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ABSTRACT

Supervised fine-tuning (SFT) relies critically on selecting training data that most
benefits model’s downstream performance. Gradient-based data selection meth-
ods such as TracIn and Influence Functions leverage influence to identify useful
samples, but their computational cost scales poorly, making them impractical for
multi-billion-parameter large language models (LLMs). A common alternative is
to use off-the-shelf smaller models as proxies, but they remain suboptimal since
their learning dynamics are unclear, their sizes cannot be flexibly adjusted, and
they cannot be further aligned with the target model in terms of gradient-based in-
fluence estimation. To address these challenges, we introduce IPROX, a two-stage
framework that derives influence-preserving proxies directly from the target model.
It first applies a low-rank compression stage to preserve influence information of
the target model, and then an aligning stage to align both model gradients and
logits, thereby constructing proxies that flexibly control computational cost while
retaining the target model’s influence. Experimental results across diverse LLM
families and evaluation tasks show that IPROX consistently outperforms off-the-
shelf proxies and baseline methods. On Qwen3-4B, a 1.5B proxy constructed with
IPROX achieves stronger performance than the larger 1.7B off-the-shelf proxy.
Notably, on Llama3.2, IPROX achieves better performance than baselines while
reducing computational cost by more than half relative to the full 3B model. These
results show that IPROX provides effective influence-preserving proxies, making
gradient-based data selection more scalable for LLMs.

1 INTRODUCTION

Supervised fine-tuning (SFT) has become the standard approach for adapting Large Language Models
(LLMs) to various downstream tasks. However, the effectiveness of SFT hinges critically on the
training data. Prior studies (Wang et al., 2023b; 2024a) show that naively combining datasets can
even degrade downstream performance. The key challenge, therefore, is not the sheer amount of data
available but the identification of a curated subset that most effectively enhances model performance.

A prominent line of work addressing this challenge is gradient-based data selection, where each
sample’s importance is estimated through its influence on the model performance. For example,
TracIn (Pruthi et al., 2020; Xia et al., 2024; Han et al., 2023) estimates the impact of a training sample
by accumulating gradient inner products with a validation sample across multiple model checkpoints,
while Influence Functions (Koh & Liang, 2017; Kwon et al., 2024; Zhang et al., 2024; Wang et al.,
2025) approximate the effect of infinitesimally upweighting or downweighting a training sample by
scaling its gradient with the inverse Hessian to account for the local curvature of the loss landscape.
Despite their success, both methods impose substantial computational overhead, requiring either
the storage of numerous checkpoints with repeated backpropagation or the computation of costly
inverse-Hessian vector products. This overhead scales poorly with model size, making these methods
impractical for multi-billion-parameter LLMs (Grosse et al., 2023).

While there are some efforts focusing on simplifying the influence computation itself (Kwon et al.,
2024; Yu et al., 2024; Xia et al., 2024; Lin et al., 2025b), we pivot to an alternative, orthogonal
question: can the expensive influence calculation for a target model be effectively offloaded to a
smaller, cost-effective proxy model? The idea of using smaller models to predict the behavior of
larger ones is already prevalent, most notably through scaling laws that estimate a target model’s
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performance from its smaller counterparts (Kaplan et al., 2020; Shum et al., 2025). Motivated by
this, we explore whether this proxy paradigm can also be extended to data selection by leveraging
gradient-based influence scores from smaller models as approximations for larger ones, thereby
mitigating the prohibitive cost of full-scale computation.

A direct strategy is to use off-the-shelf proxy models (Xia et al., 2024; Yang et al., 2024b), such
as applying Llama3-8B to select data for Llama3-70B. These proxies provide strong baselines and
useful guidance, but remain suboptimal for three main reasons. First, while their task performance is
usually reported, much less is known about their learning dynamics on the data. As a result, choosing
an off-the-shelf proxy for gradient-based influence estimation typically relies on prior knowledge
(e.g., assuming the larger model always behaves similarly to its smaller counterparts), without a
clear understanding of how much benefit is gained by increasing size. Second, the available off-the-
shelf models within each family are restricted to a handful of fixed sizes, which limits flexibility in
adjusting proxy capacity to different computational budgets. Third—and most importantly, there is
no systematic way to better align these proxies with the target model for influence estimation.

64.18

63.81

When Smaller Beats Bigger

Figure 1: For Qwen3-4B,
a 1.5B IPROX outperforms
the Qwen3-1.7B off-the-
shelf proxy, demonstrating
that a smaller influence-pre-
serving proxy can achieve
better data selection perfor-
mance.

To address these challenges, we propose IPROX, a principled two-
stage framework that constructs a proxy directly from the target model,
starting with compression and followed by alignment. The key idea is
straightforward: instead of relying on a smaller model with assumed
preferences, we derive a smaller model directly from the target so
that it inherits the gradient characteristics of the original. This design
provides flexibility in controlling computational cost and, more im-
portantly, establishes a principled path to preserve the influence of
the target model. Concretely, we first employ Influence-Preserving
Singular Value Decomposition (IPSVD), where each weight matrix
of the target model is compressed to retain components most relevant
for gradient-based influence. Building on this, we then introduce an
aligning stage that refines the proxy by matching its gradients to those
of the target model within the low-rank space while anchoring its
output logits to remain consistent. Together, these stages yield a proxy
that is both efficient and tailored for gradient-based data selection.

Experimental results demonstrate that IPROX achieves consistently
better performance than off-the-shelf proxies across diverse tasks and
model families, and its advantages hold under different gradient-based influence estimators. A
representative example is shown in Fig. 1, where for the Qwen3-4B target model, our 1.5B proxy
constructed by IPROX surpasses a larger 1.7B off-the-shelf proxy in average performance, high-
lighting that a smaller IPROX can outperform larger off-the-shelf ones. In addition to stronger
performance, IPROX is efficient. In our experiments on Llama3.2, it reduces the computational
overhead by more than half relative to the full 3B model, offering a practical and scalable path for
efficient gradient-based data selection in LLM fine-tuning.

2 RELATED WORKS

Efficient Data Selection for LLMs. With the growing size of LLMs, gradient-based data selection
has become increasingly impractical, motivating more efficient adaptations. Some works reduce
the cost of influence estimation by simplifying second-order derivatives (Kwon et al., 2024; Grosse
et al., 2023; Zhang et al., 2024), while others compute influences on a small subset and extrapolate
to the full dataset (Xia et al., 2024; Yu et al., 2024; Gu et al., 2024; Lin et al., 2025b). Recently, an
alternative line of work has explored using smaller off-the-shelf proxy models to guide data selection
for larger ones, though these approaches primarily rely on loss signals rather than exploiting gradient
information (Yang et al., 2024b; Shum et al., 2025).

LLM Compression via Decomposition Methods. Decomposition-based compression exploits
the low intrinsic rank of weight matrices. Early work showed that singular value decomposition
(SVD) can effectively approximate transformer layers (Ganesh et al., 2021). Subsequent studies
refined this idea: ASVD incorporates neuron activation patterns (Yuan et al., 2025), CALDERA
combines low-rank factorization with quantization (Saha et al., 2024), and MoDeGPT applies
Nyström approximation to entire transformer blocks (Lin et al., 2025a). SVD-based strategies have
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Figure 2: Overview of IPROX. In the first stage (left), IPSVD leverages hidden states and gradients to
build second-moment matrices that reweight the model weights for proxy initialization. In the second
stage (right), the proxy is further aligned with the target LLM through internal gradient alignment in
the low-rank space and external logits anchoring for stability.

also been extended to Mixture-of-Experts models (Ai et al., 2025; Yang et al., 2024a; Li et al., 2025).
Additionally, ShortGPT introduces an importance-scoring mechanism to identify and retain the most
critical layers (Men et al., 2024).

3 PRELIMINARIES AND PROBLEM DEFINITION

We consider a candidate training dataset Dtrain and a target validation dataset Dval, which may either
follow the same distribution or a different one. The objective of model-aware data selection is to
identify a subset D∗ ⊆ Dtrain with a fixed budget k such that fine-tuning a model fθ on D∗ maximizes
its downstream performance on Dval:

D∗ = argmax
D⊆Dtrain, |D|=k

Ez′∼Dval

[
U(fθ(D); z

′)
]
, (1)

where U is a task utility (e.g., accuracy), θ(D) are the model parameters fine-tuned on D, and
z′ ∈ Dval is a validation sample. Directly solving the combinatorial optimization in Eq. 1 is
intractable. A widely used strategy is to instead score each training sample z ∈ Dtrain based on its
gradient-based influence on Dval and select the top-k samples. This is typically achieved by defining
a pairwise influence score I(z, z′), which quantifies the utility of training on a sample z for the
model’s performance on a target sample z′.

A prominent example of this idea is TracIn (Pruthi et al., 2020), which approximates I(z, z′) by
accumulating gradient similarities between training and target samples over multiple checkpoints:

ITracIn(z, z
′) =

T∑
t=1

ηt⟨∇θL(z; θt),∇θL(z
′; θt)⟩, (2)

where L(· ; ·) is the loss function, θt is the model’s parameters at checkpoint t and ηt is the averaged
learning rate in iteration t. By probing the geometry of the loss landscape throughout training,
this method provides a faithful measure of a sample’s utility. Another seminal method, Influence
Functions (Koh & Liang, 2017), estimates the influence of a training sample by modeling how the
final model parameters would change if that sample were infinitesimally upweighted. This parameter
change is approximated as the inverse Hessian of the loss multiplied by the sample’s gradient.

However, the computational cost of these gradient-based methods is prohibitive for large-scale models,
motivating the use of smaller proxies to approximate influence scores. The central challenge, and the
focus of this work, is to design a proxy model fθ′ that not only approximates the influence scores of
the target model fθ but also strikes a balance between efficiency and selection quality. Ideally, the
proxy should be small enough to offer notable computational savings while remaining sufficiently
aligned with the target model to guide effective data selection.

4 PROXY CONSTRUCTION VIA INFLUENCE-PRESERVING COMPRESSION

We introduce IPROX, summarized in Fig. 2, which consists of two stages. The first stage compresses
the model with an influence-preserving SVD (§4.1) that uses second-moment reweighting to retain
influence-relevant components. The second stage aligns the proxy with the target LLM (§4.2) by
matching gradients in the low-rank space and anchoring the logits distribution for stability.
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4.1 STAGE 1: INFLUENCE-PRESERVING SVD
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Figure 3: Loss and influence
(TracIn) retention of SVD and
our IPSVD under different
compression sparsity.

Limitation of Standard SVD. We begin by describing how the
proxy model is initialized. A natural approach is to compress the
model via low-rank approximation of its weight matrices. For any
weight matrix W ∈ Rn×m in the target model fθ, where n,m are
output and input dimensions, we can approximate it as W ≈ AB,
where A ∈ Rn×r and B ∈ Rr×m. The rank r ≪ min(n,m)
directly controls the size of the resulting proxy model, with lower
ranks corresponding to higher model sparsity. The standard method
for such decomposition is Singular Value Decomposition (SVD),
which yields the optimal rank-r approximation under the Frobenius
reconstruction error objective (Eckart & Young, 1936; Golub &
Van Loan, 2013). However, this objective is misaligned with our
goal of data selection, since minimizing reconstruction error provides
no guarantee that the proxy model will preserve the gradient-based influence of the target model.

As illustrated in Fig. 3, when a 4-layer MLP is compressed on a synthetic classification task using
standard SVD, loss retention (measured as the ratio between the original and compressed losses)
remains relatively stable when the sparsity is low, while influence retention (measured by Spearman
correlation with the oracle influence) deteriorates much more rapidly. These observations highlight
the need for a compression method that explicitly preserves influence. To this end, our IPSVD is
designed to retain influence-relevant components. As previewed in Fig. 3, IPSVD attains markedly
higher influence retention than standard SVD while maintaining comparable loss retention across
sparsity levels. We now present the technical details.

IPSVD with Reweighting. Our goal is to construct a compressed proxy whose influence scores
approximate those of the target model. For clarity, we focus on a simplified variant of the TracIn
computed from a single checkpoint and denote it as I , omitting the subscript. Without loss of
generality, we present the analysis with TracIn, and the results also apply to other gradient-based
methods such as Influence Functions (see Appendix E). Specifically, for a weight matrix Wℓ at layer
ℓ, its gradient is given by the outer product ∇Wℓ

L(z; θ) = δℓ(z)hℓ−1(z)
⊤, where hℓ−1(z) is the

input to layer ℓ and δℓ(z) is the upstream gradient from the loss. Then the influence of Wℓ is:

IWℓ
(z, z′) = ⟨∇Wℓ

L(z; θ),∇Wℓ
L(z′; θ)⟩F = ⟨δℓ(z), δℓ(z′)⟩F ⟨hℓ−1(z), hℓ−1(z

′)⟩F

where ⟨·, ·⟩F is Frobenius inner product. From this definition, we observe that any sufficiently small
perturbation Wℓ 7→ Ŵℓ = Wℓ +Eℓ affects the influence only through the resulting changes δℓ(·). A
first-order Taylor expansion of the loss with respect to Wℓ in the direction of the perturbation Eℓ yields
the scalar ⟨∇Wℓ

L(z; θ), Eℓ⟩F = δℓ(z)
⊤Eℓhℓ−1(z), which captures the effect of the perturbation

on the sample loss. We therefore define the layer-local directional effect of a perturbation Eℓ on a
sample z as:

eℓ(z) ≜ δℓ(z)
⊤Eℓhℓ−1(z). (3)

The following proposition provides a theoretical justification for using the expected squared effect,
Ez[eℓ(z)

2], as a tractable surrogate for preserving the influence score.

Proposition 4.1. Consider a perturbation to layer ℓ: Wℓ 7→ Ŵℓ = Wℓ + Eℓ. Under
assumptions of local smoothness, geometric coherence, and a bounded covariate shift condition
between the distributions of z and z′ (see Appendix D for details), there exists a data-dependent
constant Cκ > 0 such that the expected change in the influence contribution is bounded by:

Ez,z′
∣∣I

Ŵℓ
(z, z′)− IWℓ

(z, z′)
∣∣ ≤ Cκ

√
Ez[eℓ(z)2]. (4)

The proof is deferred to Appendix D. Intuitively, the smoothness assumption ensures that perturbations
in layer weights translate into proportionally bounded changes in the gradients. The error term eℓ(z)
represents the local gradient deviation caused by Eℓ, and its squared expectation thus serves as
a surrogate for bounding the discrepancy in pairwise influence IWℓ

across samples. Minimizing
Ez[eℓ(z)

2] therefore directly controls the distortion of the influences.
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Building on this result, our goal is to find the optimal low-rank approximation Ŵℓ that minimizes the
expected squared effect, Ez[eℓ(z)

2]. This objective can be expressed as a weighted Frobenius norm
between the original and compressed weights, which under the K-FAC approximation (Martens &
Grosse, 2015; Grosse & Martens, 2016) takes the following form:

min
Ŵℓ

Ez

[
eℓ(z)

2
]
≈ min

Ŵℓ

∥∥∥C1/2
δ,ℓ (Wℓ − Ŵℓ)C

1/2
h,ℓ

∥∥∥2
F
, (5)

where Ch,ℓ ≜ E[hℓ−1h
⊤
ℓ−1] and Cδ,ℓ ≜ E[δℓδ⊤ℓ ] are the second moment matrices of the inputs

and upstream gradients, respectively. In effect, these matrices form a reweighting scheme. They
rescale Eℓ to more heavily penalize errors in directions where inputs are typically large (identified by
Ch,ℓ) and where the loss is most sensitive (identified by Cδ,ℓ). This ensures that our approximation
prioritizes preserving the weights most critical to the influences.

This reweighting can be expressed by the data-dependent matrix Sℓ ≜ C
1/2
δ,ℓ WℓC

1/2
h,ℓ . We then

compute the SVD of this matrix, Sℓ = UℓΣℓV
⊤
ℓ , and truncate it to the top rℓ singular values to obtain

the components Uℓ,r, Σℓ,r, and Vℓ,r. The optimal low-rank approximation Ŵℓ is then constructed by
transforming these truncated components back to the original weight space:

Ŵℓ = C
−1/2
δ,ℓ (Uℓ,rΣℓ,rV

⊤
ℓ,r)C

−1/2
h,ℓ .

For implementation, this is directly decomposed into the low-rank matrices Ŵℓ = AℓBℓ, where
Aℓ = C

−1/2
δ,ℓ Uℓ,rΣ

1/2
ℓ,r and Bℓ = Σ

1/2
ℓ,r V

⊤
ℓ,rC

−1/2
h,ℓ . To ensure numerical stability, we add a small

damping term λI to each second moment matrix. In this low-rank approximation, the weight matrix
Wℓ ∈ Rmℓ×nℓ is approximated with two smaller matrices, Aℓ ∈ Rmℓ×rℓ and Bℓ ∈ Rrℓ×nℓ , reducing
the parameters at layer ℓ to rℓ(mℓ + nℓ). The rank rℓ provides flexible control over the proxy size,
enabling a balance between efficiency and approximation quality under a given computational budget.

Efficient and Scalable Implementation. Computing the square roots and inverses of the large
second moment matrices Ch,ℓ and Cδ,ℓ is prohibitively expensive for large models. To avoid forming
these matrices, we approximate the second-moment statistics using a smallprobe set of N samples. A
single forward and backward pass collects the inputs and gradients at each layer ℓ, which are then
used to form two matrices:

Hℓ = [hℓ−1(z1), . . . , hℓ−1(zN )] ∈ Rnℓ×N and ∆ℓ = [δℓ(z1), . . . , δℓ(zN )] ∈ Rmℓ×N .

Instead of building the full second moment matrices (e.g., Ch,ℓ ≈ 1
NHℓH

⊤
ℓ ), we compute the

"skinny" SVDs of these tall-and-thin probe matrices directly: Hℓ = UH,ℓΣH,ℓV
⊤
H,ℓ and ∆ℓ =

U∆,ℓΣ∆,ℓV
⊤
∆,ℓ. This decomposition provides the key to bypassing the expensive computation. The

SVD of the large, re-weighted matrix Sℓ can be almost entirely constructed from the SVD of a
much smaller core matrix, which is built using the components of our skinny SVDs. This reduces
the problem to finding the SVD of a matrix whose dimensions are at most N ×N , a dramatically
smaller task. The complexity is then reduced from O(n3

ℓ +m3
ℓ) for full eigen-decompositions to

O(N3 + nℓN
2 +mℓN

2), where N ≪ nℓ,mℓ. For a complete derivation, please see Appendix F.

4.2 STAGE 2: APPROXIMATE GRADIENT ALIGNMENT IN THE WEIGHT SPACE

The initial proxy model fθ′ adheres to the theoretical bound established in Proposition 4.1. However,
as approximation errors compound across layers, its alignment in terms of influence preserving with
the original model fθ should still be refined. To this end, we employ an aligning stage wherein the
proxy is trained to directly mimic the gradient responses signals of the target model.

Aligning Internal Gradient via Low-Rank Projection. Our goal is to align the gradients of
the initialized proxy with those of the target model. A direct comparison of their gradients, ∇θ′L
and ∇θL, is ill-posed due to the dimensional mismatch between the models. In practice, this can
be addressed by projecting the proxy’s gradient into the original model’s high-dimensional weight
space. For instance, for any layer ℓ and a given batch B = {zi}|B|

i=1, one can reconstruct the proxy
gradient ∇W ′

ℓ
L(B; θ′) and minimize its distance to the target gradient ∇Wℓ

L(B; θ). However, this
approach has a critical drawback. Once we align the gradients of Wℓ and W ′

ℓ in the full parameter
space, any subsequent influence calculation would also require reconstructing the proxy’s gradient in

5
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this high-dimensional form. Performing this reconstruction for each sample introduces substantial
computational and memory overhead, which undermines the efficiency benefits of a low-rank proxy.

To ensure the proxy remains efficient for downstream tasks, we adopt a more practical strategy: we
project the original model’s gradient down into the low-rank proxy space and perform the alignment
there. Since the proxy layer is defined by low-rank matrices Aℓ and Bℓ (where Wℓ ≈ AℓBℓ),
its true gradients are with respect to these matrices, ∇Aℓ

L and ∇Bℓ
L. Using the chain rule, we

can project the full gradient ∇Wℓ
L onto Aℓ and Bℓ, where ∇Aℓ

L = ∂L
∂Wℓ

∂Wℓ

∂Aℓ
= ∇Wℓ

LB⊤
ℓ and

∇Bℓ
L = ∂L

∂Wℓ

∂Wℓ

∂Bℓ
= A⊤

ℓ ∇Wℓ
L. This yields a loss based on the following alignment objectives:

LGA(B; θ′) =
1

|L|
∑
ℓ∈L

(
d(∇Aℓ

L, sg(∇Wℓ
L)B⊤

ℓ ) + d(∇Bℓ
L,A⊤

ℓ sg(∇Wℓ
L))

)
, (6)

where d(·, ·) is a distance function and L denotes all decomposed layers in the proxy model. Here
sg(∇Wℓ

L) indicates stop gradient. This objective aligns the gradients entirely within the parameter
space of the proxy, eliminating any need for high-dimensional reconstruction during influence
calculation and thus preserving its efficiency.

Anchoring External Output Behavior. To stabilize gradient alignment and prevent the proxy from
collapsing, we anchor its output distribution to that of the teacher model, inspired by the idea of
knowledge distillation. This provides a stable basis for alignment, where we employ the standard
forward Kullback–Leibler (KL) divergence loss:

LKL(B; θ′) = τ2
1

|B|
∑
z∈B

KL
(
softmax

(
fθ(z)/τ

) ∥∥ softmax
(
fθ′(z)/τ

))
, (7)

where τ is the distillation temperature and fθ, fθ′ are output logits. Our final objective for the
initialized proxy combines the gradient alignment and output anchoring losses:

min
θ′

LGA(B; θ′) + λKL LKL(B; θ′), (8)

where λKL controls the strength of the anchoring term.

Discussion. IPROX shows that low-rank proxies can preserve gradient-based influences, but there
are trade-offs to consider. The embedding layer and LM head are essential for model performance and
are less suitable for compression (Namburi et al., 2023; Dettmers et al., 2022), which places a natural
limit on parameter reduction. Moreover, prior work finds that model quality drops sharply once
the rank falls below about 10% of the original size (Wang et al., 2024b; Hsu et al., 2022), meaning
proxies cannot be reduced arbitrarily without sacrificing performance or their ability to preserve
influence. Even with our aligning stage, fully recovering gradient behavior under such aggressive
compression remains difficult. These limitations do not diminish the usefulness of our method but
highlight the inherent trade-offs between efficiency and proxy quality.

5 EXPERIMENTS

In this section, we provide a comprehensive evaluation of IPROX. We first describe the experimental
setup (§5.1), then present results comparing IPROX with off-the-shelf proxies and baselines (§5.2).
We follow with analysis (§5.3), covering different influence estimators, efficiency, factors behind
its effectiveness, and ablations. Additional results under varying data budgets are presented in the
Appendix C.

5.1 EXPERIMENTAL SETUP

Table 1: Statistics of the evaluation datasets for
fine-tuning.

Dataset Task Dtest Dval # Shots Metric

TyDiQA Multilingual QA 1,713 9 1 Exact Match
MMLU Multiple choice 18,721 285 5 Accuracy
BBH Reasoning 920 81 3 Accuracy

Datasets and Models. We use the DOLLY
dataset (Conover et al., 2023) as our candi-
date training data Dtrain following (Wang et al.,
2023b). It provides a diverse collection of
instruction-response pairs designed for aligning
large language models with human preferences.
We evaluate models ranging from 3B to 7B pa-
rameters across four different model families: Llama3.2-3B (Dubey et al., 2024), Gemma3-4B (Team
et al., 2025), Qwen3-4B (Yang et al., 2025), and Qwen2-7B (Team, 2024).
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Table 2: IPROX compared with off-the-shelf proxies across four target model families. For each
target model, we report results using the full model (shown in gray, provided only as a reference),
an off-the-shelf proxy from the same family, and IPROX with different sparsity levels ρ. Bold and
underline indicate the best and second-best proxy results, respectively.

Target Model Proxy Model #Params MMLU BBH TyDiQA Avg.

Llama3.2-3B

Llama3.2-3B 3B 56.28 47.78 43.10 49.05
Llama3.2-1B 1B 55.89 47.31 38.84 47.35
IPROX, ρ = 0.3 2.5B 56.77 49.16 40.98 48.97
IPROX, ρ = 0.5 1.8B 56.35 47.69 39.77 47.94
IPROX, ρ = 0.7 1.3B 56.28 47.31 39.04 47.54

Gemma3-4B

Gemma3-4B 4B 59.67 47.68 28.14 45.16
Gemma3-1B 1B 59.61 47.31 25.43 44.12
IPROX, ρ = 0.3 3B 59.36 49.63 32.19 47.06
IPROX, ρ = 0.5 2.3B 59.47 48.70 31.42 46.53
IPROX, ρ = 0.7 1.6B 59.32 48.52 29.12 45.65

Qwen3-4B

Qwen3-4B 4B 69.90 74.62 49.56 64.69
Qwen3-1.7B 1.7B 69.65 74.44 47.35 63.81
IPROX, ρ = 0.3 3.1B 70.15 75.18 50.63 65.32
IPROX, ρ = 0.5 2.2B 70.08 74.72 48.45 64.42
IPROX, ρ = 0.7 1.5B 69.94 74.62 47.98 64.18

Qwen2-7B

Qwen2-7B 7B 70.35 61.85 51.46 61.22
Qwen2-1.5B 1.5B 70.18 59.72 47.29 59.06
IPROX, ρ = 0.3 5.8B 70.36 60.93 53.56 61.62
IPROX, ρ = 0.5 4.4B 70.27 60.74 51.36 60.79
IPROX, ρ = 0.7 3.3B 70.41 60.28 50.61 60.43

Baselines and Evaluation. To our knowledge, this direction is underexplored, so we mainly com-
pare with off-the-shelf proxies within the same model family. In addition, we propose two baselines
based on related work: Layer Extraction, which selects layers from the original model using heuris-
tics (Men et al., 2024), and Influence Scorer, which trains a smaller model to predict influence
scores for the dataset (Yu et al., 2024). Following (Xia et al., 2024), we use MMLU (Hendrycks et al.,
2020), BBH (Suzgun et al., 2022), and TyDiQA (Clark et al., 2020) to evaluate the final performance.
Table 1 shows some statistics about the tasks. Appendix B.1 contains more details.

Data Selection Settings. We implement TracIn-based influence estimation following Xia et al.
(2024), adopting the SGD influence variant and omitting the gradient projection component for
simplicity. For influence function estimation, we implement it based on the K-FAC method (Grosse
& Martens, 2016). The target models are first warmed up on a randomly selected 5% subset of Dtrain
for subsequent data selection. Data are then scored according to the computed influence values, and
the top 5% are selected. Each model is full fine-tuned on the selected data for 4 epochs. As discussed
in Section 4.2, we freeze the embedding and LM head during warm-up to prevent performance
degradation and exclude them from influence calculation. Appendix B.2 contains more details.

Implementation Details. IPROX is built from the warmed-up target model. We implement it using
1% of the data source, of which 10% is allocated as probe set, and 90% as aligning data. We vary
the sparsity level ρ, the proportion of parameters removed by compression, to examine the trade-off
between efficiency and performance. Appendix B.3 contains more details.

5.2 MAIN RESULTS

We first compare IPROX with off-the-shelf proxies, with the results summarized in Table 2. We vary
ρ so that proxy sizes range from off-the-shelf scale to near the target model. The key findings are:

IPROX is effective across different models. IPROX consistently outperforms the off-the-shelf
proxies across all sparsity levels on BBH and TyDiQA, while also achieving competitive results on
MMLU, demonstrating the effectiveness of our approach. Notably, on Qwen3, IPROX even surpasses
the larger 1.7B off-the-shelf proxy with a proxy of only 1.5B parameters.

Larger proxies yield better performance. Across all four model families, we observe a clear trend:
increasing proxy size leads to improved performance. This highlights that our approach enables a
controllable trade-off between computational cost and downstream performance.

Task type matters. We find that the benefits of IPROX vary across tasks. The performance gains
are more pronounced on TyDiQA than on MMLU. We argue that this difference may stem from the
nature of the tasks, since TyDiQA and Dolly are both closer to open-domain QA settings, whereas
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MMLU emphasizes complex reasoning tasks where data selected from Dolly provides only limited
improvements. This observation aligns with Eq. 4, which indicates that greater distributional shift
between training and validation sets results in a looser error bound.

Proxies can even outperform target models. In some cases, IPROX surpasses the performance
obtained with data selected by the target model itself, such as Qwen3-4B with ρ = 0.3 on BBH
and Qwen2-7B with ρ = 0.3 on TyDiQA. This phenomenon, where smaller models identify more
generalizable training data, has also been reported in prior work across pre-training (Xie et al., 2023;
Engstrom, 2024), fine-tuning (Xia et al., 2024), and in-context learning (Wang et al., 2023a). Our
experiments reinforce this observation, showing that sometimes proxies can select data for the target
model more effectively than the target model itself.

Table 3: Comparison of IPROX with two baselines: Layer Extraction and Influence Scorer. For
IPROX and Layer Extraction, we report the results based on ρ = 0.3. ∆ denotes the performance
gain of IPROX over the strongest baseline. Bold indicates the best results.

Llama3.2-3B Gemma3-4B

Task Layer Extraction Influence Scorer IPROX ∆ Layer Extraction Influence Scorer IPROX ∆

MMLU 56.44 56.42 56.77 0.33 59.30 59.49 59.36 -0.13
BBH 46.85 46.57 49.16 2.31 48.79 47.87 49.63 0.84
TyDiQA 35.18 34.11 40.98 5.80 26.91 26.91 32.19 5.28
Avg. 46.16 45.70 48.97 2.81 45.00 44.76 47.06 1.99

Next, we compare IPROX with two baselines. As shown in Table 3, IPROX achieves overall stronger
performance than both baselines, with an average improvement of 2.81% on Llama3.2-3B and 1.99%
on Gemma3-4B. We observe that while the two baselines obtain comparable or slightly higher results
on MMLU, these improvements are less conclusive, since both methods perform notably worse
than the off-the-shelf proxy on BBH and TyDiQA. We also acknowledge that both baselines are
computationally cheaper, but they do not preserve gradient information and therefore struggle to
identify useful data. Additional results on other model families are provided in Appendix C.

5.3 ANALYSIS

Table 4: Evaluation results of IPROX on Influence Function. Bold and underline indicate the best
and second-best results within each target group, respectively.

Llama3.2-3B Gemma3-4B

Task IPROX IPROX

Llama3.2-3B Llama3.2-1B ρ=0.3 ρ = 0.5 ρ = 0.7 Gemma3-4B Gemma3-1B ρ = 0.3 ρ = 0.5 ρ = 0.7

MMLU 56.31 56.10 56.09 55.96 56.52 59.50 59.18 59.37 59.57 59.34
BBH 48.43 46.20 48.24 47.96 47.31 49.54 45.09 48.98 48.52 48.15
TyDiQA 41.88 38.13 44.35 41.57 39.05 32.48 30.01 34.18 33.94 28.44
Avg. 48.87 46.81 49.56 48.50 47.63 47.17 44.76 47.51 47.34 45.31

23.3

91.1

140.6

Figure 4: TFLOPs breakdown on
Llama3.2-3B across different spar-
sity levels.

Results on Influence Function. To validate the effectiveness
of IPROX across different gradient-based influence, we also
evaluate IPROX under the Influence Function. The results are
reported in Table 4. We find that IPROX outperforms off-the-
shelf proxies on BBH and TyDiQA while remaining competitive
on MMLU. Averaged across tasks, IPROX achieves clear gains
over the smaller proxies on both Llama3.2-3B and Gemma3-4B,
leading to a conclusion consistent with Table 2. These results
suggest that the improvements brought by IPROX are consistent
across different gradient-based influences.

Efficiency Analysis. We further analyze the efficiency of
IPROX by reporting both theoretical FLOPs and actual GPU
hours. Figure 4 shows the FLOPs breakdown on Llama3.2-3B
across different sparsity levels. As sparsity increases, the total FLOPs drop substantially, leading to
over 140 TFLOPs savings at ρ=0.7 compared to the full 3B model. Moreover, Stage 1 and Stage 2
account for only a small portion of the total FLOPs, and their cost further decreases as sparsity grows.
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Table 5: Computation breakdown on Llama3.2-3B
measured in single GH200 GPU hours. Infl. Calc.
denotes the time for influence calculation.

Model Stage 1 Stage 2 Infl. Calc.

Llama3.2-3B – – ∼90 mins
Llama3.2-1B – – ∼40 mins
IPROX ∼2 mins ∼3–5 mins ∼38–44 mins

Table 5 reports the estimated wall-clock com-
putation measured on a single GH200 GPU,
with IPROX ranging across all sparsity levels
from 0.3 to 0.7. Compared to ∼90 minutes
required for influence calculation with the 3B
model and ∼40 minutes with the 1B off-the-
shelf proxy, our method performs influence cal-
culation in only ∼38–44 minutes. Proxy con-
struction (Stage 1 and Stage 2) adds less than 10 minutes of extra cost, bringing the total runtime to
about 43–51 minutes. Thus, the efficiency of IPROX mainly comes from the reduced cost of influence
calculation, with proxy construction contributing only a small computational overhead. Together,
these results highlight that IPROX achieves notable efficiency improvements while maintaining strong
performance, making it a practical alternative to direct influence calculation with target models.

Table 6: Similarity and diversity of selected subsets
with the target model Llama3.2-3B. SA measures
subspace alignment with the target task (higher
is better), and 1-NND measures average nearest-
neighbor distance within the selected dataset for
diversity (higher is better). Bold and underline
indicate the best and second-best proxy results.

Proxy Model MMLU BBH TyDiQA

SA↑ 1-NND ↑ SA↑ 1-NND↑ SA↑ 1-NND↑

Llama3.2-1B 29.01 13.91 20.94 13.29 18.61 13.13
IPROX, ρ = 0.3 33.39 14.04 21.78 15.67 24.59 15.26
IPROX, ρ = 0.5 33.14 14.31 21.32 15.45 20.59 16.17
IPROX, ρ = 0.7 32.19 16.07 21.32 15.63 19.72 15.82

Behind IPROX Effectiveness. To understand
why IPROX is effective in data selection, we
first examine the similarity between the selected
data and the target task using subspace affinity
(SA) (Soltanolkotabi et al., 2014). As shown in
Table 6, proxies with lower sparsity (e.g., ρ =
0.3) achieve higher SA than the off-the-shelf 1B
proxy, most notably on TyDiQA, suggesting that
they capture gradient directions more consistent
with the target task.

Beyond similarity, diversity also plays a key role
in boosting downstream performance (Zhang
et al., 2024). Therefore, we measure the average
nearest-neighbor distance (1-NND) within selected subsets as a measurement for diversity and find
that proxies with higher sparsity (e.g., ρ = 0.7) yield larger 1-NND values than the 1B proxy.
This suggests that even when compressed, IPROX preserve a sufficient degree of diversity in their
selections. We argue that IPROX steers selection toward task-relevant directions while its sparsity
allows variation in less dominant components, which helps maintain diversity in the selected data.

Table 7: Ablation study on Llama3.2-3B.
Removing KL anchoring or the entire
aligning stage leads to consistent drops
in performance across all tasks.

Model MMLU BBH TyDiQA

IPROX, ρ = 0.3 56.77 49.16 40.98
w/o KL anchoring 56.52 48.88 40.85

w/o alignment 56.41 48.51 39.33

IPROX, ρ = 0.5 56.35 47.69 39.77
w/o KL anchoring 56.19 47.59 39.04

w/o alignment 56.08 47.03 36.43

IPROX, ρ = 0.7 56.24 47.31 39.79
w/o KL anchoring 56.04 46.85 37.66

w/o alignment 55.99 46.48 35.32

Ablation Studies. Table 7 presents an ablation study on
different components. We observe that removing KL an-
choring consistently reduces performance across all three
benchmarks, while removing the entire aligning stage
leads to even larger drops, particularly on TyDiQA. The
degradation is more pronounced at higher sparsity levels,
suggesting that alignment becomes increasingly important
as the proxy is more aggressively compressed. Overall,
the results show that KL anchoring and gradient alignment
are complementary. KL anchoring stabilizes training by
constraining outputs, while gradient alignment preserves
influence-relevant directions, and together they maintain
the quality of selected data.

6 CONCLUSION

We introduced IPROX, a principled framework for constructing influence-preserving proxies for
efficient data selection in LLM fine-tuning. By compressing the target model with an influence-
preserving low-rank approximation and refining it through model gradient and output alignment,
IPROX preserves the influence information of the target model while reducing computational cost.
Experiments across multiple model families and tasks show consistent gains over off-the-shelf proxies
and baselines, together with clear efficiency benefits. These results suggest that influence-preserving
proxies offer a scalable approach to gradient-based data selection in LLM fine-tuning.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study focuses on methodological advances in
efficient data selection for LLM fine-tuning. All experiments are conducted on publicly available
datasets with open-sourced models. We do not involve human subjects, private or sensitive informa-
tion, nor do we release new datasets. The proposed method is designed to reduce computational costs
for gradient-based data selection and does not introduce foreseeable risks of harm, privacy violation,
or discrimination. We have carefully documented implementation details to promote transparency
and avoid risks of misuse. Overall, we view our work as having a positive impact by encouraging
efficiency and responsible use of computational resources.

REPRODUCIBILITY STATEMENT

We make substantial efforts to ensure reproducibility. Theoretical results are presented with complete
assumptions and proofs (see Appendix D and Appendix E). Details of the proposed method, including
the influence-preserving compression and alignment stages, are fully described in Section 4 and
Appendix F, with algorithmic formulations provided. Comprehensive experimental setups, datasets,
and evaluation metrics are specified in Section 5 and Appendix B.1. All datasets and models
employed in this paper are publicly available. The source code will be released via an anonymized
link: https://anonymous.4open.science/r/IProX-20FB
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A THE USE OF LARGE LANGUAGE MODELS

LLMs were used in this work in two distinct capacities. First, as part of our experimental design, we
employed a diverse set of publicly available pre-trained LLMs from multiple families and sizes (e.g.,
LLaMA, Gemma, and Qwen series) to serve as target models and proxies for evaluation. In this role,
the models were kept fine-tuned only within well-documented settings, and our contributions focus
on the methodology of constructing efficient influence-preserving proxies, rather than developing or
training new LLMs from scratch. All datasets involved are public, and no proprietary or unreleased
models were used. LLMs were also employed to assist with phrasing and improving the presentation
of the paper.
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B FURTHER DETAILS ON EXPERIMENT SETUP

B.1 BASELINE AND EVALUATION DETAILS

Here, we provide additional implementation details of the baseline and detailed evaluation settings.

• Layer Extraction: We extract layers from the warmed-up target models. Following Men
et al. (2024), each block (i.e., attention + MLP) is scored with an influence defined as:

ILE = 1− Ex
h⊤
i hi+1

∥hi∥∥hi+1∥
,

where hi and hi+1 denote the hidden states before and after the i-th block, respectively. This
score captures how much the representation changes across the block, with larger values
indicating greater influence. For a fair comparison, we set the sparsity to ρ = 0.3 and select
the top 70% of blocks ranked by their influence scores ILE. The influence is computed using
a 1% random sample from Dtrain, and the final results are reported in Table 3.

• Influence Scorer: Prior work (Gu et al., 2024; Yu et al., 2024) formulates this task as a
regression problem, where a smaller model is trained to predict influence scores from a
limited set of annotated data. Concretely, the target model is first used to compute influence
on a hold-out set, and these values are then used to supervise the smaller model. Once
trained, the smaller model is applied to generate influence scores for the entire dataset.
This approach raises two concerns. First, it still requires influence computation with the
original model to produce annotations. Second, the generalizability of the smaller model is
uncertain, as data preferences may shift during training, necessitating repeated re-annotation
and retraining for accuracy. In our implementation, we adopt the off-the-shelf model from
Table 2 as the backbone, attach a regression head, and freeze all other layers during training.
For a fair comparison, we use 1% of Dtrain as the hold-out set and perform training only
once. The default learning rate is set to 1e−5, and we optimize using Adam with a weight
decay of 1e−2 for 5 epochs.

We follow Xia et al. (2024) to evaluate the performance of the models on the target tasks. For
MMLU, we evaluate 5-shot accuracy on the test set averaged across 57 subtasks. For TyDiQA, we
report 1-shot macro-averaged exact match across 9 languages under the gold-passage setting, where a
passage containing the reference answer is provided. For BBH, we measure the average 3-shot exact
match across all tasks. All models are trained for 4 epochs with a default learning rate of 1e−5, and
we report the final performance.

B.2 DATA SELECTION SETTING DETAILS

For TracIn influence, the implementation follows Xia et al. (2024) with two key modifications. As the
experiments are conducted with full fine-tuning rather than parameter-efficient fine-tuning (PEFT),
the most time-consuming gradient projection step is omitted. The averaged gradient on the validation
set is computed and its cosine similarity with the gradient of each training sample is used as the final
influence score, rather than Adam moments. In addition, due to computational budget constraints, we
warm-up for only one epoch with a default learning rate of 1e− 5 and a weight decay of 1e− 2.

For Influence Functions, K-FAC (Grosse & Martens, 2016) is used to compute the inverse Hes-
sian–vector product for each layer, and the resulting vectors are concatenated to form the final
representation. For computational efficiency, Hessian statistics are estimated using 1024 samples
rather than the entire dataset.

B.3 IMPLEMENTATION DETAILS

We initialize IPROX using 1% of randomly sampled data from Dtrain, allocating 10% to the first stage
and 90% to the second stage.

In the first stage, the number of collected second-moment matrices N ranges from 512 to 2048,
depending on the model size. Rather than averaging over entire sequences to collect hs and δs,
we sample tokens within each sequence, with the sampling budget precomputed to ensure uniform
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coverage over the entire probe set. This design offers two advantages: (i) random or stratified token
sampling better captures local geometry across different positions, difficulty levels, and attention
patterns; and (ii) it mitigates length bias. Since sequence lengths vary widely, per-sequence averaging
tends to compress the internal diversity of long sequences while disproportionately amplifying
or diminishing short sequences. For numerical stability, we add a damping term of 10−3 when
computing the SVD. To improve hardware efficiency, the rank of each layer is further aligned to a
multiple of 128, which facilitates optimal tensor core utilization during GPU computation.

For the second stage, we perform a grid search over the following hyperparameters: learning rates of
1e−5, 5e−5, and 1e−4, and λKL values of 0, 0.1, 0.01, and 0.001. We use a weight decay of 0.01,
align only the decomposed layers while keeping all others (including biases) fixed, and set the batch
size to 4. We use 1− cos(·, ·) as the distance metric in Eq 6.

All experiments are conducted on compute nodes with ARM architecture and equipped with NVIDIA
GH200.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENT RESULTS

Table 8: Additional evaluation results of IPROX on Influence Function. Bold and underline indicate
the best and second-best results within each target group.

Qwen3-4B Qwen2-7B

Task Layer Extraction Influence Scorer IPROX ∆ Layer Extraction Influence Scorer IPROX ∆

MMLU 69.86 69.60 70.15 0.29 70.31 70.28 70.41 0.10
BBH 74.25 74.90 75.18 0.28 59.63 59.17 60.93 1.30
TyDiQA 46.78 46.52 50.63 3.85 44.15 45.72 53.56 7.84
Avg. 63.63 63.67 65.32 1.47 58.03 58.39 61.63 3.08

Additional Results Compared with Baseline Methods We extend the comparison of IPROX
with baselines to two target models, Qwen3-4B and Qwen2-7B, under the TracIn influence. The
results are summarized in Table 8. We observe that the trends in Table 8 are consistent with those
reported in Table 3, confirming that IPROX consistently outperforms the baselines across different
target models and tasks. In particular, the gains on TyDiQA are especially notable, with IPROX
improving by +3.85 on Qwen3-4B and +7.84 on Qwen2-7B compared to the strongest baseline.
These improvements highlight that the influence-preserving design of IPROX is more effective at
capturing task-relevant gradients than heuristic or predictive alternatives. Moreover, the consistency
of the results across both medium-size and large-size models suggests that the advantages of IPROX
generalize beyond a single model family, further reinforcing its effectiveness and scalability for
gradient-based data selection.

Table 9: Evaluation results of IPROX on different data budgets. Bold and underline indicate the best
and second-best results within each target group.

1% Data 20% Data

Task IPROX IPROX

Llama3.2-3B Llama3.2-1B ρ=0.3 ρ = 0.5 ρ = 0.7 Llama3.2-3B Llama3.2-1B ρ = 0.3 ρ = 0.5 ρ = 0.7

MMLU 56.43 56.13 56.52 56.22 56.23 55.77 55.15 56.36 55.18 55.66
BBH 46.85 46.67 48.33 47.31 47.41 47.13 45.83 47.47 46.20 46.11
TyDiQA 34.37 32.39 36.79 35.27 33.32 40.73 36.55 38.20 37.49 36.63
Avg. 45.88 45.06 47.21 46.27 45.65 47.88 45.84 47.34 46.29 46.13

Effect of Data Budgets. Table 9 reports the evaluation results of IPROX under two different data
budgets, 1% and 20%. In both cases, IPROX consistently outperforms the off-the-shelf 1B proxy,
demonstrating its effectiveness regardless of the amount of data used for selection. However, we
also find that the 20% budget leads to noticeable degradation, particularly on TyDiQA. This decline
can be attributed to the inclusion of redundant or noisy samples at higher budgets, which dilutes the
benefits of high-quality data and increases the risk of overfitting. Similar observations have been
reported in prior work (Liu et al., 2024), further underscoring the importance of data selection.
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D PROOF OF PROPOSITION 4.1

Here, we provide a complete proof for Proposition 4.1. We fix a layer ℓ and a perturbation Eℓ to its
weight matrix Wℓ, such that the perturbed weight is Ŵℓ = Wℓ +Eℓ. The influence contribution of
layer ℓ and the layer-local directional effect are defined as:

IWℓ
(z, z′) = ⟨δℓ(z), δℓ(z′)⟩F ⟨hℓ(z), hℓ(z

′)⟩F and eℓ(z) = δℓ(z)
⊤Eℓhℓ(z),

where hℓ−1(z) and δℓ(z) denotes the input and the upstream gradient at the layer ℓ. We begin by
stating the technical assumptions required for our result, which are similar to simplifying assumptions
often adopted in theoretical studies of deep neural networks (Virmaux & Scaman, 2018; Frei et al.,
2023).

(A1) (Backward Smoothness). For almost every sample z, the map u 7→ δℓ(z;u) is differentiable
in a neighborhood of the unperturbed pre-activation uℓ(z) = Wℓh(z). There exists a measur-
able function K(z) ≥ 0 such that the Jacobian Duδℓ(z;u) satisfies ∥Duδℓ(z;u)∥op ≤ K(z)
uniformly for u along the line segment {uℓ(z) + τEℓh(z) : τ ∈ [0, 1]}.

(A2) (Finite Second Moments). The expectations E∥hℓ(z)∥2, E∥δℓ(z)∥2, E∥hℓ(z
′)∥2 and

E∥δℓ(z′)∥2 are all finite for an independent copy z′.
(A3) (Coherence of Local Directions). There exists a constant η ∈ (0, 1] such that for almost

every z, |⟨δℓ(z), Eℓhℓ(z)⟩| ≥ η∥δℓ(z)∥∥Eℓhℓ(z)∥. This implies the cosine of the angle
between δ(z) and Eℓh(z) is bounded away from zero.

(A4) (Bounded Covariate Shift). The distributions of z and z′ are such that there exists a constant
κ ≥ 0 satisfying Ez′ [eℓ(z

′)2] ≤ κEz[eℓ(z)
2].

With these assumptions in place, we can state the following proposition.

Proposition D.1. Under Assumptions (A1)-(A4), for any perturbation Eℓ, there exists a finite,
data-dependent constant Cκ > 0 such that:

Ez,z′
∣∣I

Ŵℓ
(z, z′)− IWℓ

(z, z′)
∣∣ ≤ Cκ

√
Ez[eℓ(z)2]. (9)

Proof. Let Wℓ(τ) = Wℓ + τEℓ for τ ∈ [0, 1]. Define ϕ(τ ; z, z′) ≜ IWℓ(τ)(z, z
′). The input

h(z) does not depend on Wℓ, so the dependence on τ enters only through δℓ(z;uℓ(τ, z)), where
uℓ(τ, z) = Wℓ(τ)h(z). We can represent the change in influence as:

I
Ŵℓ

(z, z′)− IWℓ
(z, z′) =

∫ 1

0

ϕ′(τ ; z, z′) dτ.

Differentiating ϕ with respect to τ gives:

ϕ′(τ ; z, z′) =

〈
d

dτ
δℓ(z;uℓ(τ, z)), δℓ(z

′;uℓ(τ, z
′))

〉
F

⟨hℓ(z), hℓ(z
′)⟩F

+

〈
δℓ(z;uℓ(τ, z)),

d

dτ
δℓ(z

′;uℓ(τ, z
′))

〉
F

⟨hℓ(z), hℓ(z
′)⟩F .

By the chain rule and assumption (A1), we have:

d

dτ
δℓ(z;uℓ(τ, z)) = Duδℓ(z;uℓ(τ, z))[Eℓh(z)],

and its norm is bounded as: ∥∥∥∥ d

dτ
δℓ(z;uℓ(τ, z))

∥∥∥∥ ≤ K(z)∥Eℓhℓ(z)∥.

Using the triangle inequality, Cauchy-Schwarz, and |⟨hℓ(z), hℓ(z
′)⟩| ≤ ∥hℓ(z)∥∥hℓ(z

′)∥, we obtain
a pointwise bound on |ϕ′(τ ; z, z′)|:

|ϕ′(τ ; z, z′)| ≤K(z)∥Eℓhℓ(z)∥∥δℓ(z′;uℓ(τ, z
′))∥∥hℓ(z)∥∥hℓ(z

′)∥
+K(z′)∥Eℓhℓ(z

′)∥∥δℓ(z;uℓ(τ, z))∥∥hℓ(z)∥∥hℓ(z
′)∥.
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Taking the expectation over (z, z′), applying Fubini’s theorem and Jensen’s inequality to the τ -
integral, and using assumption (A1) to replace the τ -dependent norms with their suprema (denoted
∥δℓ(z)∥ for simplicity), we obtain

Ez,z′
∣∣I

Ŵℓ
− IWℓ

∣∣ ≤ Ez

[
K(z)∥Eℓhℓ(z)∥∥hℓ(z)∥

]
· Ez′

[
∥δℓ(z′)∥∥hℓ(z

′)∥
]

+ Ez′
[
K(z′)∥Eℓhℓ(z

′)∥∥hℓ(z
′)∥

]
· Ez

[
∥δℓ(z)∥∥hℓ(z)∥

]
.

By the independence of z and z′ and another application of Cauchy–Schwarz, we introduce the finite
constants

Mtr := Ez

[
∥δℓ(z)∥∥hℓ(z)∥

]
, Mval := Ez′

[
∥δℓ(z′)∥∥hℓ(z

′)∥
]
,

which are bounded by Assumption (A2). Hence,

Ez,z′
∣∣I

Ŵℓ
− IWℓ

∣∣ ≤ Mval Ez

[
K(z)∥hℓ(z)∥∥Eℓhℓ(z)∥

]
+ Mtr Ez′

[
K(z′)∥hℓ(z

′)∥∥Eℓhℓ(z
′)∥

]
.

(10)

Next, we use the coherence assumption (A3) to relate ∥Eℓhℓ(z)∥ to the scalar error eℓ(z) =
⟨δ(z), Eℓhℓ(z)⟩:

∥Eℓhℓ(z)∥ ≤ 1

η

|eℓ(z)|
∥δℓ(z)∥

, for a.e. z.

Substituting this into equation 10 and applying Cauchy–Schwarz once more yields

Ez,z′
∣∣I

Ŵℓ
− IWℓ

∣∣ ≤ C
√

Ez

[
eℓ(z)2

]
+ C ′

√
Ez′

[
eℓ(z′)2

]
,

where the finite constants C and C ′ are given by

C ≜
Mval

η

√
Ez

[
K(z)2∥hℓ(z)∥2

∥δℓ(z)∥2

]
, C ′ ≜

Mtr

η

√
Ez′

[
K(z′)2∥hℓ(z′)∥2

∥δℓ(z′)∥2

]
.

Now, we invoke the bounded covariate shift from Assumption (A4), which implies
√
Ez′ [eℓ(z′)2] ≤√

κ
√

Ez[eℓ(z)2]. This allows us to bound the entire expression in terms of the expectation over z:

Ez,z′
∣∣I

Ŵℓ
− IWℓ

∣∣ ≤ C
√

Ez[eℓ(z)2] + C ′√κ
√

Ez[eℓ(z)2]

=
(
C + C ′√κ

)√
Ez[eℓ(z)2].

By defining Cκ ≜ C + C ′√κ, which is a finite, data-dependent constant, we arrive at the desired
result:

Ez,z′
∣∣I

Ŵℓ
(z, z′)− IWℓ

(z, z′)
∣∣ ≤ Cκ

√
Ez[eℓ(z)2].
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E INFLUENCE-PRESERVING LOW-RANK APPROXIMATION FOR INFLUENCE
FUNCTIONS

We now extend the analysis from the simplified TracIn score to Influence Functions (IF). IFs refine
the influence measure by incorporating the inverse Hessian of the loss, which accounts for the local
curvature of the optimization landscape. The influence of a training sample z on a validation smaple
z′ is defined as:

IIF(z, z
′) ≜ −∇θL(z

′; θ)⊤H(θ)−1∇θL(z; θ).

To analyze the contribution of a single weight matrix Wℓ at layer ℓ, we consider its vectorized form
wℓ ≜ vec(Wℓ). The gradient of the loss with respect to these vectorized parameters is the outer
product of the upstream gradients δℓ(z) and the inputs hℓ(z). Using the identity vec(ab⊤) = b⊗ a,
this gradient is:

∇wℓ
L(z; θ) = vec

(
δℓ(z)hℓ(z)

⊤) = hℓ(z)⊗ δℓ(z).

Following previous works (Martens & Grosse, 2015; Grosse et al., 2023), we make key simplifying
assumptions about the Hessian’s structure. We assume the full Hessian matrix is block-diagonal, with
each block corresponding to the parameters of a single layer, and that within each layer ℓ, the inputs
hℓ(z) are independent of the upstream gradients δℓ(z).

These assumptions allow us to define a tractable surrogate Hessian H̃ℓ for layer ℓ as the expected
outer product of its vectorized gradients:

H̃ℓ ≜ Ez

[
(∇wℓ

L(z))(∇wℓ
L(z))⊤

]
= Ez

[
(hℓ(z)⊗ δℓ(z))(hℓ(z)⊗ δℓ(z))

⊤]
= Ez

[
hℓ(z)hℓ(z)

⊤ ⊗ δℓ(z)δℓ(z)
⊤]

= Ez[hℓ(z)hℓ(z)
⊤]⊗ Ez[δℓ(z)δℓ(z)

⊤] ≜ Ch,ℓ ⊗ Cδ,ℓ.

Here, Ch,ℓ and Cδ,ℓ are the second moment matrices of the activations and upstream gradients for
layer ℓ, respectively. Leveraging the property that (A⊗B)−1 = A−1 ⊗B−1, the inverse is given by
H̃−1

ℓ = C−1
h,ℓ ⊗ C−1

δ,ℓ . The contribution of layer ℓ to the influence is then defined as:

IIF,Wℓ
(z, z′) ≜ −(∇wℓ

L(z′))⊤H̃−1
ℓ (∇wℓ

L(z))

= − (hℓ(z
′)⊗ δℓ(z

′))
⊤
(
C−1

h,ℓ ⊗ C−1
δ,ℓ

)
(hℓ(z)⊗ δℓ(z))

= −
(
hℓ(z

′)⊤C−1
h,ℓhℓ(z)

)
·
(
δℓ(z

′)⊤C−1
δ,ℓ δℓ(z)

)
= −⟨h̃ℓ(z

′), h̃ℓ(z)⟩F ⟨δ̃ℓ(z′), δ̃ℓ(z)⟩F ,

where h̃ℓ = C
−1/2
h,ℓ hℓ and δ̃ℓ = C

−1/2
δ,ℓ δℓ are reweighting matrices.

An Objective for Preserving Influence Functions To preserve the influences under low-rank
approximation, we penalize the compression error using a norm aligned with the reweighting induced
by Ch,ℓ and Cδ,ℓ. We assume that Ch,ℓ and Cδ,ℓ are symmetric positive definite. The objective is to
find an error matrix Eℓ = Wℓ − Ŵℓ that minimizes the following term:

min
Ŵℓ s.t. rank(Ŵℓ)≤r

∥∥C−1/2
δ,ℓ (Wℓ − Ŵℓ)C

−1/2
h,ℓ

∥∥2
F
. (11)

We now demonstrate that minimizing this objective effectively controls the expected change in the
influence score. Our theoretical guarantees rely on the following assumptions.

(B1) (Finite moments). Ez[∥δ̃ℓ(z)∥ ∥h̃ℓ(z)∥] and Ez′ [∥δ̃ℓ(z′)∥ ∥h̃ℓ(z
′)∥] are finite.

(B2) (Backward smoothness). Let δ̂ℓ denote the upstream gradient under Ŵℓ. There exists
a measurable function K(·) ≥ 0 such that ∥∆δℓ(z)∥ ≤ K(z) ∥Eℓ∥F , where ∆δℓ(z) ≜
δ̂ℓ(z)− δℓ(z), and Ez[K(z)∥h̃ℓ(z)∥], Ez′ [K(z′)∥h̃ℓ(z

′)∥] are finite.
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(B3) (Quadratic remainder). There exists ρ > 0 such that for all Ŵℓ with∥∥C−1/2
δ,ℓ (Wℓ − Ŵℓ)C

−1/2
h,ℓ

∥∥
F

≤ ρ,

the Taylor remainder R(z, z′) in the perturbation of IIF,Wℓ
satisfies

Ez,z′ [ |R(z, z′)| ] ≤ crem
∥∥C−1/2

δ,ℓ EℓC
−1/2
h,ℓ

∥∥2
F
.

Proposition E.1. Let Wℓ be perturbed to Ŵℓ = Wℓ − Eℓ. Under (B1)–(B3), there exists a
finite, data-dependent constant Cκ > 0 such that

Ez,z′
∣∣IIF,Ŵℓ

(z, z′)− IIF,Wℓ
(z, z′)

∣∣ ≤ Cκ

∥∥C−1/2
δ,ℓ EℓC

−1/2
h,ℓ

∥∥
F
. (12)

Proof. Recall that the layer-ℓ influence is given by

IIF,Wℓ
(z, z′) = −⟨h̃ℓ(z

′), h̃ℓ(z)⟩F ⟨δ̃ℓ(z′), δ̃ℓ(z)⟩F .

Let ∆δ̃ℓ(z) ≜ C
−1/2
δ,ℓ

(
δ̂ℓ(z)− δℓ(z)

)
denote the change in the reweighted upstream gradient. The

total change in influence consists of a first-order Taylor expansion term, ∆I
(1)
IF (z, z′), and a remainder

term R(z, z′). The first-order term is:

∆I
(1)
IF (z, z′) = −⟨∆δ̃ℓ(z

′), δ̃ℓ(z)⟩F ⟨h̃ℓ(z
′), h̃ℓ(z)⟩F − ⟨δ̃ℓ(z′),∆δ̃ℓ(z)⟩F ⟨h̃ℓ(z

′), h̃ℓ(z)⟩F .
By taking the expectation over z, z′, applying the triangle and Cauchy–Schwarz inequalities, and
using the independence of z and z′, we can bound the expected first-order change:

Ez,z′
[
|∆I

(1)
IF |

]
≤ Mtr Ez′

[
∥∆δ̃ℓ(z

′)∥ ∥h̃ℓ(z
′)∥

]
+Mval Ez

[
∥∆δ̃ℓ(z)∥ ∥h̃ℓ(z)∥

]
,

where Mtr = Ez[∥δ̃ℓ(z)∥ ∥h̃ℓ(z)∥] and Mval = Ez′ [∥δ̃ℓ(z′)∥ ∥h̃ℓ(z
′)∥] are finite by Assumption

(B1). Our main task is to bound the expectation Ez

[
∥∆δ̃ℓ(z)∥ ∥h̃ℓ(z)∥

]
in terms of the objective

function. Let Ẽℓ ≜ C
−1/2
δ,ℓ EℓC

−1/2
h,ℓ . We first establish a pointwise bound on ∥∆δ̃ℓ(z)∥ using

Assumption (B2).

∥∆δ̃ℓ(z)∥ = ∥C−1/2
δ,ℓ ∆δℓ(z)∥ ≤ ∥C−1/2

δ,ℓ ∥2∥∆δℓ(z)∥ ≤ K(z)∥C−1/2
δ,ℓ ∥2∥Eℓ∥F

Next, we relate ∥Eℓ∥F to ∥Ẽℓ∥F . From the definition of Ẽℓ, we have Eℓ = C
1/2
δ,ℓ ẼℓC

1/2
h,ℓ .

∥Eℓ∥F = ∥C1/2
δ,ℓ ẼℓC

1/2
h,ℓ ∥F ≤ ∥C1/2

δ,ℓ ∥2∥Ẽℓ∥F ∥C1/2
h,ℓ ∥2

Recall that Ch,ℓ and Cδ,ℓ are all symmetric and positive definite, combining these inequalities yields
a pointwise bound on ∥∆δ̃ℓ(z)∥ in terms of ∥Ẽℓ∥F :

∥∆δ̃ℓ(z)∥ ≤ K(z)∥C−1/2
δ,ℓ ∥2

(
∥C1/2

δ,ℓ ∥2∥Ẽℓ∥F ∥C1/2
h,ℓ ∥2

)
= K(z)

(
∥C−1/2

δ,ℓ ∥2∥C1/2
δ,ℓ ∥2∥C1/2

h,ℓ ∥2
)
∥Ẽℓ∥F

= K(z)
√

cond(Cδ,ℓ)
√
λmax(Ch,ℓ) ∥Ẽℓ∥F ,

where cond(·) and λmax(·) denote the condition number and maximum eigenvalue, respectively. Let
us define the data-dependent scaling constant S ≜

√
cond(Cδ,ℓ)λmax(Ch,ℓ). We now use this result

to bound the expectation term:

Ez

[
∥∆δ̃ℓ(z)∥ ∥h̃ℓ(z)∥

]
≤ Ez

[
K(z)S∥Ẽℓ∥F ∥h̃ℓ(z)∥

]
= S · Ez[K(z)∥h̃ℓ(z)∥] · ∥Ẽℓ∥F .

By Assumption (B2), the expectations κtr ≜ Ez[K(z)∥h̃ℓ(z)∥] and κval ≜ Ez′ [K(z′)∥h̃ℓ(z
′)∥] are

finite. The bound on the expected first-order change becomes:

Ez,z′
[
|∆I

(1)
IF |

]
≤ S (Mtrκval +Mvalκtr) ∥Ẽℓ∥F .
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The total expected change is bounded by the sum of the first-order term and the remainder from
Assumption (B3):

Ez,z′
∣∣IIF,Ŵℓ

(z, z′)− IIF,Wℓ
(z, z′)

∣∣ ≤ Ez,z′
[
|∆I

(1)
IF |

]
+ Ez,z′ [|R|].

Using Assumption (B3), for perturbations satisfying ∥Ẽℓ∥F ≤ ρ, we have Ez,z′ [|R|] ≤ crem∥Ẽℓ∥2F ≤
cremρ∥Ẽℓ∥F . Combining the terms gives the final result:

Ez,z′
∣∣∆IIF,Wℓ

∣∣ ≤ (S(Mtrκval +Mvalκtr) + cremρ) ∥Ẽℓ∥F .

This proves the proposition with the constant Cκ ≜ S(Mtrκval +Mvalκtr) + cremρ, which is finite
and depends on data properties but not on the specific perturbation Eℓ.
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F EFFICIENT IMPLEMENTATION VIA PROBE-BASED APPROXIMATION AND
CORE SVD

The theoretical solution presented in the main text requires computing, inverting, and taking the
square root of the second moment matrices Ch,ℓ ∈ Rnℓ×nℓ and Cδ,ℓ ∈ Rmℓ×mℓ . For modern neural
networks, the dimensions nℓ and mℓ can be in the thousands for typical transformer layers, and can
even reach the millions in domains like high-resolution computer vision or for layers tied to large
vocabularies. This makes the direct formation and manipulation of these matrices computationally
infeasible due to both memory and time constraints. To overcome this, we employ a memory-efficient
approximation scheme that avoids forming these large matrices entirely.

The core strategy is to approximate the true second moment matrices using statistics gathered
from a small, representative batch of N data samples, which we refer to as a probe dataset. We
perform a single forward and backward pass through the model for these N samples to collect the
corresponding inputs and upstream gradients for each layer ℓ. These are stacked column-wise to form
two tall-and-thin probe matrices:

Hℓ = [hℓ−1(z1), . . . , hℓ−1(zN )] ∈ Rnℓ×N and ∆ℓ = [δℓ(z1), . . . , δℓ(zN )] ∈ Rmℓ×N .

With these probe matrices, we can approximate the full second moment matrices as Ch,ℓ ≈ 1
NHℓH

⊤
ℓ

and Cδ,ℓ ≈ 1
N∆ℓ∆

⊤
ℓ . Instead of computing these prohibitively large second moment matrices, the

key insight is to directly compute the "skinny" Singular Value Decompositions of the much smaller
probe matrices:

Hℓ = UH,ℓΣH,ℓV
⊤
H,ℓ and ∆ℓ = U∆,ℓΣ∆,ℓV

⊤
∆,ℓ,

where UH,ℓ ∈ Rnℓ×N , ΣH,ℓ ∈ RN×N , VH,ℓ ∈ RN×N , and similarly for the decomposition of
∆ℓ. This decomposition is the key to bypassing the expensive computations, as we can express
the regularized square roots of the approximate second moment matrices without ever forming
the full matrices. For example, for Ch,ℓ, we have (Ch,ℓ + λI)1/2 ≈ ( 1

NHℓH
⊤
ℓ + λI)1/2 =

( 1
NUH,ℓΣ

2
H,ℓU

⊤
H,ℓ + λI)1/2 = UH,ℓ(

1
NΣ2

H,ℓ + λI)1/2U⊤
H,ℓ. We then define the small, diagonal

matrices that hold the regularized singular values:

DH,ℓ ≜

(
1

N
Σ2

H,ℓ + λI

)1/2

and D∆,ℓ ≜

(
1

N
Σ2

∆,ℓ + λI

)1/2

. (13)

The required reweighting transformations are thus efficiently represented as C1/2
h,ℓ,λ ≈ UH,ℓDH,ℓU

⊤
H,ℓ

and C
1/2
δ,ℓ,λ ≈ U∆,ℓD∆,ℓU

⊤
∆,ℓ. Substituting these efficient representations into the definition of the

data-aware matrix Sℓ = C
1/2
δ,ℓ WℓC

1/2
h,ℓ reveals the final computational trick:

Sℓ ≈ (U∆,ℓD∆,ℓU
⊤
∆,ℓ)Wℓ(UH,ℓDH,ℓU

⊤
H,ℓ)

= U∆,ℓ

(
D∆,ℓ(U

⊤
∆,ℓWℓUH,ℓ)DH,ℓ

)︸ ︷︷ ︸
≜Mcore,ℓ

U⊤
H,ℓ.

This shows that the SVD of the very large matrix Sℓ is directly related to the SVD of the small core
matrix Mcore,ℓ, which has dimensions at most N × N . We compute the SVD of this core matrix,
Mcore,ℓ = PℓΣℓQ

⊤
ℓ , and truncate it to the desired rank rℓ by selecting the top rℓ columns of Pℓ and

Qℓ (denoted Pℓ,r, Qℓ,r) and the top-left rℓ × rℓ block of Σℓ (denoted Σℓ,r). The optimal low-rank
approximation Ŵ ⋆

ℓ = A⋆
ℓB

⋆
ℓ is constructed by transforming the truncated SVD of the core matrix

back into the original weight space. This yields numerically stable, closed-form expressions for the
low-rank matrices A⋆

ℓ and B⋆
ℓ without ever forming the full Ŵ ⋆

ℓ matrix:

A⋆
ℓ = U∆,ℓD

−1
∆,ℓPℓ,rΣ

1/2
ℓ,r and B⋆

ℓ = Σ
1/2
ℓ,r Q

⊤
ℓ,rD

−1
H,ℓU

⊤
H,ℓ. (14)

All computationally intensive steps are now performed on matrices whose dimensions are related to
the small probe set size N , not the target model dimensions nℓ and mℓ. This entire procedure is highly
efficient, assuming N ≪ min(nℓ,mℓ) and rℓ ≤ N . For each layer, the complexity is composed of
a single forward and backward pass for N samples, two skinny SVDs of the probe matrices with
complexity O(nℓN

2) and O(mℓN
2), the formation of the core matrix which costs O(mℓnℓN), an
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SVD of the small core matrix with complexity O(N3), and the final factor construction which costs
O(mℓNrℓ) for A⋆

ℓ and O(nℓNrℓ) for B⋆
ℓ . The dominant costs are the core matrix formation and the

skinny SVDs, which is a dramatic reduction from the O(min(mℓ, nℓ)
3) complexity required for the

SVD of the full second moment matrices.
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