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ABSTRACT

In this paper, we propose Singular Values and Orthonormal Regularized Sin-
gular Vectors Adaptation, or SORSA, a novel PEFT method. Each SORSA
adapter consists of two main parts: trainable principal singular weights Wp =
Updiag(Sp)V

⊤
p , and frozen residual weights Wr = Urdiag(Sr)V

⊤
r . These parts

are initialized by performing singular value decomposition (SVD) on pre-trained
weights. Moreover, we implement and analyze an orthonormal regularizer, which
we prove could decrease the condition number of Wp and make the optimization
more efficient. SORSA adapters could be merged during inference, thus eliminat-
ing any inference latency. We also introduce a method to analyze the variation of
the parameters by performing SVD and discuss and analyze SORSA’s superiority
in minimizing the alteration in the SVD aspect. After all, SORSA shows a faster
convergence than LoRA and PiSSA in our experiments. On the GSM-8K bench-
mark, Llama 2 7B adapted using SORSA achieved 56.03% accuracy, surpassing
LoRA (42.30%), AdaLoRA (47.30%), Full FT (49.05%), and PiSSA (53.07%).
On the MATH benchmark, SORSA achieved 10.36% accuracy, outperforming
LoRA (5.50%), AdaLoRA (6.48%), Full FT (7.22%), and PiSSA (7.44%). We
conclude that SORSA offers a new perspective on parameter-efficient fine-tuning,
demonstrating remarkable performance.

Pre-trained
Weight

SVD
(Initialize)

Orthonormal
Regularization

Figure 1: Architecture of a SORSA adapter. We only train parts rendered in orange (Up, diag(Sp)
and V ⊤

p ), and freeze parts rendered in blue (Ur, diag(Sr) and V ⊤
r ).
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1 INTRODUCTION

Pre-trained large language models (LLMs) show remarkable generalization abilities, allowing them
to perform various kinds of natural language processing (NLP) tasks (Peng et al., 2024; Touvron
et al., 2023; Dubey et al., 2024; Radford et al., 2019; OpenAI, 2023). For specific downstream
tasks, full parameter fine-tuning, which continues training all parameters of LLMs on downstream
data, is widely used.

However, as the number of parameters in LLMs rapidly increases, full parameter fine-tuning be-
comes increasingly inefficient. For example, the estimated VRAM requirement for fully fine-tuning
Llama 2 7B using Float32 could approach approximately 100 GB, making it unlikely to fully fine-
tune the model on a single GPU with current technology. Additionally, the VRAM requirement for
fully fine-tuning Llama 2 70B using Float32 exceeds 1 TB (Touvron et al., 2023; Anthony et al.,
2023), thus rendering it unfeasible on a single GPU with current technology.

To address these challenges, several parameter-efficient fine-tuning (PEFT) methods (Houlsby et al.,
2019; Lester et al., 2021; Hu et al., 2021) have been proposed. These methods enable the training of
only a few parameters, significantly reducing VRAM requirements while achieving comparable or
even superior performance to full fine-tuning. For instance, tuning Llama 2 7B in Float32 by LoRA
(Hu et al., 2021) with a rank of 128 only takes approximately 60GB VRAM, which allows training
on 1 × NVIDIA A100 (80GB), or even 3 × NVIDIA RTX 4090 (24GB).

Among those PEFT methods, LoRA (Hu et al., 2021) and its variants (Zhang et al., 2023; Meng
et al., 2024; Liu et al., 2024; Dettmers et al., 2024) had become increasingly popular due to their: 1.
Low training VRAM requirement 2. No inference latency 3. Versatility in different neuron network
architectures.

This paper proposes a novel PEFT approach, Singular Values and Orthonormal Regularized Singular
Vectors Adaptation, or SORSA. A SORSA adapter has two main parts: principal singular weights
Wp = Updiag(Sp)V

⊤
p , and residual weights Wr = Urdiag(Sr)V

⊤
r . These two parts are initialized

by performing singular value decomposition (SVD) on pre-trained weight. Residual singular values
and vectors will be merged into one matrix and frozen while training. We only train principal
singular values and vectors with an orthonormal regularizer implemented to keep the orthonormality
of Up and V ⊤

p . The architecture of a SORSA adapter is illustrated in Figure 1.

Furthermore, we analyze the pattern of variation of singular values and vectors during parameter
updating and discuss the different patterns of fine-tuning (FT), LoRA, SORSA without regularizer,
and SORSA with regularizer concerning singular values and vectors’ updating.

We also provide a comprehensive gradient analysis with a mathematical foundation for SORSA.
This analysis demonstrates several crucial properties of our method, including the convexity of the
regularizer, Lipschitz continuity of the gradient, and bounds on the hyperparameter γ. Moreover,
we prove that SORSA improves the condition number of the optimization problem compared to
unregularized approaches.

SORSA retains all the benefits of LoRA and its variants while demonstrating remarkable perfor-
mance compared to PiSSA, LoRA, and full parameter fine-tuning in our experiments.

2 RELATED WORKS

Parameter-efficient fine-tuning (PEFT) methods have been developed to address the inefficiency of
full parameter fine-tuning for large language models. These methods focus on adapting the model for
downstream tasks while updating only a few parameters and keeping most of the model’s weights
frozen. This approach significantly reduces the memory and computational requirements during
training, especially VRAM.

2.1 ADAPTER-BASED PEFT

Adapter-based PEFT methods are the first type of PEFT initially designed by Houlsby et al. (2019).
It introduces additional trainable non-linear blocks into the frozen pre-trained model, which could
effectively tune the pre-trained model with a limited amount of trainable parameters. Its variants,
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e.g., Lin et al. (2020), reduce the number of adapter layers per block, and He et al. (2022) focus
on adding adapter modules parallel to existing layers. However, all adapter-based PEFT methods
introduce inference latency due to their non-mergeable attribute.

2.2 PROMPT-BASED PEFT

Prompt-based PEFT is a well-known PEFT type first proposed in Lester et al. (2021). This work
has several variants, including Liu et al. (2022a); Razdaibiedina et al. (2023). However, they have
some inevitable shortcomings, such as potential performance limitations compared to full parameter
fine-tuned models, additional inference latency due to expanding the length of the total input to the
model, and the complexity of designing effective initialization.

2.3 LORA AND ITS VARIANTS

LoRA (Hu et al., 2021) and its variants are the most popular type of PEFT methods. This type
of PEFT is popular due to its on-par or better performance than full parameter fine-tuning without
introducing any inference latency. LoRA could be represented by equation W = W0 +BA, where
W0 ∈ Rm×n is the pre-trained weight, A ∈ Rm×r, using Gaussian initialization, and B ∈ Rr×n,
using zero initialization, are low-rank matrices.

Its variant, for example, AdaLoRA (Zhang et al., 2023), introduces an SVD decomposition and
pruning for least significant singular values for more efficient parameter updating.

DoRA (Liu et al., 2024) proposed a novel way to decompose weight into direction and magnitude by
W = m W0+BA

∥W0+BA∥c
, where m is initialized by m = ∥W0+BA∥c, ∥ · ∥c denotes column-wise norm.

The results show that DoRA has a better learning capacity than LoRA. However, DoRA introduced
a calculation of norms in every training step, which makes it much more inefficient than LoRA.

OLoRA (Büyükakyüz, 2024) uses QR decomposition to initialize the LoRA adapters A and B,
which initializes B as an orthogonal matrix. They discuss the significance of orthonormality in neu-
ral networks’ weight (See Section 5 for more details). In their experiments, OLoRA demonstrates
faster convergence than LoRA.

PiSSA (Meng et al., 2024) decomposes pre-trained weight W0 = Udiag(S)V ⊤ by Singular Value
Decomposition (SVD) and then splits W0 into Wpri and Wres: Wpri = AB which is trainable.

Using PyTorch (Paszke et al., 2019) split notation, A and B are defined by A = U[:,:r]diag(S
1
2

[:r])

and B = diag(S
1
2

[:r])V
⊤
[:r,:]; Wres = U[:,r:]diag(S[r:])V

⊤
[r:,:] which is frozen. PiSSA results in a faster

convergence speed and better fitting than LoRA.

SORSA’s architecture is similar to PiSSA, which conducts SVD and replaces pre-trained weights
with residual singular weights. SORSA also adopted the regularizer present in AdaLoRA. In general,
SORSA inherits LoRA and its variants’ benefits, including low training VRAM requirement, no
inference burden, and versatility in different architectures.

2.4 OTHER METHODS

There are also a few efficient adapting methods with unique techniques. For example, GaLore (Zhao
et al., 2024) is a memory-efficient PEFT method that reduces VRAM usage by leveraging gradient
accumulation and low-rank approximation. LISA (Pan et al., 2024) uses a layer-wise importance
sampling approach, prioritizing layers significantly impacting model performance and selectively
fine-tuning essential parameters.

3 SORSA: SINGULAR VALUE AND ORTHONORMAL REGULARIZED
SINGULAR VECTOR ADAPTATION

Giving a matrix W ∈ Rm×n, let k = min(m,n), we could perform SVD to decompose W by
W = Udiag(S)V ⊤. Here, U ∈ Rm×k is a matrix of left singular vectors and has orthonormal
columns, V ∈ Rn×k is a matrix of right singular vectors and has orthonormal columns, and S ∈ Rk

3
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are singular values σ1, σ2 . . . σk arranged in descending order. diag(S) is constructed by placing the
elements of S ∈ Rk along the main diagonal, with all other elements zero.

According to our SVD notations, given a rank r where r ≪ k, we could perform the low-rank
approximation by selecting the first r items on the diagonal of Σ, which is the first r most significant
singular values, and also select the first r columns of U and first r rows of V ⊤, which correspond
to the selected singular values. By performing SVD low-rank approximation, we could get a low-
rank matrix that preserves the largest significant values and vectors, containing the matrix’s “most
essential” data.

Therefore, for a pre-trained weight W0 ∈ Rm×n, we could split it based on its singular value
into principal weight Wp and residual weight Wr, where Wp contains the most important part of
information of the matrix, and Wr contains the least significant part

Wp = U[:,:r]diag(S[:r])V
⊤
[:r,:] ∈ Rm×n; (1)

Wr = U[:,r:]diag(S[r:])V
⊤
[r:,:] ∈ Rm×n. (2)

Here, U represents the matrix of left singular vectors, S represents the singular values, diag(W )
denotes a function to form a diagonal matrix from W , and V represents the matrix of right singular
vectors. We use PyTorch (Paszke et al., 2019) syntax to demonstrate matrix selection, where [:, : r]
denotes selecting the first r columns of the matrix, and [r :, :] denotes selecting the last r rows of the
matrix. We rewrite U[:,:r], S[:r] and V ⊤

[:r,:], which constitute Wp, as Up, Sp and V ⊤
p for simplicity,

and rewrite U[:,r:], S[:r] and V ⊤
[r:,:], which constitute Wr, as Ur, Sr and V ⊤

r correspondingly.

The initialization of Wr in SORSA is the same as PiSSA (Meng et al., 2024). Nevertheless, un-
like PiSSA which merge diag(Sp) with Up and V ⊤

p into A and B by A = Updiag(Sp)
1
2 and

B = diag(Sp)
1
2V ⊤

p , SORSA remains Up, Sp, and V ⊤
p in separate matrices. SORSA is defined

by Equation (3), initially equivalent to the pre-trained weight W0.

During training, Wr remains frozen, and only Up, Sp, and V ⊤
p are updated.

SORSA is defined as

SORSA(x) := x(Wr +Wp) = xWr + xUpdiag(Sp)V
⊤
p . (3)

In our implementation, we use an optimized version of the SORSA equation, which results in a
much faster computation speed. See Appendix A for more details.

We adopt an orthonormal regularizer similar to (Zhang et al., 2023) for Up and V ⊤
p

Lreg = ∥U⊤
p Up − I∥F + ∥V ⊤

p Vp − I∥F , (4)

where Lreg is the orthonormal regularizer loss, the Up and V ⊤
p are each orthonormal vectors in

columns and rows, respectively, after initialization due to SVD’s property. The regularizer could
enhance their orthonormality during training. We discuss and verify its importance and effectiveness
in Sections 4 and 5.

Therefore, parameter updating of Wp in a SORSA adapter at training step t could be expressed as:

Wp,t+1 =Wp,t − ηt∇Wp,t
Ltrain − γt∇Wp,t

Lreg. (5)

At training step t, ∇Wp,tLtrain denotes the gradient of Ltrain respect to Wp,t, and ∇Wp,tLreg

denotes the gradient of the orthonormal regularizer loss Lreg respect to Wp,t. ηt and γt are the
learning rates for training loss and regularizer loss at step t, respectively.

We update the SORSA as the following for implementation simplicity

Wp,t+1 =Wp,t − ηt

(
∇Wp,tLtrain +

γ

ηd
∇Wp,tLreg

)
, (6)

ηd is the maximum learning rate from the scheduler. This implementation allows us to use only one
optimizer and scheduler to deal with two different learning rates separately.

4
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4 SINGULAR VALUES AND VECTOR ANALYSIS

4.1 ANALYSIS METHOD

The study of DoRA (Liu et al., 2024) introduces an analysis method that focuses on the deviation
of magnitude and direction (∆M,∆D) during training of full parameter fine-tuning and LoRA (Hu
et al., 2021). They discovered that the distinction between full parameter fine-tuning and LoRA
likely affects their learning ability difference. Inspired by their methods, we propose a novel tech-
nique that analyzes the correlation between the deviation of singular values (∆Σ) and singular vec-
tors (∆D) from pre-trained matrices during updating. Our analysis suggests a significant difference
in singular values and vectors’ stability and an updating pattern of fine-tuning, LoRA, and SORSA.

The singular value and vector variations between pre-trained weight W0 ∈ Rm×n and tuned weight
Wt ∈ Rm×n, which t denotes the training step, could be defined as follows

∆Σt =
Σk

i=1

∣∣σi
t − σi

0

∣∣
k

, (7)

where ∆Σt represents the singular value difference between W0 and Wt at training step t. σi
t

denotes the i-th element in diagonal of Σt, where Σt is decomposed from Wt by performing SVD,
k = min(m,n),

∆Ut,j =
∣∣∣⟨uj

t ,u
j
0⟩
∣∣∣ ; (8)

∆V ⊤
t,i =

∣∣⟨vi
t,v

i
0⟩
∣∣ ; (9)

∆Dt = 1− 1

2k

k∑
i=0

(∆Ut,i +∆V ⊤
t,i). (10)

Here, k = min(m,n); uj
t denotes the j-th column vector of matrix Ut, and vi

t denotes the i-th row
vector of matrix V ⊤

t ; ∆Dt ∈ (0, 1) represents variation of singular vectors between W0 and Wt at
training step t; Ut and V ⊤

t are decomposed from Wt by performing SVD.

We adopt the analysis on Llama 2 7B (Touvron et al., 2023) using the first 100K data of Meta-
MathQA (Yu et al., 2024). We test fine-tuning, LoRA, and SORSA (with and without regularizer).
See Appendix B.1 for training details of the analysis.

4.2 ANALYSIS RESULT

Based on our collected data, this section analyzes the results of different training methods: fine-
tuning, LoRA, and SORSA. The analysis data is illustrated in Figure 2.

Based on our collected data, we analyze how different training methods - partial fine-tuning, LoRA,
and SORSA (with and without regularizer) - affect the pre-trained weights’ structure and information
preservation.

The analysis reveals several key insights about how these methods interact with the pre-trained
knowledge:

1. Partial fine-tuning and LoRA show substantial alterations in singular vectors (large ∆D),
indicating significant disruption to the fundamental structure of the pre-trained weights.
This extensive modification likely damages the model’s carefully learned generalizations
across multiple domains, leading to catastrophic forgetting. The parallel updating patterns
across different layers suggest these methods make broad, potentially destructive changes
throughout the model rather than targeted adaptations.

2. SORSA with regularizer demonstrates significantly smaller changes in both singular values
(∆Σ) and singular vectors (∆D) compared to other methods. This controlled modification
suggests that SORSA better preserves the pre-trained model’s underlying knowledge struc-
ture while making precise adjustments for the downstream task. The orthonormal regular-
izer appears to act as a constraint that helps maintain the original geometric relationships
within the weight matrices that encode the model’s generalized capabilities.

5
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Figure 2: ∆D and ∆Σ of each trainable parameters during training steps. Numbers in the plot
represent layer of the weight. Dots represent mean ∆D and ∆Σ at specific step.

3. Different matrices in SORSA show distinct, non-parallel updating patterns, unlike the uni-
form changes seen in other methods. This suggests SORSA can identify and selectively
modify the most relevant components for the target task while leaving other capabilities
largely intact. This targeted adaptation explains why SORSA can achieve better perfor-
mance with less disruption to the model’s general knowledge.

4. When SORSA is used without the orthonormal regularizer, we observe larger changes in
both ∆D and ∆Σ, along with more uniform updating patterns similar to LoRA and partial
fine-tuning. This empirically validates the regularizer’s crucial role in preserving the pre-
trained model’s information structure while allowing efficient adaptation.

These patterns indicate SORSA’s ability to preserve the rich, generalized knowledge embedded
in pre-trained weights while making precise adjustments for specific tasks. This property enables
higher learning rates without over-fitting and explains SORSA’s improved performance across vari-
ous benchmarks. The method’s ability to maintain the model’s fundamental structure while allowing
targeted modifications represents a significant advance in efficient model adaptation.

5 GRADIENT ANALYSIS

In this section, we present a comprehensive mathematical analysis of the SORSA method, which
mainly focuses on the effect of orthonormal regularization. Our investigation elucidates the funda-
mental optimization properties of SORSA, providing a theoretical foundation for its advantages. We
explore four critical aspects: the convexity of the regularizer, the Lipschitz continuity of the gradi-
ent, bounds on the hyperparameter γ, and the impact on the condition number of the optimization
problem.

The proofs of the theorems and lemmas and additional mathematical details are provided in Ap-
pendix C.

6
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Our analysis reveals the fundamental theoretical properties of SORSA, establishing its mathematical
soundness and demonstrating its optimization advantages. We prove two key theorems that form the
cornerstone of our theoretical framework.
Theorem 5.1. The regularizer Lreg is convex.

Theorem 5.2. The gradient of the regularizer Lreg is Lipschitz continuous.

Building upon these foundational results, we further analyze the bounds of the hyperparameter γ, a
critical factor in the performance of SORSA:
Theorem 5.3. For convergence of gradient descent, the learning rate ηd and regularization param-
eter γ should

γ ∝ 1

ηd
. (11)

This theorem provides crucial guidance for practitioners, offering an explicit criterion for selecting
appropriate values of γ to ensure convergence of the gradient descent process.

To demonstrate SORSA’s superior optimization properties, we present a novel analysis of condition
numbers during the optimization process, a critical factor in determining convergence speed and
stability. Our theoretical investigation reveals a significant improvement in the condition number
compared to unregularized approaches, providing a mathematical foundation for SORSA’s enhanced
performance.

We begin this analysis by establishing a key lemma that bounds the effect of the orthonormal regu-
larizer on the singular values of the weight matrix:
Lemma 5.4. Let W unreg

p = U unreg
p diag(Sp)

unreg(V unreg
p )⊤ be the Wp only training without using

regularizer, and W reg
p = U reg

p diag(Sp)
reg(V reg

p )⊤ be the Wp training with the regularizer. For each
singular value σi, the following bound holds:

(1− ϵ)σunreg
i ≤ σreg

i ≤ (1 + ϵ)σunreg
i , (12)

where ϵ is a small positive constant, σreg
i and σunreg

i are singular values in the case of training with
and without regularizer, respectively.

Lemma 5.4 provides a crucial connection between the regularizer and the singular values. Building
on this result, we arrive at our main theorem regarding the condition number:
Theorem 5.5. The orthonormal regularizer in SORSA can improve the condition number of the
optimization problem throughout training under certain conditions. Specifically, at initialization
(t = 0):

κ(W reg
p,0) = κ(W unreg

p,0 ), (13)

where κ(Wp) denotes the condition number of Wp; W reg
p,t and W unreg

p,t represent Wp at time-step t in
the case of training with or without regularizer, respectively.

∃c > 0, while t > c,

κ(W reg
p,t) < κ(W unreg

p,t ). (14)

This theorem quantifies the improvement in the condition number achieved by SORSA, offering an
explanation for its fast convergence. The proof leverages the effects of the orthonormal regulariza-
tion to establish a tight bound on the condition number ratio. This theorem could also show that
training with the regularizer, the distribution of Wp will be more evenly distributed due to a smaller
ratio between σmax(Wp) and σmin(Wp), which means better training stability.

Moreover, as mentioned in Büyükakyüz (2024), orthonormal matrices in neuron networks could
improve gradient flow (Saxe et al., 2014; Arjovsky et al., 2016) and enhanced optimization landscape
(Huang et al., 2018; Wisdom et al., 2016), which could also explain SORSA’s superior performance
in convergence.

In conclusion, these theorems provide a mathematical foundation for the SORSA method. These
theoretical guarantees validate SORSA’s empirical success and provide valuable insights for future
developments in PEFT methods.

7
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6 EMPIRICAL EXPERIMENTS

We conducted comparative experiments on different NLP tasks, including natural language genera-
tion (NLG) between SORSA, PiSSA (Meng et al., 2024), LoRA (Hu et al., 2021), and full parameter
fine-tuning.

We conducted NLG tests on Llama 2 7B (Touvron et al., 2023), RWKV6 7B (Peng et al., 2024),
Mistral 7B v0.1 (Jiang et al., 2023) Gemma 7B (Gemma Team et al., 2024). We trained the models
using the first 100K data in MetaMathQA (Yu et al., 2024) and evaluated the model on GSM-8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). We also trained the model on the first
100K data in CodeFeedback Filtered Instruction (Zheng et al., 2024) dataset and evaluated it on
HumanEval (Chen et al., 2021). The training process followed identical setups as the experiments
conducted in PiSSA (Meng et al., 2024). All reported values are accuracy in percentage. See
Appendix B.2 for more details and hyperparameters of the training. We quoted some PiSSA, LoRA,
and full parameter fine-tuning results from Meng et al. (2024). Some of our experiments were
conducted on a single NVIDIA A100-SXM4 (80GB) GPU, and others were conducted on a single
NVIDIA H100-SXM4 (80GB) GPU. See Table 1 for the results and Figure 3 for the loss and gradient
norm comparison.

Model Method Trainable
Parameters GSM-8K MATH HumanEval

Llama 2 7B

Full FT 6738M 49.05† 7.22† 21.34†

LoRA 320M 42.30† 5.50† 18.29†

PiSSA 320M 53.07† 7.44† 21.95†

AdaLoRA 320M 47.30 6.48 19.51
SORSA 320M 56.03 10.36 24.39

RWKV6 7B

LoRA 176M 8.041 7.38 15.24
PiSSA 176M 32.07 9.42 17.07
AdaLoRA 176M 33.28 8.08 15.85
SORSA 176M 45.87 11.32 22.56

Mistral 7B

Full FT 7242M 67.02† 18.60† 45.12†

LoRA 168M 67.70† 19.68† 43.90†

PiSSA 168M 72.86† 21.54† 46.95†

AdaLoRA 168M 72.25 21.06 45.73
SORSA 168M 73.09 21.86 47.56

Gemma 7B

Full FT 8538M 71.34† 22.74† 46.95†

LoRA 200M 74.90† 31.28† 53.66†

PiSSA 200M 77.94† 31.94 † 54.27†

AdaLoRA 200M 78.99 31.44 55.49
SORSA 200M 78.09 29.52 55.49

Table 1: Comparing SORSA with other methods on NLG tasks. † denotes results from Meng et al.
(2024).

The results showed that across all models tested, SORSA generally outperformed other methods,
though with some notable exceptions. For mathematical evaluations on Llama 2 7B, SORSA scored
56.03% on GSM-8K and 10.36% on MATH, significantly outperforming other methods. For the
RWKV6 7B model, SORSA achieved 45.87% accuracy on GSM-8K and 11.32% on MATH, sur-
passing both PiSSA and AdaLoRA, with AdaLoRA showing competitive performance on GSM-8K
at 33.28%. On Mistral 7B, SORSA reached 73.09% on GSM-8K and 21.86% on MATH, showing
modest improvements over AdaLoRA’s strong performance of 72.25% and 21.06%, respectively.
With Gemma 7B, the results were mixed - while AdaLoRA achieved the highest GSM-8K score at
78.99% and competitive MATH performance at 31.44%, SORSA maintained strong performance
with 78.09% on GSM-8K. However, its MATH score of 29.52% was lower than other methods. In

1This significant under-perform due to LoRA failed to learn the GSM-8K required answer formatting be-
havior.
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Figure 3: The training loss and gradient norm comparison between SORSA, PiSSA, and LoRA on
MetaMathQA training of RWKV6 7B and Llama 2 7B. LoRA and PiSSA curves of Llama 2 7B are
from Meng et al. (2024).

coding evaluations, SORSA and AdaLoRA showed strong performance on HumanEval, with both
methods achieving 55.49% on Gemma 7B, while SORSA maintained an edge across other model
variants. Additionally, we did not include loss and gradient norm curves in our figure because the
regularizer in AdaLoRA and Gaussian initialization caused significantly higher initial loss values,
making direct comparisons with other methods inappropriate.

The Figure 3 reveals that SORSA and PiSSA exhibit nearly identical loss curves at the beginning
and even slightly higher than PiSSA on RWKV-6 training. However, when the training step is
approximately t > 300, SORSA steadily decreases its loss. In contrast, LoRA and PiSSA show a
deceleration in their loss reduction. The observations on loss curves are also valid for the changing
rate of gradient norm, where SORSA showed a more consistent decrease in gradient norm compared
to LoRA and PiSSA. This supports Theorem 5.5, especially at later stages of training.

However, due to the limitation of computing resources, we only trained and benchmarked a small
number of tasks.

7 CONCLUSION

In this paper, we introduced SORSA, a novel parameter-efficient fine-tuning (PEFT) method de-
signed to enhance the adaptation of large language models (LLMs) for downstream tasks. SORSA
utilizes singular value decomposition (SVD) to split pre-trained weights into principal and residual
components, only training the principal singular values and vectors while freezing the residuals. We
implemented an orthonormal regularizer to maintain the orthonormality of singular vectors during
training, ensuring efficient parameter updates and preserving the integrity of singular values.

Our experiments demonstrated that SORSA outperforms existing PEFT methods, such as LoRA
and PiSSA, in both convergence speed and accuracy on the NLG tasks. Specifically, Llama 2 7B,
tuned with SORSA, achieved significant improvements in the GSM-8K and MATH benchmarks,
highlighting the effectiveness of our approach.

We adopted singular values and vector analysis, comparing SORSA with FT and LoRA. SORSA
is superior in preserving the pre-trained weight’s singular values and vectors during training. This
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suggests an explanation for SORSA’s supreme performance demonstrated in the experiment. We
also show the significance of the orthonormal regularizer through analysis.

Our gradient analysis provided a mathematical foundation for SORSA, demonstrating its convexity,
Lipschitz continuity, and the crucial role of the regularizer in improving the optimization landscape.
This theoretical framework explains SORSA’s empirical superior performance and offers valuable
insights for future developments in adaptive learning algorithms.

SORSA retains the advantages of LoRA and variants, including low training VRAM requirements,
no inference latency, and versatility across different neural network architectures. By offering a
more efficient fine-tuning mechanism, SORSA presents a promising direction for future research
and application in the field of LLMs.

Overall, SORSA gives a new perspective on parameter-efficient fine-tuning, showcasing exceptional
efficiency and robust performance. It outperforms existing methods like LoRA and PiSSA in sev-
eral downstream tasks and maintains the practical benefits of low VRAM requirements, no inference
latency, and ease of implementation. This innovative approach offers a promising direction of sin-
gular values and vector analysis for future research and practical applications in adapting pre-trained
models, making it a pivotal development in the field.

8 FUTURE WORK

While SORSA demonstrates improvements over existing PEFT methods, several promising direc-
tions for future research exist to enhance its capabilities and broaden its impact.

A crucial area for exploration is the application of SORSA beyond natural language processing.
While our current evaluation focuses on language models, SORSA’s theoretical foundation in sin-
gular value decomposition suggests it could be equally effective for computer vision models like Ho
et al. (2020); Liu et al. (2022b); Dosovitskiy et al. (2021); Rombach et al. (2022) and multi-modal
architectures such as (Radford et al., 2021). Future work should evaluate SORSA’s performance on
vision transformers, convolutional neural networks, and other architectures across diverse tasks like
image classification, object detection, and semantic segmentation. This extended evaluation across
different domains would provide valuable insights into SORSA’s versatility and potentially uncover
domain-specific optimizations.

Another compelling direction is the integration of quantization techniques with SORSA, similar
to approaches like QLoRA (Dettmers et al., 2024) and QPiSSA (Meng et al., 2024). Quantiza-
tion could significantly reduce SORSA’s memory footprint and computational requirements while
maintaining its efficient adaptation capabilities. This would be particularly valuable for deploying
adapted models on edge devices and resource-constrained environments. By combining SORSA’s
precise parameter updates with the efficiency gains of quantization, we could enable high-quality
model adaptation across a much broader range of hardware configurations. This democratization of
fine-tuning capabilities could accelerate the adoption of AI technologies in real-world applications,
from mobile devices to IoT systems.

By pursuing these research directions, we can build upon SORSA’s theoretical foundations to create
more versatile and accessible model adaptation techniques. Success in these areas would not only
advance the field of parameter-efficient fine-tuning but also help bridge the gap between state-of-the-
art AI models and practical applications. This could ultimately lead to more widespread integration
of adaptive AI systems across different sectors of society, making advanced machine learning capa-
bilities more accessible and impactful in people’s daily lives.

ETHICS STATEMENT

In this paper, we introduce an innovative PEFT method in machine learning. Our approach signifi-
cantly streamlined the model’s tuning process, particularly for large-scale models, addressing both
computational efficiency and environmental sustainability. As we push the boundaries of what is
possible with Machine Learning, it is essential to consider the broader impacts of these advance-
ments on the environment and ethical standards within the field.
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Environmental Impact. Our experiments found that adapting with SORSA could reduce VRAM
consumption by up to 80%. This significant reduction in hardware resource requirements also sug-
gests less energy consumption than entire parameter fine-tuning methods. By enhancing efficiency,
our approach could significantly reduce the carbon footprint of Machine Learning operations.

Ethical Concerns. The PEFT method, while efficient, raises critical ethical concerns regarding the
security of built-in safety measures in AI models. As demonstrated in Lermen & Rogers-Smith
(2024), subversive fine-tuning techniques can bypass safety training intended to prevent the gener-
ation of harmful content. The ease and affordability of such methods underscore the vulnerability
of safety protocols. It is imperative to develop robust safeguards that keep pace with technological
advancements, ensuring that efficiency gains in model tuning do not compromise the ethical use of
AI.
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A FASTER SORSA ADAPTERS

According to the definition of SORSA from Equation (3), because diag(Sp) is always a diagonal
matrix, it is equivalent to:

SORSA(x) = xWr + x(Up ⊙ Sp)V
⊤
p , (15)

where ⊙ denotes element-wise multiplication.

This transformation allows us to reduce the computational complexity of SORSA adapters. In the
original form, we had to perform matrix multiplication twice. However, in the Equation (15), we
only have one matrix multiplication and one element-wise multiplication. The time complexity of
Up ⊙ Sp is O(m× n), much less than complexity of UpSp, which is O(m× n2). Therefore, while
limm,n→∞, the computation speed of SORSA adapters will be the same as LoRA and PiSSA.

We performed a benchmark using PyTorch (Paszke et al., 2019) on an NVIDIA H100 SXM4 (80GB)
GPU backed with CUDA and Apple M2 Pro CPU to test the computation time between these two
methods. See Figure 4 to see our results.
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Figure 4: Benchmark between two equations of SORSA
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B EXPERIMENTS DETAILS

B.1 ANALYSIS

For the singular values and vectors analysis in Section 4, we applied fine-tuning, LoRA and SORSA
(with and without orthonormal regularizer) on Llama 2 7B (Touvron et al., 2023) model, training
with the first 100K data in MetaMathQA (Yu et al., 2024) dataset. We only calculated the loss on the
response part. The models are trained with TF32 & BF16 (Wang & Kanwar, 2019) mix precision.
See Table 2 for hyperparameters.

We used AdamW (Loshchilov & Hutter, 2018) optimizer and cosine annealing scheduler in training.
In the analysis, LoRA and SORSA were only applied to q proj and v projmatrices, respectively.
For FT, we set model’s q proj and v proj matrices to trainable.

We also found we should only perform SVD for analysis using CPU, in order to get the precise
analysis data.

Model Llama 2 7B

Method FT LoRA SORSA
(w/o reg) SORSA

Training

Mix-Precision TF32&BF16 TF32&BF16 TF32&BF16 TF32&BF16
Epoch 1 1 1 1
Batch Size 128 128 128 128
Max Length 512 512 512 512
Weight Decay 0 0 0 0
Warm-up Ratio 0.03 0.03 0.03 0.03
Learning Rate 2e-5 2e-5 2e-5 3e-5
Grad Clip False False False False
SORSA γ N/A N/A 0 5e-4
Rank N/A 128 128 128

Table 2: Hyperparameters for the analysis

B.2 NLG EXPERIMENTS

For our NLG tasks, we adapted Llama 2 7B (Touvron et al., 2023), RWKV6 7B (Peng et al., 2024),
Mistral 7B v0.1 (Jiang et al., 2023) Gemma 7B (Gemma Team et al., 2024) models by SORSA. For
GSM-8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) evaluations, we trained those
models with the first 100K data in MetaMathQA (Yu et al., 2024) dataset. For HumanEval (Chen
et al., 2021) evaluation, we use the first 100K data in CodeFeedback Filtered Instruction(Zheng
et al., 2024) dataset.

We used AdamW (Loshchilov & Hutter, 2018) optimizer and cosine annealing scheduler in training.
SORSA adapters were applied on all linear matrices in every layer. We only calculated the loss on
the response part. The models are loaded in FP32 and trained with TF32 & BF16 mix precision. In
our experiments, we selected a higher learning rate for SORSA than other methods to counterbalance
the negative effect of orthonormal regularizer on optimizing toward lower training loss. See Table 3
for hyperparameters. See Listing 1 for the prompt we used in GSM-8K and MATH evaluations, and
Listing 2 for the prompt we used for HumanEval tests.
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Model Llama 2 7B RWKV6 7B RWKV6 7B Mistral 7B Gemma 7B

Method SORSA SORSA LoRA
PiSSA SORSA SORSA

Training

Mix-Precision TF32&BF16 TF32&BF16 TF32&BF16 TF32&BF16 TF32&BF16
Epoch 1 1 1 1 1
Batch Size 128 128 128 128 128
Max Length 512 512 512 512 512
Weight Decay 0 0 0 0 0
Warm-up Ratio 0.03 0.03 0.03 0.03 0.03
Learning Rate 3e-5 3e-5 2e-5 3e-5 3e-5
Grad Clip 1.0 1.0 1.0 1.0 1.0
SORSA γ 4e-4 4e-4 N/A 4e-4 4e-4
Rank 128 64 64 64 64

Evaluating

Precision BF16 FP32 FP32 BF16 BF16

Sampling False
Top-P 1.0

Max Length
GSM-8K: 1024
MATH: 2048

HumanEval: 2048

Table 3: Hyperparameters of experiments of SORSA, LoRA and PiSSA on different models for
GSM-8K and MATH

Model Llama 2 7B Mistral 7B Gemma 7B RWKV6 7B

Method AdaLoRA AdaLoRA AdaLoRA AdaLoRA

Training

Mix-Precision TF32&BF16 TF32&BF16 TF32&BF16 TF32&BF16
Epoch 1 1 1 1
Batch Size 128 128 128 128
Max Length 512 512 512 512
Weight Decay 0 0 0 0
Warm-up Ratio 0.03 0.03 0.03 0.03
Learning Rate 2e-5 2e-5 2e-5 2e-5
Grad Clip 1.0 1.0 1.0 1.0
β1 0.85 0.85 0.85 0.85
β2 0.85 0.85 0.85 0.85
rinit 128 64 64 64
rtarget 128 64 64 64
tinit 100 100 100 100
tfinal 600 600 600 600

Evaluating

Precision BF16 BF16 BF16 FP32

Sampling False
Top-P 1.0

Max Length
GSM-8K: 1024
MATH: 2048

HumanEval: 2048

Table 4: Hyperparameters of our experiments of AdaLoRA on different models for GSM-8K and
MATH
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1 Below is an instruction that describes a task. Write a response that
appropriately completes the request.

2

3 ### Instruction:
4 {question}
5

6 ### Response: Let’s think step by step.

Listing 1: Prompt used for GSM-8K and MATH.

1 @@ Instruction
2 Here is the given code to do completion:
3 ‘‘‘python
4 {question}
5 ‘‘‘
6

7 Please continue to complete the function with python programming
language. You are not allowed to modify the given code and do the
completion only.

8

9 Please return all completed codes in one code block.
10 This code block should be in the following format:
11 ’’’python
12 # Your codes here
13 ’’’
14

15 @@ Response

Listing 2: Prompt used for HumanEval evaluation.

C PROOFS

Theorem 5.1. The regularizer Lreg is convex.

Proof. We prove this in two steps:

First, we show that f(Up) = ∥U⊤
p Up − I∥F is convex. Then, we prove that g(Vp) = ∥V ⊤

p Vp − I∥F
is convex.

Since the sum of convex functions is convex, this will establish the convexity of Lreg.

Let Up,W ∈ Rm×r. The Hessian of f at Up in the direction W is given by

∇2f(Up)[W,W ] = lim
ϵ→0

1

ϵ2

(
f(Up + ϵW )− 2f(Up) + f(Up − ϵW )

)
= lim

ϵ→0

1

ϵ2

(
∥(Up + ϵW )⊤(Up + ϵW )− I∥F

− 2∥U⊤
p Up − I∥F + ∥(Up − ϵW )⊤(Up − ϵW )− I∥F

)
= lim

ϵ→0

1

ϵ2

(
∥U⊤

p Up + ϵ(U⊤
p W +W⊤Up) + ϵ2W⊤W − I∥F

− 2∥U⊤
p Up − I∥F + ∥U⊤

p Up − ϵ(U⊤
p W +W⊤Up) + ϵ2W⊤W − I∥F

)
= 2∥W⊤W∥F .

(16)

Since ∥W⊤W∥F ≥ 0 for all W , we have ∇2f(Up)[W,W ] ≥ 0, which proves that f is convex.

The proof for g(Vp) follows the same steps as for f(Up), leading to the same conclusion.

Therefore, both f(Up) and g(Vp) are convex, and consequently, Lreg is convex.
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Theorem 5.2. The gradient of the regularizer Lreg is Lipschitz continuous.

Proof. Because Up and Vp are decomposed from Rm,n, we could assume that the Frobenius norms
of Up and Vp are bounded, i.e., ∥Up∥F ≤ MU and ∥Vp∥F ≤ MV , where MU and MV are positive
constants.

To prove Lipschitz continuity, we need to show that there exists a constant L > 0 such that for any
two pairs of matrices (Up,1, Vp,1) and (Up,2, Vp,2):

|Lreg(Up,1, Vp,1)− Lreg(Up,2, Vp,2)| ≤ L(∥Up,1 − Up,2∥F + ∥Vp,1 − Vp,2∥F ) (17)

First, consider |∥U⊤
p,1Up,1 − I∥F − ∥U⊤

p,2Up,2 − I∥F |:

|∥U⊤
p,1Up,1 − I∥F − ∥U⊤

p,2Up,2 − I∥F | ≤ ∥(U⊤
p,1Up,1 − I)− (U⊤

p,2Up,2 − I)∥F
= ∥U⊤

p,1Up,1 − U⊤
p,2Up,2∥F

= ∥U⊤
p,1Up,1 − U⊤

p,1Up,2 + U⊤
p,1Up,2 − U⊤

p,2Up,2∥F
≤ ∥U⊤

p,1(Up,1 − Up,2)∥F + ∥(U⊤
p,1 − U⊤

p,2)Up,2∥F
≤ ∥U⊤

p,1∥F ∥Up,1 − Up,2∥F + ∥Up,1 − Up,2∥F ∥Up,2∥F
≤ (∥Up,1∥F + ∥Up,2∥F )∥Up,1 − Up,2∥F

(18)

Here, we’ve used the triangle inequality and the sub-multiplicative property of the Frobenius norm.

Similarly for V :

|∥V ⊤
p,1Vp,1 − I∥F − ∥V ⊤

p,2Vp,2 − I∥F | ≤ (∥Vp,1∥F + ∥Vp,2∥F )∥Vp,1 − Vp,2∥F (19)

Combining these results:

|Lreg(Up,1, Vp,1)− Lreg(Up,2, Vp,2)| ≤ (∥Up,1∥F + ∥Up,2∥F )∥Up,1 − Up,2∥F
+ (∥Vp,1∥F + ∥Vp,2∥F )∥Vp,1 − Vp,2∥F

≤ max(∥Up,1∥F + ∥Up,2∥F , ∥Vp,1∥F + ∥Vp,2∥F )
· (∥Up,1 − Up,2∥F + ∥Vp,1 − Vp,2∥F )

(20)

Let Lreg = max(∥Up,1∥F + ∥Up,2∥F , ∥Vp,1∥F + ∥Vp,2∥F ). This L is finite because ∥Up∥F ≤ MU

and ∥Vp∥F ≤ MV .

Therefore, we have shown that:

|Lreg(Up,1, Vp,1)− Lreg(Up,2, Vp,2)| ≤ Lreg(∥Up,1 − Up,2∥F + ∥Vp,1 − Vp,2∥F ). (21)

This proves that Lreg is Lipschitz continuous with Lipschitz constant Lreg .

Theorem 5.3. For convergence of gradient descent, the learning rate ηd and regularization param-
eter γ should

γ ∝ 1

ηd
. (11)

Proof. Recall Equation (6), the updating method of SORSA adapters

Wp,t+1 =Wp,t − ηt

(
∇Wp,t

Ltrain +
γ

ηd
∇Wp,t

Lreg

)
.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

the gradient descent convergence condition will become

ηt <
2

L
, (22)

where L is a Lipschitz constant. For a SORSA adapter to converge, we need

ηt <
2

L
=

2

Ltrain + γ
ηd
Lreg

. (23)

Since ηt is bounded by ηt ≤ ηd, for a SORSA adapter to converge during the entire training process,
we need to bound the inequality by

ηt ≤ ηd <
2

Ltrain + γ
ηd
Lreg

. (24)

Rearranging this inequality, we get

ηd(Ltrain +
γ

ηd
Lreg) < 2

ηdLtrain + γLreg < 2

γLreg < 2− ηdLtrain

γ <
2− ηdLtrain

Lreg
.

(25)

We can assume that the regularizer’s gradients scale with ηd, meaning that a larger updating step
(due to a larger ηd) will lead to more significant deviations from orthonormality, which increases
Lreg . Conversely, smaller steps lead to a more gradual progression towards orthonormality, which
reduces Lreg . Therefore, we could assume Lreg ∝ ηd. Moreover, the γ must not be negative, or the
regularization term would negatively impact its supposed purposes. Therefore, we can rewrite the
inequality as

0 ≤ γ <
2

kηd
− Ltrain, (26)

where k is a constant.

Therefore,

γ ∝ 1

ηd
. (27)

Lemma 5.4. Let W unreg
p = U unreg

p diag(Sp)
unreg(V unreg

p )⊤ be the Wp only training without using
regularizer, and W reg

p = U reg
p diag(Sp)

reg(V reg
p )⊤ be the Wp training with the regularizer. For each

singular value σi, the following bound holds:

(1− ϵ)σunreg
i ≤ σreg

i ≤ (1 + ϵ)σunreg
i , (12)

where ϵ is a small positive constant, σreg
i and σunreg

i are singular values in the case of training with
and without regularizer, respectively.

Proof. First, let’s consider the effect of the orthonormal regularizer. The regularizer aims to make
U⊤
p Up ≈ I and VpV

⊤
p ≈ I . We can quantify this approximation as:

∥∇Wp
Lreg∥F ≤ ϵ∇. (28)

where ϵ∇ > 0 is a small constant.

Then, we define two cases of one-step optimized Wp, that W reg
p is optimized with regularizer, and

W unreg
p is optimized without regularizer.
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From Equation (5)

Wp,t+1 =Wp,t − ηt∇Wp,t
Ltrain − γt∇Wp,t

Lreg,

we could get

W reg
p −W unreg

p = γ∇Wp
Lreg. (29)

Calculating Frobenius norm on both sides, we could find

∥W reg
p −W unreg

p ∥F = γ∥∇Wp
Lreg∥F = γϵ∇. (30)

Now, we can use Weyl’s inequality (Weyl, 1912), which states that for matrices A and B:

|σi(A+B)− σi(A)| ≤ ∥B∥2 ≤ ∥B∥F . (31)

Applying this to our case, with A = W unreg
p and B = W reg

p −W unreg
p

|σreg
i − σunreg

i | ≤ ∥W reg
p −W unreg

p ∥F ≤ γϵ∇. (32)

Let ϵ = γϵ∇. Then we have

−ϵ ≤ σreg
i − σunreg

i ≤ ϵ, (33)

rearranging this inequality gives us our desired bound

(1− ϵ)σunreg
i ≤ σreg

i ≤ (1 + ϵ)σunreg
i . (34)

Theorem 5.5. The orthonormal regularizer in SORSA can improve the condition number of the
optimization problem throughout training under certain conditions. Specifically, at initialization
(t = 0):

κ(W reg
p,0) = κ(W unreg

p,0 ), (13)

where κ(Wp) denotes the condition number of Wp; W reg
p,t and W unreg

p,t represent Wp at time-step t in
the case of training with or without regularizer, respectively.

∃c > 0, while t > c,

κ(W reg
p,t) < κ(W unreg

p,t ). (14)

Proof. Let Wp,t = Up,tdiag(Sp,t)V
⊤
p,t be the principal part of the singular value decomposition

approximation of W at time-step t. The condition number is given by

κ(Wp,t) =
σmax(Wp,t)

σmin(Wp,t)
, (35)

where σmax and σmin are the maximum and minimum singular values of Wp,t.

At initialization (t = 0): Due to SVD initialization, Up,0 and V ⊤
p,0 are perfectly orthonormal, so

κ(U unreg
p,0 ) = κ((V unreg

p,0 )⊤) = κ(U reg
p,0) = κ((V reg

p,0)
⊤) = 1, (36)

and ϵ0 = 0, δ1,0 = δ2,0 = 0. Therefore

κ(W reg
p,0)

κ(W unreg
p,0 )

=
κ(diag(Sp,0)

reg)

κ(diag(Sp,0)unreg)
= 1. (37)

During training (t > 0): As training progresses, Up,t and V ⊤
p,t deviate from orthonormality in the

unregularized case. We quantify this deviation:

∥U⊤
p,tUp,t − I∥F ≤ ϵ1,t (38)

∥V ⊤
p,tVp,t − I∥F ≤ ϵ2,t, (39)
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where ϵ1,t, ϵ2,t > 0 are two constants increase over time t.

For the regularized matrices, we can bound their condition numbers:

κ(U reg
p,t) ≤ 1 + δ1,t; (40)

κ(V reg
p,t ) ≤ 1 + δ2,t, (41)

where δ1,t, δ2,t are small positive numbers that remain bounded due to the regularization.

From the Lemma 5.4, we arrive at:

(1 + δ1,t)(1 + δ2,t)(
1−ϵt
1+ϵt

)

κ(U unreg
p ) · κ((V unreg

p,t )⊤)
≤

κ(W reg
p,t )

κ(W unreg
p,t )

≤
(1 + δ1,t)(1 + δ2,t)(

1+ϵt
1−ϵt

)

κ(U unreg
p,t ) · κ((V unreg

p,t )⊤)
. (42)

As training continues, in the unregularized case, κ(U unreg
p,t ) and κ((V unreg

p,t )⊤) tend to increase as Up

and V ⊤
p deviate further from orthonormality. On the other hand, (1 + δ1,t)(1 + δ2,t)(

1+ϵt
1−ϵt

) will
approach to 1 because of the reinforcement in orthonormality will leads to a smaller δ1,t, δ2,t and
ϵt. Therefore, ∃c > 0, while t > c,

κ(U unreg
p,t ) · κ((V unreg

p,t )⊤) > (1 + δ1,t)(1 + δ2,t)(
1 + ϵt
1− ϵt

), (43)

will hold.

Therefore, while t > c, we have

κ(W reg
p,t )

κ(W unreg
p,t )

< 1, (44)

that indicates an improvement in the condition number.
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