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Abstract

When applying contextual bandit algorithms in high-stakes settings (e.g., medical treatment),
practitioners rely on off-policy evaluation (OPE) methods that use historical data to evaluate
the behavior of novel policies prior to deployment. Unfortunately, OPE techniques are
inherently limited by the breadth of the available data, which may not reflect distribution
shifts resulting from the application of a new policy. Recent work attempts to address
this challenge by leveraging domain experts to increase dataset coverage by annotating
counterfactual samples. However, such annotations are not guaranteed to be free of errors,
and incorporating imperfect annotations can lead to worse policy value estimates than not
using the annotations at all. To make use of imperfect annotations, we propose a family of
OPE estimators based on the doubly robust (DR) principle, which combines importance
sampling (IS) with a reward model (direct method, DM) for better statistical guarantees.
We introduce three opportunities within the DR estimation framework to incorporate
counterfactual annotations. Under mild assumptions, we prove that using annotations within
just the DM component yields the most desirable results, providing an unbiased estimator
even under noisy annotations. We validate our approaches in several settings, including a
real-world medical domain, observing that the theoretical advantages of using annotations
within just the DM component hold in practice under realistic conditions. By addressing
the challenges posed by imperfect annotations, this work broadens the applicability of OPE
methods and facilitates safer and more effective deployment of decision-making systems.

1 Introduction

Contextual bandit methods have been successfully applied to learn optimal decision-making policies across
several domains, including healthcare (Yao et al., 2021), recommendation systems (Li et al., 2010), and
education (Lan & Baraniuk, 2016). In high-stakes decision-making scenarios, such as designing patient
treatment policies in clinical settings, it is critical for practitioners to assess the performance of a new policy
prior to deployment. To do so, standard practice consists of applying off-policy evaluation (OPE) methods
(Sutton & Barto (2018), Chapter 5), which estimate the value of a new (target) policy using a behavior dataset
collected from a different policy. By facilitating policy evaluations without risky real-world experiments, OPE
methods represent a crucial tool for safe policy deployment.

However, OPE is inherently limited by the quality and coverage of the behavior dataset. For instance, the
current treatment policy in a hospital may have never recommended a recently developed drug, so no OPE
method can reliably evaluate a policy that recommends this drug as a treatment. To address this issue, Tang
& Wiens (2023) proposed an importance sampling (IS)-based OPE estimator called C-IS (referred to in this
work as IST), in which experts provide annotations (i.e., predicted rewards) for counterfactual actions of
samples observed in the behavior dataset. However, their approach relied on the strong assumption that
annotations are free of errors. Realistically, even expert-generated annotations are prone to imperfections.
Determining the optimal way to incorporate potentially imperfect counterfactual annotations into an OPE
estimator remains an open challenge.
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To address this challenge, we propose a family of OPE estimators based on the doubly robust (DR)
principle (Cassel et al., 1976). Compared to IS estimators, DR estimators offer provable reductions in
variance while remaining unbiased. It is not immediately obvious how to use the additional data coverage
provided by potentially imperfect counterfactual annotations while retaining the desirable properties of DR
estimators. In this work, we introduce three ways of modifying DR estimators to include counterfactual
annotations, each of which impacts the estimator performance in a different way. Through a rigorous analysis
of the bias-variance trade-off of each approach, in the face of imperfect annotations, we identify one
estimator that successfully leverages information from counterfactual annotations to improve coverage without
compounding error in those annotations. In contrast, the other two estimators compound error proportionally
to the annotation error, resulting in worse policy estimates than ignoring the annotations altogether.

In summary, our contributions are the following:

e« We propose a family of OPE estimators inspired by the DR principle that incorporate counterfactual
annotations while accounting for potential errors in the annotations. We perform a thorough theoretical
analysis of our proposed estimators, finding that how annotations are incorporated into the estimator has
a substantial impact on the estimator’s performance (Section 3).

¢ We evaluate our estimators on three synthetic contextual bandit environments and a real
medical dataset. We use the synthetic settings to empirically verify our theoretical insights, and use the
medical domain to demonstrate the potential utility of our proposed approaches in high-stakes problems
(Section 4).

¢ We provide practical considerations for choosing the best OPE estimator in the presence
of imperfect counterfactual annotations, which, to our knowledge, is currently missing from the OPE
literature. This systematic guide further facilitates the deployment of contextual bandit policies in
high-stakes settings (Section 5).

2 Background

We consider a contextual bandit setting defined by (S,.A, R, dy), where S is the discrete context space, A is
the discrete action space, R : & x A — A(R) is the reward function, and dj is the initial context distribution.
Given a behavior dataset D = {(s;,a;,r;)}~; generated from a behavior policy m,, we aim to evaluate a
different target policy 7. by estimating its value v(m.) = Esvay,amr, (|s),r~R(s,a)[T]-

2.1 Off-Policy Evaluation

We give an overview of three common types of OPE approaches in the context of contextual bandit. Importance
sampling (IS), VIS = L 5™y, (a;)ry, assigns an inverse propensity score (IPS), ps(a) = ::EZB,
sample (s;, a;, ;) in the behavior dataset (Horvitz & Thompson, 1952; Precup et al., 2000). Similar to prior
work, we assume that the IPS ratio p is known (Farajtabar et al., 2018; Thomas & Brunskill, 2016). IS
results in an unbiased estimate of the value of the target policy, v(m.), when 7. is well supported by the
behavior dataset (Precup et al., 2000), i.e., has sufficient “coverage” (see Assumption 4). The variance of the

IS estimator is (Tang & Wiens, 2023)

to each

N V[V = Vg [0 (5)] + Esmdy [Vamr, (1) [0 (@) R(5, )]
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where R(s,a) = E[R(s,a)] and or(s,a)? = V[R(s,a)] are the mean and variance of the reward distribution,
respectively.

Another approach to OPE is the direct method (DM) (Li et al., 2010; Beygelzimer & Langford, 2009; van
Seijen et al., 2009; Harutyunyan et al., 2016; Le et al., 2019; Voloshin et al., 2021). DM first uses the behavior
dataset to estimate a reward model, R:SxA— R, to predict the mean reward, and then uses R to directly
compute the target policy value as VPM = S, do(s) 3, melals)R(s, a). R can vary in complexity, ranging
from regression models to neural networks. If the reward model is fully realizable and there is full coverage in
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the behavior dataset, then DM has zero bias and favorable variance in its estimate of the target policy value.
Typically, DM estimators have a lower variance than IS (Dudik et al., 2011) when the size of the behavior
dataset is sufficiently large to learn an accurate reward model.

The last category of OPE approaches consists of doubly robust (DR) methods (Dudik et al., 2011; Dudik et al.,
2014; Farajtabar et al., 2018; Jiang & Li, 2016). These methods are termed “doubly robust” because they
maintain strong theoretical guarantees even when either the IPS ratio p, or the estimated reward function R,
is inaccurate. As such, the DR estimator is robust to two sources of error (the IPS ratio and the reward
model). The standard DR estimator is

N

~ 1 ~ ~

{/PR _ v ZR(SZ-, Te) 4 ps, (ai)(ri — R(si,a5)), (1)
i=1 DM part IS part

A

where R(s,m,) = Y aca Telals)R(s,a) is the estimated value of state s under the target policy 7. using the

reward model R. We refer to the first and second term in Equation (1) as the DM part and the IS part,
respectively. Under standard coverage assumptions (Assumption 4), the DR estimator produces an unbiased
estimate of v(m.). DR methods also see a reduction in variance in comparison to IS-based methods; the
variance can be written as

N -V[VPR] =V, g [v™ ()] + Egg, [th(_‘s) [ps(a)(R(s, a) — R(s, a))”

+ Esd, [anrb(~|s) [ps(a)QaR(s,a)2]] .

The reduction in variance relative to the IS estimator rests in the second term, in which p is scaled by
R(s,a) — R(s,a) instead of R(s,a), which is close to 0 if the estimated reward model R is accurate.

2.2 Counterfactual Annotations
Factual Sample

» Counterfactual Annotation

In our work, we consider incorporating counterfactual anno- e
tations to increase data coverage. Suppose that we are given
a behavior dataset of size N, D = {(s;,a;,r;)}},. Each fac-
tual sample (s;,a;) in the behavior dataset is associated with
a set of counterfactual annotations g; = {¢% | a € A\ {a;}}.
Note that g; may be empty. We assume that the annotation
of the counterfactual action @ is drawn from some distribution
G:S8xA— A(R), g2 ~ G(s;,a). We assume that there are
a total of M counterfactual annotations. In practice, we expect
to collect a small subset of all possible counterfactual annota-
tions because they may be expensive to obtain. We refer to the
dataset that combines factual samples and counterfactual anno- Figure 1: Counterfactual-annotated
tations as the counterfactual-annotated dataset and denote it dataset with two contexts and two
by DT. A simple example of a counterfactual-annotated dataset actions. There are two factual samples,
with two contexts and two actions is visualized in Figure 1. In (s1,a1,71) and (s2,a1,72). For the first (left)
this example, we observe two factual samples and only one of factual sample, we have a corresponding
them has a counterfactual annotation. counterfactual annotation (s1, ag, g7?). For
the second (right), the annotation is miss-
ing.

In Section 3.2, we discuss three scenarios for the function G
(perfect, biased, or noisy annotations). For simplicity, we use c{
to refer to either the reward or the counterfactual annotation
of the factual sample (s;,a;), i.e., ¢ = r; when a = a; and ¢ = ¢g¢ when a # a;.

2.3 The IST Estimator

To incorporate counterfactual annotation, Tang & Wiens (2023) introduced IS™, defined as

N
S D) WD

i=1 ac A
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where {w{} is a set of user-defined weights for the i-th factual sample (s;, a;) and its associated counterfactual
annotations. This method requires that ) . , w =1 to ensure that IS is a convex combination of factual
and counterfactual samples. We set w{ = 0 if the annotation of the counterfactual action & is not available.

pd(a) = % is the augmented IPS ratio, where the augmented behavior policy ;" (als) is defined as,
7rb a|s

) (als) = W(als,a)my(als) + > Wials,a&)ms(als),

acA\{a}

and W (a|s,a) = E[w?] is the average weight of action @ for the factual context-action pair (s,a). The weights
and augmented IPS ratios are critical for IS, as they ensure the context distribution in the counterfactual-
annotated dataset D' remains identical to the context distribution in the original factual dataset D; otherwise,
the value estimate of the target policy will be biased (Section 3.1 in Tang & Wiens (2023)).

3 Methods

When the behavior dataset has limited coverage (which tends to be true in practice), IS estimators are
known to have high variance (Jiang & Li, 2016). In contrast, DM estimators have high bias when the reward
model is misspecified. Thus, we explore how to introduce counterfactual annotations into a DR estimator,
which retains beneficial theoretical properties even when the reward model is misspecified—a situation that
frequently occurs in practice. While DR is well-understood in a setting with only factual samples, we aim
to incorporate counterfactual annotations such that we can overcome the limitations of the coverage of the
behavior dataset. The most naive approach is to directly use the counterfactual-annotated dataset Dt in
a standard DR estimator, viewing the counterfactual annotations as additional samples. However, as we
discuss in Appendix D, this approach can produce arbitrarily biased estimates of v(w.) depending on the
number of annotations used, because it alters the context distribution of the behavior dataset, regardless
of annotation quality. As a result, we focus on developing new estimators that build on the DR principle.
Below, we present three new estimators along with a rigorous theoretical analysis of their bias and variance
properties in the presence of imperfect annotations.

3.1 Proposed DR Estimators with Counterfactual Annotations

The standard DR estimator, as shown in Equation (1), can be broken down into two components: the direct
method (DM) part and the importance sampling (IS) part. We observe that counterfactual annotations
can be independently leveraged in either of these components. Based on this insight, we propose three
new DR-inspired estimators leveraging counterfactual annotations. First, DMT-IS (Equation (2)) uses the
counterfactual-annotated dataset to estimate the reward model and combines it with standard IS. Next,
DM-ISt (Equation (3)) uses counterfactual annotations to augment the IS part (as in IST) and combines it
with a standard DM estimator. Finally, DMT-ISt (Equation (4)) uses counterfactual annotations in both
the DM and IS parts.

pDMTIS _

=zl
1=

(8% (sim) + pas @) i = R (s1,.))) (2)

1

-
Il

‘A/DM-IS'*' _ 1

Mz

(Rlsiom)+ 3 wiol (@) (et = R(si, ) (3)

N i=1 acA
N
A~ 1 ~ A
POME-IST N Z (R*(sh Te) + Z wipt (a)(cf — R¥ (s, a))). (4)
i=1 acA

Here, R* is the reward function estimate learned using the counterfactual-annotated dataset D+ (see further
discussion in appendix F).

3.2 Theoretical Analyses under Imperfect Annotations

Now, we examine the performance of our proposed estimators in the presence of imperfect annotations,
offering insights into how these limitations affect the estimators. This analysis also provides theoretical
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support for our guidance on selecting a robust OPE estimator, which we discuss further in Section 5. In
our problem setting, there are three possible sources of error: incorrect estimates of the behavior policy
7, a misspecified reward model, and imperfect (biased or noisy) annotations. Like prior work (Farajtabar
et al., 2018; Thomas & Brunskill, 2016) we assume that the IPS ratio p is known, and instead focus on
identifying an OPE estimator that is robust to the last two sources of error. These theoretical results inform
our hypotheses and help ensure that our empirical findings align with the expected behavior (Section 4.2).

The novelty of our theoretical results are two-fold. First, prior work on DR estimators provided expectation
and variance derivations assuming a prespecified error term in R (e.g., (Dudik et al., 2011) assumed that
R(s,a) = R(s,a) + €(s,a)). In contrast, our analysis accounts for the stochasticity in R arising from the
dataset used to fit the reward model, since our proposed approaches explicitly modify what data is used to fit
the reward model. We assume that the reward model is estimated from a separate dataset, which we refer
to as Dy or Dp,, depending on if counterfactual annotations are incorporated. We assume that Dp and
Dy, are drawn from the same data distributions as D and D+, respectively. Second, we derive the bias
and variance of our proposed DR estimators under imperfect annotations, which is arguably more realistic
in practice. We do not make assumptions about the reward model class being well speficified. We use the
following three assumptions to quantify the quality of counterfactual annotations.

Assumption 1 (Perfect annotations). Egec(s,a)[9°]=R(S,a), Vgarg(s,a)[9?]=0%(s, a).

Assumption 2 (Biased annotations). Egaq(s,qa)[9] = R(s,a) + €a(s,a), ea(s,a) # 0.

Assumption 3 (Noisy annotations). Vge c(s,q)[9°] = or(s,a)? + Ag(s,a), Ag(s,a) > 0.

Assumption 2 and Assumption 3 are used to study the effect of biased and noisy (i.e., higher variance)
annotations. The additional bias and noise are captured in the terms e and Ag, respectively. Similar to
Tang & Wiens (2023), we use the following two assumptions on dataset support.

Assumption 4 (Common support). m.(als) >0 — m(als) > 0.

Assumption 5 (Common support with annotations). m(a|s) >0 — 7, (a|s) > 0.

First, we show that, with perfect annotations (Assumption 1) and appropriate coverage assumptions (As-
sumption 4 or 5), all three proposed estimators are unbiased (Propositions 12, 14 and 16 in Appendix H).
Additionally, when all counterfactual actions are annotated and w® = 1/|.A|, DM-IS* and DM™-IS* are both
equivalent to IST(Corollaries 18 and 19 in Appendix I).

Now, we derive the bias of the proposed estimators when Assumption 1 (perfect annotations) is violated. We
only rely on Assumption 2 (annotation bias) but not Assumption 3 (annotation variance).

Proposition 1 (Unbiasedness of DMT-IS under imperfect annotations). Under biased annotations (Assump-

tion 2) and common support (Assumption 4), E[VPM-1S] = y(x,).
Theorem 2 (Bias of DM-IST and DM™-IS* under imperfect annotations). Under biased annotations

(Assumption 2) and common support (Assumption 5), the two estimators have the same expectation:

[PDM-IST) _ pr{yDMT-1s*y _ o _ W (als, a)m(als) enls.a
BLYOST) = BV <o) B gy (12 AR ) a0 )

Proposition 1 establishes that, with biased annotations, DM™-IS is an unbiased estimator of the target policy
value v(me). In contrast, Theorem 2 shows that both DM-IST and DM *-IST will produce biased estimates of
v(me). Note that the last term in Equation (5) is identical to the expectation derivation for IST (Tang &
Wiens, 2023).

For variance analysis, we focus on DM1-IS as it is the only estimator that remains unbiased with
biased annotations. The variance decompositions for DM-IST and DMT-IST under imperfect annotations
are nontrivial extensions, and we instead focus on their empirical evaluations (Figure 2).

Theorem 3 (Variance of DM™-IS under imperfect annotations). Under Assumptions 2, 8 and /,
N - V[VPMI) = Vg [0 (5)] + oy Bamr, (5)[05(0) 205, )]

+ Bt Banm, | (05(0)? = 57757) B e (5, )] + Bt [Bam [05(0)2e s (5, 0)%] = <, (2],
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where Ap.(s,a) = Vp, [RT(s,a)], egi(s,a) =Ep,, [RT(s,a)] — R(s,a), and F;, (s) = Banr, [+ (5, 0)].
Theorem 3 characterizes the variance of DMT-IS under biased and noisy counterfactual annotations. The
first two terms of the variance remain identical to those derived under perfect annotations (see Appendix
Proposition 13). However, the third term (highlighted in purple), which depends on R*, can be dominant
when noisy annotations introduce additional variance in the estimate of the reward model. The last term
highlighted in green emerges from the possible estimation error of the reward model due to imperfect
annotations.

We summarize our theorems in Appendix Table 3 with full proofs provided in Appendix H. In short, under
perfect annotations, all of our proposed DR estimators are unbiased. Under imperfect annotations, DMT-IST
and DM-IST share the same bias, while DMT-IS remains unbiased. We expect imperfect annotations to
increase the variance of all three proposed estimators due to the increased bias and variance of the reward
function estimate.

4 Experiments

We now empirically evaluate the performance of our proposed estimators, focusing on settings with imperfect
annotations and a misspecified reward model, which reflect real-world scenarios. Prior work demonstrated
that counterfactual annotations can improve the variance of an IS-based OPE estimator, suggesting that
incorporating these annotations into both the IS and DM part of the DR estimator should lead to an even
larger reduction in the estimator error (Tang & Wiens, 2023). However, our findings reveal a nuance: the
improvement in estimator error depends critically on the quality of the annotations as well as how they are
incorporated into the estimator.

Our experiments seek to answer the following questions: 1) How do imperfect annotations empirically affect
the proposed OPE methods? 2) How do our proposed methods perform with compounding errors from
imperfect annotations and a misspecified reward model?

4.1 Experimental Setup

To answer these questions, we investigated three synthetic settings with progressively increasing state and
action space sizes, and one real-world medical domain. Key characteristics of these domains are summarized
in Appendix Table 1 with further details in Appendix C.

4.1.1 Synthetic Domains

Two Context Bandit (Tang & Wiens, 2023): This setting is visualized in Figure 1 and has two contexts,
and two actions. Without loss of generality, the reward of taking either action from the first context is
sampled from a normal distribution and set to 0 for the second context.

Heartsteps (Mandyam et al., 2024): This realistic mobile health simulator models the user’s physical
activities given mobile interventions based on the Heartsteps study (Klasnja et al., 2019). The context is a
3-dimensional vector that includes a treatment effect term and the step count of the previous day. There are
two actions (either send an intervention or do nothing) at each decision time, and the reward is drawn from
a normal distribution with the mean being the square root of the user’s observed step count.

Sepsis (Oberst & Sontag, 2019): In this setting, we adapt the sepsis simulator in (Oberst & Sontag, 2019),
which is originally built for a Markov Decision Process (MDP) setting, to a contextual bandit setting by
interacting with the environment for only one step. The patient context is an 8-dimensional vector that
contains information about vitals and ongoing treatments. There are 8 treatment options, and the reward is
an indicator function of whether the patient is under treatment and has stable vitals.

To produce perfect counterfactual annotations of state s and counterfactual action a, we sample from the true
reward model, i.e. G(s,a) = N (R(s,a),0r(s,a)). To produce biased and noisy counterfactual annotation,
we sample from N (R(s,a) + €g(s,a),or(s,a) + Ag(s,a)), where e and Ag refer to the additional bias and

variance that compromise the quality of the annotations.
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In addition to imperfect annotations, we study the compounding error of misspecified reward models. A
misspecified reward model cannot perfectly capture the environment’s true reward function, regardless of
the training data size. Such misspecification is common in practice. For instance, in a clinical setting, the
true reward model guiding a clinician’s treatment decisions is often unknown and approximated by a simpler
model (e.g., maintaining the patient’s vitals within a safe range). In our experiments, we create misspecified
reward models across all three synthetic settings by either partially observing the state or altering the state
representation (Table 1 and Appendix C).

For these three synthetic domains, we consider various combinations of stochastic behavior and target policies
(details in Appendix C). Specifically, the behavior policies vary in their coverage of the action space. We
present the averaged results across these combinations. We calculate the value of the target policy using
Monte Carlo estimates, and report the root mean squared error (RMSE) of estimated policy values.

4.1.2 Real-World Clinical Data

MIMIC-IV, Potassium Administration (Johnson et al., 2020; Goldberger et al., 2000): MIMIC-IV
contains electronic health records for over 65,000 admitted patients. In this domain, we study a subset of
patients from MIMIC-IV that received potassium repletion through an intravenous line. Potassium repletion
is a common task in critical care settings; imbalanced potassium levels can have severe side effects including
cardiac arrest (Prasad et al., 2022). We created two splits of the dataset based on whether a patient has renal
disease (we refer to these splits as “renal” and “non-renal”). The behavior policy is the clinician’s treatment
policy for the “non-renal” patients and the target policy is the clinician’s policy for “renal” patients. In
Appendix Figure 11, we see that patients with renal disease are given lower dosages to account for their
impaired kidney function (Shrimanker & Bhattarai, 2025). Our goal is to estimate the value of the target
policy using data from the behavior policy.

Domain Setup: The patient context is a 20-dimensional vector containing information about vitals,
administered medications, and static covariates; the actions are five possible dosages of potassium; and the
reward is an indicator function of whether the patient’s lab potassium value is within the reference range 2
hours after administering a given dosage. Distinct from the synthetic settings, m, and . are not given and
are instead estimated using behavior cloning. We use linear regression to fit our estimated reward model. We
measure estimators’ performance using RMSE.

Counterfactual Annotations: We randomly selected a subset of state-action pairs in the behavior data
split and generated counterfactual annotations for those samples. The annotations are produced using OpenAl
“01” (OpenAl et al., 2024), which is prompted to predict a patient’s blood potassium level after administering
a dosage that is different from what that patient actually received in the behavior dataset. This procedure
mimics a setting where counterfactual annotations may be imperfect. Further details regarding the dataset
and annotation construction are in Appendix C.

4.1.3 Baselines

We compare our proposed estimators to standard OPE estimators that do not use counterfactual annotations
(IS, DM, and DR (which we refer to as DM-IS)) and IST, which uses counterfactual annotations. We also
compare to a direct method estimator that estimates the reward model using the counterfactual-annotated
dataset, defined as VPM" = S, do(s) S, melals)RT (s, a).

4.2 Results

4.2.1 Imperfect annotations and
well-specified reward models

Biased annotations affect the RMSE of OPE estimators more than higher variance annotations.
First, we examine the impact of biased and noisy annotations under a well-specified reward model. Focusing
on the two context bandit setting, we demonstrate that biased annotations have a greater effect on the
RMSE of the proposed estimators than noisy annotations (Figure 2). Error metrics for this setting are
provided in Appendix B.1. While Figure 2 reports only the proposed OPE methods, this trend holds across
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empirically, we find that this increase is not substan-

tial.

Figure 2: Heatmaps of mean RMSE with a well-
specified reward model on Two-Context Bandit
4.2.2  Imperfect (lower RMSE is represented lighter): The bias of
annotations and misspecified reward models the counterfactual annotations has a larger impact on
RMSE than the variance. The x, y-axis represents the
variance (A¢g) and the bias (eg) of the annotations,
respectively. The RMSE hardly varies across the x-axis,
but increases proportionally to the magnitude of the
annotation bias. This trend is particularly noticeable
in DM-IS* and DM*-IS*. The RMSE of DM*-IS is
far more consistent regardless of the annotation bias
and variance.

In many realistic settings, such as those involving
clinical data, we are likely to have both a misspec-
ified reward model and imperfect annotations. Our
results demonstrate that, across all synthetic
datasets, DM™-IS is most robust to these two
sources of error. Intuition suggests that, under a
misspecified reward model, DM and DM will suf-
fer, since a misspecified reward violates the accurate
model assumption (Dudik et al., 2011). However, a misspecified reward model should not substantially affect
any of the approaches that uses the DR principle, because these estimators can rely on the their IS component
to still produce favorable results.

In Section 4.2.1, we noted that the annotation variance does not highly impact the RMSE of the proposed
estimators. Thus, we focus on the effect of biased annotations in this set of results. We report mean RMSE
across all three synthetic environments with varying degrees of annotation bias. Error metrics are available
in Appendix B.2. Our results show that DMT-IS is most resilient to the compounding errors from both
imperfect annotations and a misspecified reward model (Figure 3), showing the lowest RMSE across all
magnitudes of annotation bias. Across all synthetic domains, we see that DM™-IS consistently has either the
lowest RMSE, or performs comparably to the best performing method. We hypothesize that this is because
DMT-IS is the only proposed estimator that is unbiased in the presence of imperfect annotations, and does
not suffer from a misspecified reward model due to its DR properties.

4.3 DM*-IS outperforms baselines on MIMIC-1V data

Finally, we evaluate our methods using offline data from MIMIC-IV. With 100 counterfactual annotations, we
find that DM™-IS outperforms all baselines (Figure 4a). Notably, IST exhibits the highest error, suggesting
that the counterfactual annotations may be imperfect. The relatively small difference in performance between
DM™ and DM*-IS implies that the estimated reward model is reasonably accurate. We also examine how the
performance of key OPE estimators varies as the number of counterfactual annotations increases (Figure 4b).
While the RMSE of DM-IST and DM™-IST remains high with additional annotations—indicating that the
incorporation of imperfect annotations introduces bias—the RMSE of DM™T-IS initially decreases and then
plateaus. These trends are consistent with our observations in the synthetic experiments (Figures 2 and 3).

5 Selecting an OPE Estimator

As discussed in Section 4.2, we find the choice of OPE estimator depends most on (1) whether the reward
model is misspecified, and (2) the bias of the counterfactual annotations. In the case that the reward model
and annotation quality are known, our recommendations are summarized in Figure 5. The empirical results
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Figure 3: Heatmaps of mean RMSE with a misspecified reward model and imperfect annotations
(lower RMSE is represented lighter): The x-axis represents annotation bias, eg. Across all datasets (two
context results reported in Appendix B), DM*-IS performs either better than all baselines, or comparably
to the best-performing baseline. Among all methods that use counterfactual annotations, DM™-IS is most
robust to biased annotations and a misspecified reward model. In comparison to baselines that do not use

counterfactual annotations, DM™-IS frequently produces a lower RMSE.
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(a) DM*-IS outperforms all estimators with 100 counter-
factual annotations. Error bars represent 95% confidence
intervals, and DM™-IS outperforms baselines with no
overlapping intervals.
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(b) As the number of counterfactual annotations increases,
the performance of DM™-IS initially improves and then
stays consistent. Error bars represent 95% confidence
intervals.

Figure 4: DM*-IS performs best on MIMIC-IV, a setting where annotations are likely imperfect.

reported in the main text focus on the misspecified reward model and imperfect annotations case; we report
results supporting the other three settings in Appendix B.1 and Appendix B.2. However, in the vast majority
of real-world settings, the reward model and annotation quality are unknown a priori. In these settings, we
recommend using DMT-IS, which is most robust to the compounding errors from imperfect annotations and
a misspecified reward model (Figure 3). Particularly, any further use of imperfect annotations (such as in the
IS part), can lead to larger compounding errors.

To further emphasize the utility of DM™T-IS, we explore the consequences of choosing DM™-IS when both the
annotation and reward model quality is unknown in the sepsis treatment environment (Appendix Figure 8).
Our results indicate that choosing DMT-IS regardless of annotation or reward model quality will provide
OPE estimates that are within a small margin of the best possible OPE method. The best performing OPE
method is either DM or DM* (according to Figure 5), both with a well-specified reward model. A, the
difference between the DM™-IS estimate and the DM or DM™ estimate (depending on annotation quality) is
small relative to the range of possible reward in the environment. That is, DMT-IS produces estimates of
v(m.) that are close to those of the best performing OPE method. This result suggests that, in a setting
where it is difficult to assess reward model or annotation quality, DM™'-IS is the natural choice.
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6 Conclusion

.In this work, we address the ope’n prf)blem of mcorpc?ratmg : © Well-Specified : [ Misspecified
imperfect counterfactual annotations into an OPE estimator : : Reward : Reward

and present a practical guide fOI‘ their integration. We SyS-

tematically explore various design options for incorporating Ani(e):f;:(i:;ns DM+ DM*-IS+
annOtationS into a DR_baSed OPE eStimator, and We ﬁnd that ...............................................................
imperfect counterfactual annotations are most beneficial when — :

mperne : DM © DM*IS

incorporated into the DM part of a DR estimator. Through :| Annotations  : _ .
comprehensive theoretical analyses and empirical evaluations, ©.....cocoooooninis R P :
we find that selecting the best OPE method hinges on two
critical factors: (1) whether the reward model is well-specified,
and (2) the annotation quality. We conclude that, under the
most realistic conditions (i.e., a misspecified reward model and
imperfect annotations), our DM™-IS estimator is most robust.

Figure 5: Lookup table capturing the
practical considerations when choos-
ing an OPE estimator: The most criti-
cal factors include (1) whether the reward
model is well-specified and (2) the quality of
Limitations and Future Work. This work focuses on the the annotations. If these factors are known
contextual bandit setting, with future directions including ex- a priori, the best OPE estimator can be eas-
tensions to the MDP setting. Additionally, this work considers a ily identified.

subset of possible reward function parameterizations. A promis-

ing avenue for future work includes optimizing the use of a limited budget of counterfactual annotations to
improve OPE performance. Overall, our approach relaxes restrictive assumptions about annotation quality,
enabling more practical use of bandit algorithms in high-stakes applications.
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