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Abstract
Contrastive learning is a powerful paradigm for
representation learning with wide applications
in vision and NLP, but how to extend its suc-
cess to high-dimensional tensors remains a chal-
lenge. This is because tensor data often exhibit
high-order mode-interactions that are hard to pro-
file and with negative samples growing combi-
natorially fast; besides, many real-world tensors
have ordinal entries that necessitate more deli-
cate comparative levels. We propose High-Order
Contrastive Tensor Completion (HOCTC) to ex-
tend contrastive learning to sparse ordinal tensor
regression. HOCTC employs a novel attention-
based strategy with query-expansion to capture
high-order mode interactions even in case of very
limited tokens, which transcends beyond second-
order learning scenarios. Besides, it extends two-
level comparisons (positive-vs-negative) to fine-
grained contrast-levels using ordinal tensor entries
as a natural guidance. Efficient sampling scheme
is proposed to enforce such delicate compara-
tive structures, generating comprehensive self-
supervised signals for high-order representation
learning. Experiments show that HOCTC has
promising results in sparse tensor completion in
traffic/recommender applications.

1. Introduction
Self-supervised learning techniques, in particular contrastive
learning, have emerged as a powerful paradigm for unsu-
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pervised representation learning with remarkable success
in computer vision (He et al., 2020; Chen et al., 2020a),
speech recognition (Kharitonov et al., 2021) and natural
language processing (Gao et al., 2021; Chuang et al., 2022).
The main idea is to push similar instances together in the
feature space while pushing apart those dissimilar or irrele-
vant ones. In many domains, such positive/negative sample
relation can be specified conveniently through simple rules,
which allows representation learning to be performed in an
unsupervised manner for large datasets.

There are a number of notable methods for contrastive learn-
ing. InstDisc (Wu et al., 2018) pioneers the use of instance-
based discrimination as a pretext task. CMC (Tian et al.,
2020) further uses multiple views of an image as positive
samples, and those from distinct images as the negative
samples, which enhances the discrimination. MoCo (He
et al., 2020) increases negative samples through momentum
contrast and a query encoder. PIRL and SimCLR (Misra
& Maaten, 2020; Chen et al., 2020a) use more sophisti-
cated strategies for selecting positive/negative samples, like
jigsaw augmentation or random data augmentation (crop-
ping, resizing, and re-coloring). In BYOL (Grill et al.,
2020), a dual-network is used to alleviate the reliance on
negative pairs. Besides, contrastive learning has also been
applied successfully in natural language processing (Gao
et al., 2021; Wang et al., 2021a), recommendation systems
(Zhou et al., 2020; Liu et al., 2021; Xie et al., 2022; Chen
et al., 2022), and graph learning (Veličković et al., 2019;
Zhu et al., 2020; 2021; Hassani & Khasahmadi, 2020).

Current contrastive learning methods mainly exploit second-
order relation, i.e., the proximity between a pair of entities
like image patches (Chen et al., 2020a), time series (Van den
Oord et al., 2018), or two variations of a sentence (Gao et al.,
2021). In many applications, we have high-order (multi-
way) interacting relations encoded by tensors. For example,
in traffic monitoring, a three-mode sensor-road-time tensor
describes the traffic flow across various sensors on different
roads over time. In recommendation, a user-item-tag tensor
describes the tag that a user assigns to an item. Modelling
such high-order interactions among the modes of a tensor
for tensor decomposition or tensor completion is useful in
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image and vision (Wu et al., 2009; Cao et al., 2016; Tao
et al., 2017; Brandoni & Simoncini, 2020), social networks
(Rettinger et al., 2012; Fernandes et al., 2021), and recom-
mender systems (Taneja & Arora, 2018; Chen & Li, 2019).

The abundant availability and substantial volume of ten-
sor data represent a valuable resource for self-supervised
learning algorithms, enabling unsupervised representation
learning with minimal human effort. This raises a natural
question: Can the success of contrastive learning be ex-
tended to the task of tensor completion? This extension
remains challenging for the following reasons.

First, capturing high-order nonlinear interactions among the
modes of a tensor is challenging. Although advances in
self-attention (Vaswani et al., 2017; Song et al., 2019a) have
proven useful in capturing complex relation among a set of
entities, their utility may be constrained in tensors. In this
context, the number of queries/tokens equals the number of
modes of a tensor, typically a modest number like 3 or 4.
The limited queries thus hinder generation of informative
context vectors for predicting missing tensor entries.

Second, handling tensors with ordinal entries is more chal-
lenging than binary values. Current contrastive learning
primarily focuses on binary contrast levels (positive vs. neg-
ative). However, many tensor datasets describe relation-
ships at a more detailed granularity. For instance, Amazon
Beauty tensor signifies user-product-rating relation on a
scale of 1 to 5, highlighting the ordinal nature of user pref-
erences. The Pems tensor represents traffic-time-sensor
relation with scores ranging from 3 to 83, capturing fluctu-
ating traffic patterns. In these cases, enforcing fine-grained
comparative levels becomes crucial to capture the subtle dif-
ferences in the data, which requires thorough investigations.

Third, effective sampling for high-order, fine-grained con-
trastive relations in tensor data is challenging. Current con-
trastive learning algorithms mainly consider pairwise rela-
tion or its block-version (Arora et al., 2019) that are both
second-order proximities. In case of higher-order proxim-
ity/interaction, the number of negative samples may grow
exponentially. Besides, fine-grained contrastive levels in
ordinal tensor data requires identifying “weakly positive”
samples that are more difficult to find than negative samples
due to the sparsity of tensor data (see Sec 3 for details).

To address these, we propose High-Order Contrastive Tensor
Completion (HOCTC), an innovative contrastive learning
network for sparse oridinal tensor completion. Figure 1
shows its three major deviations from conventional CL-
framework. (1) We employ high-order interaction modelling
beyond second-order contrastive leaning. In particular, a
self-attention scheme with expanded queries (SAQE) is de-
signed to model the nonlinear interactions among the modes
of a tensor even in case of a limited number of tokens. (2)

Traditional Contrastive 
Learning Scenario

High-Order Contrastive learning 
for Tensor Completion (HOCTC)

Second-order:

exp 𝑓 𝑧𝑖 , 𝑧𝑗 /𝜏

Higher-order:

exp 𝑓 𝑢𝑖 , 𝑣𝑗 , 𝑤𝑘 /𝜏

Level of 
Contrast

Binary:
positive / negative

Fine-grained:
positive / weakly-positive / negative

Sampling
Scheme

𝑓(∙,∙): normalized inner product 𝑓(∙,∙,∙): self-attention with query expansion (SAQE)

Order of 
Relation

Random perturbation

for a pair of samples for a triple of modes/factors (or more)

Multi-level contrastive sampling 

Figure 1. Difference between traditional contrastive learning and
the proposed high-order contrastive learning for tensor completion.

We extend binary contrast levels (positive vs. negative) to
more delicate comparisons especially for ordinal tensor data.
(3) A multi-level contrastive sampling scheme is devised to
pick both “weakly-positive” samples and negative samples
efficiently to enrich fine-grained comparative structures.

The design of HOCTC is shown in Fig. 2 and detailed in
Sec 3. Key innovations/advantages are highlighted below:

• Contrastive High-order Interaction Modelling. We
integrate contrastive learning with high-order interac-
tion modelling in the task of tensor completion, and de-
vised innovative self-attention scheme with expanded
queries to model tensor-mode interactions.

• Fine-grained Contrastive Levels. We extend contras-
tive learning from binary comparison (pos/neg) to fine-
grained contrast levels (pos/weak-pos/neg),capturing
rich, subtledistinctions to improve contrastive learning.

• Accurate Completion of Sparse Ordinal Tensor. We
apply HOCTC on tensor data in spatiotemporal and
recommendation tasks with promising results obtained.

In the following, Section 2 reviews related work; Sec-
tion 3 introduces High-Order Contrastive Tensor Comple-
tion (HOCTC); experimental results are reported in Sec-
tion 4, and Section 5 makes conclusions. Our code is
released at https://github.com/wuntunfisher/
HOCTC.

2. Related Work
2.1. Tensor Decomposition and Completion

Tensor decomposition aims at decomposing a tensor into
product forms, and is widely used in knowledge graph
(Trouillon et al., 2017; Balažević et al., 2019), recommenda-
tion (Taneja & Arora, 2018; Chen & Li, 2019), and anomaly
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detection (Fanaee-T & Gama, 2016; Xie et al., 2017). Tra-
ditional decompositions like CP (Harshman et al., 1970)
and Tucker (Tucker, 1966) are both linear. Later, various
nonlinear methods are proposed to handle nonlinear high-
order relations, such as NLTF (Fang et al., 2015) that uses
Gaussian distributions to model the interactions between
users, items, and tags, and InfTucker (Xu et al., 2011) that
introduces latent Gaussian processes to model the intricate
interactions in an infinite-dimensional feature space.

Recently, deep neural networks have drawn considerable
interest in tensor decomposition. Many methods propose
to replace the multi-linear multiplication with multi-layer
perceptrons (MLPs) to fully exploit nonlinear activation
layers in the neural network to better capture high-order
interactions in tensor data (Dziugaite & Roy, 2015; Liu et al.,
2018; Wu et al., 2019). For example, (Chen & Li, 2020)
combines the MLP structure with traditional tensor algebra
(CP-product) to obtain powerful nonlinear versions of tensor
decomposition. CoSTCo (Liu et al., 2019) leverages the
expressive power of CNN to model the complex interactions
inside tensors and its parameter sharing scheme to preserve
the desired low-rank structure, with promising results on a
number of real world sparse tensors.

2.2. Contrastive Learning

Contrastive learning algorithms typically compute the loss
function in a pairwise form, as

L = −E
z,z+,z−

[
− log

(
e⟨z,z

+⟩/τ

e⟨z,z+⟩/τ +
∑

z−∈Neg e
⟨z,z−⟩/τ

)]
.

Here (z, z+) is a positive pair, and (z, z−)’s are negative
pairs where z−’s are often random points that are dissimilar
to z. In sequence recommendation, S3-Rec (Zhou et al.,
2020), CoSeRec (Liu et al., 2021) and CL4SRec (Xie et al.,
2022) use cropping, masking, reordering or substitution to
generate augmentations of the same user. In ICL (Chen
et al., 2022), behaviour of a customer is aligned to a proto-
type by contrastive clustering, which is also applied in other
domains (Li et al., 2021; Zhong et al., 2021; Zhou et al.,
2022; Deng et al., 2023; Li et al., 2023a). In graph mining,
GRACE (Zhu et al., 2020) and GCA (Zhu et al., 2021) gener-
ate augmented views of the same graph by feature masking
and node/edge dropout. DGI (Veličković et al., 2019) max-
imizes mutual information between node-level and graph-
level representations. MVGRL (Hassani & Khasahmadi,
2020) uses graph diffusion to create positive augmentations.

A series of algorithms exist in the literature related to multi-
level/granularity contrastive learning. However, instead of
referring to the varying strengths of relationship as quanti-
fied by ordinal tensors, the levels in those work represent
very different concepts, like different attention-layers or
representation stages in NoCL (Chen & Zhang, 2021) and

MCVT (Mo et al., 2023); local and global representation
of a graph in HGCL (Ju et al., 2023) or body movement in
MAC-learning (Shu et al., 2022); different semantic units
like characters and words in MCL (Zhao et al., 2023); differ-
ent modalities (detailed visual features and holistic textual
descriptions) in TGFR (Hasan et al., 2024), or instance-
level versus class-level representations in MultiSCL (Hu
et al., 2023). Few relates to tensor completion tasks either.

In summary, while there has been notable progress in both
contrastive learning and tensor decomposition individually,
their integration still requires thorough exploration. In
(Yang et al., 2022), CP-decomposition is enhanced by a self-
supervised loss and applied successfully in image-tensor
classification. The proximity relation is defined on pairs
of image-tensors and is a second-order scenario. In (Luo
et al., 2022), contrastive learning is used to notably improve
knowledge graph completion. It is a binary (0/1) tensor and
the head-Relation-tail coupling is modelled as a quadratic
form h⊤

i Rjtk instead of symmetric interactions among the
three modes. In this paper, we are interested in modelling
general-form and high-order interactions among the modes
for sparse and ordinal tensors for their completion.

3. High-Order Contastive Tensor Completion
Without loss of generality, we use a 3rd-order tensor T ∈
RI×J×K for discussion. It has three dimensions (or modes).
Along each dimension, the index ranges from 1 to their
capital version, i.e., i = 1, 2, ..., I , j = 1, 2, ..., J , and k =
1, 2, ...,K. Element (i, j, k) of the tensor is denoted by
Tijk ∈ R. The goal of tensor completion is to fill the
missing entries of the tensor based on its observed entries.

We use ui,vj ,wk ∈ R1×d to denote d-dimensional embed-
dings of the three indices corresponding to a triple (i, j, k).
They are deemed as three tokens, concatenated in a matrix

Xijk =

 ui

vj

wk

 , Xijk ∈ R3×d. (1)

HOCTC network is shown in Fig. 2. First, the three tokens
in Xijk (1) will go through a novel attention-based mod-
ule called Self-Attention with Query-Expansion (SAQE)
to obtain an enhanced representation of the triple (i, j, k).
Compared with standard self-attention, SAQE can generate
a larger number of context vectors even in case of only a
few tokens, which are denoted by

H⊤
ijk = [h⊤

1 ,h
⊤
2 ,h

⊤
3 , ...,h

⊤
L+3]. (2)

Here, with an abuse of notation, the first three rows in Hijk

are context vectors from ui,vj ,wk, while the remaining
rows are based on the L expanded queries learned adaptively
through SAQE, see (6) and (7) in Sec 3.1 for details.
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Figure 2. The proposed HOCTC model using a 3-way tensor for illustration. Tensor modes (ui,vj ,wk) are first fed into SAQE-module
(self-attention with query-expansion) to obtain enhanced triple representation Hijk. Then it goes through two branches: (1) predictive
branch to compute tensor completion error L1, and (2) contrastive branch to compute contrastive loss L2 to enforce fine-grained
comparisons among different levels of tensor-mode interactions quantified by ordinal tensor entries. Two losses are added for training.

The triple representation Hijk is in a highly adaptable fea-
ture space to capture high-order tensor-mode interactions.
Based on it, two subsequent tasks of tensor completion and
contrastive learning can be coordinated together as follows:

(1) The predictive branch, in which Hijk is used to obtain
estimated tensor entries T̂ijk’s for the task of tensor comple-
tion through a standard self-attention and MLP layer,

T̂ijk = MLP1 (Self-attention1(Hijk)) , (3)

which is used to compute tensor completion error (10).

(2) The contrastive branch, in which Hijk is used to obtain
an estimate of tensor entries T̃ijk’s for the task of contrastive
representation learning, as

T̃ijk = MLP2 (Self-attention2(Hijk)) , (4)

which is used to compute the contrastive learning loss in
(9). These two branches are integrated by summing their
respective loss functions, as in (11).

3.1. Self-Attention with Expanded Queries for
Modelling Tensor-Mode Interactions

Self-attention (Vaswani et al., 2017) is a powerful tool to
capture complex nonlinear relations and is applied success-
fully in feature interactions in tabular data in AutoInt (Song

et al., 2019b). However, an inherent difficulty exists in
modelling the high-order coupling among the modes of a
tensor. For example, in three-way tensors, the prediction
of a tensor entry Tijk involves only N = 3 modes/tokens
and hence with only three queries. The limited number of
queries, which equals the order of the tensor, may seriously
limit the power of self-attention in representing the triple
(ui,vj ,wk) and predicting tensor entry Tijk.

To push the limit of self-attention in case of very few queries,
we propose Self-Attention with Query Expansion (SAQE), a
novel approach to increase the number of queries to enhance
the learned representation. Suppose we have three tokens
ui,vj ,wk associate with Tijk, which will generate three
queries, keys and values as follows

Qijk = XijkW
q,Kijk = XijkW

k,Vijk = XijkW
v, (5)

where Wq,Wk,Wv ∈ Rd×d′
are transform matrices for

the query, key and values. Now we aim at learning an extra
set of L queries to extend the query-set. To achieve this, we
use the three raw queries in Qijk as dictionary, and use their
linear combinations to generate extra queries, as

Q̃ijk = M ·Qijk. (6)

Here M ∈ RL×3 has L rows, each specifying one linear
combination of the three raw queries in Qijk, and Q̃ijk

is the extended query matrix. The matrix M is subject to
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row-wise ℓ2-normalization. It can either be learned in a
purely end-to-end fashion, or through offline approaches
(see Appendix A for more details). Then we concatenate
raw queries and extended ones together as

QE
ijk =

[
Qijk

Q̃ijk

]
. (7)

Here QE
ijk ∈ R(L+3)×d′

contains altogether L + 3 query
vectors, which is much larger than the original three queries
in Qijk (5), and is expected to encode the high-order mode
interactions within the triple more effectively. As illustrated
in Figure 2, these expanded queries serve as densely pop-
ulated “sensors” to profile the attention landscape with a
“higher resolution”. Ablation studies in Sec 4.2 show that
by extending the 3 raw queries to 30-40, the error of tensor
completion drops significantly by up to 42.8% relatively.

We will use the “sensors” in QE
ijk (7) as new queries, and

the old keys in Kijk and old values in Vijk (5), and perform
a standard cross-attention as follows:

Hijk= Att
(
QE

ijk,Kijk,Vijk

)
= softmax

(
QE

ijkK
⊤
ijk√

d′

)
Vijk

Here Hijk ∈ R(L+3)×d can then be deemed as an enriched
representation for the triple (i, j, k). We will employ mul-
tiple attention heads to further enhance the representation
power of the learned triple representations, as

Hfull
ijk = concat

[
Hhead-1

ijk ,Hhead-2
ijk , . . . ,Hhead-h

ijk

]
,

Hfull
ijk = relu

(
Hfull

ijk

)
. (8)

In SAQE, only a single attention layer is used, which elim-
inates concerns that the extended queries would generate
noise in the 2rd (or deeper) layer (more detail in Appendix).

3.2. Fine-Grained Contrastive Relation for Ordinal
Tensor Data

The performance of contrastive learning heavily relies on the
design of its comparative structures. Current methods focus
on two-level comparisons, i.e., the contrast between positive
relations with negative relations. However, many real-world
tensor are endowed with inherent ordinal relations and thus
require fine-grained comparative structures.

Consider for example the Amazon Movie&TV tensor with
triples (user i, item j, time k), each associated with a rating
from 0 to 5 (0 for unrated) to quantify the 3rd-order, user-
item-time coupling. If we only contrast triples of non-zero
rating (1-5) against triples of zero rating to distinguish be-
tween interaction and non-interaction, we may not leverage
the full spectrum of user engagement. Instead, if we contrast
a rating of 5 not just with 0 but also with ratings from 1 to
4, or a rating of 4 with ratings from 1 to 3, we could signifi-
cantly enrich the comparative structure to capture a broader

range of user preferences effectively. We also require that
triples must share the same index for at least one dimension
(or mode) to be contrasted against each other.

Next we propose the criteria for selecting fine-grained con-
trastive triples for a given positive triple (i, j, k).

Definition 3.1 (Fine-grained contrastive triples). Given
a positive triple (i, j, k) with Tijk > 0, then any other
triple (i′, j′, k′) that satisfies the following conditions can
be treated as “contrastive triples” against the positive triple
(i, j, k), which is denoted by C(ijk):

1. Overlapped mode indices, |(i′, j′, k′) ∩ (i, j, k)| ≥ 1.

2. Dominated coupling-strength, i.e., Ti′j′k′ < Tijk.

Criteria-1 states that (i, j, k) and (i′, j′, k′) must share the
same index for at least one mode (i = i′ or j = j′ or k = k′

but not all) to enhance the contextual relevance, or else the
modes of Tijk and Ti′j′k′ will not have any overlap and thus
become unsuited for contrastive learning. Criteria-2 states
that the rating (or coupling) specified by Ti′j′k′ must be
less than that by Tijk, which is crucial for maintaining the
correct optimization direction of the loss function.

As can be seen, the fine-grained contrastive-triples C(ijk) can
be naturally divided into: (1) weakly-positive triples, for
which Ti′j′k′ is non-zero but smaller than Tijk; (2) negative
triples, for which Ti′j′k′ equals zero. We formalize this as,

C(ijk) = Cweak-pos
(ijk)

⋃
Cneg
(ijk)

Cweak-pos
(ijk) =

{
(i′, j′, k′)

∣∣∣∣ 0 < Ti′j′k′ < Tijk
(i′, j′, k′) ∩ (i, j, k)| ≥ 1

}
Cneg
(ijk) =

{
(i′, j′, k′)

∣∣∣∣ Ti′j′k′ = 0
|(i′, j′, k′) ∩ (i, j, k)| ≥ 1

}
Division of C(ijk) into weakly-positive set and negative set
reveals the finer granularities of the contrast-levels than
compared with the binary, positive-vs-negative comparisons.
Such delicate comparisons allow probing into the differ-
ence not only between positive and negative relations, but
also more delicately, between positive and weakly-positive
relations. The enriched comparisons will lead to stronger
self-supervised signals in enhancing the model’s capability
to capture the complex, high-order interactions among the
modes of real-world tensors.

Upon determining the contrastive triple sets (i′, j′, k′) ∈
C(ijk) for a given positive triple (i, j, k), the contrastive loss
function can then be defined as follows

L1=−log

 exp
(
T̃ijk/τ

)
exp
(
T̃ijk/τ

)
+

∑
(i′j′k′)∈C(ijk)

exp
(
T̃i′j′k′/τ

)
 (9)

which shall be summed over the positive triples (i, j, k)’s
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under consideration. The T̃ijk is the estimated tensor mode
relations through the learned representation (4).

3.3. Multi-level Contrastive Sampling

We propose multi-level contrastive-sampling (MLCS) to
obtain the contrastive triple set C(ijk) for any positive triple
(i, j, k) efficiently. It include two parts: weakly-positive set
Cweak-pos
(ijk) , and negative set Cneg

(ijk). The negative triples are
easily obtained by perturbing one or two indices of the pos-
itive tripe (i, j, k). However, it’s nontrivial to find enough
weakly-positive triples for (i, j, k) due to the sparsity of
real-world tensors (non-zero entries for recommendation
tensors could be as low as 10−6% (Hegde et al., 2019)).

We use a simple mode-index-sorting scheme to reorder the
list of observed triples, so that weakly-positive triples can
be found efficiently. It begins by dividing observed triple
list into b non-overlapping blocks. In each block, the triples
are sorted as follows. First, we sort the i-index and re-
order the triples; then for those triples with the same i-
index, re-order them by sorting their j-index; finally, for
triples with the same i, j-index, re-order them by their k-
index. Such sorting increases the likelihood of a positive
triple to encounter relevant weakly-positive samples in its
vicinity within the triple-list, due to the effect of sorting.
For each sorted block, we get mini-batches by sequentially
cropping a segment from the list with desired size. We
then pick weakly-positive triples Cweak-pos

(ijk) for any positive
triple (i, j, k) in a minibatch efficiently by searching in its
neighbors or the whole block.

We note that the index concentration effect is the strongest
for the first mode that is sorted because it is an uncon-
strained sorting; for the two modes sorted afterwards, the
concentration is less significant because they are subject
to the ordering constraints of the first mode. For example,
(1, 50, 24) and (1000, 50, 24) could be far away from each
other due to the big difference in their i-index, but they share
the same j-index and could still be meaningful contrastive
triples for each other. Therefore, in practice we random-
ize the order of the three modes for sorting and integrate it
with the mini-batch based training framework. Specifically,
we shuffle the data at the beginning of each epoch and di-
vide it into b non-overlapping blocks. Within each block,
we randomly select an order—such as (i, j, k), (k, j, i), or
(j, k, i)—to sort the data. This could promote a more robust
and generalized learning process, see detailed discussions
in the Appendix. A detailed pseudo-code for the mode-
index sorting for obtaining the weakly-positive triples can
be found in Algorithm 1.

Sorting n triples divided into b blocks takes O(n log n
b ) time.

After index sorting, the cost of finding contrastive triples for
each positive (i, j, k) in a minibatch will be O(l+p), where

Table 1. Statistics of the spatio-temporal tensors and the recom-
mender tensors used in our experiments.

DATASET SHAPE #OBSERVED SAMPLING RATIO

PEMS (228, 44, 288) 288922 10.00%
GZSPEED (214, 61, 144) 187978 10.00%
METR (207, 119, 288) 709431 10.00%
CITYTEMP (1854, 24, 36) 106186 10.00%
SG (2321, 5596, 1600) 105764 5.09× 10−4%
BEAUTY (22279, 12079, 238) 192377 3.00× 10−6%
MOVIE & TV (101916, 47975, 238 ) 984060 8.45× 10−7%
GOWALLA (318608, 2857394, 8921) 19116507 2.35× 10−7%

l is the neighborhood size for searching for weakly-positive
triples, and p is the number of negative triples needed for
each positive triple. Empirically p is much smaller than
the mini-batch size m, and negative sampling is done by
randomly perturbing the triple indices, so the complexity
of contrastive sampling in a minibatch, O(lm + pm), is
linear in m and independent of the order of the tensor data.
Overall, HOCTC has a complexity between linear and log-
linear over esample size, which is efficient.

3.4. Composite Loss Function

The estimated tensorial entries T̂ijk in the predictive branch
are used to compute the Mean Squared Error (MSE) loss:

L2 =
1

n

∑
ijk

(
Tijk − T̂ijk

)2
, (10)

and the complete loss is defined as

L = L2 + α · L1, (11)

a mixture of MSE (10) with the contrastive loss term (9), as
where α controls the trade-off between the two losses.

Note that HOCTC is a generic tensor completion method
that does not take advantage of specific structures of the ten-
sor data based on domain knowledge (e.g., temporal order
or smoothness in the traffic data, or the head-tail symmetry
in knowledge graphs). This means that HOCTC can be
conveniently integrated with domain-based optimizations to
further improve the performance of tensor completions.

4. Experiment
We have chosen two types of ordinal tensors in our ex-
periments, i.e., spatio-temporal tensors and recommenda-
tion tensors1, as listed in Table 2 and Table 3. Spatio-
temporal tensor completion is a popular benchmark for eval-
uating sparse tensor completion models in many previous
works (Liu et al., 2019; Chen et al., 2020b; Xie et al., 2020;
Lei et al., 2022). Some datasets in the literature are not pub-
licly disclosed. To ensure a faithful comparison, we have

1Binary tensors like knowledge graphs are therefore not the
focus of the paper and will be studied in our future research.
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Table 2. Tensor completion results of spatio-temporal tensors.

DATA MODEL MAE MAPE RMSE

PEMS P-TUCKER 5.3976 13.6079 8.1234
NEURALCP 4.3561 11.0245 6.9732

COSTCO 4.1987 9.6052 6.8302
NTM 4.6195 9.5847 7.1754
NTC 4.2245 9.7545 6.9035

LIGHTNESTLE 4.0680 9.0636 6.6864

HOCTC 3.4033 8.2663 5.7479

GZ P-TUCKER 4.9984 24.5495 6.0154
NEURALCP 3.2768 15.2330 4.8482

COSTCO 4.2937 15.6576 5.9790
NTM 3.6004 15.4211 5.4166
NTC 3.2760 11.6007 5.0013

LIGHTNESTLE 3.0571 9.8641 4.5201

HOCTC 2.8937 10.5821 4.4491

CITY P-TUCKER 0.4784 1.5548 0.4754
NEURALCP 0.3208 1.1124 0.4134

COSTCO 0.2451 0.8534 0.3203
NTM 0.3076 1.0720 0.3998
NTC 0.2190 0.7625 0.2852

LIGHTNESTLE 0.2902 0.9985 0.4011

HOCTC 0.1936 0.6735 0.2786

METR P-TUCKER 6.1558 17.8996 9.4813
NEURALCP 4.4144 10.9632 7.2971

COSTCO 4.1569 10.2143 7.3394
NTM 4.4680 10.8168 7.5205
NTC 4.0717 9.9937 7.0193

LIGHTNESTLE 4.0454 10.3965 7.1485

HOCTC 3.4482 9.0951 6.1172

selected four most widely-used, publicly-available spatio-
temporal tensor datasets including Pems, GZspeed, Metr,
and CityTemp. Among them, Pems, GZspeed, and Metr
are tuples in the form of (sensor id, day id, interval id);
CityTemp is in the form (day id, hour id, city id). Fol-
lowing (Li et al., 2023b), we randomly sample 10% ten-
sor entries to construct a sparse tensor to evaluate ten-
sor completion algorithms. For sparse tensors in recom-
mender systems, we choose four widely used datasets:
SG (Li et al., 2015) and Gowalla checkins (Liu et al.,
2017) are (user id, location id, poi id) tuples; Beauty and
Movie&TV tensors are (user id, item id, week id) tuples.
More detailed description of the datasets can be found in
the Appendix.

Our codes were written in Tensorflow with Python 3.9. We
have chosen six tensor decomposition methods including
classic Tucker-decomposition (Oh et al., 2018) and five non-
linear tensor decomposition methods proposed very recently
using neural networks, like NeuralCP (Liu et al., 2018),
CoSTCo (Liu et al., 2019), NTC (Xie et al., 2020), NTM
(Chen & Li, 2020) and LightNestle (Li et al., 2023b). Note
that LightNestle is designed mainly for spatio-temporal data,

and will not be evaluated on recommender tensors with
much larger dimensions. We also considered a number of
GNN-based methods for recommendation systems (Li et al.,
2019; Guo et al., 2021; Jiang et al., 2022) for comparison,
(see Appendix for more results). Following (Liu et al.,
2019), we report three evaluations metrics, including MAE
(Mean Absolute Error), RMSE (Root Mean Squared Error),
and MAPE (Mean Absolute Percentage Error).

For HOCTC, the embedding dimension is d = 20 (and
all others); both the standard self-attention module and the
SAQE module have one attention layer with 5 heads; the
MLP1 in (3) and MLP2 in (4) are both 3-layer MLPs; the
number of blocks is chosen as 20. We use Adam and train
HOCTC up to 200 epochs, adopting an early-stop strategy
with a 20-epoch patience. Hyper-parameters: initial learn-
ing rate in {0.01, 0.001, 0.0001}; mini-batch size in {128,
256, 512, 1024}; α (11) in {1, 0.1, 0.01, 0.001}, the number
of queries for SAQE in {5, 10, 20, 30}; all chosen by valida-
tion set. For competing methods, we follow their respective
hyper-parameter tuning strategies (see Appendix for details).
For all datasets, we have used a random 80%/10%/10%
split as train/val/test split, following (Chen & Li, 2020).
For spatio-temporal tensors, since they are complete before
sampling, we only employ weakly-positive samples for con-
trastive learning in the loss function (9). For sparse tensors
in recommendation tasks, we use both weakly-positive sam-
ples and negative samples (10 negative samples for each
positive triple by random index perturbation).

4.1. Evaluation Results

Results for spatio-temporal and recommender tensors are
in Table 2 and Table 3, respectively. Overall, HOCTC has
shown promising results. It attains the lowest error for 11
out of the 12 error-comparisons for the 4 spatio-temporal
datasets, and 8 lowest errors among the 12 comparisons for
the 4 recommendation tensors. In terms of MAE, HOCTC
is relatively 16.3% and 14.8% better than best baseline on
Pems and Metr datasets, respectively. On the largest sparse
tensor Gowalla, it is relatively 26.7% and 57.9% better than
the best baseline method for MAE and MAPE, respectively.

Following (Li et al., 2023b), Figure 3(a) shows the perfor-
mance of neural network-based models on the Pems dataset
using 5 different sampling ratios (0.02, 0.04, 0.06, 0.08, 0.1).
As can be seen, all the methods have superior performance
with more samples. Under the same sampling rate, HOCTC
almost always attains the lowest error, and is also quite ro-
bust even at very low sampling rates. This evidence supports
the efficacy of HOCTC in sparse tensor completion.

The embedding dimension of the latent factors (or modes)
of the tensor influences both the computational demand
and the model accuracy. Figure 3(b) presents the error of
different methods by varying the dimension from 10 to 50,
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Table 3. Tensor completion results of recommendation tensors.

DATA MODEL MAE MAPE RMSE

SG P-TUCKER 0.2454 167.5481 0.3954
NEURALCP 0.1004 64.1548 0.1784

COSTCO 0.0774 41.5384 0.1546
NTM 0.0832 58.8020 0.1612
NTC 0.0828 53.6845 0.1621

HOCTC 0.0668 25.8904 0.1581

BEAUTY P-TUCKER 1.4333 45.0231 1.8084
NEURALCP 0.9324 37.5881 1.1814

COSTCO 0.8237 33.1612 1.1566
NTM 0.9590 30.1363 1.2141
NTC 0.8986 31.0155 1.2073

HOCTC 0.7772 33.6771 1.1301

MOVIE&TV P-TUCKER 1.2246 36.9661 1.1653
NEURALCP 0.7244 28.5476 1.0247

COSTCO 0.6972 27.6130 1.0050
NTM 1.0034 29.0678 1.2798
NTC 0.7264 27.5998 1.0593

HOCTC 0.6693 28.7005 0.9960

GOWALLA P-TUCKER 1.0554 124.5485 2.2545
NEURALCP 0.6538 41.2395 1.1643

COSTCO 0.6472 40.2073 1.1818
NTM 0.6954 48.4815 1.1836
NTC 0.6345 38.4154 1.1545

HOCTC 0.4652 16.1613 1.1920

using a 10% sampling rate on Pems dataset. Again, HOCTC
is quite competitive for all target ranks and shows a stable
performance improvement with increasing ranks.

In Figure 3(c) we analyze how varying the number of extra
queries learned through SAQE can impact the performance
of HOCTC, by plotting the errors versus the number of
queries on two representative tensors (Pems and Gowalla).
We can see that as more extra queries are incorporated to
enrich the model, the error consistently decreases. Empir-
ically, a tenfold increase in the number of queries (from 3
to 30 or 40) leads to a reduction in MAE/MAPE/RMSE by
4.8%-42.8%. This substantial improvement validates the
effectiveness of SAQE in enhancing tensor completion.

It is worth noting that in the case of very sparse tensors
such as Gowalla, there might be a slight fluctuation in per-
formance when the number of queries surpasses a certain
threshold. We hypothesize that this fluctuation could be due
to overfitting, which can be effectively avoided by using the
validation set to determine a suitable number of queries.

4.2. Ablation Study

We study how the two main modules, SAQE (Self Attention
with Expanded Query) and MLCS (Multi-Level COntrastive
Sampling), affect the performance. Table 4 reports ablation
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Figure 3. Behaviour of HOCTC. More examples are in Appendix.

studies with MAE. As can be seen, when the two mod-
ules were replaced by their vanilla version, i.e., standard
self-attention and binary-level contrastive learning, the per-
formance is the worst. When the self-attention module is
upgraded to SAQE, the error consistently drops by 3.14%-
19.14% relatively across the 8 tensors; when the binary-level
contrastive learning is replaced is upgraded to MLCS, the
error consistency drops by up to 2.43%-16.77%. When both
modules are upgraded, the error drops by 4.17% - 31.64%.

5. Conclusion
We have introduced high-order contrastive learning
(HOCTC) for sparse ordinal tensor completion. It extends
traditional contrastive learning by modeling high-order con-
trastive relations, and by employing fine-grained compar-
ative levels in case the target relation is no longer binary.
Promising empirical results were observed against baseline
methods in a number of widely used benchmark datasets.
Future work includes theoretic analysis on multi-level con-
trastive learning, and how to achieve a good balance among
different error metrics. We are also interested in combining
the proposed method with spatio-temporal priors for more
accurate prediction in spatio-temporal data.
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Table 4. Impact of SAQE (self-attention with query-expansion) and MLCS (multi-level contrastive-sampling) module on MAE.

SAQE MLCS PEMS GZ CITY METR SG BEAUTY MOVIE&TV GOWALLA

✗ ✗ 3.8511 3.0418 0.2832 3.9915 0.0724 0.8378 0.6984 0.6034
✓ ✗ 3.6643 2.9464 0.2290 3.6453 0.0689 0.8091 0.6725 0.5077
✗ ✓ 3.6213 2.9076 0.2357 3.8495 0.0680 0.8174 0.6766 0.5592
✓ ✓ 3.4033 2.8937 0.1936 3.4482 0.0668 0.7772 0.6693 0.4652
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Algorithm 1 Mode Index Sorting for Obtaining Weakly-Positive Triples C(ijk) for a positive triple (i, j, k).
Input: A set of observed tensor entries Tijk’s with index sets I,J ,K; number of blocks b, mini-batch size m, neighborhood size l;
Output: Weakly-positive triples Cweak-pos

(ijk) for positive triple (i, j, k)

1: initialize Cweak-pos
(ijk) = ∅

// partition the input triples into b non-overlapping chunks
2: {π1, π2, . . . , πb} ← cut-into-block(T , b)

// sort by index for each block πl

3: for l = 1 to b do
4: πl ← sort-by-index(i, πl) // sort by first index
5: for i ∈ I do
6: same(i) ← get-entries(i, πl)
7: sort-by-index(j, same(i)) // sort by second index for entries sharing same i
8: for j ∈ J do
9: same(ij) ← get-entries(j, same(i))

10: sort-by-index(k, same(ij)) // sort by third index for entries sharing same i and j
11: end for
12: end for
13: end for

// pick a mini-batch of size m from the (sorted) blocks
14: B ←sample-mini-batch(m, {π1, π2, . . . , πb})

// get indices from mini-batch B
15: I′,J ′,K′ ←get-index-set(B)

// select Cweak-pos
(ijk) for a positive triple (i, j, k) within its vicinity in the mini-batch

16: for i′ ∈ I′, j′ ∈ J ′, k′ ∈ K′ and (i′, j′, k′) within a neighborhood window 2l + 1 of (i, j, k) in the sorted triple list do
17: if 1 ≤ | {i, j, k} ∩ {i′, j′, k′} | < 3 and Tijk > Ti′j′k′ then
18: Cweak-pos

(ijk) ← Cweak-pos
(ijk) ∪ {(i′, j′, k′)}

19: end if
20: end for
21: return Cweak-pos

(ijk)

A. Self-Attention with Query Expansion (SAQE)
The SAQE aims at extending the amount of queries in case of limited queries. Here, we only increase the number of queries,
but the number of keys and values remain the same. This is because the keys and values have to be strictly paired and they
represent the “source” signal. In comparison, the queries serve as “sensors” to reflect the impact of the source signals;
obviously, having more sensors would increase the “resolution” of the signal but will not introduce undesired signals. We
only implement one attention layer in SAQE, and so we don’t have to worry about introducing undesired noise into the
second or deeper layer of attention due to the extra context vectors generated in the first layer from the extra queries.

The key of SAQE is the construction of matrix M in e.q. (6). We can surely learn M in a purely supervised fashion.
However, we found that pre-defining a suitable candidate of M and then removing the redundancy in it could deliver better
results, which we describe as follows. Here, instead of using only the three vectors in Qijk as the basis for generating
extra (query) vectors, we first extend it to a larger set of vectors. To do this, we first compute the mean of the three vectors
and obtain altogether 4 vetors. Then we pick out all possible vector pairs from these four vectors (with C2

4 = 6 pairs),
compute the mean vector for each pair, and finally end up with having altogether 10 vectors as our basis. Finally, we
generate a R1000×10 matrix whose entries are drawn from a standard Gaussian distribution (with each row normalized by its
ℓ2-norm), and then use k-means clustering to pick k most representative rows as the reconstruction matrix. Using these
representative rows, we generate altogether k vectors based on the 10 basis vectors as dictionary. Here, k is the desired
number of queries vectors. Such a procedure is implemented off-line and is quite efficient. Empirically, it generates better
results than optimizing the M matrix in an entirely unconstrained manner.

B. Datasets
The Pems, GZspeed, and Metr datasets each record traffic speed data, with entries corresponding to specific sensors and
time intervals, represented as (sensor id, day id, interval id). Pems captures data from 228 sensors over 44 days at 288
intervals per day. GZspeed encompasses traffic data from 214 road segments in Guangzhou, China, collected over 61 days at
144 intervals daily. Metr reflects traffic conditions in the Los Angeles Metropolitan area via 207 loop detectors, with data
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aggregated at 5-minute intervals. The CityTemp dataset records hourly temperature variations across 36 cities, formatted
as (day id, hour id, city id). Follow (Li et al., 2023b), we utilize a randomized extraction method, retaining 10% of the
non-zero entries from these complete tensors to form our datasets for analysis.

We also examine social check-in data from two distinct sources: SG checkins, sourced from Foursquare in Singapore, and
Gowalla checkins, a global dataset collected by Gowalla. For both SG and Gowalla datasets, we adopted the methodological
framework proposed by (Liu et al., 2019). Each tensor index is a tuple of (user id, location id, poi id).

The Beauty and Movies & TV tensors are from Amazon datasets. These datasets comprise (user id, item id, week id)
tuples. Following the methodology of (Chen & Li, 2020), we employ the standard 5-core dataset approach, removing
purchase records prior to 2010 and categorizing timestamps by weeks.

C. Baselines
We here describe more detail on the optimization of the baseline comparison models. Most models have a number of
hyperparameters which need to be optimized. We use the default hyperparameters values and hyperparameter grid search
settings specified in their own study if any.

For NTM, the batch size is in [32, 64, 128, 256, 512, 1024]; the learning rate is in [0.0005, 0.001, 0.005, 0.01]; the number
of T-MLP blocks is in [2, 3, 4, 5]. For CoSTCo, the batch size is in [32, 64, 128, 256, 512, 1024]; the learning rate is in
[0.0001, 0.001, 0.005, 0.03, 0.01, 0.1]. For NTC, the number of Convolutional Kernels is in [8, 16, 32, 64]; the number
of CNN layers is in [2, 3, 4, 5]. For LightNestle, the batch size is in [32, 64, 128, 256, 512, 1024]; the learning rate is in
[0.0001, 0.001, 0.005, 0.01, 0.1]; the weight decay rate is in [1e-6, ..., 1e-2]. For NeuralCP, the batch size is in [32, 64, 128,
256, 512, 1024]; the learning rate is in [0.0001, 0.001, 0.005, 0.01, 0.1].

D. Additional Results
To further evaluate our model’s performance on recommendation tensors, We have added 7 recently proposed methods
(Lang et al., 2021; Chen et al., 2021; Wang et al., 2021b; Cheng & Xue, 2021; Mao et al., 2023; Zhu et al., 2023; Wang
et al., 2023) in the field of recommendation and CTR prediction in 2021-2023, and report their results (together with ours)
in the Table 5. As can be seen, even when compared with these advanced approaches proposed recently, our approach still
maintains a competitive performance, with the MAE metric being 3-25% lower across 4 datasets.

Table 5. Comparative Analysis of Model Performance(MAE) Across Different Recommendation Datasets

DATA/MODEL AOANET EDCN MASKNET SAM FINALMLP FINALNET GDCN HOCTC

SG 0.0811 0.0814 0.0838 0.0711 0.0801 0.0832 0.0726 0.0668
BEAUTY 0.8330 0.8226 0.8348 0.8646 0.7986 0.8213 0.7945 0.7772
MOVIES&TV 0.6858 0.6938 0.6973 0.7818 0.6941 0.7285 0.7001 0.6693
GOWALLA 0.6382 0.6401 0.6410 0.6289 0.5700 0.6390 0.5466 0.4652

The new attention mechanism devised in our work, i.e., attention with expanded queries, can be deemed as a general type
of GNN defined on bipartite graphs: the expanded query vectors (nodes) are one partite, the key vectors (nodes) are the
other partite, and the weights of the edges crossing the two partites are exactly the attention weights. Then our attention
scheme in fact enforces message passing between the L queries and the N keys. To enrich our comparisons, we therefore
selected several GNN based models (Li et al., 2019; Guo et al., 2021; Jiang et al., 2022). As shown in the Table 6, when
compared with these recent GNN models developed for recommendation tasks, our method continues to demonstrate
competitive performance. Specifically, the MAE of our method is 3-27% lower compared to these models across four sparse
recommendation tensor data widely utilized in the literature.

Figure 4 reports how the performance of our method varies with some hyper-parameters, including embedding dimensions,
sampling ratios, and the number of extra queries.
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(a) Predictive error v.s. sampling ratios on GZspeed dataset.
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(b) Predictive error v.s. latent dimension on GZspeed dataset.
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(c) Predictive error v.s. sampling ratios on Metr dataset.
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(d) Predictive error v.s. latent dimension on Metr dataset.
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(e) Predictive error v.s. sampling ratios on Citytemp dataset.
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(f) Predictive error v.s. latent dimension on Citytemp dataset.

Figure 4. Hyper-Parameter Study.

Table 6. Comparative Analysis of Model Performance(MAE) with GNN-based models

MODEL/DATA SG BEAUTY MOVIE&TV GOWALLA

FI-GNN 0.0856 0.8271 0.8181 0.6426
DG-ENN 0.0744 0.8049 0.7731 0.6014
TGIN 0.0702 0.8041 0.7092 0.5687
HOCTC 0.0668 0.7772 0.6693 0.4652
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