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ABSTRACT

Federated Learning (FL) enables decentralized training without data sharing, but
suffers from statistical heterogeneity across clients, leading to client drift, poor
generalization, and sharp minima compared to centralized training. Sharpness-
Aware Minimization (SAM) has emerged as a promising approach to improve gen-
eralization, yet its application in federated learning still suffers from divergence
problems, since perturbations are computed locally and reflect client-specific
loss geometries. To better understand this issue, we provide analysis from a
new perspective, the frequency domain, for SAM perturbations in federated set-
tings, revealing that inter-client perturbation inconsistencies are predominantly
concentrated in the low-frequency spectrum. Motivated by this insight, we pro-
pose Federated learning with Frequency-domain Filtering of SAM perturbations
(FedFFT). It is a lightweight and plug-and-play method that filters out low-
frequency components of SAM perturbations without requiring additional com-
munication, thereby suppressing inconsistent components in client updates while
preserving consistent learning signals. Extensive experiments across multiple
benchmarks and diverse backbones demonstrate that FedFFT consistently outper-
forms SAM-based FL methods, particularly under severe non-IID distributions.
These results highlight the effectiveness, scalability, and general applicability of
our frequency-domain perspective for sharpness-aware federated optimization.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is a distributed learning paradigm where multiple
clients collaboratively train a global model under the coordination of a central server, while keep-
ing their raw data local to preserve privacy. In each communication round, clients perform local
training and only transmit model parameters or updates, which are aggregated to update the global
model. This framework has been widely applied in privacy-sensitive domains such as healthcare,
finance, mobile applications, and autonomous systems (Antunes et al., 2022; Rauniyar et al.| 2024;
Fantauzzo et al.| [2022). However, the practical effectiveness of FL is severely hampered by the
statistical heterogeneity inherent in real-world data, where the local data distributions across clients
are typically non-independent and identically distributed (Non-IID). This causes the optimization
objectives of individual clients to become misaligned with one another and with the global goal,
resulting in local updates that pull the shared model in conflicting directions. This phenomenon are
known as client drift (Karimireddy et al., 2021 [Woodworth et al., [2020; |L1 et al., [2020a; [Fan et al.}
2022), which not only slows convergence but can also limits the model’s ability to generalize to the
overall underlying distribution.

To address the generalization challenges posed by client drift, a promising research direction has
shifted from traditional client-side regularization (Acar et al. 2021} [Karimireddy et al., 2021} [Li
et al.| [2020b} 2021} [Xu et al., |2021) or aggregation methods (Ye et al., [2023; |[Li et al., 2023} [Shi
et al., [2025) to exploring the geometry of the loss landscape. These methods build upon the in-
sight that convergence to sharp minima correlates with poor generalization (Li et al.,[2020a)), where
flatter minima often yield better performance. Sharpness-Aware Minimization (SAM) (Foret et al.,
2020) is a representative technique designed for this purpose, seeking flatter regions by optimizing
a perturbed loss. Building on this, FedSAM (Qu et al.| 2022} |Caldarola et al., 2022) pioneered the
application of SAM to local training in Federated Learning. While FedSAM (Sun et al.| 2023a;
Fan et al., 2024) have shown strong performance across different settings, they primarily focus on
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local flatness, implicitly assuming that minimizing sharpness locally leads to a globally flat mini-
mum. In practice, however, under substantial data heterogeneity, the local and global loss landscapes
may diverge considerably, and improvements in local flatness do not necessarily guarantee global
flatness. Subsequent works (Sun et al.| [2023a; [Fan et al., 2024} |Caldarola et al., 2025} Dai et al.,
2024)) have attempted to bridge this local-global gap through various strategies, such as enhancing
client-side updates (Sun et al., [2023a) or shifting the sharpness optimization to the server (Caldarola
et al., [2025)), sometimes employing complex frameworks like the Alternating Direction Method of
Multipliers (ADMM) (Boyd et al., 2011). Despite these advances, existing solutions face a diffi-
cult trade-off: purely client-side methods struggle with the deviation of local sharpness estimates,
while server-centric approaches often come at the cost of significant communication or computa-
tional overhead. Crucially, none of these approaches explicitly investigate the intrinsic nature of the
perturbations themselves, leaving open the question of whether they can be refined to better align
clients with the global objective.

In this work, we address this question by introducing a novel frequency-domain perspective. To
our knowledge, we are the first to systematically analyze the spectral properties of client-side
SAM perturbations in FL. Our key finding is that the inter-client disagreements are not random
noise; they are predominantly concentrated in the low-frequency spectrum, which we hypothesize is
strongly tied to client-specific data biases. Motivated by this insight, we propose Federated learning
with Frequency-domain Filtering of SAM perturbations (FedFFT), a lightweight and plug-and-play
method. FedFFT applies a high-pass filter to the locally computed perturbations, systematically
removing the discordant low-frequency components while preserving consistent learning signals in
the higher frequencies. This alignment in the spectral domain is achieved without requiring any
additional communication overhead. Notably, FedFFT can be seamlessly integrated as a plug-and-
play module with federated learning framework that utilizes client-side SAM optimizers, further
broadening its applicability. Our contributions are summarized as below: (1) Frequency-domain
analysis of perturbations. We provide the first study of SAM perturbations in FL across clients
based on spectral decomposition, and reveal that heterogeneity is primarily concentrated in the low-
frequency bands. (2) Algorithm design. Based on this insight, we introduce FedFFT, a simple yet
effective approach that filters out low-frequency perturbation components to suppress inconsistent
client updates while retaining retaining consistent learning signals. (3) Extensive empirical vali-
dation. We conduct comprehensive experiments across multiple benchmarks and backbones, under
varying degrees of data heterogeneity. The results show that FedFFT outperforms related baselines,
particularly in highly non-IID settings, demonstrating both effectiveness and scalability.

2 RELATED WORK

Sharpness-Aware Minimization (SAM). The connection between generalization and flat minima
was first recognized in early studies (Hochreiter & Schmidhuber, |1994)), and later work confirmed
that smoother loss landscapes generally lead to better generalization (Keskar et al.,|2017; Neyshabur
et al., 2017). Building on this insight, Sharpness-Aware Minimization (SAM) was introduced as a
PAC-Bayesian inspired method that explicitly minimizes loss sharpness and achieves strong general-
ization across image classification benchmarks (Foret et al.,[2020). Since then, numerous extensions
have been developed. A scale-invariant version improves training stability (Kwon et al.| 2021},
while another reformulates sharpness from both theoretical and intuitive perspectives (Zhuang et al.}
2022). Further studies focus on perturbation strategies, including adaptive or random amplitudes
(Liu et al.| [2022; |Ahn et al., 2024), dynamic adjustment through DSAM (Chen et al.| 2024), and
variance reduction across domains with DISAM (Zhang et al., 2024).

Federated Learning. Federated Learning (FL), introduced with FedAvg (McMahan et al.,[2017),
enables collaborative model training without raw data sharing. While preserving privacy, this de-
centralized design exacerbates the client-drift problem—the divergence between local and global
updates—mainly due to non-IID data and multi-step local errors (Acar et al., 2021; [Woodworth
et al.| 2020; ILi et al.,[2020a). Limited client participation further aggravates drift and degrades per-
formance. To mitigate client drift, existing methods can be broadly grouped into two categories: (i)
local objective regularization, which modifies local training to align client updates with the global
objective, such as SCAFFOLD (Karimireddy et al.| [2021)) , FedProx (Li et al., 2020b) and FedDyn
(Acar et al.,2021); and (ii) modified aggregation strategies, which design more robust global update
rules beyond simple averaging, such as FedAWA (Shi et al.| |2025), FedLAW (Li et al., 2023), and



Under review as a conference paper at ICLR 2026

FedDisco (Ye et al.l 2023). While these approaches improve optimization stability, they are primar-
ily rooted in empirical risk minimization and often overlook the relationship between the global loss
landscape and generalization ability. This motivates a new research line that leverages SAM in FL.

SAM in Federated Learning. FedSAM (Qu et al) [2022; (Caldarola et al., [2022) first brought
SAM into FL by applying local perturbations to improve generalization. Subsequent variants ex-
tended this idea. For example, FedSpeed (Sun et al., [2023b)) used an Alternating Direction Method
of Multipliers (ADMM) framework to enhance communication efficiency. PLGU (Qu et al., [2023))
and FedSOL (Lee et al., |2024), explored layer-wise perturbation and proximal-based corrections.
FedGAMMA (Dai et al. 2024)) introduced variance-reduction techniques to align client updates
from a global perspective. FedSMOQO (Sun et al., 2023a) reduced inconsistency by correcting both
updates and perturbations through ADMM, while FedLESAM (Fan et al.| 2024)) introduced global
perturbations to better guide local training. FedFSA (Xing et al.| | 2025)) focused on parameter sensi-
tivity, applying stronger perturbations only to the most sensitive layers to balance convergence and
generalization. FedGloSS (Caldarola et al. [2025) shifted attention from local sharpness to global
flatness by applying SAM on the server, highlighting the importance of global geometry in federated
optimization. Unlike these approaches, our method is motivated by a novel spectral analysis, reveal-
ing inter-client disagreement in low-frequency components, which we filter to produce consistent
perturbations and flatter minima.

3 BACKGROUND

3.1 SHARPNESS-AWARE MINIMIZATION

To improve model generalization and robustness, modern optimization methods have shifted focus
from merely finding solutions with low training loss to finding solutions that reside in flat minima
of the loss landscape. SAM (Foret et al.l [2020) is a leading technique for this purpose. It jointly
minimizes the loss value and the sharpness by solving the following minimax objective:

min max L(w + §), (1)
w [oli<p

where £(+) is the empirical loss on the training data, and p is the neighborhood size. In practice,
the inner maximization is approximated with a single step of gradient ascent. The full optimization
process for parameter w involves two steps: (1) Compute the perturbation that approximately max-

imizes the loss: 6*(w) = % (2) Update the model parameters using the gradient at the

perturbed point: w + w —nV.L(w + §*(w)). This procedure encourages the optimizer to converge
to flat minima, which are empirically linked to better generalization performance.

3.2 FEDERATED LEARNING

FL is a distributed learning paradigm that enables training a global model on data from K clients,
coordinated by a central server, without centralizing the private client datasets Dy. The core ob-
jective in FL is to minimize the global empirical risk F'(w), defined as the weighted average of the
local empirical losses fx(w):

K
min F'(w) := Z ), where fi(w Z Li(w;x,y). 2)

w
(»L,y)EDk

The widely-adopted FedAvg algorithm (McMahan et al., |2017) solves this objective via iterative
communication rounds. In each round, the server (1) Broadcasts the global model w; to clients.
Clients then perform (2) Local Updates on their data to produce wzﬂ These are (3) Uploaded to
the server for (4) Aggregation into the new global model wy11 = > & pkw”l.

A key challenge in FL is data heterogeneity, where client data distributions are Non-Independent
and Identically Distributed (Non-IID). This causes the local objectives fj(w) to be inconsistent with
one another, leading to misaligned loss landscapes and the “client drift” phenomenon, which poses
a significant challenge to training a robust global model.
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3.3 SAM IN FEDERATED LEARNING

Given the challenge of training on misaligned local landscapes, a natural strategy is to seek solutions
in flat minima. This motivates applying SAM to FL, known as FedSAM (Qu et al., |2022), which
incorporates SAM into each client’s local training. The local and global objectives are:

n}inFSAM : Z fEM(w),  where fiAM(w) = hax Jr(w + ). 3)
v kllsp

Compared with FedAvg, FedSAM differs in that it optimizes the sharpness-aware local objectives
rather than the original local losses. While FedSAM encourages convergence to locally flat regions,
it does not guarantee a flat global landscape. Under data heterogeneity, the locally computed per-
turbation vectors dy, which capture the directions of sharpness, can themselves diverge. This raises
a critical question that existing works have not fully explored: what is the underlying structure
of these inter-client perturbation disagreements? Understanding this is key to mitigating their
negative impact, which directly motivates our work.

4 QOUR PROPOSED METHOD

In this section, we introduce our proposed method, Federated learning with Frequency domain Fil-
tering of SAM perturbations (FedFFT). We begin by elaborating on the motivation stemming from
our observations of client perturbations in federated environments. Subsequently, we provide a de-
tailed description of the FedFFT algorithm.
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Figure 1: Frequency Domain Analysis of Client Perturbations. (a-c) Variance of SAM perturbations across
clients under varying data heterogeneity («) on three datasets. Across all settings, inter-client variance is con-
sistently concentrated in the low-frequency components, indicating that client disagreement is predominantly a
low-frequency phenomenon.

4.1 MOTIVATION: ANALYZING CLIENT PERTURBATIONS IN THE FREQUENCY DOMAIN

In FL, non-IID data distributions among clients are the primary cause of the client drift phenomenon.
While Sharpness-Aware Minimization (SAM) is a powerful technique for improving generalization,
its application in FL. may amplify this issue. Since SAM perturbations are computed locally, they
intrinsically reflect the geometry of client-specific loss landscapes, causing the perturbation vectors
themselves to diverge. However, the underlying structure of these perturbation divergences remains
poorly understood. To bridge this gap, we introduce a novel diagnostic approach.

To the best of our knowledge, this work is the first to employ frequency-domain analysis to system-
atically investigate the nature of SAM perturbation disagreements in a federated context. We treat
each client’s perturbation vector as a signal and use the Real-valued Fast Fourier Transform (RFFT)
to observe its characteristics. Our analysis is conducted on a per-layer basis to respect the model’s
architectural integrity, with the full implementation details provided in below Section[d.2] For each
layer, we compute the variance across clients within different frequency bands. As illustrated in
Figure[I] which averages these variances across all layers, we discover a clear pattern:

The primary disagreements are concentrated in the low-frequency components, while the disagree-
ments in high-frequency components are much smaller. This finding suggests that the low-frequency
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parts are highly correlated with client-specific biases, whereas the high-frequency parts may repre-
sent more consistent features of the shared learning task.

Based on this key insight, we formulate our central hypothesis: by filtering out the discordant low-
frequency components while preserving the consistent high-frequency information, we can mitigate
client drift and improve the global model’s performance.

4.2 FEDFFT: THE PROPOSED METHOD

Considering that inter-client disagreements are predominantly a low-frequency phenomenon, we
propose Federated learning with Frequency-domain Filtering of SAM perturbations (FedFFT). Our
method refines the client-side SAM update by integrating a frequency filtering module. This module
is designed as a lightweight, plug-and-play replacement for the standard perturbation calculation
within any federated learning framework that employs SAM-based optimizers on client devices.

Let’s consider a single local update step for a client k& at communication round ¢ € [1,T] and local
iteration e € [1, F]. For simplicity, we omit the round and local iteration indices. Now, we first need
to compute the standard SAM perturbation 6% for client k like FedSAM, denoted as
VL (w"
o = p ) (4)
IV Ly (w")]l2

where 6% has the same size with model parameter w* and includes all layer-wise perturbations ¥ ,
and 5;“ is the perturbation of parameter wlk at layer [. The core idea of FedFFT is to selectively
discard the discordant low-frequency components of the SAM perturbation while preserving the
high-frequency components that capture more consistent aspects of the sharpness landscape. This
filtering is performed on a per-layer basis to respect the model’s architectural integrity. For any given
weight layer [ with parameters wlk, the FedFFT procedure is as follows:

1. Transform to Frequency Domain: Instead of directly applying this perturbation, we trans-
form it into the frequency domain. We flatten the perturbation tensor §F into a vector v¥

and apply the Real-valued Fast Fourier Transform (rFFT):
V) = tFFT(v{), (5)

where V¥ is the frequency-domain representation of the perturbation.

2. Apply High-Pass Filter: Next, we apply a high-pass filter operator, H.(-), which zeroes
out the lowest 7 fraction of frequency coefficients. Given a truncation ratio » € [0, 1), the
filtering operation is defined as:

0, if m < |r-len(¥F)],

5Dl = { o

V/'|m, otherwise,

(6)

where m indexes the frequency coefficients in ascending order. This step is the crux of
our method, as it explicitly removes the client-specific biases encoded in the low-frequency
domain.

3. Reconstruct Filtered Perturbation: We then transform the filtered vector back into the
parameter domain using the inverse rFFT (iRFFT) and reshape it to its original tensor shape
to obtain the refined perturbation J;:

6F = reshape(iRFFT(H,.(vF))). (7)

For simplicity, for any given layer’s perturbation tensor & at client k, we summarize the three steps
above as a filtering operation:

o) = Filter(of, 7). (8)

Finally, the local model in client & is updated using this filtered perturbation, following the standard
SAM procedure: R

wh — wh — - VL (wF + %), 9)

where 6 is the collection of all layer-wise filtered perturbations ) lk
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By replacing the standard SAM perturbation with our filtered version, FedFFT forces the local op-
timizer to ignore the most heterogeneous directions of sharpness, thereby promoting greater con-
sistency among client updates and facilitating convergence to a more robust global minimum. As
shown in, we provide the workflow of FedAvg, FedSAM and our FedFFT in Algorithm [} Benefit
from the effective and general filtering method, ours can also be combined with some classifical or
advanced FL-based methods; please see more details in Appendix [A]

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets and Baselines. We evaluate on n
Algorithm 1 FedAvg, FedSAM and Our FedFFT
CIFAR-10 (Krizhevsky & Hinton, [2000), oot 2 FeCAve, e andour e

CIFAR-100 (Krizhevsky & Hinton| 2009), Require: Communication rounds 7', local epochs
and Tiny-ImageNet (CS231N, 2015). To E, perturbation radius p, local learning rate 7,
simulate data heterogeneity, we partition frequency truncation ratio r.

datasets using a Dirichlet distribution with Ensure: Global model w_%f
a € 0.1,0.6, where smaller « yields more  1: Initialize global model w
non-1ID distributions and larger « yields 2: for{=0to7 — 1 do
more IID ones. 3: Randomly select active client set S;.

We benchmark FedFFT against a compre- for z}}gg%eris qlzte St in parallel do

4
5:
. . . . ) 9
hensive suite of baselines in three main 6 fore — 0t E — 1 do
7
8

0
g

categories: (i) foundational FL algorithms,
including FedAvg (McMahan et al.|[2017),
SCAFFOLD (Karimireddy et al., [2021)),
and FedDyn (Acar et al.l [2021); (ii) the

> perturbation stage

FedAvg: 6%H¢ =0

kot,e
direct application of SAM in FL, namely  9: FedSAM: 685 = p . ”35:((%
FedSAM and its momentum-enhanced

variant MoFedSAM (Caldarola et all 10: FedFFT: 5’;32’6 :Filter((Slf:’z’e, r)
2022; |Qu et al.l [2022); and (iii) advanced 11: wkobetl :wk,t,e_nﬁk(wk,t,e%k,t,e)
FL-SAM variants that aim to improve con-  |5. end for

sistency, such as FedGAMMA (Dai et al.| 13: Send local model w*tF to server.

2024), FedSMOO (Sun et al., 2023a), 4. end for

FedLESAM (Fan et al,, 2024), and Fed- 5. witl « 1 Z wktE
GloSS (Caldarola et al), 2025). To en- 9 |Se] ~~keSe
. - ! 16: end for
sure fair comparisons, we integrate our ap- 17+ return w?
proach with these foundational algorithms ' 9

following FedLESAM, yielding FedFFT
(FedAvg-based), FedFFT-S (SCAFFOLD-based), and FedFFT-D (FedDyn-based). We summarize
the characteristics of SAM in FL methods; please refer to the Appendix |B|for details.

Implementation Details. Following prior works (Sun et al.l 2023aj [Fan et al., 2024), we adopt
ResNet-18 (He et al.l|2016) from the PyTorch model zoo (Paszke et al.,2019) as the backbone. We
use the following settings: 100 clients with about 10% sampled per round, local/global learning rates
of 0.1/1.0, 5 local epochs, and up to 800/800/300 communication rounds for CIFAR-10, CIFAR-100,
and TinyImageNet. For SAM-based methods, we use a perturbation radius of 0.1 with SGD, weight
decay le-3, and exponential LR decay (0.998 per round). For FedFFT, the frequency truncation ratio
is set to 0.01. Further details are in Appendix [C]

5.2 MAIN RESULTS

Comparison with State-of-the-Art Baselines. Table ] presents the results on CIFAR-10, CIFAR-
100, and Tiny-ImageNet with ResNet-18. Overall, FedFFT delivers consistent improvements under
both SCAFFOLD and FedDyn frameworks, indicating that frequency-domain perturbation model-
ing complements existing federated optimization paradigms. On CIFAR-10, FedFFT-D achieves the
best performance under both Dirichlet partitions, demonstrating its effectiveness in standard feder-
ated settings. For CIFAR-100, while FedFFT-D is slightly outperformed by FedLESAM-S under
a = 0.6, it regains superiority in the more heterogeneous o« = 0.1 case. This suggests that suppress-
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Table 1: Test accuracy comparison (%) of different methods on CIFAR-10, CIFAR-100 and Tiny-ImageNet,
with ResNet-18. “-S” and “-D” means using SCAFFOLD and FedDyn as the base algorithms. All results on
Tiny-ImageNet are reproduced by us. Results marked with § are reproduced by us for CIFAR-10 and CIFAR-
100. Others are reported from (Sun et al.|2023a) and (Fan et al.| 2024).

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
a=06 a=01 a=06 a=01 a=06 o=0.1
FedAvg 79.52 76.00 46.35 42.64 28.31 27.48
FedSAMT 81.91 74.92 48.08 45.53 33.16 29.46
MoFedSAM 84.13 78.71 54.38 44.85 33.50 29.77
FedLESAM 81.04 76.93 47.92 44.48 2791 26.91

Our FedFFT 83.02 77.53 48.59 46.83 33.58 30.43
SCAFFOLD 81.81 78.57 51.98 44.41 35.34 32.11
FedSAM-S+ 83.88 76.68 50.19 49.14 35.84 31.73
FedGamma-S 82.64 78.95 53.41 46.39 36.85 30.09
FedLESAM-S 84.94 79.52 54.61 48.07 28.47 27.70
Our FedFFT-S 84.69 79.24 52.75 49.85 36.15 33.08
FedDyn 83.22 78.08 50.82 42.50 28.01 24.19
FedSAM-D+ 82.29 79.11 53.70 46.28 38.18 31.39
FedSMOO-D 84.55 80.82 53.92 46.48 38.71 32.45
FedLESAM-D  84.27 80.08 53.27 46.42 27.36 2532
FedGloSS-Df 82.58 79.23 50.92 47.36 31.72 28.04
Our FedFFT-D  87.19 83.05 54.46 50.90 40.85 34.46

ing low-frequency perturbations is particularly beneficial when client data distributions are highly
skewed. Moreover, on Tiny-ImageNet, FedFFT-D clearly surpasses all baselines, highlighting its ro-
bustness and scalability to larger and more challenging tasks. Furthermore, the convergence curves
in Figure [6] of Appendix show that FedFFT not only achieves higher final accuracy but also
converges significantly faster. This suggests that by harmonizing client updates at a spectral level,
FedFFT facilitates a more direct and stable optimization path toward a high-quality global mini-
mum, reducing wasted communication rounds spent reconciling conflicting updates. Additionally,
we have plotted the loss landscapes of different algorithms, which reveal that our method yields a
flatter loss landscape. For details, please refer to the Appendix [D.2]

Gene.rallzatlon Acmss Diverse Model Table 2: Test accuracy (%) across different backbones on
Architectures. To verify that the efficacy  CIFAR-10 (C10) and CIFAR-100 (C100) with Dirichlet (o =
of FedFFT is not confined to a specific  (.6). All methods use FedDyn as the base algorithm.

model class, we evaluate its performance
across a diverse range of architectures,

Data  Method ResNet18 ResNet20 DenseNet121  ViT

. . FedSAM 82.29 88.82 89.47 49.04
from llghtwelght ResNet-1 8, ReSNet—ZO to clo FedSMOO 84.55 89.86 88.72 50.23
deeper DenseNet-121 and Vision Trans- FedGloSS 82.58 84.17 86.84 50.10
formers (ViT). We perform on CIFAR-10 FedFFT 87.19 9056 90.57 53.31
and CIFAR-100 with a moderately hetero- FedSAM 53.70 58.92 64.19 28.01
geneous setting a = 0.6. As shownin Tab c100 Ezggﬁgg % 22' ég % %
[2l FedFFT usually outperforms baselines FedFFT 54.46 61.60 61.66 30.36

across different architectures. Critically,
the performance gains are substantial even on powerful models like ViT. This suggests that the prob-
lem FedFFT addresses—the inconsistency in the low-frequency spectrum of client perturbations—is
a fundamental artifact of the federated optimization process itself, independent of a model’s rep-
resentation capacity. Simply using a larger model does not automatically resolve the geometric
misalignment between clients. Our spectral filtering acts as a complementary and orthogonal im-
provement, harmonizing the local updates to allow these powerful architectures to converge more
effectively. These results therefore underscore the broad applicability and scalability of FedFFT,
establishing it as a model-agnostic enhancement for sharpness-aware federated learning.

5.3 FURTHER ANALYSIS

Ablation on Filtering Strategy. To provide direct empirical validation for our central hypothe-
sis—that inter-client perturbation disagreement is concentrated in the low-frequency spectrum—we
compare our proposed low-frequency filtering against two alternative strategies: high-frequency fil-
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tering and random filtering, where we adopt the same  Table 3: Results of different filtering methods
filtering ratio » = 0.01. As shown in Table 3] remov- on CIFAR-10 using ResNet-18 backbone.
ing high-frequency or random components yields neg-

ligible gains over the FedSAM baseline. In contrast,  Filtering Strategy Accuracy (%)
filtering the low-frequency components, as FedFFT =06 a=01
does, consistently provides substantial accuracy im- ~ one (FedSAM) 81.91 7492

provements, particularly under the high-heterogeneity gﬁgggquenw 2}82 ;gg;

(v = 0.1) setting. This result demonstrates that the [ oy _frequency (ours) ~ 83.02 77.53
low-frequency spectrum is indeed the primary source
of client-specific, discordant information. By selectively removing it, FedFFT effectively isolates
and preserves the task-relevant, high-frequency signals, leading to more consistent client updates
and a superior global model. Furthermore, we have also explored the impact of different filtering
strategies when applied to various backbones. For further details, please refer to the Appendix [E-T}

Impact of Filtering Ratio. We explore the impact of

®
&

—e— FedFFT-A

varying the filtering ratio r from 0.1% to 8% to high- SR

FedFFT-D

FedSAM-D
—+— FedFFT-S

FedSAM-S

®
N

light the flexibility and adaptability of hyperparameter
tuning in our proposed FedFFT. As shown in Fig. 2] we
report the performance of different r values in FedFFT,
where we view FedSAM as baseline and use FedAvg,
SCAFFOLD and FedDyn as the base algorithms, re-
spectively. We can find that even with a small r such
as 0.1%, ours can consistently outperform its baseline. 0
It proves that removing the discordant low-frequency
components is beneficial for sharpness-aware federated Figure 2: Test accuracy with different filter-
optimization. Besides, high filtering ratios (> 7%) lead ing ratios on CIFAR-10 (o = 0.1). “-A”, “-
to gradual performance degradation, approaching or S”and “-D” mean using FedAvg, SCAFFOLD
slightly falling below the baseline, which may remove and FedDyn as the base algorithms.

useful information for optimization. Overall, these re-

sults confirm that our FedFFT can stably improve accuracy across all models when maintaining a
reasonable filtering ratio. Based on our experiments, we recommend a safe range for r between
0.5% and 4%.

®
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Filtering Ratio r(%)

Robustness to FL Settings. We further assess the robustness of FedFFT across three critical fed-
erated learning hyperparameters: client activation rate, number of local epochs, and total number
of clients. As summarized in Fig. [3] FedFFT consistently and significantly outperforms FedSAM
across all tested configurations. Regarding client participation in Fig. 3] (a), FedFFT maintains a sta-
ble performance advantage even with a low activation rate of 5%, a challenging scenario that often
exacerbates client drift. Similarly, when varying the number of local epochs in Fig. 3] (b), FedFFT
demonstrates larger gains with fewer epochs, suggesting faster convergence, while still maintaining
a clear edge with more local training. Finally, Fig. [3](c) shows that our method’s superiority holds
as the number of clients scales, confirming its applicability to large-scale federated networks. These
results collectively demonstrate that the benefits of spectral filtering are not confined to a specific
setting but are robust to the practical constraints of real-world FL systems.
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Figure 3: Comprehensive performance comparison between FedFFT and FedSAM across diverse
experimental configurations on CIFAR-10 (Non-IID o = 0.1) using ResNet-18 backbone.

Visualizing the Effect of Spectral Filtering. To qualitatively understand how FedFFT achieves
greater consistency, we visualize the distributions of client perturbations, model features, and model



Under review as a conference paper at ICLR 2026

parameters. The visualizations in Fig. [d]reveal a clear causal chain. (1) More Cohesive Perturbations
(Fig. Hd)): The process begins with the perturbations themselves. The original SAM perturbations
from different clients are widely scattered in the PCA space. After applying FedFFT’s low-frequency
filter, these perturbations become significantly more compact, confirming that our method success-
fully reduces inter-client discrepancy at its source. (2) Aligned Feature Representations (Fig. 4D):
This improved consistency in perturbations directly translates to more aligned model behavior. We
observe that the average features extracted by the FedFFT-trained model are much more tightly clus-
tered for each class compared to the scattered features from the FedSAM model. (3) Consolidated
Client Models (Fig. fd): Ultimately, this leads to better convergence of the models themselves. The
parameters of client models trained with FedFFT exhibit a much smaller variance and are clustered
closer to a central point, indicating that spectral filtering effectively mitigates client drift and guides
all clients toward a more unified and robust global solution.
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Figure 4: Effect of low-frequency perturbation filtering on ResNet-18/CIFAR-10 (o« = 0.1). The compar-
ison between FedSAM (blue) and FedFFT (red) shows: (a) increased compactness of client perturbations
(convl.weight), leading to (b) more consistent model features (Layer4.1.gn2) and (c) more aligned
client model parameters (convl.weight).

Communication cost. Communication cost is a critical bottleneck in federated learning (FL), mak-
ing its optimization an important challenge. In this study, we take FedAvg as the baseline, and define
B as the total number of bits exchanged by FedAvg during 7 training rounds. For each method, we
measure its communication cost in terms of (i) the number of rounds required to reach FedAvg’s
performance, and (ii) the total number of bits exchanged in these rounds. As shown in Table ] our
method significantly reduces both the number of communication rounds and the total transmitted
bits compared with state-of-the-art baselines, while achieving comparable performance to FedAvg.

Table 4: Communication cost comparison on different datasets with ResNet-18. Note:
Each cell reports Rounds / Relative Communication Cost (B).

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
a=0.6 a=0.1 a=0.6 a=0.1 a=0.6 a=0.1
FedAvg 800/1.00 800/1.00 800/1.00 800/1.00 300/1.00 300/1.00
FedSAM 465/0.58 718/0.90 483/0.60 491/0.61 158/0.53 250/0.83
FedSMOO 2057051 312/0.78 201/0.50 225/0.56 143/0.95 204/1.36
FedGLOSS 386/0.48 487/0.61 261/0.33 285/0.36 206/0.69 264/0.88

FedFFT-D (Ours) 190/0.24 302/0.38 158/0.20 211/0.26 131/0.44 179/0.60

6 CONCLUSION

In this work, we introduce a novel frequency-domain perspective to address divergent perturbations
in sharpness-aware federated learning. We identify that inter-client disagreements are predominantly
a low-frequency phenomenon and accordingly propose FedFFT, a lightweight filtering method to
suppress these discordant components. Extensive experiments validate that FedFFT consistently
outperforms state-of-the-art methods, particularly in highly non-IID settings, by converging to vis-
ibly flatter and wider global minima. This result not only explains the superior generalization and
communication efficiency of our method but also establishes spectral analysis as a powerful new
tool for designing robust federated optimization algorithms.
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our methods do not amplify harmful stereotypes or unfair treatment. The results and methodologies
are intended solely for academic research and are not designed for deployment in safety-critical or
harmful applications.

8 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. All details regarding
datasets, preprocessing, model architectures, training procedures, and hyperparameters are described
in the Section5.T]and Appendix [B] Complete proofs of theoretical claims are provided in the supple-
mentary materials. To further support reproducibility, we will release the source code and instruc-
tions for reproducing all experiments in the supplementary materials.

9 LLM USAGE STATEMENT

Large language models (LLMs) were used solely as an assistive tool for language polishing, gram-
mar correction, and improving readability. No part of the research ideation, methodology design,
experimental implementation, or result analysis was conducted by LLMs.
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A ALGORITHMS
A.1 FEDFFT-D ALGORITHM.

Algorithm 2 The FedFFT-D Algorithm.

Require: Communication rounds 7’, local epochs F, perturbation radius p, local learning rate 7,
frequency truncation ratio 7, penalty parameter /3, local multipliers { )‘k}szl’ global multiplier

Ensure: Global model w]’
Initialize global model wg, local multipliers Vk, A\, = 0, and global multiplier A = 0.
2: fort =0toT —1do
Randomly select active client set ;.
4: for all clients k£ € S; in parallel do

wh b0 — wl > Server sends global model to client
6: fore=0to £ —1do i
k.t,e . VL, (w "t’e) :
(E P L 0T > Compute SAM perturbation
8: o7¢ = Filter(6]"", r), Vi € 1, L] > Apply filtering process

whbetl o qhte gy (Vﬁk(wk’t’e + Sk*t’e) + X\ + %(wk’t’e — wz)) > Dyn
update step

10: end for
Send local model w**F to the server.

12: Update local multiplier: Ay, <= Ax — 5(w™"" —w?).

end for
14: Aggregate models: wit! < w} — 1, 3, g (wh — w""F). > Aggregate models on server

Update global multiplier: A < A — ﬁ > kes, (WHEE —wh).
16: end for

return w;

A.2 FEDFFT-S ALGORITHM.

Algorithm 3 The FedFFT-S Algorithm.

Require: Communication rounds 7', local epochs E, perturbation radius p, local learning rate 7,
frequency truncation ratio r, penalty parameter 3, local control variates {Cj, }_,, global control
variate C'

Ensure: Global model w
Initialize global model w

2: fort=0toT —1do
Randomly select active client set S;.
4: for all clients k£ € S; in parallel do

0

p local control variates Vk, C'y, = 0, and global control variate C' = 0.

wh 0 —wh > Server sends global model to client

6: fore=0to £ —1do .
shte < p. % > Compute SAM perturbation
8: Slk’t’e = Filter(élk"t’e, r), VI € [1, L] > Apply filtering process

whtetl o qhte g (Vﬁk(wk’t*e + 6kbe) + ¢, — C) > Scaffold update step

10: end for
Cp«+C,—-C+ i(wt — wk’t"E)

nk g
12: Send local model w** ¥ and C}, to the server.
end for
14: Aggregate models: wit! < wh — 1, 3, g (wh — w*"F). > Aggregate models on server
Update global control variate: C' < C + £C;
16: end for
return w;
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B SAMIN FL
Research Work Base Algorithm Minimizing Target Perturbation
VL (white)
FedSAM (ECCV22, ICML22) FedAvg Local Sharpness P o Rt e
IV Ly (wh )|
. Vﬁk(wk’tve)
MoFedSAM (ICML22) FedAvg with Momentum Local Sharpness p- TS L, wFEe)]
g (w®t
. VL, (whithe)
FedGAMMA (TNNLS23) Scaffold Local Sharpness P o Rt e
IV L (w " )
sthey g,
FedSMOO (ICML23) FedDyn Local Sharpness with Correction . w
IV £ (w K D) —ni—sll
w —w
FedLESAM (ICML24) FedAvg, Scaffold, FedDyn Global Sharpness . ﬁ
we —wh
t—1
FEDGLOSS (CVPR25) FedDyn-like Global Sharpness via Pseudo-gradient p- 0 i%i T i
Y v white
FedFFT (ours) FedAvg, Scaffold, FedDyn Local Sharpness with Filtering p - Filter( ke )

IV L (whot ey

Table 5: Summary of federated SAM-based algorithms for solving data heterogeneity.

C IMPLEMENTATION OF THE EXPERIMENTS

C.1 HYPERPARAMETERS

For experiments on CIFAR-10 and CIFAR-100, we adopt the training configurations consistent with
FedSMOO (Sun et al., [2023a)) and FedLESAM (Fan et al.} 2024) for fair comparison. The backbone
network is ResNet-18 equipped with Group Normalization and optimized using SGD. The total
number of communication rounds is set to 800 for CIFAR-10 and CIFAR-100, and 300 for Tiny
ImageNet. The initial local learning rate is = 0.1. Unless otherwise specified, the learning rate
decays exponentially by a factor of 0.998 x per round; however, FedDyn, FedSMOO, FedLESAM-
D and FedFFT-D use a slower decay rate of 0.9995x for the proxy term. For CIFAR-10, we use a
batch size of 50 and set the number of local epochs to 5. For CIFAR-100, the batch size is 20 with
2 local epochs. For Tiny ImageNet, we follow the same configuration as that of CIFAR-10.

C.2 MODELS

In our experiments, we adopt different backbone architectures for evaluation. For the experiments
reported in Table[T] we use the standard ResNet 18 model from the torchvision library, where
all Batch Normalization (BN) layers are replaced by Group Normalization (GN) layers to improve
training stability in federated settings.

For the experiments in Table [2] we further evaluate three representative architectures: (i)
ResNet20, implemented following the CIFAR variant with GN layers instead of BN; (ii)
DenseNet121, where we use DenseNet_fedlaw (Li et al| 2023) implementation with
GN applied after the final dense block; and (iii) a Vision Transformer, specifically the
vit_tiny_patchl6_224 model from the t imm library. These choices allow us to validate the
generality of our approach across both convolutional and transformer-based models.

C.3 DATASETS

CIFAR-10 and CIFAR-100 are widely used benchmark datasets in computer vision and federated
learning research. Both consist of small-scale natural images of size 32x32 with three color chan-
nels. CIFAR-10 contains 10 object categories while CIFAR-100 extends this to 100 finer-grained
classes, making it a more challenging variant. Despite their limited resolution, these datasets remain
popular due to their balanced composition and ease of use in distributed training scenarios.

To further evaluate scalability, Tiny ImageNet is employed, which provides 200 categories of images
with higher resolution (64x64). Compared with CIFAR datasets, Tiny ImageNet introduces more
diverse classes and larger input dimensions, enabling more comprehensive testing of algorithms
under settings with higher model capacity and increased class heterogeneity. Such datasets are espe-
cially valuable in federated learning studies, where both efficiency and robustness to distributional
challenges are critical.
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Table 6: Dataset introductions.

Dataset Training Data Test Data  Class Size / Image
CIFAR-10 50000 10000 10/3x32x32
CIFAR-100 50000 10000 100/3%x32x32
Tiny ImageNet 100000 10000 200/ 3x64x64

C.4 CLIENT DATA DISTRIBUTION VISUALIZATIONS

In this appendix, we present the client data distributions under different Dirichlet parameters « for
CIFAR-10, CIFAR-100, and Tiny ImageNet. Each heatmap shows the number of samples per class
for each client.
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Figure 5: Client data distributions across different datasets and Dirichlet parameters a.
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D VISUALIZATION

D.1 LEARNING CURVE

Test Accuracy on TinylmageNet (a=0.1)
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Figure 6: Test Accuracy on TinylmageNet (o = 0.1 and a = 0.6).

D.2 3D LANDSCAPE VISUALIZATION

Visualization of the Global Loss Landscape. To visualize the 3D loss landscape, we perturb the pa-
rameters of the best-performing checkpoint along its top-two Hessian eigen-directions—computed
via power iteration on 500 CIFAR-10 test samples—and plot the corresponding loss values as a
smooth surface. As shown in Figure Compared to FedSAM, FedSMOQO, and FedGloSS, the loss
surface corresponding to the FedFFT_D solution is visibly flatter and wider. This provides a clear
geometric explanation for our superior generalization performance. By filtering out discordant,
client-specific sharpness directions, our method successfully guides the global model to converge
not just to a point of low loss, but to a broad, flat minimum that is inherently more robust to the data
distribution shifts present across clients. The 2D landscape can be found in the[D.3]
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Figure 7: Comparison of 3D loss landscapes on CIFAR-10/ResNet-18 (o = 0.1). Visualization of loss
landscapes for different federated learning algorithms: (a) FedFFT_D compared with FedSAM, (b) FedFFT_D
compared with FedSMOO, (c) FedFFT_D compared with FedGLOSS.
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D.3 2D LANDSCAPE VISUALIZATION
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(c) FedSMOO Landscape (d) FedGloss LandScape

E OTHERS

E.1 DIFFFERENT FILTERING METHODS ON RESNET20.

We further investigate the effect of different spectral filtering strategies on CIFAR-10 using the
ResNet-20 backbone, as summarized in Table[7] For a fair comparison, all methods adopt the same
filtering ratio of 0.01, i.e., the lowest 1% or highest 1% frequency components are removed, or 1% of
frequencies are randomly removed. All methods are implemented based on the FedDyn framework.

Table 7: Performance Comparison of Different Filtering Methods on CIFAR-10 using ResNet-20
backbone.

o Accuracy (%)
Filtering Approach =06 a=01
FedDyn + SAM 88.82 77.10
High-frequency Filtering 89.01 77.20
Random Filtering 88.48 76.38

Low-frequency Filtering (FedFFT-D)  91.23 81.24

E.2 COMBINE WITH OTHER METHODS.
To further validate the universality of our method, we selected to combine it with approaches that

optimize weights. 2025) We implemented the SAM optimizer on all client sides and used
the FedAvg framework for verification on the ResNet-20 model. As shown in[g]
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Table 8: Test accuracy (%) on CIFAR-10 and CIFAR-100 with Dirichlet distribution parameter
o = 0.1. The federated learning setup is fixed as 400 rounds, 100 clients, active ratio = 0.1, and
SAM is used as the client optimizer. We compare FedAWA and FedAWA-+FedFFT.

Method CIFAR-10 CIFAR-100
FedAWA 47.20 33.40
FedAWA+FFT 50.16 34.04

18



	Introduction
	Related Work
	Background
	Sharpness-aware Minimization
	Federated Learning
	SAM in Federated Learning

	Our Proposed Method
	 Motivation: Analyzing Client Perturbations in the Frequency Domain
	FedFFT: The Proposed Method

	Experiments
	Experimental Setups
	Main Results
	Further Analysis

	Conclusion
	Ethics Statement
	Reproducibility Statement
	LLM Usage Statement
	Algorithms
	FedFFT-D Algorithm.
	FedFFT-S Algorithm.

	SAM in FL
	Implementation of the Experiments
	Hyperparameters
	Models
	Datasets
	Client Data Distribution Visualizations

	visualization
	Learning Curve
	3d landscape visualization
	2d landscape visualization

	others
	Diffferent filtering methods on ResNet20.
	Combine with other methods.


