 has become increasingly impractical, motivating more efficient adaptations. Some works reduce
 096 the cost of influence estimation by simplifying second-order derivatives (Kwon et al., 2024; Grosse
 097 et al., 2023; Zhang et al., 2024), while others compute influences on a small subset and extrapolate
 098 to the full dataset (Xia et al., 2024; Yu et al., 2024; Gu et al., 2024; Lin et al., 2025c). Recently,
 099 an alternative line of work has explored using smaller off-the-shelf proxy models to guide data
 100 selection for larger ones, though these approaches primarily rely on loss signals rather than exploiting
 101 gradient information (Yang et al., 2024b; Shum et al., 2025). In the broader context of efficient LLM
 102 adaptation, recent studies also leverage fine-tuning dynamics (Zeng et al.) and automated scaling
 103 laws (Lin et al., 2025b) to optimize computational allocation.

104 **LLM Compression via Decomposition Methods.** Decomposition-based compression exploits
 105 the low intrinsic rank of weight matrices. Early work showed that singular value decompositon
 106 (SVD) can effectively approximate transformer layers (Ganesh et al., 2021). Subsequent studies
 107 refined this idea: ASVD incorporates neuron activation patterns (Yuan et al., 2025), CALDERA

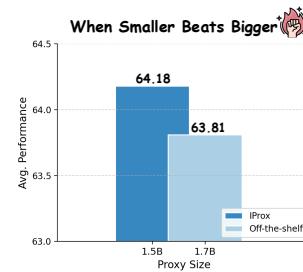


Figure 1: For Qwen3-4B, a 1.5B IPROX outperforms the Qwen3-1.7B off-the-shelf proxy, demonstrating that a smaller influence-preserving proxy can achieve better data selection performance.

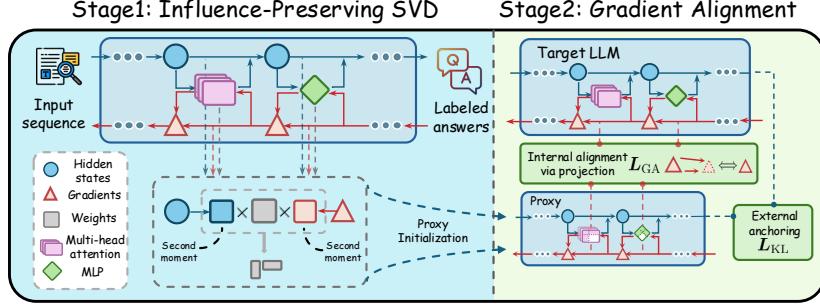


Figure 2: Overview of IPROX. In the first stage (left), *IPSVD* leverages hidden states and gradients to build second-moment matrices that reweight the model weights for proxy initialization. In the second stage (right), the proxy is further aligned with the target LLM through internal gradient alignment in the low-rank space and external logits anchoring for stability.

combines low-rank factorization with quantization (Saha et al., 2024), and MoDeGPT applies Nyström approximation to entire transformer blocks (Lin et al., 2025a). SVD-based strategies have also been extended to Mixture-of-Experts models (Ai et al., 2025; Yang et al., 2024a; Li et al., 2025). Additionally, ShortGPT introduces an importance-scoring mechanism to identify and retain the most critical layers (Men et al., 2024).

3 PRELIMINARIES AND PROBLEM DEFINITION

We consider a candidate training dataset $\mathcal{D}_{\text{train}}$ and a target validation dataset \mathcal{D}_{val} , which may either follow the same distribution or a different one. The objective of *model-aware data selection* is to identify a subset $\mathcal{D}^* \subseteq \mathcal{D}_{\text{train}}$ with a fixed budget k such that fine-tuning a model f_θ on \mathcal{D}^* maximizes its downstream performance on \mathcal{D}_{val} :

$$\mathcal{D}^* = \arg \max_{\mathcal{D} \subseteq \mathcal{D}_{\text{train}}, |\mathcal{D}|=k} \mathbb{E}_{z' \sim \mathcal{D}_{\text{val}}} [\mathcal{U}(f_\theta(\mathcal{D}); z')], \quad (1)$$

where \mathcal{U} is a task utility (e.g., accuracy), $\theta(\mathcal{D})$ are the model parameters fine-tuned on \mathcal{D} , and $z' \in \mathcal{D}_{\text{val}}$ is a validation sample. Directly solving the combinatorial optimization in Eq. 1 is intractable. A widely used strategy is to instead score each training sample $z \in \mathcal{D}_{\text{train}}$ based on its *gradient-based influence* on \mathcal{D}_{val} and select the top- k samples. This is typically achieved by defining a pairwise influence score $I(z, z')$, which quantifies the utility of training on a sample z for the model’s performance on a target sample z' .

A prominent example of this idea is *TracIn* (Pruthi et al., 2020), which approximates $I(z, z')$ by accumulating gradient similarities between training and target samples over multiple checkpoints:

$$I_{\text{TracIn}}(z, z') = \sum_{t=1}^T \eta_t \langle \nabla_\theta L(z; \theta_t), \nabla_\theta L(z'; \theta_t) \rangle, \quad (2)$$

where $L(\cdot; \cdot)$ is the loss function, θ_t is the model’s parameters at checkpoint t and η_t is the averaged learning rate in iteration t . By probing the geometry of the loss landscape throughout training, this method provides a faithful measure of a sample’s utility. Another seminal method, *Influence Functions* (Koh & Liang, 2017), estimates the influence of a training sample by modeling how the final model parameters would change if that sample were infinitesimally upweighted. This parameter change is approximated as the inverse Hessian of the loss multiplied by the sample’s gradient.

However, the computational cost of these gradient-based methods is prohibitive for large-scale models, motivating the use of smaller proxies to approximate influence scores. The central challenge, and the focus of this work, is to design a proxy model $f_{\theta'}$ that not only approximates the influence scores of the target model f_θ but also strikes a balance between efficiency and selection quality. Ideally, the proxy should be small enough to offer notable computational savings while remaining sufficiently aligned with the target model to guide effective data selection.

4 PROXY CONSTRUCTION VIA INFLUENCE-PRESERVING COMPRESSION

We introduce IPROX, summarized in Fig. 2, which consists of two stages. The first stage compresses the model with an influence-preserving SVD (§4.1) that uses second-moment reweighting to retain

162 influence-relevant components. The second stage aligns the proxy with the target LLM (§4.2) by
 163 matching gradients in the low-rank space and anchoring the logits distribution for stability.
 164

165 4.1 STAGE 1: INFLUENCE-PRESERVING SVD

167 **Limitation of Standard SVD.** We begin by describing how the
 168 proxy model is initialized. A natural approach is to compress the
 169 model via low-rank approximation of its weight matrices. For any
 170 weight matrix $W \in \mathbb{R}^{n \times m}$ in the target model f_θ , where n, m are
 171 output and input dimensions, we can approximate it as $W \approx AB$,
 172 where $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times m}$. The rank $r \ll \min(n, m)$
 173 directly controls the size of the resulting proxy model, with lower
 174 ranks corresponding to higher model sparsity. The standard method
 175 for such decomposition is Singular Value Decomposition (SVD),
 176 which yields the optimal rank- r approximation under the Frobenius
 177 reconstruction error objective (Eckart & Young, 1936; Golub &
 178 Van Loan, 2013). However, this objective is misaligned with our
 179 goal of data selection, since minimizing reconstruction error provides
 180 no guarantee that the proxy model will preserve the gradient-based influence
 181 of the target model.

182 As illustrated in Fig. 3, when a 4-layer MLP is compressed on a synthetic classification task using
 183 standard SVD, *loss retention* (measured as the ratio between the original and compressed losses)
 184 remains relatively stable when the sparsity is low, while *influence retention* (measured by Spearman
 185 correlation with the oracle influence) deteriorates much more rapidly. These observations highlight
 186 the need for a compression method that explicitly preserves influence. To this end, our IPSVD is
 187 designed to retain influence-relevant components. As previewed in Fig. 3, IPSVD attains markedly
 188 higher influence retention than standard SVD while maintaining comparable loss retention across
 189 sparsity levels. We now present the technical details.

190 **IPSVd with Reweighting.** Our goal is to construct a compressed proxy whose influence scores
 191 approximate those of the target model. For clarity, we focus on a simplified variant of the TracIn
 192 computed from a single checkpoint and denote it as I , omitting the subscript. Without loss of
 193 generality, we present the analysis with TracIn, and the results also apply to other gradient-based
 194 methods such as Influence Functions (see Appendix E). Specifically, for a weight matrix W_ℓ at layer
 195 ℓ , its gradient is given by the outer product $\nabla_{W_\ell} L(z; \theta) = \delta_\ell(z) h_{\ell-1}(z)^\top$, where $h_{\ell-1}(z)$ is the
 196 input to layer ℓ and $\delta_\ell(z)$ is the upstream gradient from the loss. Then the influence of W_ℓ is:

$$197 I_{W_\ell}(z, z') = \langle \nabla_{W_\ell} L(z; \theta), \nabla_{W_\ell} L(z'; \theta) \rangle_F = \langle \delta_\ell(z), \delta_\ell(z') \rangle_F \langle h_{\ell-1}(z), h_{\ell-1}(z') \rangle_F$$

198 where $\langle \cdot, \cdot \rangle_F$ is Frobenius inner product. From this definition, we observe that any sufficiently small
 199 perturbation $W_\ell \mapsto \widehat{W}_\ell = W_\ell + E_\ell$ affects the influence only through the resulting changes $\delta_\ell(\cdot)$. A
 200 first-order Taylor expansion of the loss with respect to W_ℓ in the direction of the perturbation E_ℓ yields
 201 the scalar $\langle \nabla_{W_\ell} L(z; \theta), E_\ell \rangle_F = \delta_\ell(z)^\top E_\ell h_{\ell-1}(z)$, which captures the effect of the perturbation
 202 on the sample loss. We therefore define the *layer-local directional effect* of a perturbation E_ℓ on a
 203 sample z as:

$$204 e_\ell(z) \triangleq \delta_\ell(z)^\top E_\ell h_{\ell-1}(z). \quad (3)$$

205 The following proposition provides a theoretical justification for using the expected squared effect,
 206 $\mathbb{E}_z[e_\ell(z)^2]$, as a tractable surrogate for preserving the influence score.

207 **Proposition 4.1.** Consider a perturbation to layer ℓ : $W_\ell \mapsto \widehat{W}_\ell = W_\ell + E_\ell$. Under
 208 assumptions of local smoothness, geometric coherence, and a bounded covariate shift condition
 209 between the distributions of z and z' (see Appendix D for details), there exists a data-dependent
 210 constant $C_\kappa > 0$ such that the expected change in the influence contribution is bounded by:

$$212 \mathbb{E}_{z, z'} |I_{\widehat{W}_\ell}(z, z') - I_{W_\ell}(z, z')| \leq C_\kappa \sqrt{\mathbb{E}_z[e_\ell(z)^2]}. \quad (4)$$

214 The proof is deferred to Appendix D. Intuitively, the smoothness assumption ensures that perturbations
 215 in layer weights translate into proportionally bounded changes in the gradients. The error term $e_\ell(z)$
 216 represents the local gradient deviation caused by E_ℓ , and its squared expectation thus serves as

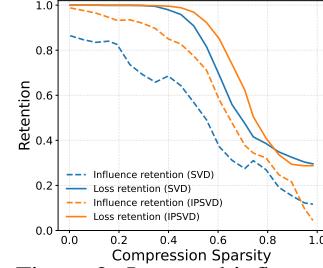


Figure 3: Loss and influence (TracIn) retention of SVD and our IPSVD under different compression sparsity. The graph shows four curves: Influence retention (SVD) (dashed blue), Loss retention (SVD) (solid blue), Influence retention (IPSVd) (dashed orange), and Loss retention (IPSVd) (solid orange). The x-axis is 'Compression Sparsity' from 0.0 to 1.0, and the y-axis is 'Retention' from 0.0 to 1.0. All curves start at 1.0 at 0.0 sparsity. The Loss retention curves (blue and orange) remain high until sparsity reaches ~0.4, then drop sharply. The Influence retention curves (blue and orange) drop much more rapidly, with the IPSVD curves (dashed) staying higher than the SVD curves (solid) across all sparsity levels.

216 a surrogate for bounding the discrepancy in pairwise influence I_{W_ℓ} across samples. Minimizing
 217 $\mathbb{E}_z[e_\ell(z)^2]$ therefore directly controls the distortion of the influences.
 218

219 Building on this result, our goal is to find the optimal low-rank approximation \widehat{W}_ℓ that minimizes the
 220 expected squared effect, $\mathbb{E}_z[e_\ell(z)^2]$. This objective can be expressed as a weighted Frobenius norm
 221 between the original and compressed weights, which under the K-FAC approximation (Martens &
 222 Grosse, 2015; Grosse & Martens, 2016) takes the following form:

$$223 \min_{\widehat{W}_\ell} \mathbb{E}_z [e_\ell(z)^2] \approx \min_{\widehat{W}_\ell} \left\| C_{\delta,\ell}^{1/2} (W_\ell - \widehat{W}_\ell) C_{h,\ell}^{1/2} \right\|_F^2, \quad (5)$$

225 where $C_{h,\ell} \triangleq \mathbb{E}[h_{\ell-1} h_{\ell-1}^\top]$ and $C_{\delta,\ell} \triangleq \mathbb{E}[\delta_\ell \delta_\ell^\top]$ are the second moment matrices of the inputs
 226 and upstream gradients, respectively. In effect, these matrices form a reweighting scheme. They
 227 rescale E_ℓ to more heavily penalize errors in directions where inputs are typically large (identified by
 228 $C_{h,\ell}$) and where the loss is most sensitive (identified by $C_{\delta,\ell}$). This ensures that our approximation
 229 prioritizes preserving the weights most critical to the influences.

230 This reweighting can be expressed by the data-dependent matrix $S_\ell \triangleq C_{\delta,\ell}^{1/2} W_\ell C_{h,\ell}^{1/2}$. We then
 231 compute the SVD of this matrix, $S_\ell = U_\ell \Sigma_\ell V_\ell^\top$, and truncate it to the top r_ℓ singular values to obtain
 232 the components $U_{\ell,r}$, $\Sigma_{\ell,r}$, and $V_{\ell,r}$. The optimal low-rank approximation \widehat{W}_ℓ is then constructed by
 233 transforming these truncated components back to the original weight space:
 234

$$235 \widehat{W}_\ell = C_{\delta,\ell}^{-1/2} (U_{\ell,r} \Sigma_{\ell,r} V_{\ell,r}^\top) C_{h,\ell}^{-1/2}.$$

236 For implementation, this is directly decomposed into the low-rank matrices $\widehat{W}_\ell = A_\ell B_\ell$, where
 237 $A_\ell = C_{\delta,\ell}^{-1/2} U_{\ell,r} \Sigma_{\ell,r}^{1/2}$ and $B_\ell = \Sigma_{\ell,r}^{1/2} V_{\ell,r}^\top C_{h,\ell}^{-1/2}$. To ensure numerical stability, we add a small
 238 damping term λI to each second moment matrix. In this low-rank approximation, the weight matrix
 239 $W_\ell \in \mathbb{R}^{m_\ell \times n_\ell}$ is approximated with two smaller matrices, $A_\ell \in \mathbb{R}^{m_\ell \times r_\ell}$ and $B_\ell \in \mathbb{R}^{r_\ell \times n_\ell}$, reducing
 240 the parameters at layer ℓ to $r_\ell(m_\ell + n_\ell)$. The rank r_ℓ provides flexible control over the proxy size,
 241 enabling a balance between efficiency and approximation quality under a given computational budget.
 242

243 **Efficient and Scalable Implementation.** Computing the square roots and inverses of the large
 244 second moment matrices $C_{h,\ell}$ and $C_{\delta,\ell}$ is prohibitively expensive for large models. To avoid forming
 245 these matrices, we approximate the second-moment statistics using a small *probe set* of N samples. A
 246 single forward and backward pass collects the inputs and gradients at each layer ℓ , which are then
 247 used to form two matrices:

$$248 \quad H_\ell = [h_{\ell-1}(z_1), \dots, h_{\ell-1}(z_N)] \in \mathbb{R}^{n_\ell \times N} \quad \text{and} \quad \Delta_\ell = [\delta_\ell(z_1), \dots, \delta_\ell(z_N)] \in \mathbb{R}^{m_\ell \times N}.$$

250 Instead of building the full second moment matrices (e.g., $C_{h,\ell} \approx \frac{1}{N} H_\ell H_\ell^\top$), we compute the
 251 "skinny" SVDs of these tall-and-thin probe matrices directly: $H_\ell = U_{H,\ell} \Sigma_{H,\ell} V_{H,\ell}^\top$ and $\Delta_\ell =$
 252 $U_{\Delta,\ell} \Sigma_{\Delta,\ell} V_{\Delta,\ell}^\top$. This decomposition provides the key to bypassing the expensive computation. The
 253 SVD of the large, re-weighted matrix S_ℓ can be almost entirely constructed from the SVD of a
 254 much smaller *core matrix*, which is built using the components of our skinny SVDs. This reduces
 255 the problem to finding the SVD of a matrix whose dimensions are at most $N \times N$, a dramatically
 256 smaller task. The complexity is then reduced from $\mathcal{O}(n_\ell^3 + m_\ell^3)$ for full eigen-decompositions to
 257 $\mathcal{O}(N^3 + n_\ell N^2 + m_\ell N^2)$, where $N \ll n_\ell, m_\ell$. For a complete derivation, please see Appendix F.
 258

259 4.2 STAGE 2: APPROXIMATE GRADIENT ALIGNMENT IN THE WEIGHT SPACE

261 The initial proxy model $f_{\theta'}$ adheres to the theoretical bound established in Proposition 4.1. However,
 262 as approximation errors compound across layers, its alignment in terms of influence preserving with
 263 the original model f_θ should still be refined. To this end, we employ an aligning stage wherein the
 264 proxy is trained to directly mimic the gradient responses signals of the target model.
 265

266 **Aligning Internal Gradient via Low-Rank Projection.** Our goal is to align the gradients of
 267 the initialized proxy with those of the target model. A direct comparison of their gradients, $\nabla_{\theta'} L$
 268 and $\nabla_\theta L$, is ill-posed due to the dimensional mismatch between the models. In practice, this can
 269 be addressed by projecting the proxy's gradient into the original model's high-dimensional weight
 270 space. For instance, for any layer ℓ and a given batch $\mathcal{B} = \{z_i\}_{i=1}^{|\mathcal{B}|}$, one can reconstruct the proxy

gradient $\nabla_{W'_\ell} L(\mathcal{B}; \theta')$ and minimize its distance to the target gradient $\nabla_{W_\ell} L(\mathcal{B}; \theta)$. However, this approach has a critical drawback. Once we align the gradients of W_ℓ and W'_ℓ in the full parameter space, any subsequent influence calculation would also require reconstructing the proxy’s gradient in this high-dimensional form. Performing this reconstruction for each sample introduces substantial computational and memory overhead, which undermines the efficiency benefits of a low-rank proxy.

To ensure the proxy remains efficient for downstream tasks, we adopt a more practical strategy: we project the original model’s gradient *down* into the low-rank proxy space and perform the alignment there. Since the proxy layer is defined by low-rank matrices A_ℓ and B_ℓ (where $W_\ell \approx A_\ell B_\ell$), its true gradients are with respect to these matrices, $\nabla_{A_\ell} L$ and $\nabla_{B_\ell} L$. Using the chain rule, we can project the full gradient $\nabla_{W_\ell} L$ onto A_ℓ and B_ℓ , where $\nabla_{A_\ell} L = \frac{\partial L}{\partial W_\ell} \frac{\partial W_\ell}{\partial A_\ell} = \nabla_{W_\ell} L B_\ell^\top$ and $\nabla_{B_\ell} L = \frac{\partial L}{\partial W_\ell} \frac{\partial W_\ell}{\partial B_\ell} = A_\ell^\top \nabla_{W_\ell} L$. This yields a loss based on the following alignment objectives:

$$L_{GA}(\mathcal{B}; \theta') = \frac{1}{|\mathcal{L}|} \sum_{\ell \in \mathcal{L}} (d(\nabla_{A_\ell} L, \text{sg}(\nabla_{W_\ell} L) B_\ell^\top) + d(\nabla_{B_\ell} L, A_\ell^\top \text{sg}(\nabla_{W_\ell} L))) , \quad (6)$$

where $d(\cdot, \cdot)$ is a distance function and \mathcal{L} denotes all decomposed layers in the proxy model. Here $\text{sg}(\nabla_{W_\ell} L)$ indicates stop gradient. This objective aligns the gradients entirely within the parameter space of the proxy, eliminating any need for high-dimensional reconstruction during influence calculation and thus preserving its efficiency.

Anchoring External Output Behavior. To stabilize gradient alignment and prevent the proxy from collapsing, we anchor its output distribution to that of the teacher model, inspired by the idea of knowledge distillation. This provides a stable basis for alignment, where we employ the standard forward Kullback–Leibler (KL) divergence loss:

$$L_{KL}(\mathcal{B}; \theta') = \tau^2 \frac{1}{|\mathcal{B}|} \sum_{z \in \mathcal{B}} \text{KL}(\text{softmax}(f_\theta(z)/\tau) \parallel \text{softmax}(f_{\theta'}(z)/\tau)) , \quad (7)$$

where τ is the distillation temperature and $f_\theta, f_{\theta'}$ are output logits. Our final objective for the initialized proxy combines the gradient alignment and output anchoring losses:

$$\min_{\theta'} L_{GA}(\mathcal{B}; \theta') + \lambda_{KL} L_{KL}(\mathcal{B}; \theta') , \quad (8)$$

where λ_{KL} controls the strength of the anchoring term.

Discussion. IPROX shows that low-rank proxies can preserve gradient-based influences, but there are trade-offs to consider. The embedding layer and LM head are essential for model performance and are less suitable for compression (Namburi et al., 2023; Dettmers et al., 2022), which places a natural limit on parameter reduction. Moreover, prior work finds that model quality drops sharply once the rank falls below about 10% of the original size (Wang et al., 2024b; Hsu et al., 2022), meaning proxies cannot be reduced arbitrarily without sacrificing performance or their ability to preserve influence. Even with our aligning stage, fully recovering gradient behavior under such aggressive compression remains difficult. These limitations do not diminish the usefulness of our method but highlight the inherent trade-offs between efficiency and proxy quality.

5 EXPERIMENTS

In this section, we provide a comprehensive evaluation of IPROX. We first describe the experimental setup (§5.1), then present results comparing IPROX with off-the-shelf proxies and baselines (§5.2). We follow with analysis (§5.3), covering different influence estimators, efficiency, factors behind its effectiveness, and ablations. Additional results under varying data budgets are presented in the Appendix C.

5.1 EXPERIMENTAL SETUP

Datasets and Models. We use the DOLLY dataset (Conover et al., 2023) as our candidate training data $\mathcal{D}_{\text{train}}$ following (Wang et al., 2023b). It provides a diverse collection of instruction-response pairs designed for aligning large language models with human preferences.

Table 1: Statistics of the evaluation datasets for fine-tuning.

Dataset	Task	$\mathcal{D}_{\text{test}}$	\mathcal{D}_{val}	# Shots	Metric
TyDiQA	Multilingual QA	1,713	9	1	Exact Match
MMLU	Multiple choice	18,721	285	5	Accuracy
BBH	Reasoning	920	81	3	Accuracy

324
 325 Table 2: IPROX compared with off-the-shelf proxies across four target model families. For each
 326 target model, we report results using the full model (shown in gray, provided only as a reference),
 327 an off-the-shelf proxy from the same family, and IPROX with different sparsity levels ρ . **Bold** and
underline indicate the best and second-best proxy results, respectively.

Target Model	Proxy Model	#Params	MMLU	BBH	TyDiQA	Avg.
Llama3.2-3B	Llama3.2-3B	3B	56.28	47.78	43.10	49.05
	Llama3.2-1B	1B	55.89	47.31	38.84	47.35
	IPROX, $\rho = 0.3$	2.5B	56.77	49.16	40.98	48.97
	IPROX, $\rho = 0.5$	1.8B	<u>56.35</u>	<u>47.69</u>	<u>39.77</u>	47.94
	IPROX, $\rho = 0.7$	1.3B	56.28	47.31	39.04	47.54
	Gemma3-4B	4B	59.67	47.68	28.14	45.16
Gemma3-4B	Gemma3-1B	1B	59.61	47.31	25.43	44.12
	IPROX, $\rho = 0.3$	3B	59.36	49.63	32.19	47.06
	IPROX, $\rho = 0.5$	2.3B	<u>59.47</u>	<u>48.70</u>	<u>31.42</u>	<u>46.53</u>
	IPROX, $\rho = 0.7$	1.6B	59.32	48.52	29.12	45.65
	Qwen3-4B	4B	69.90	74.62	49.56	64.69
	Qwen3-1.7B	1.7B	69.65	74.44	47.35	63.81
Qwen3-4B	IPROX, $\rho = 0.3$	3.1B	70.15	75.18	50.63	65.32
	IPROX, $\rho = 0.5$	2.2B	70.08	<u>74.72</u>	<u>48.45</u>	64.42
	IPROX, $\rho = 0.7$	1.5B	69.94	74.62	47.98	64.18
	Qwen2-7B	7B	70.35	61.85	51.46	61.22
	Qwen2-1.5B	1.5B	70.18	<u>59.72</u>	47.29	59.06
	IPROX, $\rho = 0.3$	5.8B	<u>70.36</u>	60.93	53.56	61.62
Qwen2-7B	IPROX, $\rho = 0.5$	4.4B	70.27	<u>60.74</u>	<u>51.36</u>	60.79
	IPROX, $\rho = 0.7$	3.3B	70.41	60.28	50.61	60.43

344 We evaluate models ranging from 3B to 7B parameters across four different model families: Llama3.2-
 345 3B (Dubey et al., 2024), Gemma3-4B (Team et al., 2025), Qwen3-4B (Yang et al., 2025), and
 346 Qwen2-7B (Team, 2024).

348 **Baselines and Evaluation.** To our knowledge, this direction is underexplored, so we mainly com-
 349 pare with off-the-shelf proxies within the same model family. In addition, we propose two baselines
 350 based on related work: **Layer Extraction**, which selects layers from the original model using heuris-
 351 tics (Men et al., 2024), and **Influence Scorer**, which trains a smaller model to predict influence
 352 scores for the dataset (Yu et al., 2024). Following (Xia et al., 2024), we use MMLU (Hendrycks et al.,
 353 2020), BBH (Suzgun et al., 2022), and TyDiQA (Clark et al., 2020) to evaluate the final performance.
 354 Table 1 shows some statistics about the tasks. Appendix B.1 contains more details.

355 **Data Selection Settings.** We implement TracIn-based influence estimation following Xia et al.
 356 (2024), adopting the SGD influence variant and omitting the gradient projection component for
 357 simplicity. For influence function estimation, we implement it based on the K-FAC method (Grosse
 358 & Martens, 2016). The target models are first warmed up on a randomly selected 5% subset of $\mathcal{D}_{\text{train}}$
 359 for subsequent data selection. Data are then scored according to the computed influence values, and
 360 the top 5% are selected. Each model is full fine-tuned on the selected data for 4 epochs. As discussed
 361 in Section 4.2, we freeze the embedding and LM head during warm-up to prevent performance
 362 degradation and exclude them from influence calculation. Appendix B.2 contains more details.

363 **Implementation Details.** IPROX is built from the warmed-up target model. We implement it using
 364 1% of the data source, of which 10% is allocated as probe set, and 90% as aligning data. We vary
 365 the sparsity level ρ , the proportion of parameters removed by compression, to examine the trade-off
 366 between efficiency and performance. Appendix B.3 contains more details.

367 5.2 MAIN RESULTS

369 We first compare IPROX with off-the-shelf proxies, with the results summarized in Table 2. We vary
 370 ρ so that proxy sizes range from off-the-shelf scale to near the target model. The key findings are:

371 **IPROX is effective across different models.** IPROX consistently outperforms the off-the-shelf
 372 proxies across all sparsity levels on BBH and TyDiQA, while also achieving competitive results on
 373 MMLU, demonstrating the effectiveness of our approach. Notably, on Qwen3, IPROX even surpasses
 374 the larger 1.7B off-the-shelf proxy with a proxy of only 1.5B parameters.

375 **Larger proxies yield better performance.** Across all four model families, we observe a clear trend:
 376 increasing proxy size leads to improved performance. This highlights that our approach enables a
 377 controllable trade-off between computational cost and downstream performance.

378
 379 **Task type matters.** We find that the benefits of IPROX vary across tasks. The performance gains
 380 are more pronounced on TyDiQA than on MMLU. We argue that this difference may stem from the
 381 nature of the tasks, since TyDiQA and Dolly are both closer to open-domain QA settings, whereas
 382 MMLU emphasizes complex reasoning tasks where data selected from Dolly provides only limited
 383 improvements. This observation aligns with Eq. 4, which indicates that greater distributional shift
 384 between training and validation sets results in a looser error bound.

385 **Proxies can even outperform target models.** In some cases, IPROX surpasses the performance
 386 obtained with data selected by the target model itself, such as Qwen3-4B with $\rho = 0.3$ on BBH
 387 and Qwen2-7B with $\rho = 0.3$ on TyDiQA. This phenomenon, where smaller models identify more
 388 generalizable training data, has also been reported in prior work across pre-training (Xie et al., 2023;
 389 Engstrom, 2024), fine-tuning (Xia et al., 2024), and in-context learning (Wang et al., 2023a). Our
 390 experiments reinforce this observation, showing that sometimes proxies can select data for the target
 391 model more effectively than the target model itself.

392 Table 3: Comparison of IPROX with two baselines: **Layer Extraction** and **Influence Scorer**. For
 393 IPROX and Layer Extraction, we report the results based on $\rho = 0.3$. Δ denotes the performance
 394 gain of IPROX over the strongest baseline. **Bold** indicates the best results.

Task	Llama3.2-3B				Gemma3-4B			
	Layer Extraction	Influence Scorer	IPROX	Δ	Layer Extraction	Influence Scorer	IPROX	Δ
MMLU	56.44	56.42	56.77	0.33	59.30	59.49	59.36	-0.13
BBH	46.85	46.57	49.16	2.31	48.79	47.87	49.63	0.84
TyDiQA	35.18	34.11	40.98	5.80	26.91	26.91	32.19	5.28
Avg.	46.16	45.70	48.97	2.81	45.00	44.76	47.06	1.99

400 Next, we compare IPROX with two baselines. As shown in Table 3, IPROX achieves overall stronger
 401 performance than both baselines, with an average improvement of 2.81% on Llama3.2-3B and 1.99%
 402 on Gemma3-4B. We observe that while the two baselines obtain comparable or slightly higher results
 403 on MMLU, these improvements are less conclusive, since both methods perform notably worse
 404 than the off-the-shelf proxy on BBH and TyDiQA. We also acknowledge that both baselines are
 405 computationally cheaper, but they do not preserve gradient information and therefore struggle to
 406 identify useful data. Additional results on other model families are provided in Appendix C.

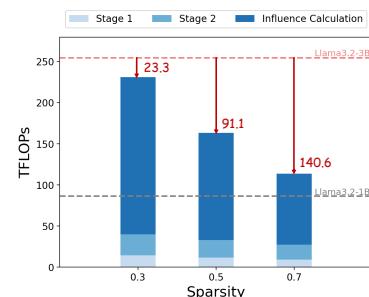
408 5.3 ANALYSIS

410 Table 4: Evaluation results of IPROX on Influence Function. **Bold** and underline indicate the best
 411 and second-best results within each target group, respectively.

Task	Llama3.2-3B					Gemma3-4B				
	IPROX					IPROX				
	Llama3.2-3B	Llama3.2-1B	$\rho = 0.3$	$\rho = 0.5$	$\rho = 0.7$	Gemma3-4B	Gemma3-1B	$\rho = 0.3$	$\rho = 0.5$	$\rho = 0.7$
MMLU	56.31	<u>56.10</u>	56.09	55.96	56.52	59.50	59.18	<u>59.37</u>	59.57	59.34
BBH	48.43	46.20	48.24	<u>47.96</u>	47.31	49.54	45.09	48.98	<u>48.52</u>	48.15
TyDiQA	41.88	38.13	44.35	<u>41.57</u>	39.05	32.48	30.01	34.18	<u>33.94</u>	28.44
Avg.	48.87	46.81	49.56	<u>48.50</u>	47.63	47.17	44.76	47.51	<u>47.34</u>	45.31

412 **Results on Influence Function.** To validate the effectiveness
 413 of IPROX across different gradient-based influence, we also
 414 evaluate IPROX under the Influence Function. The results are
 415 reported in Table 4. We find that IPROX outperforms off-the-
 416 shelf proxies on BBH and TyDiQA while remaining competitive
 417 on MMLU. Averaged across tasks, IPROX achieves clear gains
 418 over the smaller proxies on both Llama3.2-3B and Gemma3-4B,
 419 leading to a conclusion consistent with Table 2. These results
 420 suggest that the improvements brought by IPROX are consistent
 421 across different gradient-based influences.

422 **Efficiency Analysis.** We further analyze the efficiency of
 423 IPROX by reporting both theoretical FLOPs and actual GPU
 424 hours. Figure 4 shows the FLOPs breakdown on Llama3.2-3B
 425 across different sparsity levels. As sparsity increases, the total FLOPs drop substantially, leading to



426 Figure 4: TFLOPs breakdown on
 427 Llama3.2-3B across different sparsity levels.

432 over 140 TFLOPs savings at $\rho=0.7$ compared to the full 3B model. Moreover, Stage 1 and Stage 2
 433 account for only a small portion of the total FLOPs, and their cost further decreases as sparsity grows.
 434

435 Table 5 reports the estimated wall-clock computation measured on a single GH200 GPU,
 436 with IPROX ranging across all sparsity levels from 0.3 to 0.7. Compared to ~ 90 minutes
 437 required for influence calculation with the 3B model and ~ 40 minutes with the 1B off-the-
 438 shelf proxy, our method performs influence calculation in only $\sim 38\text{--}44$ minutes. Proxy con-
 439 struction (Stage 1 and Stage 2) adds less than 10 minutes of extra cost, bringing the total runtime to about 43–51 minutes. Thus, the efficiency
 440 of IPROX mainly comes from the reduced cost of influence calculation, with proxy construction
 441 contributing only a small computational overhead. Together, these results highlight that IPROX
 442 achieves notable efficiency improvements while maintaining strong performance, making it a practical
 443 alternative to direct influence calculation with target models.
 444

445 **Behind IPROX Effectiveness.** To understand
 446 why IPROX is effective in data selection, we
 447 first examine the similarity between the selected
 448 data and the target task using subspace affinity
 449 (SA) (Soltanolkotabi et al., 2014). As shown in
 450 Table 6, proxies with lower sparsity (e.g., $\rho =$
 451 0.3) achieve higher SA than the off-the-shelf 1B
 452 proxy, most notably on TyDiQA, suggesting that
 453 they capture gradient directions more consistent
 454 with the target task.
 455

456 Beyond similarity, diversity also plays a key role
 457 in boosting downstream performance (Zhang
 458 et al., 2024). Therefore, we measure the average
 459 nearest-neighbor distance (1-NND) within selected
 460 subsets as a measurement for diversity and find
 461 that proxies with higher sparsity (e.g., $\rho = 0.7$) yield
 462 larger 1-NND values than the 1B proxy.
 463 This suggests that even when compressed, IPROX
 464 preserve a sufficient degree of diversity in their
 465 selections. We argue that IPROX steers selection toward
 466 task-relevant directions while its sparsity
 467 allows variation in less dominant components, which helps maintain diversity in the selected data.
 468

469 **Ablation Studies.** Table 7 presents an ablation study on
 470 different components. We observe that removing KL
 471 anchoring consistently reduces performance across all three
 472 benchmarks, while removing the entire aligning stage
 473 leads to even larger drops, particularly on TyDiQA. The
 474 degradation is more pronounced at higher sparsity levels,
 475 suggesting that alignment becomes increasingly important
 476 as the proxy is more aggressively compressed. Overall,
 477 the results show that KL anchoring and gradient alignment
 478 are complementary. KL anchoring stabilizes training by
 479 constraining outputs, while gradient alignment preserves
 480 influence-relevant directions, and together they maintain
 481 the quality of selected data.

6 CONCLUSION

482 We introduced IPROX, a principled framework for constructing influence-preserving proxies for
 483 efficient data selection in LLM fine-tuning. By compressing the target model with an influence-
 484 preserving low-rank approximation and refining it through model gradient and output alignment,
 485 IPROX preserves the influence information of the target model while reducing computational cost.
 486 Experiments across multiple model families and tasks show consistent gains over off-the-shelf proxies

Table 5: Computation breakdown on Llama3.2-3B measured in single GH200 GPU hours. Infl. Calc. denotes the time for influence calculation.

Model	Stage 1	Stage 2	Infl. Calc.
Llama3.2-3B	–	–	~ 90 mins
Llama3.2-1B	–	–	~ 40 mins
IPROX	~ 2 mins	$\sim 3\text{--}5$ mins	$\sim 38\text{--}44$ mins

Table 6: Similarity and diversity of selected subsets with the target model Llama3.2-3B. SA measures subspace alignment with the target task (higher is better), and 1-NND measures average nearest-neighbor distance within the selected dataset for diversity (higher is better). **Bold** and underline indicate the best and second-best proxy results.

Proxy Model	MMLU		BBH		TyDiQA	
	SA↑	1-NND↑	SA↑	1-NND↑	SA↑	1-NND↑
Llama3.2-1B	29.01	13.91	20.94	13.29	18.61	13.13
IPROX, $\rho = 0.3$	33.39	14.04	21.78	15.67	24.59	15.26
IPROX, $\rho = 0.5$	<u>33.14</u>	<u>14.31</u>	<u>21.32</u>	15.45	<u>20.59</u>	16.17
IPROX, $\rho = 0.7$	32.19	16.07	21.32	<u>15.63</u>	19.72	<u>15.82</u>

Table 7: Ablation study on Llama3.2-3B. Removing KL anchoring or the entire aligning stage leads to consistent drops in performance across all tasks.

Model	MMLU	BBH	TyDiQA
IPROX, $\rho = 0.3$	56.77	49.16	40.98
	56.52	48.88	40.85
	56.41	48.51	39.33
IPROX, $\rho = 0.5$	56.35	47.69	39.77
	56.19	47.59	39.04
	56.08	47.03	36.43
IPROX, $\rho = 0.7$	56.24	47.31	39.79
	56.04	46.85	37.66
	55.99	46.48	35.32

486 and baselines, together with clear efficiency benefits. These results suggest that influence-preserving
487 proxies offer a scalable approach to gradient-based data selection in LLM fine-tuning.
488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540
541
ETHICS STATEMENT

542 This work adheres to the ICLR Code of Ethics. Our study focuses on methodological advances in
 543 efficient data selection for LLM fine-tuning. All experiments are conducted on publicly available
 544 datasets with open-sourced models. We do not involve human subjects, private or sensitive information,
 545 nor do we release new datasets. The proposed method is designed to reduce computational costs
 546 for gradient-based data selection and does not introduce foreseeable risks of harm, privacy violation,
 547 or discrimination. We have carefully documented implementation details to promote transparency
 548 and avoid risks of misuse. Overall, we view our work as having a positive impact by encouraging
 549 efficiency and responsible use of computational resources.

550
551
REPRODUCIBILITY STATEMENT
552

553 We make substantial efforts to ensure reproducibility. Theoretical results are presented with complete
 554 assumptions and proofs (see Appendix D and Appendix E). Details of the proposed method, including
 555 the influence-preserving compression and alignment stages, are fully described in Section 4 and
 556 Appendix F, with algorithmic formulations provided. Comprehensive experimental setups, datasets,
 557 and evaluation metrics are specified in Section 5 and Appendix B.1. All datasets and models
 558 employed in this paper are publicly available. The source code will be released via an anonymized
 559 link: <https://anonymous.4open.science/r/IProX-20FB>

560
561
REFERENCES

562 Mengting Ai, Tianxin Wei, Yifan Chen, Zhichen Zeng, Ritchie Zhao, Girish Varatkar, Bita Darvish
 563 Rouhani, Xianfeng Tang, Hanghang Tong, and Jingrui He. Resmoe: Space-efficient compression
 564 of mixture of experts llms via residual restoration. In *Proceedings of the 31st ACM SIGKDD
 565 Conference on Knowledge Discovery and Data Mining V.1*, KDD '25, pp. 1–12. ACM, July
 566 2025. doi: 10.1145/3690624.3709196. URL [http://dx.doi.org/10.1145/3690624.
 567 3709196](http://dx.doi.org/10.1145/3690624.3709196).

568 Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
 569 and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in ty
 570 logically di verse languages. *Transactions of the Association for Computational Linguistics*, 8:
 571 454–470, 2020.

572 Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
 573 Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
 574 instructiontuned llm. 2023.

575 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
 576 multiplication for transformers at scale. *Advances in neural information processing systems*, 35:
 577 30318–30332, 2022.

578 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 579 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 580 *arXiv e-prints*, pp. arXiv–2407, 2024.

581 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychome-
 582 trika*, 1(3):211–218, 1936.

583 Logan Engstrom. Dsdm: Model-aware dataset selection with datamodels. In *Forty-first International
 584 Conference on Machine Learning*, 2024.

585 Spencer Frei, Niladri S Chatterji, and Peter L Bartlett. Random feature amplification: Feature learning
 586 and generalization in neural networks. *Journal of Machine Learning Research*, 24(303):1–49,
 587 2023.

588 Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan Sajjad, Preslav Nakov,
 589 Deming Chen, and Marianne Winslett. Compressing large-scale transformer-based models: A
 590 case study on bert. *Transactions of the Association for Computational Linguistics*, 9:1061–1080,
 591

594 2021. ISSN 2307-387X. doi: 10.1162/tacl_a_00413. URL http://dx.doi.org/10.1162/tacl_a_00413.

595

596

597 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

598

599 Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution

600 layers. In *International Conference on Machine Learning*, pp. 573–582. PMLR, 2016.

601

602 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit

603 Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization

604 with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.

605

606 Yuxian Gu, Li Dong, Hongning Wang, Yaru Hao, Qingxiu Dong, Furu Wei, and Minlie Huang. Data

607 selection via optimal control for language models. *arXiv preprint arXiv:2410.07064*, 2024.

608

609 Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yulia Tsvetkov, Asli Celikyilmaz, and Tianlu Wang.

610 Understanding in-context learning via supportive pretraining data. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12660–12673, 2023.

611

612 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and

613 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.

614

615 Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model

616 compression with weighted low-rank factorization. *arXiv preprint arXiv:2207.00112*, 2022.

617

618 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott

619 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.

620 *arXiv preprint arXiv:2001.08361*, 2020.

621

622 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In

623 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.

624

625 Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence

626 in lora-tuned llms and diffusion models. In *The Twelfth International Conference on Learning Representations*, 2024.

627

628 Wei Li, Lujun Li, Hao Gu, You-Liang Huang, Mark G. Lee, Shengjie Sun, Wei Xue, and Yike

629 Guo. Moe-SVD: Structured mixture-of-experts LLMs compression via singular value de-

630 composition. In *Forty-second International Conference on Machine Learning*, 2025. URL

631 <https://openreview.net/forum?id=acJ3vdFljk>.

632

633 Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia

634 Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model compression,

635 2025a. URL <https://arxiv.org/abs/2408.09632>.

636

637 Haowei Lin, Yacine Jernite, HT Kung, and Andrew Gordon Wilson. Evosld: Automated neural

638 scaling law discovery with large language models. *Preprint*, 2025b.

639

640 Xiaoqiang Lin, Xinyi Xu, See-Kiong Ng, and Bryan Kian Hsiang Low. Efficient top-m data

641 values identification for data selection. In *The Thirteenth International Conference on Learning Representations*, 2025c.

642

643 Zifan Liu, Amin Karbasi, and Theodoros Rekatsinas. Tsds: Data selection for task-specific model

644 finetuning. *arXiv preprint arXiv:2410.11303*, 2024.

645

646 James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate

647 curvature. In *International conference on machine learning*, pp. 2408–2417. PMLR, 2015.

648

649 Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and

650 Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,

651 2024. URL <https://arxiv.org/abs/2403.03853>.

648 Satya Sai Srinath Namburi, Makesh Sreedhar, Srinath Srinivasan, and Frederic Sala. The cost of
 649 compression: Investigating the impact of compression on parametric knowledge in language
 650 models. *arXiv preprint arXiv:2312.00960*, 2023.

651

652 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
 653 influence by tracing gradient descent. *Advances in Neural Information Processing Systems*, 33:
 654 19920–19930, 2020.

655

656 Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea J. Goldsmith, and Mert Pilanci. Compressing
 657 large language models using low rank and low precision decomposition, 2024. URL <https://arxiv.org/abs/2405.18886>.

658

659 Kashun Shum, Yuzhen Huang, Hongjian Zou, Qi Ding, Yixuan Liao, Xiaoxin Chen, Qian Liu, and
 660 Junxian He. Predictive data selection: The data that predicts is the data that teaches. *arXiv preprint*
 661 *arXiv:2503.00808*, 2025.

662

663 Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel J Candes. Robust subspace clustering. 2014.

664

665 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 666 Akanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
 667 and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

668

669 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 670 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 671 report. *arXiv preprint arXiv:2503.19786*, 2025.

672

673 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

674

675 Hieu Tran, Zhichao Yang, Zonghai Yao, and Hong Yu. Bioinstruct: instruction tuning of large
 676 language models for biomedical natural language processing. *Journal of the American Medical
 677 Informatics Association*, 31(9):1821–1832, 2024.

678

679 Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
 680 efficient estimation. *Advances in Neural Information Processing Systems*, 31, 2018.

681

682 Andrew Wang, Elisa Nguyen, Runshi Yang, Juhan Bae, Sheila A McIlraith, and Roger Grosse.
 683 Better training data attribution via better inverse hessian-vector products. *arXiv preprint*
 684 *arXiv:2507.14740*, 2025.

685

686 Renxi Wang, Haonan Li, Minghao Wu, Yuxia Wang, Xudong Han, Chiyu Zhang, and Timothy
 687 Baldwin. Demystifying instruction mixing for fine-tuning large language models. In *Proceedings
 688 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student
 689 Research Workshop)*, pp. 68–75, 2024a.

690

691 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
 692 decomposition for large language model compression. In *The Thirteenth International Conference
 693 on Learning Representations*, 2024b.

694

695 Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
 696 models are latent variable models: Explaining and finding good demonstrations for in-context
 697 learning. *Advances in Neural Information Processing Systems*, 36:15614–15638, 2023a.

698

699 Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
 700 Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
 701 the state of instruction tuning on open resources. *Advances in Neural Information Processing
 702 Systems*, 36:74764–74786, 2023b.

703

704 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
 705 Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 706 models. In *Proceedings of the 36th International Conference on Neural Information Processing
 707 Systems*, pp. 24824–24837, 2022.

702 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 703 selecting influential data for targeted instruction tuning. In *Proceedings of the 41st International*
 704 *Conference on Machine Learning*, pp. 54104–54132, 2024.

705

706 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
 707 Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language
 708 model pretraining. *Advances in Neural Information Processing Systems*, 36:69798–69818, 2023.

709

710 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 711 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 712 2025.

713

714 Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Yuanlin Duan, Wenqi Jia, Miao Yin,
 715 Yu Cheng, and Bo Yuan. Moe-i²: Compressing mixture of experts models through inter-expert
 716 pruning and intra-expert low-rank decomposition, 2024a. URL <https://arxiv.org/abs/2411.01016>.

717

718 Yu Yang, Siddhartha Mishra, Jeffrey N Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l):
 719 Scalable data selection for fine-tuning large language models by summarizing training trajectories
 720 of small models. In *The Thirty-eighth Annual Conference on Neural Information Processing*
 721 *Systems*, 2024b. URL <https://openreview.net/forum?id=K9IG1MQpif>.

722

723 Zichun Yu, Spandan Das, and Chenyan Xiong. MATES: Model-aware data selection for efficient
 724 pretraining with data influence models. In *The Thirty-eighth Annual Conference on Neural*
 725 *Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=6gzPSMUAz2>.

726

727 Zhihang Yuan, Yuzhang Shang, Yue Song, Dawei Yang, Qiang Wu, Yan Yan, and Guangyu Sun.
 728 Asvd: Activation-aware singular value decomposition for compressing large language models,
 729 2025. URL <https://arxiv.org/abs/2312.05821>.

730

731 Xinyue Zeng, Haohui Wang, Junhong Lin, Jun Wu, Tyler Cody, and Dawei Zhou. Lensllm: Unveiling
 732 fine-tuning dynamics for llm selection. In *Forty-second International Conference on Machine*
 733 *Learning*.

734

735 Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai,
 736 Jiantao Qiu, Lei Cao, Ju Fan, et al. Harnessing diversity for important data selection in pretraining
 737 large language models. *arXiv preprint arXiv:2409.16986*, 2024.

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 Appendix

APPENDIX CONTENTS

A The Use of Large Language Models	16
B Further Details on Experiment Setup	17
B.1 Baseline and Evaluation Details	17
B.2 Data Selection Setting Details	17
B.3 Implementation Details	17
C Additional Experiment Results	19
D Proof of Proposition 4.1	23
E Influence-Preserving Low-Rank Approximation for Influence Functions	25
F Efficient Implementation via Probe-Based Approximation and Core SVD	28

810 A THE USE OF LARGE LANGUAGE MODELS
811812 LLMs were used in this work in two distinct capacities. First, as part of our experimental design, we
813 employed a diverse set of publicly available pre-trained LLMs from multiple families and sizes (e.g.,
814 LLaMA, Gemma, and Qwen series) to serve as target models and proxies for evaluation. In this role,
815 the models were kept fine-tuned only within well-documented settings, and our contributions focus
816 on the methodology of constructing efficient influence-preserving proxies, rather than developing or
817 training new LLMs from scratch. All datasets involved are public, and no proprietary or unreleased
818 models were used. LLMs were also employed to assist with phrasing and improving the presentation
819 of the paper.820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B FURTHER DETAILS ON EXPERIMENT SETUP**
865866 **B.1 BASELINE AND EVALUATION DETAILS**
867868 Here, we provide additional implementation details of the baseline and detailed evaluation settings.
869870 • **Layer Extraction:** We extract layers from the warmed-up target models. Following [Men](#)
871 [et al. \(2024\)](#), each block (i.e., attention + MLP) is scored with an influence defined as:
872

873
$$I_{LE} = 1 - \mathbb{E}_x \frac{h_i^\top h_{i+1}}{\|h_i\| \|h_{i+1}\|},$$

874

875 where h_i and h_{i+1} denote the hidden states before and after the i -th block, respectively. This
876 score captures how much the representation changes across the block, with larger values
877 indicating greater influence. For a fair comparison, we set the sparsity to $\rho = 0.3$ and select
878 the top 70% of blocks ranked by their influence scores I_{LE} . The influence is computed using
879 a 1% random sample from \mathcal{D}_{train} , and the final results are reported in Table 3.
880881 • **Influence Scorer:** Prior work ([Gu et al., 2024](#); [Yu et al., 2024](#)) formulates this task as a
882 regression problem, where a smaller model is trained to predict influence scores from a
883 limited set of annotated data. Concretely, the target model is first used to compute influence
884 on a hold-out set, and these values are then used to supervise the smaller model. Once
885 trained, the smaller model is applied to generate influence scores for the entire dataset.
886 This approach raises two concerns. First, it still requires influence computation with the
887 original model to produce annotations. Second, the generalizability of the smaller model is
888 uncertain, as data preferences may shift during training, necessitating repeated re-annotation
889 and retraining for accuracy. In our implementation, we adopt the off-the-shelf model from
890 Table 2 as the backbone, attach a regression head, and freeze all other layers during training.
891 For a fair comparison, we use 1% of \mathcal{D}_{train} as the hold-out set and perform training only
892 once. The default learning rate is set to $1e-5$, and we optimize using Adam with a weight
893 decay of $1e-2$ for 5 epochs.
894895 We follow [Xia et al. \(2024\)](#) to evaluate the performance of the models on the target tasks. For
896 MMLU, we evaluate 5-shot accuracy on the test set averaged across 57 subtasks. For TyDiQA, we
897 report 1-shot macro-averaged exact match across 9 languages under the gold-passage setting, where a
898 passage containing the reference answer is provided. For BBH, we measure the average 3-shot exact
899 match across all tasks. All models are trained for 4 epochs with a default learning rate of $1e-5$, and
900 we report the final performance.
901902 **B.2 DATA SELECTION SETTING DETAILS**
903904 For TracIn influence, the implementation follows [Xia et al. \(2024\)](#) with two key modifications. As the
905 experiments are conducted with full fine-tuning rather than parameter-efficient fine-tuning (PEFT),
906 the most time-consuming gradient projection step is omitted. The averaged gradient on the validation
907 set is computed and its cosine similarity with the gradient of each training sample is used as the final
908 influence score, rather than Adam moments. In addition, due to computational budget constraints, we
909 warm-up for only one epoch with a default learning rate of $1e-5$ and a weight decay of $1e-2$.
910911 For Influence Functions, K-FAC ([Grosse & Martens, 2016](#)) is used to compute the inverse Hes-
912 sian–vector product for each layer, and the resulting vectors are concatenated to form the final
913 representation. For computational efficiency, Hessian statistics are estimated using 1024 samples
914 rather than the entire dataset.
915916 **B.3 IMPLEMENTATION DETAILS**
917918 We initialize IPROX using 1% of randomly sampled data from \mathcal{D}_{train} , allocating 10% to the first stage
919 and 90% to the second stage.
920921 In the first stage, the number of collected second-moment matrices N ranges from 512 to 2048,
922 depending on the model size. Rather than averaging over entire sequences to collect hs and δs ,
923 we sample tokens within each sequence, with the sampling budget precomputed to ensure uniform
924

918 coverage over the entire probe set. This design offers two advantages: (i) random or stratified token
919 sampling better captures local geometry across different positions, difficulty levels, and attention
920 patterns; and (ii) it mitigates length bias. Since sequence lengths vary widely, per-sequence averaging
921 tends to compress the internal diversity of long sequences while disproportionately amplifying
922 or diminishing short sequences. For numerical stability, we add a damping term of 10^{-3} when
923 computing the SVD. To improve hardware efficiency, the rank of each layer is further aligned to a
924 multiple of 128, which facilitates optimal tensor core utilization during GPU computation.

925 For the second stage, we perform a grid search over the following hyperparameters: learning rates of
926 $1e-5$, $5e-5$, and $1e-4$, and λ_{KL} values of 0, 0.1, 0.01, and 0.001. We use a weight decay of 0.01,
927 align only the decomposed layers while keeping all others (including biases) fixed, and set the batch
928 size to 4. We use $1 - \cos(\cdot, \cdot)$ as the distance metric in Eq 6.

929 All experiments are conducted on compute nodes with ARM architecture and equipped with NVIDIA
930 GH200.

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 C ADDITIONAL EXPERIMENT RESULTS

974
 975 Table 8: Additional evaluation results of IPROX on Influence Function. **Bold** and underline indicate
 976 the best and second-best results within each target group.

977 978 979 Task	Qwen3-4B				Qwen2-7B			
	Layer Extraction	Influence Scorer	IPROX	Δ	Layer Extraction	Influence Scorer	IPROX	Δ
MMLU	69.86	69.60	70.15	0.29	70.31	70.28	70.41	0.10
BBH	74.25	74.90	75.18	0.28	59.63	59.17	60.93	1.30
TyDiQA	46.78	46.52	50.63	3.85	44.15	45.72	53.56	7.84
Avg.	63.63	63.67	65.32	1.47	58.03	58.39	61.63	3.08

984
 985 **Additional Results Compared with Baseline Methods** We extend the comparison of IPROX
 986 with baselines to two target models, Qwen3-4B and Qwen2-7B, under the TracIn influence. The
 987 results are summarized in Table 8. We observe that the trends in Table 8 are consistent with those
 988 reported in Table 3, confirming that IPROX consistently outperforms the baselines across different
 989 target models and tasks. In particular, the gains on TyDiQA are especially notable, with IPROX
 990 improving by +3.85 on Qwen3-4B and +7.84 on Qwen2-7B compared to the strongest baseline.
 991 These improvements highlight that the influence-preserving design of IPROX is more effective at
 992 capturing task-relevant gradients than heuristic or predictive alternatives. Moreover, the consistency
 993 of the results across both medium-size and large-size models suggests that the advantages of IPROX
 994 generalize beyond a single model family, further reinforcing its effectiveness and scalability for
 995 gradient-based data selection.

996 Table 9: Evaluation results of IPROX on different data budgets. **Bold** and underline indicate the best
 997 and second-best results within each target group.

998 999 Task	1% Data					20% Data				
	IPROX					IPROX				
	Llama3.2-3B	Llama3.2-1B	$\rho = 0.3$	$\rho = 0.5$	$\rho = 0.7$	Llama3.2-3B	Llama3.2-1B	$\rho = 0.3$	$\rho = 0.5$	$\rho = 0.7$
MMLU	56.43	56.13	56.52	56.22	<u>56.23</u>	55.77	55.15	56.36	55.18	<u>55.66</u>
BBH	46.85	46.67	48.33	47.31	<u>47.41</u>	47.13	45.83	47.47	<u>46.20</u>	46.11
TyDiQA	34.37	32.39	36.79	<u>35.27</u>	33.32	40.73	36.55	38.20	<u>37.49</u>	36.63
Avg.	45.88	45.06	47.21	<u>46.27</u>	45.65	47.88	45.84	47.34	<u>46.29</u>	46.13

1000
 1001
 1002
 1003
 1004 **Effect of Data Budgets.** Table 9 reports the evaluation results of IPROX under two different data
 1005 budgets, 1% and 20%. In both cases, IPROX consistently outperforms the off-the-shelf 1B proxy,
 1006 demonstrating its effectiveness regardless of the amount of data used for selection. However, we
 1007 also find that the 20% budget leads to noticeable degradation, particularly on TyDiQA. This decline
 1008 can be attributed to the inclusion of redundant or noisy samples at higher budgets, which dilutes the
 1009 benefits of high-quality data and increases the risk of overfitting. Similar observations have been
 1010 reported in prior work (Liu et al., 2024), further underscoring the importance of data selection.

1011
 1012 Table 10: **Ablation of IPSVD vs. standard SVD on Llama3.2-3B.** “w/o IPSVD” replaces IPSVD with
 1013 standard SVD; numbers in parentheses denote the drop relative to IPSVD.

1014 1015 Target Model	Proxy Model	MMLU	BBH	TyDiQA	Avg.
1016 1017 1018 1019 1020 1021 1022 Llama3.2-3B	IPROX, $\rho = 0.3$	56.77	49.16	40.98	48.97
	w/o IPSVD	<u>56.42</u> (-0.35)	<u>46.94</u> (-2.22)	<u>36.53</u> (-4.45)	<u>46.63</u> (-2.34)
	IPROX, $\rho = 0.5$	56.35	47.69	39.77	47.94
	w/o IPSVD	<u>56.11</u> (-0.24)	<u>46.30</u> (-1.39)	<u>34.50</u> (-5.27)	<u>45.64</u> (-2.30)
	IPROX, $\rho = 0.7$	56.28	47.31	39.04	47.54
	w/o IPSVD	<u>55.97</u> (-0.31)	<u>46.11</u> (-1.20)	<u>32.73</u> (-6.31)	<u>44.94</u> (-2.60)

1023
 1024 **Ablation of IPSVD.** To isolate the contribution of the second-moment reweighting in IPSVD,
 1025 we conduct an ablation study where we replace IPSVD with standard SVD while keeping all other
 1026 components unchanged. As shown in Table 10, replacing IPSVD with standard SVD leads to
 1027 consistent performance degradation across all sparsity levels and benchmarks. The average score

1026 drops by approximately 2 to 3 points, with the most severe decline observed on TyDiQA (up to 6
 1027 points). These results empirically confirm that standard SVD, which minimizes output reconstruction
 1028 error, is insufficient for preserving gradient-based influence, thereby validating the necessity of the
 1029 reweighting strategy employed in IPSVD.
 1030

1031 **Probe Set Quality.** We investigate the impact of the probe set configuration on the performance of
 1032 IProX, specifically focusing on the trade-offs regarding probe set size and the importance of data
 1033 diversity. All experiments in this section are conducted on Llama3.2-3B with a sparsity ratio of
 1034 $\rho = 0.7$.
 1035

1036 Table 11: Impact of Probe Set Size on Llama3.2-3B ($\rho = 0.7$). Increasing probe size yields
 1037 diminishing returns while significantly increasing computational overhead.
 1038

Target Model	Probe Size	MMLU	BBH	TyDiQA	Avg.
Llama3.2-3B	0.5×	56.12	46.85	37.71	46.89
	Default	56.28	47.31	39.04	47.54
	3×	56.26	47.41	39.89	47.85
	5×	56.41	47.50	38.76	47.55

1045 We first analyze the sensitivity of proxy performance to the size of the probe set N . As shown in
 1046 Table 11, there is a clear trade-off between marginal performance gains and computational efficiency.
 1047 While increasing the probe size from $0.5\times$ to $3\times$ the default value yields performance improvements,
 1048 these gains saturate around $3\times$. Notably, further increasing the size to $5\times$ results in diminishing
 1049 returns.
 1050

1051 From an efficiency perspective, the proposed IPSVD algorithm relies on N being sufficiently small
 1052 to enable efficient “skinny SVDs” (see Appendix F). As N grows, this computational advantage
 1053 diminishes linearly. Empirically, increasing N to $3\times$ triples the Stage 1 computational cost to
 1054 approximately 6 minutes, which is comparable to the duration of our entire proxy construction
 1055 process (Stage 1 + Stage 2). This added overhead compromises the overall efficiency of IProX
 1056 without providing proportional performance benefits, justifying our choice of a moderate probe size.
 1057

1058 Table 12: Impact of Probe Set Diversity. Reducing diversity (via redundancy injection) while keeping
 1059 size fixed leads to performance degradation.
 1060

Target Model	Diversity Setting	MMLU	BBH	TyDiQA	Avg.
Llama3.2-3B	Default (Random)	56.28	47.31	39.04	47.54
	10% redundancy	56.28	47.22	38.76	47.42
	20% redundancy	56.15	46.76	38.40	47.10
	30% redundancy	56.12	45.65	37.67	46.48

1066 To validate the necessity of diversity within the probe set, we simulated low-diversity scenarios by
 1067 replacing 10%–30% of the probe set samples with SMOTE-based interpolation, while strictly keeping
 1068 the total size N fixed. The results in Table 12 demonstrate that performance degrades consistently as
 1069 diversity decreases. This confirms that IProX benefits significantly from the high diversity naturally
 1070 provided by our random data and uniform token sampling strategy.
 1071

1072 **Diverse Candidate Training Data.** To further validate the robustness of IProX across distinct task
 1073 formats and domain shifts, we extend our evaluation to two additional training datasets: CoT (Wei
 1074 et al., 2022) and BioInstruct (Tran et al., 2024). For a fair comparison, we keep the total size of the
 1075 candidate training data fixed by randomly sampling the same number of samples.
 1076

1077 Table 13 summarizes the performance of Llama3.2-3B proxies constructed via IProX compared to
 1078 baselines. IProX consistently outperforms the off-the-shelf 1B proxy and remains competitive with
 1079 the full 3B model on both new datasets. We also observe distinct behaviors arising from domain
 shifts. Training on BioInstruct leads to noticeable degradation on general benchmarks (MMLU,
 TyDiQA), likely due to the distribution shift towards specialized biomedical content. However,

1080 Table 13: Performance on diverse candidate training data. IProX achieves competitive performance
 1081 with the full model and outperforms the 1B proxy, with optimal results at $\rho = 0.3$.
 1082

Candidate Training Data	Proxy Model	MMLU	BBH	TyDiQA	Avg.
CoT	Llama3.2-3B	56.53	48.61	47.90	51.01
	Llama3.2-1B	56.17	47.31	42.67	48.72
	IProX, $\rho = 0.3$	56.96	48.80	48.72	51.49
	IProX, $\rho = 0.5$	<u>56.48</u>	<u>48.06</u>	<u>46.73</u>	<u>50.42</u>
	IProX, $\rho = 0.7$	56.26	47.60	43.18	49.01
BioInstruct	Llama3.2-3B	56.61	47.22	38.96	47.60
	Llama3.2-1B	55.93	47.04	33.94	45.64
	IProX, $\rho = 0.3$	56.25	48.15	39.17	47.86
	IProX, $\rho = 0.5$	<u>56.21</u>	<u>47.41</u>	<u>38.36</u>	<u>47.27</u>
	IProX, $\rho = 0.7$	56.09	47.13	36.48	46.56

1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096 the performance drop on BBH is mild, consistent with the partial overlap between BioInstruct and
 1097 the biomedical subsets within BBH. Conversely, training on CoT tends to improve performance
 1098 across all benchmarks. Most notably, we observe significant gains on TyDiQA, suggesting that the
 1099 reasoning-focused supervision in CoT data transfers effectively to other complex tasks.
 1100

1101 Table 14: Performance under Extreme Compression ($\rho = 0.9$). Even at 90% sparsity, IProX
 1102 consistently outperforms the Layer Extraction baseline. Gains shown in parentheses.
 1103

Target Model	Method	MMLU	BBH	TyDiQA	Avg.
Llama3.2-3B	IProX	56.17 (+0.20)	46.57 (+0.64)	37.26 (+5.25)	46.67 (+2.03)
	Layer Extraction	55.97	45.93	32.01	44.64
Qwen2-7B	IProX	70.25 (+0.21)	60.00 (+0.56)	48.67 (+6.02)	59.64 (+2.26)
	Layer Extraction	70.04	59.44	42.65	57.38

1111
 1112 **Performance under Extreme Compression** We investigate the behavior of IProX under extreme
 1113 compression scenarios ($\rho = 0.9$). While SVD-based approximations naturally face limitations in this
 1114 regime due to the significant reduction in rank, we aim to determine if IProX retains utility compared
 to heuristic baselines.
 1115

1116 Table 14 compares IProX against Layer Extraction on both Llama3.2-3B and Qwen2-7B at 90%
 1117 sparsity. Although performance naturally degrades compared to lower sparsity settings, IProX
 1118 consistently outperforms the Layer Extraction baseline across all metrics. The degradation is relatively
 1119 mild, and the performance gap highlights that even in extreme regimes, our method preserves influence
 1120 information more effectively than simple heuristic alternatives.
 1121

1122 Table 15: Sensitivity of KL Coefficient (γ_{KL}). A moderate coefficient ($\gamma_{KL} = 0.1$) strikes the best
 1123 balance between influence alignment and output stability. Experiments performed on Llama3.2-3B
 1124 with $\rho = 0.7$.
 1125

Target Model	Configuration	MMLU	BBH	TyDiQA	Avg.
Llama3.2-3B	IProX, $\gamma_{KL} = 0.5$	56.02	46.85	37.83	46.90
	IProX, $\gamma_{KL} = 0.1$	56.28	47.31	39.04	47.54
	IProX, $\gamma_{KL} = 0.01$	56.12	47.04	36.61	46.59
	IProX, $\gamma_{KL} = 0.001$	56.05	46.48	36.54	46.36

1131
 1132 **The Sensitivity of KL Coefficient** We analyze the sensitivity of IProX to the KL divergence
 1133 coefficient (γ_{KL}) used in the alignment objective. The KL term provides essential anchoring for
 stability, preventing the proxy from drifting too far from the target model’s output distribution.
 1134

1134
1135 Table 15 presents the results on Llama3.2-3B with a sparsity ratio of $\rho = 0.7$. We observe that
1136 performance degrades if γ_{KL} is set too high (0.5), as the distillation loss begins to overpower the
1137 influence alignment objective. Conversely, values that are too low (≤ 0.01) provide insufficient
1138 regularization, leading to suboptimal retention of the target model’s capabilities. Based on these
1139 findings, we adopt a moderate value of $\gamma_{KL} = 0.1$ for our main experiments.
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **D PROOF OF PROPOSITION 4.1**
 1189

1190 Here, we provide a complete proof for Proposition 4.1. We fix a layer ℓ and a perturbation E_ℓ to its
 1191 weight matrix W_ℓ , such that the perturbed weight is $\widehat{W}_\ell = W_\ell + E_\ell$. The influence contribution of
 1192 layer ℓ and the layer-local directional effect are defined as:
 1193

$$1194 I_{W_\ell}(z, z') = \langle \delta_\ell(z), \delta_\ell(z') \rangle_F \langle h_\ell(z), h_\ell(z') \rangle_F \quad \text{and} \quad e_\ell(z) = \delta_\ell(z)^\top E_\ell h_\ell(z),$$

1195 where $h_{\ell-1}(z)$ and $\delta_\ell(z)$ denotes the input and the upstream gradient at the layer ℓ . We begin by
 1196 stating the technical assumptions required for our result, which are similar to simplifying assumptions
 1197 often adopted in theoretical studies of deep neural networks (Virmaux & Scaman, 2018; Frei et al.,
 1198 2023).

1199 **(A1) (Backward Smoothness).** For almost every sample z , the map $u \mapsto \delta_\ell(z; u)$ is differentiable
 1200 in a neighborhood of the unperturbed pre-activation $u_\ell(z) = W_\ell h(z)$. There exists a measurable
 1201 function $K(z) \geq 0$ such that the Jacobian $D_u \delta_\ell(z; u)$ satisfies $\|D_u \delta_\ell(z; u)\|_{\text{op}} \leq K(z)$
 1202 uniformly for u along the line segment $\{u_\ell(z) + \tau E_\ell h(z) : \tau \in [0, 1]\}$.
 1203

1204 **(A2) (Finite Second Moments).** The expectations $\mathbb{E}\|h_\ell(z)\|^2$, $\mathbb{E}\|\delta_\ell(z)\|^2$, $\mathbb{E}\|h_\ell(z')\|^2$ and
 1205 $\mathbb{E}\|\delta_\ell(z')\|^2$ are all finite for an independent copy z' .
 1206

1207 **(A3) (Coherence of Local Directions).** There exists a constant $\eta \in (0, 1]$ such that for almost
 1208 every z , $|\langle \delta_\ell(z), E_\ell h_\ell(z) \rangle| \geq \eta \|\delta_\ell(z)\| \|E_\ell h_\ell(z)\|$. This implies the cosine of the angle
 1209 between $\delta_\ell(z)$ and $E_\ell h_\ell(z)$ is bounded away from zero.
 1210

1211 **(A4) (Bounded Covariate Shift).** The distributions of z and z' are such that there exists a constant
 1212 $\kappa \geq 0$ satisfying $\mathbb{E}_{z'}[e_\ell(z')^2] \leq \kappa \mathbb{E}_z[e_\ell(z)^2]$.
 1213

With these assumptions in place, we can state the following proposition.

Proposition D.1. *Under Assumptions (A1)-(A4), for any perturbation E_ℓ , there exists a finite, data-dependent constant $C_\kappa > 0$ such that:*

$$1216 \mathbb{E}_{z, z'} |I_{\widehat{W}_\ell}(z, z') - I_{W_\ell}(z, z')| \leq C_\kappa \sqrt{\mathbb{E}_z[e_\ell(z)^2]}. \quad (9)$$

Proof. Let $W_\ell(\tau) = W_\ell + \tau E_\ell$ for $\tau \in [0, 1]$. Define $\phi(\tau; z, z') \triangleq I_{W_\ell(\tau)}(z, z')$. The input $h(z)$ does not depend on W_ℓ , so the dependence on τ enters only through $\delta_\ell(z; u_\ell(\tau, z))$, where $u_\ell(\tau, z) = W_\ell(\tau)h(z)$. We can represent the change in influence as:

$$1222 I_{\widehat{W}_\ell}(z, z') - I_{W_\ell}(z, z') = \int_0^1 \phi'(\tau; z, z') d\tau.$$

Differentiating ϕ with respect to τ gives:

$$1226 \phi'(\tau; z, z') = \left\langle \frac{d}{d\tau} \delta_\ell(z; u_\ell(\tau, z)), \delta_\ell(z'; u_\ell(\tau, z')) \right\rangle_F \langle h_\ell(z), h_\ell(z') \rangle_F \\ 1227 + \left\langle \delta_\ell(z; u_\ell(\tau, z)), \frac{d}{d\tau} \delta_\ell(z'; u_\ell(\tau, z')) \right\rangle_F \langle h_\ell(z), h_\ell(z') \rangle_F.$$

By the chain rule and assumption (A1), we have:

$$1232 \frac{d}{d\tau} \delta_\ell(z; u_\ell(\tau, z)) = D_u \delta_\ell(z; u_\ell(\tau, z)) [E_\ell h(z)],$$

and its norm is bounded as:

$$1236 \left\| \frac{d}{d\tau} \delta_\ell(z; u_\ell(\tau, z)) \right\| \leq K(z) \|E_\ell h_\ell(z)\|.$$

Using the triangle inequality, Cauchy-Schwarz, and $|\langle h_\ell(z), h_\ell(z') \rangle| \leq \|h_\ell(z)\| \|h_\ell(z')\|$, we obtain a pointwise bound on $|\phi'(\tau; z, z')|$:

$$1240 |\phi'(\tau; z, z')| \leq K(z) \|E_\ell h_\ell(z)\| \|\delta_\ell(z'; u_\ell(\tau, z'))\| \|h_\ell(z)\| \|h_\ell(z')\| \\ 1241 + K(z') \|E_\ell h_\ell(z')\| \|\delta_\ell(z; u_\ell(\tau, z))\| \|h_\ell(z)\| \|h_\ell(z')\|.$$

1242 Taking the expectation over (z, z') , applying Fubini's theorem and Jensen's inequality to the τ -
 1243 integral, and using assumption (A1) to replace the τ -dependent norms with their suprema (denoted
 1244 $\|\delta_\ell(z)\|$ for simplicity), we obtain
 1245

$$\mathbb{E}_{z,z'} |I_{\widehat{W}_\ell} - I_{W_\ell}| \leq \mathbb{E}_z [K(z) \|E_\ell h_\ell(z)\| \|h_\ell(z)\|] \cdot \mathbb{E}_{z'} [\|\delta_\ell(z')\| \|h_\ell(z')\|] \\ + \mathbb{E}_{z'} [K(z') \|E_\ell h_\ell(z')\| \|h_\ell(z')\|] \cdot \mathbb{E}_z [\|\delta_\ell(z)\| \|h_\ell(z)\|].$$

1246 By the independence of z and z' and another application of Cauchy–Schwarz, we introduce the finite
 1247 constants
 1248

$$M_{\text{tr}} := \mathbb{E}_z [\|\delta_\ell(z)\| \|h_\ell(z)\|], \quad M_{\text{val}} := \mathbb{E}_{z'} [\|\delta_\ell(z')\| \|h_\ell(z')\|],$$

1249 which are bounded by Assumption (A2). Hence,
 1250

$$\mathbb{E}_{z,z'} |I_{\widehat{W}_\ell} - I_{W_\ell}| \leq M_{\text{val}} \mathbb{E}_z [K(z) \|h_\ell(z)\| \|E_\ell h_\ell(z)\|] + M_{\text{tr}} \mathbb{E}_{z'} [K(z') \|h_\ell(z')\| \|E_\ell h_\ell(z')\|]. \quad (10)$$

1251 Next, we use the coherence assumption (A3) to relate $\|E_\ell h_\ell(z)\|$ to the scalar error $e_\ell(z) =$
 1252 $\langle \delta(z), E_\ell h_\ell(z) \rangle$:
 1253

$$\|E_\ell h_\ell(z)\| \leq \frac{1}{\eta} \frac{|e_\ell(z)|}{\|\delta_\ell(z)\|}, \quad \text{for a.e. } z.$$

1254 Substituting this into equation 10 and applying Cauchy–Schwarz once more yields
 1255

$$\mathbb{E}_{z,z'} |I_{\widehat{W}_\ell} - I_{W_\ell}| \leq C \sqrt{\mathbb{E}_z [e_\ell(z)^2]} + C' \sqrt{\mathbb{E}_{z'} [e_\ell(z')^2]},$$

1256 where the finite constants C and C' are given by
 1257

$$C \triangleq \frac{M_{\text{val}}}{\eta} \sqrt{\mathbb{E}_z \left[\frac{K(z)^2 \|h_\ell(z)\|^2}{\|\delta_\ell(z)\|^2} \right]}, \quad C' \triangleq \frac{M_{\text{tr}}}{\eta} \sqrt{\mathbb{E}_{z'} \left[\frac{K(z')^2 \|h_\ell(z')\|^2}{\|\delta_\ell(z')\|^2} \right]}.$$

1258 Now, we invoke the bounded covariate shift from Assumption (A4), which implies $\sqrt{\mathbb{E}_{z'} [e_\ell(z')^2]} \leq$
 1259 $\sqrt{\kappa} \sqrt{\mathbb{E}_z [e_\ell(z)^2]}$. This allows us to bound the entire expression in terms of the expectation over z :
 1260

$$\mathbb{E}_{z,z'} |I_{\widehat{W}_\ell} - I_{W_\ell}| \leq C \sqrt{\mathbb{E}_z [e_\ell(z)^2]} + C' \sqrt{\kappa} \sqrt{\mathbb{E}_z [e_\ell(z)^2]} \\ = (C + C' \sqrt{\kappa}) \sqrt{\mathbb{E}_z [e_\ell(z)^2]}.$$

1261 By defining $C_\kappa \triangleq C + C' \sqrt{\kappa}$, which is a finite, data-dependent constant, we arrive at the desired
 1262 result:
 1263

$$\mathbb{E}_{z,z'} |I_{\widehat{W}_\ell}(z, z') - I_{W_\ell}(z, z')| \leq C_\kappa \sqrt{\mathbb{E}_z [e_\ell(z)^2]}.$$

1264 \square
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **E INFLUENCE-PRESERVING LOW-RANK APPROXIMATION FOR INFLUENCE
1297 FUNCTIONS**

1299 We now extend the analysis from the simplified TracIn score to Influence Functions (IF). IFs refine
1300 the influence measure by incorporating the inverse Hessian of the loss, which accounts for the local
1301 curvature of the optimization landscape. The influence of a training sample z on a validation sample
1302 z' is defined as:

$$1303 I_{\text{IF}}(z, z') \triangleq -\nabla_{\theta} L(z'; \theta)^{\top} \mathcal{H}(\theta)^{-1} \nabla_{\theta} L(z; \theta).$$

1304 To analyze the contribution of a single weight matrix W_{ℓ} at layer ℓ , we consider its vectorized form
1305 $w_{\ell} \triangleq \text{vec}(W_{\ell})$. The gradient of the loss with respect to these vectorized parameters is the outer
1306 product of the upstream gradients $\delta_{\ell}(z)$ and the inputs $h_{\ell}(z)$. Using the identity $\text{vec}(ab^{\top}) = b \otimes a$,
1307 this gradient is:

$$1308 \nabla_{w_{\ell}} L(z; \theta) = \text{vec}(\delta_{\ell}(z) h_{\ell}(z)^{\top}) = h_{\ell}(z) \otimes \delta_{\ell}(z).$$

1309 Following previous works (Martens & Grosse, 2015; Grosse et al., 2023), we make key simplifying
1310 assumptions about the Hessian's structure. We assume the full Hessian matrix is block-diagonal, with
1311 each block corresponding to the parameters of a single layer, and that within each layer ℓ , the inputs
1312 $h_{\ell}(z)$ are independent of the upstream gradients $\delta_{\ell}(z)$.

1313 These assumptions allow us to define a tractable surrogate Hessian $\tilde{\mathcal{H}}_{\ell}$ for layer ℓ as the expected
1314 outer product of its vectorized gradients:

$$\begin{aligned} 1317 \tilde{\mathcal{H}}_{\ell} &\triangleq \mathbb{E}_z [(\nabla_{w_{\ell}} L(z))(\nabla_{w_{\ell}} L(z))^{\top}] \\ 1318 &= \mathbb{E}_z [(h_{\ell}(z) \otimes \delta_{\ell}(z))(h_{\ell}(z) \otimes \delta_{\ell}(z))^{\top}] \\ 1319 &= \mathbb{E}_z [h_{\ell}(z) h_{\ell}(z)^{\top} \otimes \delta_{\ell}(z) \delta_{\ell}(z)^{\top}] \\ 1320 &= \mathbb{E}_z [h_{\ell}(z) h_{\ell}(z)^{\top}] \otimes \mathbb{E}_z [\delta_{\ell}(z) \delta_{\ell}(z)^{\top}] \triangleq C_{h,\ell} \otimes C_{\delta,\ell}. \\ 1321 \\ 1322 \end{aligned}$$

1323 Here, $C_{h,\ell}$ and $C_{\delta,\ell}$ are the second moment matrices of the activations and upstream gradients for
1324 layer ℓ , respectively. Leveraging the property that $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$, the inverse is given by
1325 $\tilde{\mathcal{H}}_{\ell}^{-1} = C_{h,\ell}^{-1} \otimes C_{\delta,\ell}^{-1}$. The contribution of layer ℓ to the influence is then defined as:

$$\begin{aligned} 1327 I_{\text{IF},W_{\ell}}(z, z') &\triangleq -(\nabla_{w_{\ell}} L(z'))^{\top} \tilde{\mathcal{H}}_{\ell}^{-1} (\nabla_{w_{\ell}} L(z)) \\ 1328 &= -(h_{\ell}(z') \otimes \delta_{\ell}(z'))^{\top} (C_{h,\ell}^{-1} \otimes C_{\delta,\ell}^{-1}) (h_{\ell}(z) \otimes \delta_{\ell}(z)) \\ 1329 &= -\left(h_{\ell}(z')^{\top} C_{h,\ell}^{-1} h_{\ell}(z)\right) \cdot \left(\delta_{\ell}(z')^{\top} C_{\delta,\ell}^{-1} \delta_{\ell}(z)\right) \\ 1330 &= -\langle \tilde{h}_{\ell}(z'), \tilde{h}_{\ell}(z) \rangle_F \langle \tilde{\delta}_{\ell}(z'), \tilde{\delta}_{\ell}(z) \rangle_F, \\ 1331 \\ 1332 \end{aligned}$$

1333 where $\tilde{h}_{\ell} = C_{h,\ell}^{-1/2} h_{\ell}$ and $\tilde{\delta}_{\ell} = C_{\delta,\ell}^{-1/2} \delta_{\ell}$ are reweighting matrices.

1334 **An Objective for Preserving Influence Functions** To preserve the influences under low-rank
1335 approximation, we penalize the compression error using a norm aligned with the reweighting induced
1336 by $C_{h,\ell}$ and $C_{\delta,\ell}$. We assume that $C_{h,\ell}$ and $C_{\delta,\ell}$ are symmetric positive definite. The objective is to
1337 find an error matrix $E_{\ell} = W_{\ell} - \widehat{W}_{\ell}$ that minimizes the following term:

$$1338 \min_{\widehat{W}_{\ell} \text{ s.t. } \text{rank}(\widehat{W}_{\ell}) \leq r} \|C_{\delta,\ell}^{-1/2} (W_{\ell} - \widehat{W}_{\ell}) C_{h,\ell}^{-1/2}\|_F^2. \quad (11)$$

1339 We now demonstrate that minimizing this objective effectively controls the expected change in the
1340 influence score. Our theoretical guarantees rely on the following assumptions.

1341 **(B1)** (Finite moments). $\mathbb{E}_z [\|\tilde{\delta}_{\ell}(z)\| \|\tilde{h}_{\ell}(z)\|]$ and $\mathbb{E}_{z'} [\|\tilde{\delta}_{\ell}(z')\| \|\tilde{h}_{\ell}(z')\|]$ are finite.

1342 **(B2)** (Backward smoothness). Let $\widehat{\delta}_{\ell}$ denote the upstream gradient under \widehat{W}_{ℓ} . There exists
1343 a measurable function $K(\cdot) \geq 0$ such that $\|\Delta \delta_{\ell}(z)\| \leq K(z) \|E_{\ell}\|_F$, where $\Delta \delta_{\ell}(z) \triangleq$
1344 $\widehat{\delta}_{\ell}(z) - \delta_{\ell}(z)$, and $\mathbb{E}_z [K(z) \|\tilde{h}_{\ell}(z)\|]$, $\mathbb{E}_{z'} [K(z') \|\tilde{h}_{\ell}(z')\|]$ are finite.

1350 (B3) (Quadratic remainder). There exists $\rho > 0$ such that for all \widehat{W}_ℓ with
 1351

$$1352 \quad \|C_{\delta,\ell}^{-1/2} (W_\ell - \widehat{W}_\ell) C_{h,\ell}^{-1/2}\|_F \leq \rho,$$

1353 the Taylor remainder $R(z, z')$ in the perturbation of I_{IF, W_ℓ} satisfies
 1354

$$1355 \quad \mathbb{E}_{z,z'}[|R(z, z')|] \leq c_{\text{rem}} \|C_{\delta,\ell}^{-1/2} E_\ell C_{h,\ell}^{-1/2}\|_F^2.$$

1357 **Proposition E.1.** *Let W_ℓ be perturbed to $\widehat{W}_\ell = W_\ell - E_\ell$. Under (B1)–(B3), there exists a
 1358 finite, data-dependent constant $C_\kappa > 0$ such that
 1359*

$$1360 \quad \mathbb{E}_{z,z'}[|I_{\text{IF}, \widehat{W}_\ell}(z, z') - I_{\text{IF}, W_\ell}(z, z')|] \leq C_\kappa \|C_{\delta,\ell}^{-1/2} E_\ell C_{h,\ell}^{-1/2}\|_F. \quad (12)$$

1362 *Proof.* Recall that the layer- ℓ influence is given by
 1363

$$1364 \quad I_{\text{IF}, W_\ell}(z, z') = -\langle \tilde{h}_\ell(z'), \tilde{h}_\ell(z) \rangle_F \langle \tilde{\delta}_\ell(z'), \tilde{\delta}_\ell(z) \rangle_F.$$

1366 Let $\Delta \tilde{\delta}_\ell(z) \triangleq C_{\delta,\ell}^{-1/2} (\widehat{\delta}_\ell(z) - \delta_\ell(z))$ denote the change in the reweighted upstream gradient. The
 1367 total change in influence consists of a first-order Taylor expansion term, $\Delta I_{\text{IF}}^{(1)}(z, z')$, and a remainder
 1368 term $R(z, z')$. The first-order term is:
 1369

$$1370 \quad \Delta I_{\text{IF}}^{(1)}(z, z') = -\langle \Delta \tilde{\delta}_\ell(z'), \tilde{\delta}_\ell(z) \rangle_F \langle \tilde{h}_\ell(z'), \tilde{h}_\ell(z) \rangle_F - \langle \tilde{\delta}_\ell(z'), \Delta \tilde{\delta}_\ell(z) \rangle_F \langle \tilde{h}_\ell(z'), \tilde{h}_\ell(z) \rangle_F.$$

1371 By taking the expectation over z, z' , applying the triangle and Cauchy–Schwarz inequalities, and
 1372 using the independence of z and z' , we can bound the expected first-order change:
 1373

$$1374 \quad \mathbb{E}_{z,z'}[|\Delta I_{\text{IF}}^{(1)}|] \leq M_{\text{tr}} \mathbb{E}_{z'}[\|\Delta \tilde{\delta}_\ell(z')\| \|\tilde{h}_\ell(z')\|] + M_{\text{val}} \mathbb{E}_z[\|\Delta \tilde{\delta}_\ell(z)\| \|\tilde{h}_\ell(z)\|],$$

1375 where $M_{\text{tr}} = \mathbb{E}_z[\|\tilde{\delta}_\ell(z)\| \|\tilde{h}_\ell(z)\|]$ and $M_{\text{val}} = \mathbb{E}_{z'}[\|\tilde{\delta}_\ell(z')\| \|\tilde{h}_\ell(z')\|]$ are finite by Assumption
 1376 (B1). Our main task is to bound the expectation $\mathbb{E}_z[\|\Delta \tilde{\delta}_\ell(z)\| \|\tilde{h}_\ell(z)\|]$ in terms of the objective
 1377 function. Let $\tilde{E}_\ell \triangleq C_{\delta,\ell}^{-1/2} E_\ell C_{h,\ell}^{-1/2}$. We first establish a pointwise bound on $\|\Delta \tilde{\delta}_\ell(z)\|$ using
 1378 Assumption (B2).
 1379

$$1380 \quad \|\Delta \tilde{\delta}_\ell(z)\| = \|C_{\delta,\ell}^{-1/2} \Delta \delta_\ell(z)\| \leq \|C_{\delta,\ell}^{-1/2}\|_2 \|\Delta \delta_\ell(z)\| \leq K(z) \|C_{\delta,\ell}^{-1/2}\|_2 \|E_\ell\|_F$$

1382 Next, we relate $\|E_\ell\|_F$ to $\|\tilde{E}_\ell\|_F$. From the definition of \tilde{E}_ℓ , we have $E_\ell = C_{\delta,\ell}^{1/2} \tilde{E}_\ell C_{h,\ell}^{1/2}$.
 1383

$$1384 \quad \|E_\ell\|_F = \|C_{\delta,\ell}^{1/2} \tilde{E}_\ell C_{h,\ell}^{1/2}\|_F \leq \|C_{\delta,\ell}^{1/2}\|_2 \|\tilde{E}_\ell\|_F \|C_{h,\ell}^{1/2}\|_2$$

1386 Recall that $C_{h,\ell}$ and $C_{\delta,\ell}$ are all symmetric and positive definite, combining these inequalities yields
 1387 a pointwise bound on $\|\Delta \tilde{\delta}_\ell(z)\|$ in terms of $\|\tilde{E}_\ell\|_F$:
 1388

$$\begin{aligned} 1389 \quad \|\Delta \tilde{\delta}_\ell(z)\| &\leq K(z) \|C_{\delta,\ell}^{-1/2}\|_2 \left(\|C_{\delta,\ell}^{1/2}\|_2 \|\tilde{E}_\ell\|_F \|C_{h,\ell}^{1/2}\|_2 \right) \\ 1390 \quad &= K(z) \left(\|C_{\delta,\ell}^{-1/2}\|_2 \|C_{\delta,\ell}^{1/2}\|_2 \|C_{h,\ell}^{1/2}\|_2 \right) \|\tilde{E}_\ell\|_F \\ 1391 \quad &= K(z) \sqrt{\text{cond}(C_{\delta,\ell})} \sqrt{\lambda_{\max}(C_{h,\ell})} \|\tilde{E}_\ell\|_F, \end{aligned}$$

1394 where $\text{cond}(\cdot)$ and $\lambda_{\max}(\cdot)$ denote the condition number and maximum eigenvalue, respectively. Let
 1395 us define the data-dependent scaling constant $S \triangleq \sqrt{\text{cond}(C_{\delta,\ell}) \lambda_{\max}(C_{h,\ell})}$. We now use this result
 1396 to bound the expectation term:
 1397

$$\begin{aligned} 1398 \quad \mathbb{E}_z[\|\Delta \tilde{\delta}_\ell(z)\| \|\tilde{h}_\ell(z)\|] &\leq \mathbb{E}_z[K(z) S \|\tilde{E}_\ell\|_F \|\tilde{h}_\ell(z)\|] \\ 1399 \quad &= S \cdot \mathbb{E}_z[K(z) \|\tilde{h}_\ell(z)\|] \cdot \|\tilde{E}_\ell\|_F. \end{aligned}$$

1401 By Assumption (B2), the expectations $\kappa_{\text{tr}} \triangleq \mathbb{E}_z[K(z) \|\tilde{h}_\ell(z)\|]$ and $\kappa_{\text{val}} \triangleq \mathbb{E}_{z'}[K(z') \|\tilde{h}_\ell(z')\|]$ are
 1402 finite. The bound on the expected first-order change becomes:
 1403

$$\mathbb{E}_{z,z'}[|\Delta I_{\text{IF}}^{(1)}|] \leq S (M_{\text{tr}} \kappa_{\text{val}} + M_{\text{val}} \kappa_{\text{tr}}) \|\tilde{E}_\ell\|_F.$$

1404 The total expected change is bounded by the sum of the first-order term and the remainder from
 1405 Assumption (B3):
 1406

$$1407 \mathbb{E}_{z,z'} |I_{\text{IF}, \widehat{W}_\ell}(z, z') - I_{\text{IF}, W_\ell}(z, z')| \leq \mathbb{E}_{z,z'} [|\Delta I_{\text{IF}}^{(1)}|] + \mathbb{E}_{z,z'} [|R|].$$

1408 Using Assumption (B3), for perturbations satisfying $\|\widetilde{E}_\ell\|_F \leq \rho$, we have $\mathbb{E}_{z,z'} [|R|] \leq c_{\text{rem}} \|\widetilde{E}_\ell\|_F^2 \leq$
 1409 $c_{\text{rem}} \rho \|\widetilde{E}_\ell\|_F$. Combining the terms gives the final result:
 1410

$$1411 \mathbb{E}_{z,z'} |\Delta I_{\text{IF}, W_\ell}| \leq (S(M_{\text{tr}} \kappa_{\text{val}} + M_{\text{val}} \kappa_{\text{tr}}) + c_{\text{rem}} \rho) \|\widetilde{E}_\ell\|_F.$$

1412 This proves the proposition with the constant $C_\kappa \triangleq S(M_{\text{tr}} \kappa_{\text{val}} + M_{\text{val}} \kappa_{\text{tr}}) + c_{\text{rem}} \rho$, which is finite
 1413 and depends on data properties but not on the specific perturbation E_ℓ . \square
 1414

1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 **F EFFICIENT IMPLEMENTATION VIA PROBE-BASED APPROXIMATION AND**
 1459 **CORE SVD**
 1460

1461 The theoretical solution presented in the main text requires computing, inverting, and taking the
 1462 square root of the second moment matrices $C_{h,\ell} \in \mathbb{R}^{n_\ell \times n_\ell}$ and $C_{\delta,\ell} \in \mathbb{R}^{m_\ell \times m_\ell}$. For modern neural
 1463 networks, the dimensions n_ℓ and m_ℓ can be in the thousands for typical transformer layers, and can
 1464 even reach the millions in domains like high-resolution computer vision or for layers tied to large
 1465 vocabularies. This makes the direct formation and manipulation of these matrices computationally
 1466 infeasible due to both memory and time constraints. To overcome this, we employ a memory-efficient
 1467 approximation scheme that avoids forming these large matrices entirely.

1468 The core strategy is to approximate the true second moment matrices using statistics gathered
 1469 from a small, representative batch of N data samples, which we refer to as a probe dataset. We
 1470 perform a single forward and backward pass through the model for these N samples to collect the
 1471 corresponding inputs and upstream gradients for each layer ℓ . These are stacked column-wise to form
 1472 two tall-and-thin probe matrices:

$$1473 \quad H_\ell = [h_{\ell-1}(z_1), \dots, h_{\ell-1}(z_N)] \in \mathbb{R}^{n_\ell \times N} \quad \text{and} \quad \Delta_\ell = [\delta_\ell(z_1), \dots, \delta_\ell(z_N)] \in \mathbb{R}^{m_\ell \times N}.$$

1475 With these probe matrices, we can approximate the full second moment matrices as $C_{h,\ell} \approx \frac{1}{N} H_\ell H_\ell^\top$
 1476 and $C_{\delta,\ell} \approx \frac{1}{N} \Delta_\ell \Delta_\ell^\top$. Instead of computing these prohibitively large second moment matrices, the
 1477 key insight is to directly compute the "skinny" Singular Value Decompositions of the much smaller
 1478 probe matrices:

$$1479 \quad H_\ell = U_{H,\ell} \Sigma_{H,\ell} V_{H,\ell}^\top \quad \text{and} \quad \Delta_\ell = U_{\Delta,\ell} \Sigma_{\Delta,\ell} V_{\Delta,\ell}^\top,$$

1480 where $U_{H,\ell} \in \mathbb{R}^{n_\ell \times N}$, $\Sigma_{H,\ell} \in \mathbb{R}^{N \times N}$, $V_{H,\ell} \in \mathbb{R}^{N \times n_\ell}$, and similarly for the decomposition of
 1481 Δ_ℓ . This decomposition is the key to bypassing the expensive computations, as we can express
 1482 the regularized square roots of the approximate second moment matrices without ever forming
 1483 the full matrices. For example, for $C_{h,\ell}$, we have $(C_{h,\ell} + \lambda I)^{1/2} \approx (\frac{1}{N} H_\ell H_\ell^\top + \lambda I)^{1/2} =$
 1484 $(\frac{1}{N} U_{H,\ell} \Sigma_{H,\ell}^2 U_{H,\ell}^\top + \lambda I)^{1/2} = U_{H,\ell} (\frac{1}{N} \Sigma_{H,\ell}^2 + \lambda I)^{1/2} U_{H,\ell}^\top$. We then define the small, diagonal
 1485 matrices that hold the regularized singular values:

$$1486 \quad D_{H,\ell} \triangleq \left(\frac{1}{N} \Sigma_{H,\ell}^2 + \lambda I \right)^{1/2} \quad \text{and} \quad D_{\Delta,\ell} \triangleq \left(\frac{1}{N} \Sigma_{\Delta,\ell}^2 + \lambda I \right)^{1/2}. \quad (13)$$

1489 The required reweighting transformations are thus efficiently represented as $C_{h,\ell,\lambda}^{1/2} \approx U_{H,\ell} D_{H,\ell} U_{H,\ell}^\top$
 1490 and $C_{\delta,\ell,\lambda}^{1/2} \approx U_{\Delta,\ell} D_{\Delta,\ell} U_{\Delta,\ell}^\top$. Substituting these efficient representations into the definition of the
 1491 data-aware matrix $S_\ell = C_{\delta,\ell}^{1/2} W_\ell C_{h,\ell}^{1/2}$ reveals the final computational trick:

$$1494 \quad S_\ell \approx (U_{\Delta,\ell} D_{\Delta,\ell} U_{\Delta,\ell}^\top) W_\ell (U_{H,\ell} D_{H,\ell} U_{H,\ell}^\top) \\ 1495 \quad = U_{\Delta,\ell} \underbrace{(D_{\Delta,\ell} (U_{\Delta,\ell}^\top W_\ell U_{H,\ell}) D_{H,\ell})}_{\triangleq M_{\text{core},\ell}} U_{H,\ell}^\top.$$

1498 This shows that the SVD of the very large matrix S_ℓ is directly related to the SVD of the small core
 1499 matrix $M_{\text{core},\ell}$, which has dimensions at most $N \times N$. We compute the SVD of this core matrix,
 1500 $M_{\text{core},\ell} = P_\ell \Sigma_\ell Q_\ell^\top$, and truncate it to the desired rank r_ℓ by selecting the top r_ℓ columns of P_ℓ and
 1501 Q_ℓ (denoted $P_{\ell,r}, Q_{\ell,r}$) and the top-left $r_\ell \times r_\ell$ block of Σ_ℓ (denoted $\Sigma_{\ell,r}$). The optimal low-rank
 1502 approximation $\widehat{W}_\ell^* = A_\ell^* B_\ell^*$ is constructed by transforming the truncated SVD of the core matrix
 1503 back into the original weight space. This yields numerically stable, closed-form expressions for the
 1504 low-rank matrices A_ℓ^* and B_ℓ^* without ever forming the full \widehat{W}_ℓ^* matrix:

$$1506 \quad A_\ell^* = U_{\Delta,\ell} D_{\Delta,\ell}^{-1} P_{\ell,r} \Sigma_{\ell,r}^{1/2} \quad \text{and} \quad B_\ell^* = \Sigma_{\ell,r}^{1/2} Q_{\ell,r}^\top D_{H,\ell}^{-1} U_{H,\ell}^\top. \quad (14)$$

1508 All computationally intensive steps are now performed on matrices whose dimensions are related to
 1509 the small probe set size N , not the target model dimensions n_ℓ and m_ℓ . This entire procedure is highly
 1510 efficient, assuming $N \ll \min(n_\ell, m_\ell)$ and $r_\ell \leq N$. For each layer, the complexity is composed of
 1511 a single forward and backward pass for N samples, two skinny SVDs of the probe matrices with
 complexity $O(n_\ell N^2)$ and $O(m_\ell N^2)$, the formation of the core matrix which costs $O(m_\ell n_\ell N)$, an

1512 SVD of the small core matrix with complexity $O(N^3)$, and the final factor construction which costs
1513 $O(m_\ell N r_\ell)$ for A_ℓ^* and $O(n_\ell N r_\ell)$ for B_ℓ^* . The dominant costs are the core matrix formation and the
1514 skinny SVDs, which is a dramatic reduction from the $O(\min(m_\ell, n_\ell)^3)$ complexity required for the
1515 SVD of the full second moment matrices.

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565