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ABSTRACT

We study the problem of learning an approximate equilibrium in the offline
multi-agent reinforcement learning (MARL) setting. We introduce a structural
assumption—the interaction rank—and establish that functions with low interac-
tion rank are significantly more robust to distribution shift compared to general
ones. Leveraging this observation, we demonstrate that utilizing function classes
with low interaction rank, when combined with regularization and no-regret learn-
ing, admits decentralized, computationally and statistically efficient learning in
offline cooperative and competitive MARL. Our theoretical results are comple-
mented by experiments that showcase the potential of critic architectures with low
interaction rank in offline MARL, contrasting with commonly used single-agent
value decomposition architectures.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) is a general framework for interactive decision-making
with multiple agents. Recent breakthroughs in this field include learning superhuman strategies
in games like Go (Silver et al., 2016), StarCraft II (Vinyals et al., 2019), Texas hold’em poker
(Brown and Sandholm, 2019), and Diplomacy (Bakhtin et al., 2022). Additionally, MARL has been
successfully applied in real-world domains, including auctions (Jin et al., 2018), pricing systems
(Nanduri and Das, 2007), and traffic control (Wu et al., 2017). However, most of these successes
rely on online and iterative interaction with the environment, which enables the collection of diverse
and exploratory data. In practice, online interaction with exploratory policies is often infeasible or
prohibitive due to safety constraints, making it necessary to use offline datasets instead.

Several recent works have investigated the application of modern deep RL algorithms to the offline
MARL setting (Yang et al., 2021; Tseng et al., 2022; Wang et al., 2024). Despite recent advances,
there remains a lack of standardized methods that can effectively tackle complex, real-world problems
beyond simulated or simplistic settings. Recent works (Cui and Du, 2022a; Zhang et al., 2023b)
studied offline MARL from a sample complexity perspective. Specifically, Zhang et al. (2023b)
designed the BCEL algorithm, a sample-efficient algorithm for the offline general-sum MARL setting
with general function classes. However, its implementation poses significant challenges due to the
need to solve a non-convex problem in the joint action space. Furthermore, the algorithm’s sample
complexity is tied to the unilateral coverage coefficient, which can scale exponentially with the
number of agents in the worst-case scenario. This raises the following question, which becomes the
focus of this work:

Are there any natural structural assumptions that allow for both sample efficient and computationally
efficient algorithms in the offline MARL setting?

Recent lower bounds show that computing an equilibrium in a MARL setting is hard in gen-
eral (Daskalakis et al., 2009; 2023). Nevertheless, for some specialized MARL classes, this need not
be the case. In this work, we study the MARL setting with low interaction rank (IR). In this setting
the reward model decomposes to a sum of terms, each involving the interactions of only a subset of
the agents (Section 3). Our key statistical result is that functions with low interaction rank are more
robust to distribution shift compared to general functions. This result, which, as we show, has natural
applications in offline MARL, may also be of general interest.
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Offline Setting Reward
Assumption

Sample
Complexity

Efficient
Algorithm

Markov Game — O
(
CN
)

✗

Contextual Game K-Interaction Rank O
(
CK
)

✓

Markov Game w/
Decoupled Transition

K-Interaction Rank O
(
CK
)

✓

Table 1: Comparison of the results presented in this work (highlighted in orange) and prior work. C
is the single-agent coverage coefficient. Here we present the worst-case dependence of the sample
complexity in the single-agent coverage coefficient, where N is the number of agents.

Assuming the reward model has low interaction rank, we leverage regularization and no-regret
learning to develop decentralized computationally-efficient offline algorithms for the contextual
game (CG) setting, and for Markov games (MG) with a decoupled transition model (Section 4
and Section 5). Notably, we prove that applying structures with low interaction rank allows these
algorithms to achieve sample-efficient learning, avoiding the exponential dependence in the number
of agents. Lastly, in Section 6, we empirically corroborate our findings. This shows the potential
of using reward architectures with low interaction rank in offline MARL setting, and the need to go
beyond the standard single agent value decomposition architectures, which have been popularized for
MARL (Sunehag et al., 2017; Rashid et al., 2020; Yu et al., 2022).

Additional related works. Our work is related to the research on provable offline and decentralized
MGs and factored critics in the empirical literature. See Appendix A for more details.

2 PRELIMINARIES

We define the general offline multi-agent RL setting, which includes all of the models we study.

General-sum contextual MG. A contextual MG is defined by the tuple M = (N,H, C,S :=∏N
i=1 Si,A :=

∏N
i=1Ai, {R⋆

i,h}
N,H
i=1,h=1) where N is the number of agents and H is the horizon. C

is the context space. In each episode, a public context c ∈ C, which is observed by all agents and stays
invariant throughout the episode, is drawn from the distribution ρ. Si and Ai are the local state and
action spaces of the i-th agent. We assume the initial local state of each agent is fixed for simplicity,
but our analysis can be easily extended to accommodate stochastic initial states. R⋆

i,h(c, s,a) is the
reward distribution of agent i at step h given the context c, joint state s and joint action a. We assume
the value of R⋆

i,h lies in [0, 1] and denote the mean of R⋆
i,h by r⋆i,h. In this paper, we study general-sum

RL (Littman, 1994) and thus r⋆i,h : C × S ×A → [0, 1] can be an arbitrary reward function.

MGs with decoupled transitions. In this work we assume the transition of the local state only
depends on the local state, public context and local action (Zhang et al., 2023a; DeWeese and Qu,
2024; Jin et al., 2024), which can be characterized by the kernel P ⋆

i,h : C × Si × Ai 7→ ∆Si
for

all i ∈ [N ], h ∈ [H]. Note that the reward function R⋆
i,h(c, s,a) is still of a general-sum game and

depends on the joint state and joint action.
Remark 1. The decoupled transitions property finds application in many practical scenarios in-
cluding sensor coverage, autonomous vehicles, and robotics, and has been studied under online
decentralized learning setting (Zhang et al., 2023a; DeWeese and Qu, 2024; Jin et al., 2024). For
more general MGs, decentralized no-regret algorithms are hard to design even in full-information
setting. As far as we know, Erez et al. (2023) is the only existing work which achieves sublinear regret
in general MGs when all the agents adopt the decentralized algorithm. However, they only focus on
tabular cases in the full information setting or online setting with a minimum reachability assumption.
Therefore, we leave it as an important future direction to extend our analysis to more general MGs.

Policy and value functions. A joint policy π = {πh}Hh=1 is a mapping from C × S to the simplex
∆A which determines the joint action selection probability under the public context and joint state
at each step. Given π, we use πi = {πi,h}Hh=1 to denote the marginalized policy for agent i. In the
decentralized setting (Zhang et al., 2023a; DeWeese and Qu, 2024; Qu et al., 2020; Lin et al., 2021;
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Jin et al., 2024), each agent i independently executes its local policy πi based only on the public
context c and its local state si, i.e., π =

∏N
i=1 πi where πi,h : C × Si → ∆Ai

for all i, h. In this case,
we call the joint policy π a product policy.

Given a reward function ri of agent i and joint policy π, we define the value function and Q-function as-
sociated with agent i to be agent i’s expected return conditioned on the current joint state (and action):

V π,r
i,h (c, s) := Eπ

[
H∑

h′=h

ri,h′(c, sh′ ,ah′)

∣∣∣∣∣ c, sh = s

]
,

Qπ,r
i,h (c, s,a) := Eπ

[
H∑

h′=h

ri,h(c, sh′ ,ah′)

∣∣∣∣∣ c, sh = s,ah = a

]
.

Here, Eπ[·] denotes the expectation under the distribution of the trajectory when executing π inM.
We will omit the superscript r in V π,r

i,h and Qπ,r
i,h if r is the ground truth reward r⋆.

Decentralized offline equilibrium learning. For any joint policy π, if each agent cannot increase its
own expected reward by changing its policy while the other agents fix their policies, then π is a coarse
correlated equilibrium (CCE) (Aumann, 1987). More specifically, let Πi := {µi : C × Si → ∆Ai

}
denote the local policy class of the agent i, then an ϵ-approximate CCE can be defined as follows:
Definition 1 (Coarse Correlated Equilibrium). A joint policy π is called an ϵ-approximate CCE if

Gapi(π) := max
µi∈Πi

Ec∼ρ[V
µi×π−i

i,1 (c, s1)]− Ec∼ρ[V
π
i,1(c, s1)] ≤ ϵ, ∀i ∈ [N ],

where π−i is the marginalized policy of π for all agents excluding i.

If π is a product policy and satisfies Definition 1, then π is the well-known Nash equilibrium (NE)
(Nash et al., 1950). Given the fact that NE can be hard to compute for even general-sum normal
games (Daskalakis et al., 2009), our goal is to learn an ϵ-approximate CCE.

In particular, we consider the decentralized setting where each agent i executes its policy πi only
based on the public context c and its local state si (Zhang et al., 2023a; DeWeese and Qu, 2024; Qu
et al., 2020; Lin et al., 2021; Jin et al., 2024). For agent i, given a local policy πi = {πi,h}h∈[H] and
a public context c, the transition of the local state is indeed independent from other agents and thus
we can define the local state visitation measure as follows:

dπi

h (s|c) := Pπi(si,h = s|c), ∀h ∈ [H], s ∈ Si, i ∈ [N ],

where si,h is the local state of agent i at step h and Pπ(·|c) denotes the distribution of the trajectories
under policy πi and public context c. We also define dπi

h (s, a|c) := dπi

h (s|c)πi,h(a|s). We want
to identify a natural structural property for MARL, under which we can design decentralized
statistically and computationally efficient offline algorithm, which means that we assume access to an
offline dataset D without allowing interaction with the environment beyond this.

3 INTERACTION RANK IMPLIES ROBUSTNESS TO DISTRIBUTION SHIFT

In this section, we define the key structural property introduced in this work—the interaction rank
(IR) of a function. We show that a function with a low interaction rank is significantly more robust
to distribution shift compared to a general function in a standard offline supervised learning setting.
This observation later enables us to derive sample efficient guarantees for the MARL setting. For an
arbitrary function, we define its interaction rank as follows.
Definition 2 (Interaction Rank). A function f : X × Y1 × · · · × YW → [0, 1] has interaction
rank K (K-IR) if there exists a positive integer K such that there exists a group of sub-functions
∪0≤k≤K{gj1,...,jk}j1<···<jk which satisfies

f(x, y1, . . . , yW ) =

K−1∑
k=0

∑
1≤j1<···<jk≤W

gj1,...,jk(x, yj1 , . . . , yjk),∀x ∈ X , y1 ∈ Y1, . . . , yW ∈ YW .

Intuitively, the function can be decomposed into a sum of g, called sub-functions, each depending
only on a subset of the input variables. This structure is common in practice and finds application in
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fields including physics (Grana, 2016), economics, (Asghari et al., 2022) and statistics (Vonesh et al.,
2001).

Relation to Taylor series. When restricting the inputs of a function to a local neighborhood,
Definition 2 can understood as a Taylor expansion of function. To see this, fix an x ∈ X , then any
K-differentiable function f in a local region of {yw}Ww=1 ∈

∏W
w Yw can be approximated as

f(x, y1, . . . , yW ) ≃ f(x, y′1, . . . , y
′
W ) +

K∑
k=1

1

k!

∑
j1,...,jk

∂f(x, y′1, . . . , y
′
W )

∂yj1 · · · ∂yjk

k∏
k′=1

(yjk′ − y′jk′ ).

Hence, the interaction rank of a K-order Taylor expansion is upper bounded by K + 1. Further, if
the Taylor series is close to f , we can find a good approximation of f with low interaction rank.

Bounded interaction rank implies distribution shift robustness. The key property that makes
functions with low interaction rank useful in the offline MARL is their robustness to distribution
shift. Towards formalizing this statement, let us first consider an offline supervised learning setting.
Suppose we wish to learn a target function f⋆ in an offline setting. The training distribution is
x ∼ p, yi ∼ pi(·|x),∀i and the target distribution is x ∼ p′, yi ∼ p′i(·|x),∀i. The distribution shift is
quantified by the density ratio:

max
x∈X

p′(x)

p(x)
≤ CDS, max

i∈[N ],x∈X ,yi∈Yi

p′i(yi|x)
pi(yi|x)

≤ CDS.

Let f̂ denote the learned function. Standard guarantees imply that the training error (i.e., under p and
pi) can be upper bounded by ϵ:

Ex∼p,y1∼p1(·|x),...,yW∼pW (·|x)

[(
(f⋆ − f̂)(x, y1, · · · , yW )

)2]
≤ ϵ. (1)

When f⋆ and f̂ are general functions, the optimal worst-case learning error under the target distri-
bution is O

(
(CDS)

W+1ϵ
)
, which scales exponentially with the input size W . However, if f⋆ and f̂

have bounded interaction rank, this result can be significantly improved; the error under distribution
shift only scales exponentially with the interaction rank.

Theorem 1. If f⋆ and f̂ are K-IR, we have

Ex∼p′,y1∼p′
1(·|x),...,yW∼p′

W (·|x)

[(
(f⋆ − f̂)(x, y1, . . . , yW )

)2]
≲ (2W )2(K−1)CK

DS ϵ.

Here for any two functions g and g′, g ≲ g′ means that there exists a constant c > 0 such that g < cg′

always holds. Theorem 1 indicates that when K ≪ W , function classes with bounded interaction
rank are more robust to distribution shift and can significantly alleviate the curse of dimensionality
due to multiple agents in offline learning. In MARL, W + 1 will be the number of agents, while
K is the interaction rank of the reward.

4 WARM UP: CONTEXTUAL GAMES

The robustness to distribution shift of low-IR functions suggests that such a property may be useful for
offline MARL. Indeed, in the offline setting we need to properly estimate quantities that deviate from
the data distribution. To provide intuition for the benefits of low-IR reward classes and corresponding
algorithmic design, we start by considering the contextual games (CG) setting as a warm up.

Offline CG. The CG problem is a general-sum contextual MG where Si = ∅ for all i and H = 1.
To simplify notation, we omit the h subscript in rh and πh for this setting. We assume the offline
dataset D = DR where each sample (c,a = {ai}Ni=1, {ri}Ni=1) is i.i.d. sampled from c ∼ ρ, ai ∼
νi(·|c), ri ∼ R⋆

i (c,a) for all i ∈ [N ]. We call νi the offline behavior policy for each agent i and use
ν to denote the product behavior policy

∏
i∈[N ] νi. Let us assume for simplicity that we have learned

reward functions {r̂i ∈ [0, 1]}i∈[N ] from the offline dataset with in-distribution training error ϵ:

Ec∼ρ,a∼ν(·|c)

[
(r⋆i − r̂i)

2
]
≤ ϵ, ∀i ∈ [N ].

4
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Algorithm: Decentralized χ2-Regularized Policy Gradient. Given r̂, we propose a decentralized,
χ2-regularized, no-regret policy gradient based algorithm. As we show, this algorithm produces a set
of policies which are near equilibrium. In each iteration t , each agent will update their policy via:

πt+1
i (c) = argmin

p∈∆Ai

−⟨r̂ti(c, ·), p⟩+ λχ2(p, νi(c))︸ ︷︷ ︸
regularization

+
1

η
Dc,i(p, π

t
i(c))︸ ︷︷ ︸

no-regret learning

. (2)

Here r̂ti(c, ai) = Eaj∼πt
j(c),∀j ̸=i [r̂i(c,a)] is the expected reward of agent i given that the other

agents’ policies are
∏

j ̸=i π
t
j . The regularizer χ2(p, νi(c)) := Eai∼νi(·|c)[(p(ai)/νi(ai|c)− 1)2] is

the χ2-divergence between distribution p and νi(c) and Dc,i(p, π
t
i(c)) is the Bregman divergence

between distribution p and πt
i(c):

Dc,i(p, π
t
i(c)) := χ2(p, νi(c))− χ2(πt

i(c), νi(c))− ⟨∇πt
i
(c)χ2(πt

i(c), νi(c)), p− πt
i(c)⟩

= Eai∼νi(·|c)

[(
p(ai)− πt

i(ai|c)
νi(ai|c)

)2
]
.

We denote the total number of iterations by T . Eq. (2) has two divergence terms, which serve
different roles. We add the χ2-divergence regularization term to encourage the policy trajectory to
stay close to the behavior policy νi and thus lessen the distribution shift issue. On the other hand, to
ensure the update enjoys no regret, we have a Bregman divergence term which is motivated from
the policy mirror descent literature (Zhan et al., 2023a; Lan, 2023). Notably, Eq. (2) is a quadratic
optimization problem whose input size is only |Ai|. Thus, for small action and state space we can
solve it efficiently without incurring exponential computation cost as the number of agents increase.
Remark 2. The key ingredients of our algorithm are (1) regularization and (2) no-regret learning. We
choose χ2-divergence and its corresponding Bregman divergence for a tractable theoretical analysis.
In practice, other regularizers can also be utilized, such as KL divergence (Rafailov et al., 2024)
or the L2 behavior cloning term in TD3-BC (Fujimoto and Gu, 2021). Additionally, in practice,
one-step online gradient (Zinkevich, 2003) can be used as the no-regret learning algorithm.

Theoretical analysis. Now we analyze the statistical sample complexity of the above algorithm. If
the reward function class has no specific structure, the sample complexity can still scale exponentially
with N due to distribution shift. To address this, we leverage a low-IR reward function class:
Assumption 1 (K-IR Reward). Suppose that the interaction rank of r⋆i and r̂i are upper bounded by
K, with X = C × Ai and Yj = Aj in Definition 2 for all i ∈ [N ].

Assumption 1 naturally holds in a variety of games. For example, polymatrix games (Howson Jr, 1972;
Kalogiannis and Panageas, 2024; MacQueen and Wright, 2024) characterize the reward function via
pairwise interactions and, thus, for these settings Assumption 1 holds with K = 2. In network games
(Galeotti et al., 2010; DeWeese and Qu, 2024; Park et al., 2024), the reward only depends on the
neighbors and thus Assumption 1 holds with K equal to the degree of the network. Note that for all
of these examples, we have K ≪ N .

Now we introduce a bound on the maximum gap of the output policy π̂ under K-IR reward classes. Let
r(π) be the expected reward under the distribution c ∼ ρ,a ∼ π(·|c). Similar to existing offline RL
analysis techniques (Xie et al., 2021), we split the bound into on-support and off-support components:
Theorem 2 (Informal). Suppose Assumption 1 holds. Let Πi(C) := {µi : Ec∼ρ[χ

2(µi(c), νi(c))] ≤
C} denote the policy class which has bounded χ2-divergence from the behavior policy νi. Fix any
δ ∈ (0, 1] and select T, η, λ in Eq. (2) properly. Then, with probability at least 1− δ, we have

max
i

Gapi(π̂) ≲ max
i∈[N ]

min
C≥1

{
C
(
(2N2)K−1ϵ

) 1
3K−1 + subopti(C, π̂)

}
, (3)

where subopti(C, π̂) := maxµi∈Πi
r⋆i (µi, π̂−i)−maxµi∈Πi(C) r

⋆
i (µi, π̂−i) is the off-support bias.

Optimal bias-variance tradeoff. We call Πi(C) a covered policy class because policies within
it have bounded χ2-divergence from the behavior policy ν, which implies that we can estimate
their performance relatively accurately from the offline dataset. The right hand side of Eq. (3) can
be viewed as a bias-variance decomposition of the gap. The first term is the variance term which
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measures the distribution-shift effect of comparing against policies from Πi(C). The second term
is the bias term which quantifies the performance difference between the global optimal policy and
the optimal policy in the covered policy class. As C increases, the considered covered policy class
will expand and thus the variance term will grow while the bias term will diminish. Notably, our
algorithm does not require any information about C and the gap in Theorem 2 is upper bounded by
the optimal C, which means that we can identify the best bias-variance tradeoff automatically.

Polynomial sample complexity with single-agent concentrability. Let us consider the following
single-agent all-policy concentrability coefficient Csin := maxi∈[N ],µi,c∈C,ai∈Ai

µi(ai|c)
νi(ai|c) . Note that

Csin will not scale with N exponentially. Then Theorem 2 implies that if Csin <∞, the maximum
gap under the interaction rank structure can be upper bounded by

max
i

Gapi(π̂) ≲ Csin

(
(2N2)K−1ϵ

) 1
3K−1 .

Therefore, given a fixed K, we can learn an approximate CCE with polynomial sample complexity with
respect to the number of agents N under single-agent all-policy concentrability. This demonstrates
the power of low-IR reward classes for MARL. When combined with regularization and no-regret
learning, the sample complexity is significantly improved, making computationally- and statistically-
efficient algorithm design possible in MARL.

Proof highlights. We provide a proof sketch of Theorem 2 for K = 2, supplying intuition for how K-
IR reward classes benefit theoretical sample complexity. For any agent i ∈ [N ] and policy µi ∈ Πi(C)

where C > 1, we can bound the in-support gap
∑T

t=1

(
r⋆i (µi, π

t
−i)− r⋆i (π

t)
)

as follows:

T∑
t=1

Ec∼ρ,ai∼µi(c),a−i∼πt
−i

[(r⋆i − r̂i)(c,a)]︸ ︷︷ ︸
(1)

+
T∑

t=1

Ec∼ρ,a∼πt [(r̂i − r⋆i )(c,a)]︸ ︷︷ ︸
(2)

+
T∑

t=1

(
r̂i(µi, π

t
−i)− r̂i(π

t)
)

︸ ︷︷ ︸
(3)

.

We need to bound terms (1), (2), and (3). Term (3) is the performance difference when changing the
policy of agent i to µi. Note that this is equivalent to the regret of agent i with loss function −r̂ti and
thus we can bound it with similar techniques in policy mirror descent literature (Zhan et al., 2023a).

Term (1) represents the reward learning error under the comparator policy µi and learned policy πt
−i,

which is different from ν. To control it, we need to tackle the distribution shift between the two.
We use gi∅, {g

i
j}j ̸=i and ĝi∅, {ĝ

i
j}j ̸=i to denote the decomposition of r⋆i and r̂i, and use ∆i

j to denote
gij − ĝij . Since we apply a K-IR reward class Assumption 1, we can decompose term (1) as follows

Ec∼ρ,ai∼µi(·|c),a−i∼πt
−i(·|c)[(r

⋆
i − r̂i)(c,a)]

= Ec∼ρ,ai∼µi(·|c)
[
∆i(c, ai)

]
+
∑
j ̸=i

Ec∼ρ,ai∼µi(·|c),aj∼πt
j(·|c)

[
∆i

j(c, ai, aj)
]
.

Meanwhile, from the property of χ2-divergence, we have

Ec∼ρ,ai∼µi(·|c),aj∼πt
j(·|c)

[
∆i

j(c, ai, aj)
]

≤
√
Ec∼ρ,ai∼νi(·|c),aj∼νj(·|c)

[(
∆i

j(c, ai, aj)
)2] · (1 + χ2

(
ρ ◦ (µi × πt

j), ρ ◦ (νi × νj)
))
,

where we use ρ ◦ p to denote the joint distribution c ∼ ρ, a ∼ p(·|c) for some conditional distribution
p. For the χ2-divergence term, χ2(µi(c), νi(c)) is bounded because µi is from the covered policy
class; we can also upper bound χ2(πt

j(c), νj(c)) due to the χ2 regularizer term in Eq. (2). Thus, we

only need to bound Ec∼ρ,ai∼νi(·|c),aj∼νj(·|c)

[(
∆i

j(c, ai, aj)
)2]

.

This is non-trivial because we are only regressing with respect to r⋆, which is the summation of the
sub-function g, and there exist infinite number of IR decompositions of r⋆. Fortunately, we are able
to show that such an aligned decomposition exists:
Lemma 1 (Sub-function Alignment for K = 2, informal). There exists a standardized IR decompo-
sition of r⋆ and r̂, denoted by g∅, g1, . . . , gW and ĝ∅, ĝ1, . . . , ĝW such that we have

Ec∼ρ,ai∼νi(·|c),aj∼νj(·|c)

[(
∆i

j(c, ai, aj)
)2] ≤ 2ϵ, ∀j ̸= i.
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With Lemma 1, we are able to bound term (1) efficiently. Term (2) can be handled similarly.
Notably, Lemma 1 holds for general K as shown in Lemma 4 and the IR decomposition circumvents
exponential scaling with N . The above discussion illustrates that low-IR reward classes are quite
effective when mitigating the learning error under distribution shift in MARL.

5 DECENTRALIZED REGULARIZED ACTOR-CRITIC IN MARKOV GAMES WITH
DECOUPLED TRANSITIONS

We are now ready to investigate the benefits of low interaction rank in offline MGs. In particular, we
will propose our main algorithmic framework to utilize low-IR function classes.

Offline dataset. We assume access to an offline dataset {Dh}Hh=1. Dh consists of M i.i.d. samples
(c, {si, ai, s′i}i∈[N ], {ri}i∈[N ]) where c ∼ ρ, si ∼ σi,h(·|c), ai ∼ νi,h(·|c, si), s′i ∼ P ⋆

i,h(·|c, si, ai)
and ri ∼ R⋆

i,h(c, {si, ai}i∈[N ]). Note that σi,h may not be the local state visitation measure dνi

h (·|c).
We also use σh to denote

∏
i∈[N ] σi,h.

General function approximation. We consider the general function approximation setting. This
makes the algorithm applicable in potentially large or even infinite state space and action space.
Suppose that we have function classesR = {Ri}Ni=1 to approximate the reward function r⋆i,h where
Ri ⊆ {r : C × A → [0, 1]} for all i ∈ [N ]. In addition, we use function classes {Pi}i∈[N ] where
Pi ⊆ {P : C × Si ×Ai → ∆Si

} to approximate the transition model. We assume here thatRi and
Pi are finite, but the analysis can be extended to infinite function classes naturally by replacing the
cardinality of Ri and Pi with its covering or bracketing number (Wainwright, 2019). To simplify
notation, we use |R| and |P| to denote maxi∈[N ] |Ri| and maxi∈[N ] |Pi|.

5.1 ALGORITHMIC FRAMEWORK

Algorithm 1 Decentralized Regularized Actor-Critic (DR-AC)

1: Initialize π1
i to be the behavior policy νi for each agent i.

2: /** Offline Reward & Transition Learning **/
3: Compute for all i ∈ [N ], h ∈ [H]

r̂i,h = argmin
r∈Ri

∑
(c,s,a,ri)∈Dh

(r(c, s,a)− ri)
2, P̂i,h = argmax

P∈Pi

∑
(c,si,ai,s′i)∈Dh

logP (s′i|c, si, ai).

4: for t = 1, . . . , T do
5: for i ∈ [N ], h ∈ [H] do
6: /** Critic Update **/
7: Estimate the single-agent Q-function with the learned reward r̂i and transition P̂i:

Q̂t
i,h(c, si, ai) = E

(sj ,ai)∼d̂
πj
h (·|c),∀j ̸=i

[
Q̂πt,r̂

i,h (c, s,a)
]
,∀c ∈ C, si ∈ Si, ai ∈ Ai.

8: /** Actor Update **/
9: Run mirror descent for all c ∈ C, s ∈ Si:

πt+1
i,h (c, s) = argmin

p∈∆Ai,h

−⟨Q̂t
i,h(c, s, ·), p⟩+ λχ2(p, νi,h(c, s)) +

1

η
Dc,s,i(p, π

t
i,h(c, s)). (4)

10: Return: the uniform mixture of
{∏

i∈[N ] π
t
i

}T

t=1
.

For general-sum MGs with decoupled transitions, we consider a widely-used kind of algorithmic
framework in practice, the actor-critic method (Barto et al., 1983). Arming it with regularization and
no-regret learning, we propose DR-AC for offline learning in MGs. The full algorithm is stated in
Algorithm 1. Notably, DR-AC is a decentralized model-based algorithm which is computationally
efficient given that we are able to solve a least squares regression (LSR) and maximum likelihood
estimation (MLE) problem. DR-AC consists of two phases: offline reward and transition learning,
followed by decentralized actor-critic updates.

7
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Offline reward and transition learning. We first learn the reward function r̂i for each agent i using
LSR on the offline dataset DR. In particular, here we will use a function class Ri where all the
functions have bounded IR so that our learned reward has higher robustness to distribution shift, as
we have shown in the previous section. We also learn the transition model for each i via MLE on the
offline dataset with function classes Pi. Note that LSR and MLE problems are common in supervised
learning and can be solved with simple methods like stochastic gradient descent (Jain et al., 2018).
The RL literature has also assumed the existence of efficient solutions to these optimization problems,
calling algorithms that depend on them oracle-efficient (Dann et al., 2018; Agarwal et al., 2020;
Uehara et al., 2021; Song et al., 2022).

Critic update. In each iteration, for each agent i, we estimate its current single-agent Q-function,
given other agents’ policies, with the learned reward r̂ and transition model P̂ :

Q̂t
i,h(c, si, ai) = E

(sj ,aj)∼d̂
πj
h (·|c),∀j ̸=i

[
Q̂πt,r̂

i,h (c, s,a)
]
,

where we use Q̂π,r̂
i,h and d̂

πj

h to denote the joint Q-function and local state visitation measure of π

under reward r̂ and transition P̂ . In practice, we can simply use a Monte-Carlo-type method to
estimate Q̂t

i,h, which only requires solving an LSR problem and is thus computationally efficient.
See Appendix C for more details.

Actor update. Given the estimated Q-function, we use regularized policy gradient to update each
agent’s policy. The update formula Eq. (4) is almost the same as the update in Eq. (2) for CGs,
except the estimated reward is replaced with the estimated Q-function. We use χ2-divergence
for regularization and Bregman divergence in Algorithm 1. Nevertheless, DR-AC allows other
regularizers and no-regret learning techniques as mentioned in Remark 2. Note that Eq. (4) is a
quadratic optimization problem with input size |Ai| and thus can be solved efficiently.

5.2 THEORETICAL ANALYSIS

We now present the sample complexity guarantee for DR-AC. We assume the function class {Ri}i∈[N ]

and {Pi}i∈[N ] are realizable.
Assumption 2. Suppose that we have r⋆i,h ∈ Ri and P ⋆

i,h ∈ Pi for all i ∈ [N ], h ∈ [H].

In general, DR-AC can have exponentially large statistical complexity with respect to the number of
agents N . However, similarly to the CG result, a low-IR reward function class alleviates this.
Assumption 3 (K-IR Reward). Suppose that the IR of ri is upper bounded by K withX = C×Si×Ai

and Yj = Sj ×Aj in Definition 2 for all j ̸= i, ri ∈ Ri, i, j ∈ [N ].

In addition, we assume that the offline dataset satisfies single-agent all-policy concentrability for the
local state distribution. Recall that σi,h is the dataset distribution.

Assumption 4. Suppose that for all i ∈ [N ] we have maxµi,c∈C,s∈Si,h∈[H]
d
µi
h (s|c)

σi,h(s|c) ≤ CS <∞.

We need Assumption 4 because bounded χ2-divergence between the action probabilities of two
policies does not imply bounded χ2-divergence between their state visitation measure. In DR-AC
we can only regularize the action probability and therefore require additional concentrability for the
local states. Nevertheless, here we only need single-agent concentrability and thus CS does not scale
exponentially with N . Now we can bound on the maximum gap of the output policy π̂ by DR-AC:
Theorem 3. Suppose Assumption 2, Assumption 3 and Assumption 4 hold. Let Πi(C) := {µi :
Ec∼ρ,s∼d

µi
h (·|c)[χ

2(µi,h(c, s), νi,h(c, s))] ≤ C,∀h} denote the policy class which has bounded χ2-
divergence from the behavior policy νi. Fix any δ ∈ (0, 1] and select

λ = C
K

3K+2

S H
3K

3K+2 (2N2)
K−1
3K+2 ϵ

1
3K+2

RP , η =
λ

H2
, T =

H2

λ2
,

where ϵRP := log(NH|R||P|/δ)
M . Then, with probability at least 1− δ the output of DR-AC, π̂, satisfies:

max
i

Gapi(π̂) ≲ max
i∈[N ]

min
C≥1

{
CC

K
3K+2

S H
6K+2
3K+2 (2N2)

K−1
3K+2 ϵ

1
3K+2

RP + subopti(C, π̂)

}
,

where subopti(C, π̂) := maxµi Ec∼ρ[V
µi◦π̂−i

i,1 (c, s1)]−maxµi∈Πi(C) Ec∼ρ[V
µi◦π̂−i

i,1 (c, s1)].

8
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Joint-action
reward critic

2nd order interaction rank (2-IR)
reward critic

Single agent (1-IR)
reward critic

Figure 1: Network diagrams for the ith agent.

Similarly to Theorem 2, Theorem 3 indicates that DR-AC admits an optimal bias-variance tradeoff
over the covered policy class Πi(C). In addition, if we have single-agent all-policy concentrability
Csin := maxh,i,µi,c,si∈Si,ai∈Ai

µi,h(ai|c,si)
νi,h(ai|c,si) < ∞, DR-AC is capable of learning an ϵ-approximate

CCE given sample complexity

M ≳
C3K+2

sin CK
S H6K+2(2N2)K−1 log(NH|R||P|/δ)

ϵ3K+2
,

Therefore, given a fixed K and single-agent all-policy concentrability, DR-AC can learn an approxi-
mate CCE in polynomial sample complexity with respect to N for general-sum MGs with decoupled
transitions. This suggests that introducing low-IR structure to the reward class is still beneficial for
offline learning in general-sum MGs.
Remark 3. For |R|, note that we require the function classes Ri to have IR bounded by K. This
means that their complexity will at most only scale with K exponentially.

Comparison with existing works. To our knowledge, Cui and Du (2022a); Zhang et al. (2023b) are
the only existing offline general-sum MARL works with provable statistical guarantees. However, the
proposed methods are not decentralized and require evaluating the gap for every possible candidate
joint policies, resulting in an impractically high computational burden.

Statistically, although Cui and Du (2022a) achieves Õ(1/ϵ2) complexity, they require stronger
concentrability assumption, which is the following unilateral concentrability with a target policy π⋆:

Cuni(π
⋆) := max

h,i,µi,c,s∈S,a∈A

dµi

h (si, ai|c)d
π⋆
−i

h (s−i,a−i|c)
σh(s|c) ν(a|s, c)

,

where s−i and a−i are the joint state and action of the agents excluding i. Note that the single-agent
all-policy concentrability coefficient CSCsin is indeed weaker than Cuni and we have CSCsin ≤
Cuni(π

⋆) for any π⋆. In the worst case, Cuni can still scale exponentially with number of agents N ,
whereas our sample complexity scales with the IR K.

For Zhang et al. (2023b), in CGs, they have the following concentrability assumption:

C ′
uni(R, π⋆) := max

i,µi,r∈Ri

Ec∼ρ,ai∼µi(·|c),a−i∼π⋆
−i(·|c)[(r − r⋆)2]

Ec∼ρ,a∼ν(·|c)[(r − r⋆)2]
.

In their work Ri can be a general function class and thus C ′
uni(R, π⋆) can be as large as Cuni(π

⋆)
in the worst case. Notably, if we use function class with K-IR instead, Theorem 1 shows that
C ′

uni(R, π⋆) ≲ CK
sin. Therefore, we indeed find a particular function class such that the concentrability

in Zhang et al. (2023b) is not vacuous. For MGs, Zhang et al. (2023b) uses a function class to
approximate the joint Q function while we use F to approximate the single-agent Q-function, and
thus the results are not directly comparable.

6 EXPERIMENTS

In this section, we examine the practical implications of our results. With this in mind, our findings
can be interpreted as providing the following guideline: Use a reward or Q-function class with the
smallest possible IR that can still represent the underlying true model. This approach strikes a balance
between two factors: it ensures realizability by requiring the model can be represented accurately,
and it improves sample efficiency, as demonstrated in Theorem 2 and Theorem 3.

9
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Figure 2: Comparison of TD3+BC in-
stantiated with different critic architec-
tures, i) 1-IR critic, ii) 2-IR critic, and iii)
joint-action critic. The underlying true
reward is a 2-IR. This figure showcases
the advantage of using 2-IR critic archi-
tecture compared to 1-IR or the general
joint-action critics when the underlying
model is 2-IR. The shaded area repre-
sents the standard error across trials.

Implementation and experimental setting. To examine
the usefulness of this observation, we study a simple of-
fline CG environment. We implement the actor update
in DR-AC to be a single gradient descent update with re-
spect to TD3+BC objective (Fujimoto and Gu, 2021) from
Tianshou library (Weng et al., 2022). Further, recall that
TD3+BC adds explicit L2 regularization term that keeps
the policy close to the data collection policy and thus
fits into the framework of DR-AC. To test the potential
benefits of low rank reward critic architectures we exper-
imented with three different types, depicted in Figure 1:
i) joint-action, ii) 2-IR, and iii) 1-IR reward critics. The
joint-action reward critic is a general mapping from the
joint action space to a number, and, hence, is the most ex-
pressive; it can represent both 2-IR and 1-IR. On the other
hand, the 1-IR architecture is the least expressive, as it can-
not represent 2-IR reward models, since it only accesses
a single agent action. Notably, we choose the number of
parameters of the 2-IR and joint-action architectures to be
of the same order of magnitude for fair comparison.

The details of our environment setting are as follows (see
Appendix B for additional information). We consider the
continuous action setting, where ∀i ∈ [N ], ai ∈ [−1, 1].
The underlying reward model is a 2-IR function of the
form ∀i ∈ [N ], r⋆i (s,a) =

∑N
j=1 aiaj/

√
N + ϵ where

ϵ ∼ Uniform(−σ, σ) and σ > 0. Further, we set number of agents as N = 50. We collect offline
data with the uniform policy and set the number of samples M such that σN/M = 0.1. In this noise
regime, the reward model is learnable but the noise level may effect the training procedure. We
experiment with few architectures for each reward critic type and report here the best one. We also
experimented with an additional environment in which the underlying reward is a 1-IR model (see
additional results in Appendix B).

Results. Experiment results are depicted in Figure 2. The 2-IR critic approach leads to the best
performing result by significant margin compared to the joint-action and 1-IR reward critics. For
the 2-IR critic the maximum gap across agents is the smallest, meaning the joint policy is in a near
equilibrium point. Interestingly, the simpler 1-IR model has the worst performance among the
three candidates. Such an approach for critic modeling is common in the online cooperative MARL
setting (Sunehag et al., 2017; Rashid et al., 2020; Yu et al., 2022). Nevertheless, as our experiments
show, it can dramatically fail in offline MARL. This is because in the online setting, the agent can
continually collect fresh samples to update the estimated 1-IR reward so that the critic can learn
accurate local approximations of the current expected reward even if the other agents’ policies
change. However, in offline setting, a 1-IR critic cannot make such updates because iterative data
collection is not allowed. In the offline MARL setting, single agent critic models may be severely
biased and degrade the performance of the learned policies.

7 CONCLUSIONS

In this work, we investigated the benefits of using reward models with low IR in the offline MARL
setting. We showed that learning an approximate equilibrium in offline MARL can scale exponentially
with the IR instead of exponentially with the number of agents. Our proposed algorithm is a
decentralized, no-regret learning algorithm that can be implemented in practical settings while
utilizing standard RL algorithms. The empirical results demonstrate superior performance of the
critic with the smallest IR that can still represent the underlying true model in offline MARL, while
the widely-used single-agent critic can fail catastrophically in this setting. Moving forward, building
critics with low IR in MARL is a promising direction for future work, as well as exploring additional
structural assumptions to alleviate the MARL problem.
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A ADDITIONAL RELATED WORKS

We would like to point out that for offline general-sum Markov games, there are no existing decen-
tralized and provably efficient algorithms and this field is under-explored. Our work can be viewed as
a first attempt towards this objective. For more background information, the related works are stated
in the following.

Provable offline MGs. Cui and Du (2022b) studies offline tabular zero-sum Markov games and
Yan et al. (2022) improves the complexity to minimax optimal. Zhong et al. (2022); Xiong et al.
(2022) further extend the discussion to linear function approximation. However, the above works
are all limited to two-agent zero-sum games. For multi-agent general-sum Markov games, the only
existing works are Cui and Du (2022a); Zhang et al. (2023b), where Cui and Du (2022a) investigates
the tabular setting and later Zhang et al. (2023b) proposes a centralized algorithm with function
approximation. Nevertheless, both of them are centralized and computationally inefficient since they
need to evaluate each possible joint policy, whose complexity will scale with the number of agents
exponentially. In comparison, our method is decentralized and computationally feasible.

Decentralized algorithms in general-sum MGs. In the online setting, to learn a CCE for a general-
sum MG, Jin et al. (2021); Song et al. (2021); Mao and Başar (2023) proposed V-learning and
Daskalakis et al. (2023) introduced SPoMAR. However, these algorithms cannot achieve no-regret
and depend heavily on collecting fresh samples, thus cannot be extended to the offline setting trivially.
For specific no-regret decentralized algorithms, as far as we know, Erez et al. (2023) is the only
existing decentralized work which achieves sublinear regret in general-sum MGs (and thus is able to
learn a CCE). Nevertheless, they only focus on tabular cases in the full information setting or online
setting with a minimum reachability assumption, which are drastically different from the offline
setting.

Factored critics. Another closely related line of work is the utilization of factored critics in
empirical studies. Since Sunehag et al. (2017) proposed the value decomposition networks (VDN),
factored critics have been widely applied in the online cooperative MARL setting. Rashid et al. (2018)
further proposed QMIX, a Q-learning type algorithm which utilizes a non-linear mixing network to
combine single-agent critics, and Peng et al. (2021) extended the discussion into actor-critic methods.
Nevertheless, most of these works focus on online cooperative MARL and lack theoretical analysis.
Our paper indeed formalizes and generalizes these efforts by introducing the interaction-rank structure.
As a matter of fact, VDNs are exactly a 1-IR critic. We further show that the idea of factorization in
critics is also useful in offline general-sum MGs, but in general you need critics with a higher IR than
VDNs for offline learning, as discussed in Section 6.
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B ADDITIONAL EXPERIMENTAL DETAILS

In this section we give additional information on the experiment design. Additional hyper-parameters
related to training are given in Table 2.

Our high-level implementation follows the framework of DR-AC and has three steps:

1. Data collection. Collect data via a uniform policy, where each agent executes a random action
ai ∼ Uniform([−1, 1]) for all i ∈ [N ].

2. Learn critic. Learn N reward critic models using LSR and the collected offline data. Namely, for
each agent i ∈ [N ], estimate a reward critic by solving the following LSR:

argmin
r∈Ri

∑
(a,ri)∈Dh

(r(a)− ri)
2.

We experiment with three types of reward critic types, namely, different reward classesRi: 1-IR,
2-IR, and joint-action critic models. We solve this by gradient descent, which iteratively samples a
batch fromDh, and takes a gradient step. Our method returns the critic with the smallest validation
loss, calculated with respect to a holdout validation dataset, through the course of training. Lastly,
if during the run the critic does not show improvement after number of steps specified by the
‘patience’ parameter we stop the run (see Table 2 for hyper-parameter values).

3. Learn actor. Apply TD3+BC on all agents to get a policy per agent.

Next we elaborate on the critic architectures we used and their implementation.

1. Joint-action critic. We experimented with architectures with 3 layers and 2 layers. Recall that N
is the number of agents. The 3 layer architectures are of size N × width× width× width× 1
where width ∈ [512, 1028, 2056], and the 2 layer architectures are of size N×width×width×1
where width ∈ [128, 512, 2056].

2. 2-IR critic. We experimented with 2 layer architectures of size 2× width× width× 1 where
width ∈ [64, 128, 256]. For the ith agent, there are N such networks, where each network
represents the interaction term with the jth agent. Let this network be denoted as DNNij :
A×A → R. With these, the reward of the ith agent is given by

r̂i(a) =
∑
j

DNNij(ai, aj).

3. 1-IR critic. We experimented with 2 layer architectures of size 1× width× width× 1 where
width ∈ [128, 256, 512], where the only input to the network is the action of the ith agent.

The metric which we measure is the maximum gap defined by

max
i∈[N ]

max
ai∈[−1,1]

ai

ai +
∑
j ̸=i

πj

− πi

∑
j∈[N ]

πj

 ,

Hyperparameter Value
Critic learning rate 1e-4
Critic batch size 64
Patience parameter for critic 20
Actor learning rate 1e-3
Actor batch size 64
Number of epochs 500
Optimizer Adam
Policy architecture MLP, 3 layers, width 128, w/ ReLu activations
TD3+BC α parameter 5
# of trials per experiment 10

Table 2: Hyperparameters used in the experiments.
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Figure 3: Comparison of TD3+BC instantiated with different critic architectures, i) 1-IR critic, ii) 2-IR
critic, and iii) joint-action critic. The underlying true reward is a 2-IR. The shaded area represents the
standard error computed across trials.
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Figure 4: Comparison of TD3+BC instantiated with different critic architectures, i) 1-IR critic, ii) 2-IR
critic, and iii) joint-action critic. The underlying true reward is a 1-IR. The shaded area represents the
standard error computed across trials.

where πj is the policy for agent j (note that here we use deterministic policies). In particular, the
above expression obtains its maximum at ai = ±1.

Details of the environment with the underlying reward of 2-IR are presented in Section 6. Figure 3
depicts additional results that measure the performance of various architectures for the 2-IR envi-
ronment. As observed, the 2-IR critic consistently performs better compared to the joint-action
architecture and the 1-IR architecture.

We experimented with an additional environment in which the underlying reward model is a 1-IR
reward model of the form ∀i ∈ [N ], r⋆i (s,a) = a2i + ϵ. Additional parameters of the environment
are similar to those described in Section 6. Since the underlying reward model is a 1-IR, we expect
the 1-IR critic type to result in good performance. Further, since the 2-IR critic is not significantly
more expressive compared to the 1-IR critic, we may expect it to have good performance as well.
Figure 4 depicts the results of this experiment for all reward critic types and architectures. These
show that both the 1-IR and 2-IR reward critics have good performance, whereas the joint-action
critic performs significantly worse with respect to the maximum gap metric.
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C Q-FUNCTION ESTIMATION

In this section we provide a computationally efficient method to estimate Q̂t
i,h in Algorithm 1. We

assume access to a function class {Fi}i∈[N ] where Fi ⊆ {f : C ×Si×Ai → [0, H]} to approximate
the single-agent Q-functions. The full algorithm is shown in Algorithm 2.

Specifically, in Algorithm 2, we will sample c ∼ ρ, si,h ∼ σi,h(·|c), ai,h ∼ 1
2νi,h(·|c, si,h) +

1
2πi,h(·|c, si,h), (s−i,h,a−i,h) ∼ d̂

πt
−i

h (·|c) and then roll out the joint policy πt in P̂ . It can be
observed that the cumulative reward q is indeed an unbiased estimate of Q̂t

i,h(c, si,h, ai,h). Notably,
we sample the state si,h from the offline dataset to leverage the offline information. We also sample
ai,h from 1

2νi,h+
1
2π

t
i,h such that the actions can cover the current policy πt

i,h and the competing policy
µi,h, which has bounded χ2-divergence from νi,h. Then we only need to run LSR on the collected
batch to estimate the Q-function. In summary, we can see that Algorithm 2 can be implemented with
LSR oracles.

Algorithm 2 Q-function Estimation

1: Input: Estimated reward r̂, estimated transition P̂ , policy πt, step h, agent i, function class Fi.
2: Dsim ← ∅.
3: for m = 1, . . . ,Msim do
4: Sample c ∼ ρ.
5: Execute πt in P̂ with public context c until step h.
6: Denote the current joint local state excluding agent i by s−i,h. Reset the state of agent i to

be si,h ∼ σi,h(·|c).
7: Execute ai,h ∼ 1

2νi,h(·|c, si,h) +
1
2π

t
i,h(·|c, si,h) and a−i,h ∼ πt

−i(·|c, s−i,h).
8: Continue to execute the joint policy πt in P̂ until step H .
9: Compute the cumulative reward staring from (c, sh,ah) by q under the reward model r̂. Add

(c, si,h, ai,h, q) into Dsim.
10: Run LSR: Q̃t

i,h = argminf∈Fi

∑
(c,si,h,ai,h,q)∈Dsim

(f(c, si,h, ai,h)− q)2.

11: Return: Q̃t
i,h.

C.1 THEORETICAL GUARANTEE

Next we want to show that the estimated Q̃t
i,h is close to Q̂t

i,h. We have the following lemma:

Lemma 2 (Q-function estimation error). Suppose Q̂t
i,h ∈ Fi for all t, i, h and Assumption 4 holds.

With probability at least 1− δ, we have for all i, t, h, µi ∈ Πi(C) that

Ec∼ρ,si∼d
µi
h (·|c)

[〈
Q̂t

i,h(c, si, ·)− Q̃t
i,h(c, si, ·), µi,h(·|c, si)− πt

i,h(·|c, si)
〉]

≲

√
CCSH2 log(NTH|F|/δ)

Msim
.

Recall that for any two functions g and g′, g ≲ g′ means that there exsits a constant c > 0 such
that g < cg′ always holds. Note that from the proof of Theorem 3, Lemma 2 suggests that we can
use Q̃t

i,h as a surrogate of Q̂t
i,h and Theorem 3 still holds as long as Msim ≳ CCSH

2 log(NTH|F|/δ)
ϵ2 .

Therefore, Algorithm 2 is indeed a computationally and statistically efficient Q-function estimator.

Proof of Lemma 2. From the guarantee of LSR (Lemma 13), we know with probability at least 1− δ
that for all i ∈ [N ], t ∈ [T ], h ∈ [H]

Ec∼ρ,si∼σi,h(·|c),ai∼ 1
2νi,h(·|c,si,h)+ 1

2π
t
i,h(·|c,si,h)

[(
Q̂t

i,h(c, si, ai)− Q̃t
i,h(c, si, ai)

)2]
≲

H2 log(NTH|F|/δ)
Msim

.
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Therefore, from Cauchy-Schwartz, we have

Ec∼ρ,si∼d
µi
h (·|c),ai∼πt

i,h(·|c,si)

[∣∣∣Q̂t
i,h(c, si, ai)− Q̃t

i,h(c, si, ai)
∣∣∣] ≲

√
CSH2 log(NTH|F|/δ)

Msim
.

On the other hand, since µi ∈ Πi(C), from Lemma 5 we know

Ec∼ρ,si∼d
µi
h (·|c),ai∼µi,h(·|c,si)

[∣∣∣Q̂t
i,h(c, si, ai)− Q̃t

i,h(c, si, ai)
∣∣∣] ≲

√
CCSH2 log(NTH|F|/δ)

Msim
.

Therefore we have

Ec∼ρ,si∼d
µi
h (·|c)

[〈
Q̂t

i,h(c, si, ·)− Q̃t
i,h(c, si, ·), µi,h(·|c, si)− πt

i,h(·|c, si)
〉]

≲

√
CCSH2 log(NTH|F|/δ)

Msim
.
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D PROOFS IN SECTION 3

D.1 PROOF OF THEOREM 1

We first define a specific IR decomposition for any function f in Definition 2 that is useful in the rest
of the proof.
Lemma 3 (Standardized IR Decomposition). For any function f with interaction rank K
and training distribution x ∼ p, yi ∼ pi(·|x),∀i, there exists a group of sub-functions
∪0≤k≤K−1{g′j1,··· ,jk}j1<···<jk where

Eyjl
∼pjl

(·|x)[g
′
j1,··· ,jk(x, yj1 , · · · , yjk)] = 0 (5)

for all k ∈ [K − 1], l ∈ [k], x ∈ X , yjl′ ∈ Yjl′ (l
′ ̸= l) and

f(x, y1, · · · , yW ) =

K−1∑
k=0

∑
1≤j1<···<jk≤W

g′j1,··· ,jk(x, yj1 , · · · , yjk),∀x ∈ X , y1 ∈ Y1, · · · , yW ∈ YW .

We call this group of sub-functions ∪0≤k≤K−1{g′j1,··· ,jk}j1<···<jk the standardized IR decomposition
of f .

The standardized decomposition separates the variations and mean of f under the training distribution.
With Lemma 3, we are able to provide an upper bound per-sub-function fitting error by simply fitting
their summation f :

Lemma 4 (Sub-function Alignment). For any functions f⋆ and f̂ with interaction rank K, let
∪0≤k≤K−1{gj1,··· ,jk}j1<···<jk and ∪0≤k≤K−1{ĝj1,··· ,jk}j1<···<jk denote the standardized decom-
position of f⋆ and f̂ in Lemma 3. Assume that the following holds

Ex∼p,y1∼p1(·|x),··· ,yW∼pW (·|x)

[(
(f⋆ − f̂)(x, y1, · · · , yW )

)2]
≤ ϵ.

Then for any 0 ≤ k ≤ K − 1 and 1 ≤ j1 < · · · < jk ≤W , we have:

Ex∼p,yj1
∼pj1

(·|x),··· ,yjk
∼pjk

(·|x)

[
(∆j1,··· ,jk(x, yj1 , · · · , yjk))

2
]
≤ 2kϵ,

where ∆j1,··· ,jk := gj1,··· ,jk − ĝj1,··· ,jk .

Lemma 4 implies that the learning error of standardized sub-functions can be upper bounded by the
fitting error of f efficiently when the interaction rank is small. This property is the key reason why
interaction rank is a more precise measure of the function complexity than the input size.

Now let ∪0≤k≤K−1{gj1,··· ,jk}j1<···<jk and ∪0≤k≤K−1{ĝj1,··· ,jk}j1<···<jk denote the standardized
decomposition of f⋆ and f̂ . Then from Lemma 4, we know for any 0 ≤ k ≤ K−1 and j1 < · · · < jk
that

Ex∼p,yj1
∼pj1

(·|x),··· ,yjk
∼pjk

(·|x)

[
(∆j1,··· ,jk(x, yj1 , · · · , yjk))

2
]
≤ 2kϵ,

which implies that

Ex∼p′,yj1
∼p′

j1
(·|x),··· ,yjk

∼p′
jk

(·|x)

[
(∆j1,··· ,jk(x, yj1 , · · · , yjk))

2
]
≤ (CDS)

k+12kϵ. (6)

On the other hand, we know

Ex∼p′,y1∼p′
1(·|x),··· ,yW∼p′

W (·|x)

[(
(f⋆ − f̂)(x, y1, · · · , yW )

)2]

=Ex∼p′,y1∼p′
1(·|x),··· ,yW∼p′

W (·|x)


K−1∑

k=0

∑
1≤j1<···<jk≤W

∆j1,··· ,jk(x, yj1 , · · · , yjk)

2


≲WK−1
K−1∑
k=0

∑
1≤j1<···<jk≤W

Ex∼p′,yj1
∼p′

j1
(·|x),··· ,yjk

∼p′
jk

(·|x)

[
(∆j1,··· ,jk(x, yj1 , · · · , yjk))

2
]
,
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where the last step is due to AM-GM inequality. Now substitute Eq. (6) into the above inequality, we
have

Ex∼p′,y1∼p′
1(·|x),··· ,yW∼p′

W (·|x)

[(
(f⋆ − f̂)(x, y1, · · · , yW )

)2]
≲ (2W )2(K−1)CK

DSϵ.

This concludes our proof.

D.2 PROOF OF LEMMA 3

From Definition 2, we know that there exists a group of sub-functions ∪0≤k≤K−1{gj1,··· ,jk}j1<···<jk
which satisfies

f(x, y1, · · · , yW ) =

K−1∑
k=0

∑
1≤j1<···<jk≤W

gj1,··· ,jk(x, yj1 , · · · , yjk),∀x ∈ X , y1 ∈ Y1, · · · , yW ∈ YW .

We prove the proposition with induction on K. First for K = 1, Lemma 3 holds naturally. Now we
suppose the proposition holds for K − 1 where K ≥ 2. Then for any {jl}K−1

l=1 , we can construct
g′j1,··· ,jK−1

(x, yj1 , · · · , yjK−1
) as follows:

g′j1,··· ,jK−1
(x, yj1 , · · · , yjK−1

) = gj1,··· ,jK−1
(x, yj1 , · · · , yjK−1

)

+

K−1∑
k=1

(−1)k
∑

1≤l1<···<lk≤K−1

Eyjl1
∼pjl1

(·|x),··· ,yjlk
∼pjlk

(x)

[
gj1,··· ,jK−1

(x, yj1 , · · · , yjK−1
)
]
.

It can be verified that g′j1,··· ,jK−1
(x, yj1 , · · · , yjK−1

) satisfies the property of standardized decompo-
sition, i.e., Eq. (5). Now consider the function f ′:

f ′(x, y1, · · · , yW ) = f(x, y1, · · · , yW )−
∑

1≤j1<···<jK−1≤W

g′j1,··· ,jK−1
(x, yj1 , · · · , yjK−1

).

Note that f ′ satisfies Definition 2 with IR K − 1. By induction hypothesis, we know there exists a
standardized decomposition for f ′:

f ′(x, y1, · · · , yW ) =

K−2∑
k=0

∑
1≤j1<···<jk≤W

g′j1,··· ,jk(x, yj1 , · · · , yjk),∀x ∈ X , y1 ∈ Y1, · · · , yW ∈ YW .

where g′j1,··· ,jk satisfies the requirement in Eq. (5) for all k ∈ [K − 2]. This implies that we have

f(x, y1, · · · , yW ) =

K−1∑
k=0

∑
1≤j1<···<jk≤W

g′j1,··· ,jk(x, yj1 , · · · , yjk),∀x ∈ X , y1 ∈ Y1, · · · , yW ∈ YW ,

where g′j1,··· ,jk satisfies the requirement in Eq. (5) for all k ∈ [K − 1]. Therefore the argument holds
for K as well. By induction we can prove the proposition.

D.3 PROOF OF LEMMA 4

Fix any 0 ≤ k ≤ K − 1 and 1 ≤ j1 < · · · < jk ≤W . With slight abuse of notations, we also use f⋆

and f̂ to denote the expected function value under the training distribution:

f⋆(x, yj1 , · · · , yjk) := Eyj∼pj(·|x),∀j /∈{jl}l∈[k]
[f(x, y1, · · · , yW )] ,

f̂(x, yj1 , · · · , yjk) := Eyj∼pj(·|x),∀j /∈{jl}l∈[k]

[
f̂(x, y1, · · · , yW )

]
.

From Cauchy-Schwartz inequality, we can observe that

Ex∼p,yjl
∼pjl

(·|x),∀l∈[k]

[(
(f⋆ − f̂)(x, yj1 , · · · , yjk)

)2]
≤ ϵ. (7)
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Since we are considering standardized decomposition, from Lemma 3 we have

f⋆(x, yj1 , · · · , yjk) =
k∑

k′=0

∑
1≤l1<···<lk′≤k

gjl1 ,··· ,jlk′
(x, yjl1 , · · · , yjlk′

),

f̂(x, yj1 , · · · , yjk) =
k∑

k′=0

∑
1≤l1<···<lk′≤k

ĝjl1 ,··· ,jlk′
(x, yjl1 , · · · , yjlk′

).

Now we use symmetrization trick to prove the result. Consider the following symmetrization
operation of function f :

G(f⋆)(x, {yjl}l∈[k], {y′jl}l∈[k]) :=

k∑
k′=0

(−1)k
′ ∑
1≤l1<···<lk′≤k

f⋆(x, {yjl}l/∈{l1,··· ,lk′}, {y′jl}l∈{l1,··· ,lk′}).

It can be verified that

G(f⋆)(x, {yjl}l∈[k], {y′jl}l∈[k]) =

k∑
k′=0

(−1)k
′ ∑
1≤l1<···<lk′≤k

gj1,··· ,jk(x, {yjl}l/∈{l1,··· ,lk′}, {y′jl}l∈{l1,··· ,lk′}).

This implies that we have

(G(f⋆ − f̂))(x, {yjl}l∈[k], {y′jl}l∈[k]) =

k∑
k′=0

(−1)k
′ ∑
1≤l1<···<lk′≤k

∆j1,··· ,jk(x, {yjl}l/∈{l1,··· ,lk′}, {y′jl}l∈{l1,··· ,lk′}).

(8)

On the one hand, from AM-GM inequality and Eq. (7) we have

Ex∼p,yjl
∼pjl

(·|x),y′
jl
∼pjl

(·|x),∀l∈[k]

[(
(G(f⋆ − f̂))(x, {yjl}l∈[k], {y′jl}l∈[k])

)2]
≤ 22kϵ.

On the other hand, we can expand the left hand side of the above inequality:

Ex∼p,yjl
∼pjl

(·|x),y′
jl
∼pjl

(·|x),∀l∈[k]

[(
(G(f⋆ − f̂))(x, {yjl}l∈[k], {y′jl}l∈[k])

)2]

=Ex∼p,yjl
∼pjl

(·|x),y′
jl
∼pjl

(·|x),∀l∈[k]


 k∑

k′=0

(−1)k
′ ∑
1≤l1<···<lk′≤k

∆j1,··· ,jk(x, {yjl}l/∈{l1,··· ,lk′}, {y′jl}l∈{l1,··· ,lk′})

2


=2kEx∼p,yjl
∼pjl

(·|x),∀l∈[k]

[
(∆j1,··· ,jk(x, yj1 , · · · , yjk))

2
]
,

where the second step is due to Eq. (8) and the third step is because the cross terms are 0 due to the
independence between yj and y′j given x and Lemma 3. Therefore we have

Ex∼p,yj1∼pj1 (·|x),··· ,yjk
∼pjk

(·|x)

[
(∆j1,··· ,jk(x, yj1 , · · · , yjk))

2
]
≤ 2kϵ,

which concludes our proof.
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E PROOF OF THEOREM 2

We first present the formal statement of Theorem 2:

Theorem 4. Suppose Assumption 1 hold. Let Πi(C) := {µi : Ec∼ρ[χ
2(µi(c), νi(c))] ≤ C} denote

the policy class which has bounded χ2-divergence from the behavior policy νi. Fix any δ ∈ (0, 1]
and select

T = (2N2)−
2K−2
3K−1 ϵ−

2
3K−1 , η = λ = (2N2)

K−1
3K−1 ϵ

1
3K−1 .

Then with probability at least 1− δ, we have

max
i

Gapi(π̂) ≲ max
i∈[N ]

min
C≥1

{
C
(
(2N2)K−1ϵ

) 1
3K−1 + subopti(C, π̂)

}
,

where subopti(C, π̂) := maxµi∈Πi
r⋆i (µi, π̂−i)−maxµi∈Πi(C) r

⋆
i (µi, π̂−i) is the off-support bias.

Proof of Theorem 4. Note that for any agent i ∈ [N ] and policy µi ∈ Πi(C) where C > 1, we
have

T∑
t=1

(
r⋆i (µi, π

t
−i)− r⋆i (π

t)
)
=

T∑
t=1

Ec∼ρ,ai∼µi(c),a−i∼πt
−i
[(r⋆i − r̂i)(c,a)]︸ ︷︷ ︸

(1)

+

T∑
t=1

Ec∼ρ,a∼πt [(r̂i − r⋆i )(c,a)]︸ ︷︷ ︸
(2)

+

T∑
t=1

(
r̂i(µi, π

t
−i)− r̂i(π

t)
)

︸ ︷︷ ︸
(3)

.

(9)

With slight abuse of the notations, we use ∪0≤k≤K−1{gij1,··· ,jk} and ∪0≤k≤K−1{ĝij1,··· ,jk} to denote
the standardized decomposition of r⋆i and r̂i, as defined in Lemma 3. We also use ∆i

j1,··· ,jk to denote
gij1,··· ,jk − ĝij1,··· ,jk . First note that from Lemma 4, we have for all i ∈ [N ], 0 ≤ k ≤ K − 1 and
1 ≤ j1 < · · · < jk ≤ N where jl ̸= i for all l ∈ [k] that:

Ec∼ρ,ai∼νi(·|c),ajl
∼νjl

(·|c),∀l∈[k]

[(
∆i

j1,··· ,jk(c, ai, aj1 , · · · , ajk)
)2] ≤ 2kϵ, (10)

Next we bound terms (1), (2) and (3) in Eq. (9) respectively.

Bounding term (1). For term (1), from Lemma 3, we know for all policy µi ∈ Πi(C) where C ≥ 1
that:

Ec∼ρ,ai∼µi(·|c),a−i∼πt
−i(·|c)[(r

⋆
i − r̂i)(c,a)]

=

K∑
k=0

∑
1≤j1<···<jk≤N :jl ̸=i,∀l∈[k]

Ec∼ρ,ai∼µi(·|c),ajl
∼πt

jl
(·|c),∀l∈[k]

[
∆i

j1,··· ,jk(c, ai, aj1 , · · · , ajk)
]
.

To quantify the above transfer error, we have the following lemma which leverages the χ2-divergence
between the target distribution and training distribution:

Lemma 5. For two distributions d1, d2 ∈ ∆(Z) and any function f defined on Z , we have

Ez∼d1 [f(z)] ≤
√
Ez∼d2 [(f(z))2](1 + χ2(d1, d2)).

Proof. Note that we have

1 + χ2(d1, d2) = 1 +
∑
z∈Z

(
d1(z)− d2(z)

)2
d2(z)

=
∑
z∈Z

(
d1(z)

)2
d2(z)

.

Then the lemma comes directly from Cauchy-Schwartz inequality.
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From Lemma 5 we have

Ec∼ρ,ai∼µi(·|c),ajl
∼πt

jl
(·|c),∀l∈[k]

[
∆i

j1,··· ,jk(c, ai, aj1 , · · · , ajk)
]

≤
√

Ec∼ρ,ai∼νi(c),ajl
∼νjl

(·|c),∀l∈[k]

[(
∆i

j1,··· ,jk(c, ai, aj1 , · · · , ajk)
)2]

·

√√√√√
1 + χ2

ρ ◦

µi ×
∏
l∈[k]

πt
jl

 , ρ ◦

νi ×
∏
l∈[k]

νjl



≤

√√√√√2kϵ

1 + χ2

ρ ◦

µi ×
∏
l∈[k]

πt
jl

 , ρ ◦

νi ×
∏
l∈[k]

νjl

,

where recall that we use ρ ◦ p to denote the joint distribution c ∼ ρ, a ∼ p(·|c) for some conditional
distribution p. In the last step we utilize Eq. (10).

Now we only need to bound χ2-divergence between ρ ◦ µi ◦
∏

l∈[k] π
t
jl

and ρ ◦ νi ◦
∏

l∈[k] νjl . We
achieve this with the following lemma:
Lemma 6. For any 2k policies {pj}kj=1 and {qj}kj=1, we have

1 + χ2

ρ ◦
k∏

j=1

pj , ρ ◦
k∏

j=1

qj

 = Ec∼ρ

 k∏
j=1

(
1 + χ2 (pj(c), qj(c))

) .

Proof. Note that we have

1 + χ2

ρ ◦
k∏

j=1

pj , ρ ◦
k∏

j=1

qj

 =
∑

c,a1,··· ,ak

(
ρ(c)

∏
j∈[k] pj(aj |c)

)2
ρ(c)

∏
j∈[k] qj(aj |c)

=
∑
c

ρ(c)
∑

a1,··· ,ak

(∏
j∈[k] pj(aj |c)

)2
∏

j∈[k] qj(aj |c)
=
∑
c∈S

ρ(c)
∏
j∈[k]

∑
aj

(pj(aj |c))2

qj(aj |c)


=
∑
c

ρ(c)
∏
j∈[k]

(
1 + χ2 (pj(c), qj(c))

)
= Ec∼ρ

 k∏
j=1

(
1 + χ2 (pj(c), qj(c))

) .

Therefore, from Lemma 6 we have

1+χ2

ρ ◦

µi ×
∏
l∈[k]

πt
jl

 , ρ ◦

νi ×
∏
l∈[k]

νjl


= Ec∼ρ

(χ2(µi(c), νi(c)) + 1
) ∏
l∈[k]

(χ2(πt
jl
(c), νjl(c)) + 1)

 .

(11)

Meanwhile, from the policy update formula Eq. (2), we have for all t ∈ [T ] and c ∈ C:

− ⟨r̂ti(c, ·), πt+1
i (c)⟩+ λχ2(πt+1

i (c), νi(c)) +
1

η
Dc,i(π

t+1
i (c), πt

i(c))

≤ −⟨r̂ti(c, ·), πt
i(c)⟩+ λχ2(πt

i(c), νi(c)) +
1

η
Dc,i(π

t
i(c), π

t
i(c)).

Note that Dc,i(π
t
i(c), π

t
i(c)) = 0 and r̂ti ∈ [0, 1], we know

χ2(πt+1
i (c), νi(c)) ≤ χ2(πt

i(c), νi(c)) +
1

λ
.
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Since χ2(π1
i (c), νi(c)) = χ2(νi(c), νi(c)) = 0, for all t ∈ [T ] and s ∈ S we have

χ2(πt
i(c), νi(c)) ≤

t− 1

λ
,∀t ∈ [T + 1]. (12)

Substitute Eq. (12) into Eq. (11) and we have

1 + χ2

ρ ◦

µi ×
∏
l∈[k]

πt
jl

 , ρ ◦

νi ×
∏
l∈[k]

νjl

 ≤ (T

λ

)k

Ec∼ρ

[(
χ2(µi(c), νi(c)) + 1

)]
≤ (C + 1)

(
T

λ

)k

,

where the second step is due to µi ∈ Πi(C).

Therefore, we have for all policies µi ∈ Πi(C) where C ≥ 1 that

Ec∼ρ,ai∼µi(c),ajl
∼πt

jl
(·|c),∀l∈[k]

[
∆i

j1,··· ,jk(c, ai, aj1 , · · · , ajk)
]
≲

√
Cϵ ·

(
2T

λ

)k

.

This implies that we have

(1) ≲ T

K−1∑
k=0

Ck
N−1

√
Cϵi ·

(
T

λ

)k

≲ T

√
Cϵ ·

(
2TN2

λ

)K−1

. (13)

Here C is the combination number.

Bounding term (2). Similarly, for term (2), following the same arguments as bounding term (1),
we know for all policy µi ∈ Πi(C) where C ≥ 1 that:

Ec∼ρ,ai∼πt
i(c),ajl

∼πt
jl
(c),∀l∈[k]

[
∆i

j1,··· ,jk(c, ai, aj1 , · · · , ajk)
]
≤

√
ϵ (Ex∼ρ[fc,i(πt

i)] + 1) ·
(
2T

λ

)k

.

Recall that we use fc,i(p) to denote the chi-squared divergence χ2(p, νi(c)). Then with AM-GM
inequality, we have

Ec∼ρ,ai∼πt
i(c),ajl

∼πt
jl
(c),∀l∈[k]

[
∆i

j1,··· ,jk(c, ai, aj1 , · · · , ajk)
]

≤ λ

NK−1
Ex∼ρ[fc,i(π

t
i)] +

NK−1

λ
·
(
2T

λ

)k

· ϵ+

√
ϵ ·
(
2T

λ

)k

.

Therefore, we have

(2)− λ

T∑
t=1

Ex∼ρ[fc,i(π
t
i)] ≲

T

λ
·
(
2TN2

λ

)K−1

· ϵ+ T

√
ϵ ·
(
2TN2

λ

)K−1

. (14)

Bounding term (3). First we have the following lemma to characterize the no-regret guarantee of
regularized policy gradient (see Appendix E.1 for proof):
Lemma 7 (No-Regret Regularized Policy Gradient). Given a sequence of loss functions {lt}t∈[T ]

where lt : X × Y → [0, B] for some B > 0 and a reference policy ν : X 7→ ∆Y . Suppose we
initialize p1 to be ν and run the following regularized policy gradient for T iterations:

pt+1(x) = arg min
p∈∆Y

−⟨lt(x, ·), p⟩+ λχ2(p, ν(x)) +
1

η
Dx(p, p

t),

where Dx(p, p
t) is the Bregman divergence between p(x) and pt(x). Then we have for all policy µ

and x ∈ X that
T∑

t=1

〈
lt(x), µ(x)− pt(x)

〉
+ λ

T+1∑
t=1

χ2(pt(x), ν(x)) ≤
(
Tλ+

1

η

)
χ2(µ(x), ν(x)) +

ηTB2

4
.

Note that (3) =
∑T

t=1 Ex∼ρ[⟨r̂ti(c), µ(c)− πt(c)⟩]. Thus, Lemma 7 implies that for any policy
µi ∈ Πi(C), we have:

(3) + λ

T∑
t=1

Ex∼ρ[fc,i(π
t
i)] ≲TCλ+

C

η
+

ηT

4
. (15)
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Putting all pieces together. Now substituting Eq (13),(14),(15) into Eq (9), we have for all policy
µi ∈ Πi(C) where C ≥ 1 that

r⋆i (µi, π̂−i)− r⋆i (π̂) ≲ Cλ+
C

ηT
+

η

4
+

√
Cϵ ·

(
2TN2

λ

)K−1

+
1

λ
·
(
2TN2

λ

)K−1

· ϵ.

Therefore by setting

T = (2N2)−
2K−2
3K−1 ϵ−

2
3K−1 , η = λ = (2N2)

K−1
3K−1 ϵ

1
3K−1 ,

we have for all policy µi ∈ Πi(C) where C ≥ 1 that

r⋆i (µi, π̂−i)− r⋆i (π̂) ≲ C
(
(2N2)K−1ϵ

) 1
3K−1 .

This concludes our proof.

E.1 PROOF OF LEMMA 7

Let fx(p) denote the χ2-divergence χ2(p(x), ν(x)). First due to first order optimality in the policy
update step , we know for all p : X → ∆Y and all t ∈ [T ], x ∈ X that:〈

−ηlt(x) + (1 + ηλ)∇fx(pt+1)−∇fx(pt), p(x)− pt+1(x)
〉
≥ 0. (16)

This implies that for all t ∈ [T ], x ∈ X and any policy µ, we have〈
ηlt(x), µ(x)− pt(x)

〉
+ ηλfx(p

t)− ηλfx(µ)

=
〈
ηlt(x)− (1 + ηλ)∇fx(pt+1) +∇fx(pt), µ(x)− pt+1(x)

〉
+
〈
∇fx(pt+1)−∇fx(pt), µ(x)− pt+1(x)

〉
+
〈
ηlt(x), pt+1(x)− pt(x)

〉
+
〈
ηλ∇fx(pt+1), µ(x)− pt+1(x)

〉
+ ηλfx(p

t)− ηλfx(µ),

≤
〈
∇fx(pt+1)−∇fx(pt), µ(x)− pt+1(x)

〉︸ ︷︷ ︸
(4)

+
〈
ηlt(x), pt+1(x)− pt(x)

〉︸ ︷︷ ︸
(5)

+
〈
ηλ∇fx(pt+1), µ(x)− pt+1(x)

〉
+ ηλfx(p

t)− ηλfx(µ)︸ ︷︷ ︸
(6)

.

Next we bound terms (4), (5) and (6) respectively.

First for term (4), note that we have the following lemma:
Lemma 8. For any i ∈ [N ] and p1, p2, p3 : X → ∆Y , we have for all x ∈ X

⟨∇fx(p1)−∇fx(p2), p3(x)− p1(x)⟩ = Dx(p3, p2)−Dx(p3, p1)−Dx(p1, p2).

Proof. By definition, we know

Dx(p, p
′) = fx(p)− fx(p

′)− ⟨∇fx(p′), p− p′⟩.

Substitute the definition into Lemma 8 and we can prove the lemma.

From Lemma 8, we can rewrite (4) as follows:

(4) = Dx(µ, p
t)−Dx(µ, p

t+1)−Dx(p
t+1, pt).

Then for term (5), from Cauchy-Schwartz inequality, we have

(5) ≤
∑
y∈Y

(pt+1(y|x)− pt(y|x))2

ν(y|x)
+

ν(y|x)η2(lt(x, y))2

4
≤ Dx(p

t+1, pt) +
η2B2

4
,

where the last step comes from the definition of Dx.
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Finally for term (6), Since fx is convex, we know〈
ηλ∇fx(pt+1), µ(x)− pt+1(x)

〉
≤ ηλfx(µ)− ηλfx(p

t+1).

This implies that

(6) ≤ ηλ
(
fx(p

t)− fx(p
t+1)

)
.

In summary, for all t ∈ [T ], s ∈ S and any policy µ, we have〈
ηlt(x), µ(x)− pt(x)

〉
+ ηλfx(p

t)− ηλfx(µ)

≤
(
Dx(µ, p

t)−Dx(µ, p
t+1)

)
+ ηλ

(
fx(p

t)− fx(p
t+1)

)
+

η2B2

4
.

Therefore, summing up from t = 1 to T , we have

T∑
t=1

〈
lt(x), µ(x)− pt(x)

〉
+ λ

T+1∑
t=1

χ2(pt(x), ν(x)) ≤
(
Tλ+

1

η

)
χ2(µ(x), ν(x)) +

ηTB2

4
,

where we use the fact that Dx(µ, p
1) = Dx(µ, ν) = χ2(pt(x), ν(x)).
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F PROOF OF THEOREM 3

Let fc,s,i,h(p) to denote the χ2-divergence χ2(ph(c, s), νi,h(c, s)). Note that for any agent i ∈ [N ]
and policy µi ∈ Πi(C) where C ≥ 1, we have
T∑

t=1

Ec∼ρ

[
V

µi◦πt
−i,r

⋆

i,1 (c, s1)
]
− Ec∼ρ

[
V πt,r⋆

i,1 (c, s1)
]

=

(
H∑

h=1

T∑
t=1

E
c∼ρ,sh∼d

µi◦πt
−i

h (·|c),ai,h∼µi,h(·|c,si,h),a−i,h∼πt
−i(·|c,s−i,h)

[
r⋆i,h(c, sh,ah)− r̂i,h(c, sh,ah)

])
︸ ︷︷ ︸

(1)

+

(
H∑

h=1

T∑
t=1

E
c∼ρ,sh∼dπt

h (·|c),ah∼πt(·|c,sh)

[
−r⋆i,h(c, sh,ah) + r̂i,h(c, sh,ah)

])
︸ ︷︷ ︸

(2)

+

(
T∑

t=1

Ec∼ρ

[
V

µi◦πt
−i,r̂

i,1 (c, s1)
]
− Ec∼ρ

[
V̂

µi◦πt
−i,r̂

i,1 (c, s1)
])

︸ ︷︷ ︸
(3)

+

(
T∑

t=1

Ec∼ρ

[
V̂ πt,r̂
i,1 (c, s1)

]
− Ec∼ρ

[
V πt,r̂
i,1 (c, s1)

])
︸ ︷︷ ︸

(4)

+

(
T∑

t=1

Ec∼ρ

[
V̂

µi◦πt
−i,r̂

i,1 (c, s1)
]
− Ec∼ρ

[
V̂ πt,r̂
i,1 (c, s1)

])
︸ ︷︷ ︸

(5)

,

where we use V̂ π,r̂
i,h to denote the joint value function under reward r̂ and transition P̂ . Next we will

bounded these terms separately. In particular, terms (1) and (2) are bounded by statistical guarantees
on the reward model and the distribution shift robustness of low IR models; term (3) and (4) are
bounded by the statistical guarantees of the transition model, while using the decoupling property,
and term (5) is bounded by no-regret analysis while identifying proper value and Q functions that
satisfies Bellman equation.

We use ∪0≤k≤K−1{gi,hj1,··· ,jk} and ∪0≤k≤K−1{ĝi,hj1,··· ,jk} to denote the standardized decomposition
of r⋆i,h and r̂i,h, as defined in Lemma 3. We also use ∆i,h

j1,··· ,jk to denote gi,hj1,··· ,jk − ĝi,hj1,··· ,jk . From
Assumption 2 and the LSR guarantee Lemma 13, with probability at least 1− δ/2 we have for all
i ∈ [N ], h ∈ [H] that:

Ec∼ρ,sj∼σj,h(·|c),aj∼νj,h(·|c,sj),∀j

[(
r⋆h,i(c, s,a)− r̂h,i(c, s,a)

)2]
≲

log(NH|R|/δ)
M

:= ϵR.

Combining the above inequality with Lemma 4, we have for all i ∈ [N ], h ∈ [H], 0 ≤ k ≤ K − 1
and 1 ≤ j1 < · · · < jk ≤ N where jl ̸= i for all l ∈ [k] that:

Ec∼ρ,si∼σi,h(·|c),ai∼νi(·|c,si),sjl∼σi,h(·|c),ajl
∼νjl

(·|c,sjl ),∀l∈[k]

[(
∆i,h

j1,··· ,jk(c, zi, zj1 , · · · , zjk)
)2]
≤ 2kϵR,

where we use zj to denote (sj , aj). Next we bound terms (1), (2) and (3) in Eq. (9) respectively.

For term (1), fix h ∈ [H] and t ∈ [T ], then we know

E
c∼ρ,sh∼d

µi◦πt
−i

h (·|c),ai,h∼µi,h(c,si,h),a−i,h∼πt
−i(c,s−i,h)

[
r⋆i,h(c, sh,ah)− r̂i,h(c, sh,ah)

]
=

K−1∑
k=0

∑
1≤j1<···<jk≤N :jl ̸=i,∀l∈[k]

E
c∼ρ,zi∼d

µi
h (·|c),zjl∼d

πt
jl

h (·|c),∀l
[∆i,h

j1,··· ,jk(c, zi, zj1 , · · · , zjk)]
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With similar arguments in the proof of Theorem 2, from Lemma 5 we have

E
c∼ρ,zi∼d

µi
h (·|c),zjl∼d

πt
jl

h (·|c),∀l
[∆i,h

j1,··· ,jk(c, zi, zj1 , · · · , zjk)]

≤

√
E
c∼ρ,si∼d

µi
h (·|c),ai∼νi,h(·|c,si),sjl∼d

πt
jl

h (·|c),ajl
∼νjl,h

(·|c,sjl )∀l

[(
∆i,h

j1,··· ,jk(c, zi, zj1 , · · · , zjk)
)2]

·

√√√√√
1 + χ2

ρ ◦

dµi

h ×
∏
l∈[K]

d
πt
jl

h

 ◦
µi ×

∏
l∈[k]

πt
jl

 , ρ ◦

dµi

h ×
∏
l∈[K]

d
πt
jl

h

 ◦
νi ×

∏
l∈[k]

νjl


≤
√
(CS)k+12kϵR

·

√√√√√
1 + χ2

ρ ◦

dµi

h ×
∏
l∈[K]

d
πt
jl

h

 ◦
µi ×

∏
l∈[k]

πt
jl

 , ρ ◦

dµi

h ×
∏
l∈[K]

d
πt
jl

h

 ◦
νi ×

∏
l∈[k]

νjl

.

On the other hand, from Lemma 6 we know

1 + χ2

ρ ◦

dµi

h ×
∏
l∈[K]

d
πt
jl

h

 ◦
µi ×

∏
l∈[k]

πt
jl

 , ρ ◦

dµi

h ×
∏
l∈[K]

d
πt
jl

h

 ◦
νi ×

∏
l∈[k]

νjl

 ≲ C

(
TH

λ

)k

.

This implies that

E
c∼ρ,zi∼d

µi
h (·|c),zjl∼d

πt
jl

h (·|c),∀l
[∆i,h

j1,··· ,jk(c, zi, zj1 , · · · , zjk)] ≲

√
Ck+1

S C

(
2TH

λ

)k

ϵR

Therefore we have

(1) ≲ TH

√
CCK

S

(
2THN2

λ

)K−1

ϵR.

Similarly, term (2) is bounded by

(2) ≲ TH

√(
CSTH

λ

)K

(2N2)K−1ϵR.

For term (3), note that we have

(3) =

H∑
h=1

T∑
t=1

E
c∼ρ,sh∼d

µi◦πt
−i

h (·|c),ai,h∼µi,h(·|c,si,h),a−i,h∼πt
−i(·|c,s−i,h)

[r̂i,h(c, sh,ah)]

− E
c∼ρ,sh∼d̂

µi◦πt
−i

h (·|c),ai,h∼µi,h(·|c,si,h),a−i,h∼πt
−i(·|c,s−i,h)

[r̂i,h(c, sh,ah)]

≤
H∑

h=1

T∑
t=1

Ec∼ρ

[∑
s,a

∣∣∣dµi◦πt
−i

h (s,a|c)− d̂
µi◦πt

−i

h (s,a|c)
∣∣∣] .

At the same time, due to decoupled transition, we have the following lemma:
Lemma 9. For any policy product π, we have for all h ∈ [H] that

Ec∼ρ

[∑
s,a

∣∣∣dπh(s,a|c)− d̂πh(s,a|c)
∣∣∣] ≤ N∑

j=1

Ec∼ρ

∑
sj ,aj

∣∣∣dπj

h (sj , aj |c)− d̂
πj

h (sj , aj |c)
∣∣∣


Thus, from Lemma 9, we only need to bound Ec∼ρ

[∑
sj ,aj

∣∣∣dπj

h (sj , aj |c)− d̂
πj

h (sj , aj |c)
∣∣∣] for any

agent j and single-agent policy πj . This is achieved in the following lemma:
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Lemma 10. For any j ∈ [N ] and single-agent policy πj , we have for all h ∈ [H] that

Ec∼ρ

∑
sj ,aj

∣∣∣dπj

h (sj , aj |c)− d̂
πj

h (sj , aj |c)
∣∣∣


≤
h−1∑
h′=1

E
c∼ρ,(sj ,aj)∼d

πj

h′ (·|c)

[∥∥∥P̂j,h′(·|c, sj , aj)− P ⋆
j,h′(·|c, sj , aj)

∥∥∥
1

]
.

On the other hand, from the guarantee of MLE in the literature (Liu et al., 2022; Zhan et al., 2022;
2023b) (Lemma 14), we know with probability at least 1− δ/2 that for all j ∈ [N ], h ∈ [H]

Ec∼ρ,sj∼σj,h(·|c),aj∼νj,h(·|c,sj)

[∥∥∥P̂j,h(·|c, sj , aj)− P ⋆
j,h(·|c, sj , aj)

∥∥∥2
1

]
≲

log(HN |P|/δ)
M

:= ϵP.

(17)

From Lemma 5, this implies that with probability at least 1 − δ/2, we have for all j ∈ [N ], h ∈
[H], t ∈ [T ], µi ∈ Πi(C) that

Ec∼ρ,(si,ai)∼d
µi
h (·|c)

[∥∥∥P̂i,h(·|c, si, ai)− P ⋆
i,h(·|c, si, ai)

∥∥∥
1

]
≲
√

CSCϵP, (18)

E
c∼ρ,(sj ,aj)∼d

πt
j

h (·|c)

[∥∥∥P̂j,h(·|c, sj , aj)− P ⋆
j,h(·|c, sj , aj)

∥∥∥
1

]
≲

√
CSTHϵP

λ
.

Therefore, we have

(3) ≲ H2T
√
CSCϵP +H2TN

√
CSTHϵP

λ
.

For term (4), following the same arguments for term (3), we have

(4) ≲ H2TN

√
CSTHϵP

λ
.

For term (5), we first need to show that the expected single-agent Q function Q̂t
i,h satisfies Bellman

equation. In particular, let Q̂π,r̂ := E
(sj ,aj)∼d̂

πj
h (·|c),∀j ̸=i

[
Q̂π,r̂

i,h (c, s,a)
]

for any product policy π

and we have the following lemma:
Lemma 11. Given a joint policy π−i for agents except i, for all i ∈ [N ], h ∈ [H], c ∈ C, si ∈
Si, a ∈ Ai and policy µi, we have

V̂
µi◦π−i,r̂
i,h (c, si) := Eai∼µi,h(·|c,si)

[
Q̂

µi◦π−i,r̂
i,h (c, si, ai)

]
,

Q̂
µi◦π−i,r̂
i,h (c, si, ai) = E

(s−i,a−i)∼d̂
π−i
h (·|c) [r̂i,h(c, s,a)] + Es′i∼P̂i,h(·|c,si,ai)

[
V̂

µi◦π−i,r̂
i,h+1 (c, s′i)

]
.

Lemma 11 indeed implies that Q̂µi◦π−i,r̂
i,h (c, si, ai) is a valid Q function w.r.t. to the reward func-

tion E
(s−i,a−i)∼d̂

π−i
h (·|c) [r̂i,h(c, s,a)] under transition model P̂ and thus we have the following

performance difference lemma:
Lemma 12. Given a joint policy π−i for agents except i, for any policies µi and µ′

i, we have

V̂
µ′
i◦π−i,r̂

i,1 (c, si,1)− V̂
µi◦π−i,r̂
i,1 (c, si,1) =

H∑
h=1

E
si,h∼d̂

µ′
i

h (·|c)

[〈
Q̂

µi◦π−i,r
i,h (c, si,h, ·), µ′

i,h(·|c, si,h)− µi,h(·|c, si,h)
〉]

.

Now given Lemma 12, we have

(5) =

T∑
t=1

Ec∼ρ

[
V̂

µi◦πt
−i,r̂

i,1 (c, si,1)
]
− Ec∼ρ

[
V̂ πt,r̂
i,1 (c, si,1)

]
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=

H∑
h=1

Ec∼ρ,si∼d̂
µi
h (·|c)

[
T∑

t=1

〈
Q̂t

i,h(c, si, ·), µi,h(·|c, si)− πt
i,h(·|c, si)

〉]

≤
H∑

h=1

Ec∼ρ,si∼d
µi
h (·|c)

[
T∑

t=1

〈
Q̂t

i,h(c, si, ·), µi,h(·|c, si)− πt
i,h(·|c, si)

〉]
︸ ︷︷ ︸

(6)

+ TH

H∑
h=1

Ec∼ρ

[∑
si

∣∣∣d̂µi

h (si|c)− dµi

h (si|c)
∣∣∣]︸ ︷︷ ︸

(7)

Apply Lemma 7 and since µi ∈ Πi(C), we have

(6) ≲ THλC +
HC

η
+

ηH3T

4
.

From Lemma 10 and Eq. (18),we have

(7) ≲ TH3
√
CSCϵP.

Therefore, we have

Ec∼ρ

[
V

µi◦π̂−i,r
⋆

i,1 (c, s1)
]
− Ec∼ρ

[
V π̂,r⋆

i,1 (c, s1)
]

≲ H

√
C

(
CSTH

λ

)K

(2N2)K−1ϵR +HλC +
HC

Tη
+

ηH3

4
+H3

√
CSCϵP +H2N

√
CSTHϵP

λ
.

Let

T = C
− 2K

3K+2

S H
4

3K+2 (2N2)−
2K−2
3K+2 ϵ

− 2
3K+2

RP , η = C
K

3K+2

S H− 3K+4
3K+2 (2N2)

K−1
3K+2 ϵ

1
3K+2

RP , λ = C
K

3K+2

S H
3K

3K+2 (2N2)
K−1
3K+2 ϵ

1
3K+2

RP ,

where ϵRP := log(NH|R||P|/δ)
M and then we have for all µi ∈ Πi(C) that

Ec∼ρ

[
V

µi◦π̂−i,r
⋆

i,1 (c, s1)
]
− Ec∼ρ

[
V π̂,r⋆

i,1 (c, s1)
]
≲ CC

K
3K+2

S H
6K+2
3K+2 (2N2)

K−1
3K+2 ϵ

1
3K+2

RP .

This concludes our proof.

F.1 PROOF OF LEMMA 9

Note that given c, the distribution of (sj , aj) is independent from each other due to the decoupled
transition. Therefore we have

Ec∼ρ

[∑
s,a

∣∣∣dπh(s,a|c)− d̂πh(s,a|c)
∣∣∣] = Ec∼ρ

∑
s,a

∣∣∣∣∣∣
∏

j∈[N ]

d
πj

h (sj , aj |c)−
∏

j∈[N ]

d̂
πj

h (sj , aj |c)

∣∣∣∣∣∣


Now for any 0 ≤ k ≤ N − 1, consider the following difference:

Ik := Ec∼ρ

∑
s,a

∣∣∣∣∣∣
∏

1≤j≤k

d
πj

h (sj , aj |c)
∏

k+1≤j≤N

d̂
πj

h (sj , aj |c)−
∏

1≤j≤k+1

d
πj

h (sj , aj |c)
∏

k+2≤j≤N

d̂
πj

h (sj , aj |c)

∣∣∣∣∣∣


Note that we have

Ik = Ec∼ρ

∑
s,a

∏
1≤j≤k

d
πj

h (sj , aj |c)
∏

k+2≤j≤N

d̂
πj

h (sj , aj |c)
∣∣∣d̂πk+1

h (sk+1, ak+1|c)− d
πk+1

h (sk+1, ak+1|c)
∣∣∣


= Ec∼ρ

[ ∑
sk+1,ak+1

∣∣∣d̂πk+1

h (sk+1, ak+1|c)− d
πk+1

h (sk+1, ak+1|c)
∣∣∣
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·
∑

s−(k+1),a−(k+1)

∏
1≤j≤k

d
πj

h (sj , aj |c)
∏

k+2≤j≤N

d̂
πj

h (sj , aj |c)

]

= Ec∼ρ

[ ∑
sk+1,ak+1

∣∣∣d̂πk+1

h (sk+1, ak+1|c)− d
πk+1

h (sk+1, ak+1|c)
∣∣∣ ]

Therefore we have

Ec∼ρ

[∑
s,a

∣∣∣dπh(s,a|c)− d̂πh(s,a|c)
∣∣∣] ≤ N−1∑

k=0

Ik =

N∑
j=1

Ec∼ρ

∑
sj ,aj

∣∣∣dπj

h (sj , aj |c)− d̂
πj

h (sj , aj |c)
∣∣∣
 .

This concludes our proof.

F.2 PROOF OF LEMMA 10

Let δh denote Ec∼ρ

[∑
sj ,aj

∣∣∣dπj

h (sj , aj |c)− d̂
πj

h (sj , aj |c)
∣∣∣]. Then we know δ1 = 0. In addition,

for any 1 ≤ h ≤ H , we have

δh = Ec∼ρ

[ ∑
sj ,aj

∣∣∣∣∣ ∑
s′j ,a

′
j

d
πj

h−1(s
′
j , a

′
j |c)Pj,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

−
∑
s′j ,a

′
j

d̂
πj

h−1(s
′
j , a

′
j |c)P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

∣∣∣∣∣
]

= Ec∼ρ

[ ∑
sj ,aj

∣∣∣∣∣
( ∑

s′j ,a
′
j

d
πj

h−1(s
′
j , a

′
j |c)Pj,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

−
∑
s′j ,a

′
j

d
πj

h−1(s
′
j , a

′
j |c)P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

)

+

( ∑
s′j ,a

′
j

d
πj

h−1(s
′
j , a

′
j |c)P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

−
∑
s′j ,a

′
j

d̂
πj

h−1(s
′
j , a

′
j |c)P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

)∣∣∣∣∣
]

≤ Ec∼ρ

[ ∑
sj ,aj

∣∣∣∣∣ ∑
s′j ,a

′
j

(
d
πj

h−1(s
′
j , a

′
j |c)Pj,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

− d
πj

h−1(s
′
j , a

′
j |c)P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

)∣∣∣∣∣
]

+ Ec∼ρ

[ ∑
sj ,aj

∣∣∣∣∣ ∑
s′j ,a

′
j

(
d
πj

h−1(s
′
j , a

′
j |c)P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

− d̂
πj

h−1(s
′
j , a

′
j |c)P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

)∣∣∣∣∣
]

≤ Ec∼ρ

[ ∑
sj ,aj ,s′j ,a

′
j

d
πj

h−1(s
′
j , a

′
j |c)πj,h(aj |c, sj)

∣∣∣Pj,h(sj |c, s′j , a′j)− P̂j,h(sj |c, s′j , a′j)
∣∣∣ ]

+ Ec∼ρ

[ ∑
sj ,aj ,s′j ,a

′
j

P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)
∣∣∣dπj

h−1(s
′
j , a

′
j |c)− d̂

πj

h−1(s
′
j , a

′
j |c)
∣∣∣]
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= Ec∼ρ

[ ∑
sj ,aj ,s′j

d
πj

h−1(s
′
j , a

′
j |c)

∣∣∣Pj,h(sj |c, s′j , a′j)− P̂j,h(sj |c, s′j , a′j)
∣∣∣∑

aj

πj,h(aj |c, sj)

]

+ Ec∼ρ

[ ∑
s′j ,a

′
j

∣∣∣dπj

h−1(s
′
j , a

′
j |c)− d̂

πj

h−1(s
′
j , a

′
j |c)
∣∣∣ ∑
sj ,aj

P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

]

= Ec∼ρ

[ ∑
sj ,aj ,s′j

d
πj

h−1(s
′
j , a

′
j |c)

∣∣∣Pj,h(sj |c, s′j , a′j)− P̂j,h(sj |c, s′j , a′j)
∣∣∣∑

aj

πj,h(aj |c, sj)

]

+ Ec∼ρ

[ ∑
s′j ,a

′
j

∣∣∣dπj

h−1(s
′
j , a

′
j |c)− d̂

πj

h−1(s
′
j , a

′
j |c)
∣∣∣ ∑
sj ,aj

P̂j,h(sj |c, s′j , a′j)πj,h(aj |c, sj)

]

= E
c∼ρ,(sj ,aj)∼d

πj
h−1(·|c)

[∥∥∥P̂j,h−1(·|c, sj , aj)− P ⋆
j,h−1(·|c, sj , aj)

∥∥∥
1

]
+ δh−1.

Therefore, we have

Ec∼ρ

∑
sj ,aj

∣∣∣dπj

h (sj , aj |c)− d̂
πj

h (sj , aj |c)
∣∣∣


≤
h−1∑
h′=1

E
c∼ρ,(sj ,aj)∼d

πj

h′ (·|c)

[∥∥∥P̂j,h′(·|c, sj , aj)− P ⋆
j,h′(·|c, sj , aj)

∥∥∥
1

]
.

This concludes our proof.

F.3 PROOF OF LEMMA 11

First it can be observed that V̂ µi◦π−i,r̂
i,h (c, si,h) = E

s−i∼d̂
π−i
h

[
V̂

µi◦π−i,r̂
i,h (c, sh)

]
. Note that we have

Q̂
µi◦π−i,r̂
i,h (c, si,h, ai,h) = E

(s−i,h,a−i,h)∼d̂
π−i
h (·|c)

[
Eµi◦π−i,P̂

[
H∑

h′=h

r̂i,h′(c, sh′ ,ah′)
∣∣∣c, sh,ah

]]
= E

(s−i,h,a−i,h)∼d̂
π−i
h (·|c) [r̂i,h(c, sh,ah)]

+ E
(s−i,h,a−i,h)∼d̂

π−i
h (·|c)

[
Eµi◦π−i,P̂

[
H∑

h′=h+1

r̂i,h(c, sh′ ,ah′)
∣∣∣c, sh,ah

]]
,

where we use Eπ,P̂ [·] to denote the distribution of the trajectory when executing joint policy π with

transition model P̂ .

On the other hand we know

Eµi◦π−i,P̂

[
H∑

h′=h+1

r̂i,h(c, sh′ ,ah′)
∣∣∣c, sh,ah

]

=Esj,h+1∼P̂j,h(·|c,sj,h,aj,h),∀j

[
Eµi◦π−i,P̂

[
H∑

h′=h+1

r̂i,h(c, sh′ ,ah′)
∣∣∣c, sh+1

]]
=Esj,h+1∼P̂j,h(·|c,sj,h,aj,h),∀j

[
V̂

µi◦π−i,r̂
i,h+1 (c, sh+1)

]
.

Therefore we know

Q̂
µi◦π−i,r̂
i,h (c, si,h, ai,h)

= E
(s−i,h,a−i,h)∼d̂

π−i
h (·|c) [r̂i,h(c, sh,ah)]

+ E
si,h+1∼P̂i,h(·|c,si,h,ai,h),(s−i,h,a−i,h)∼d̂

π−i
h (·|c),sj,h+1∼P̂j,h(·|c,sj,h,aj,h),∀j ̸=i

[
V̂

µi◦π−i,r̂
i,h+1 (c, sh+1)

]
33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

= E
(s−i,h,a−i,h)∼d̂

π−i
h (·|c) [r̂i,h(c, sh,ah)] + E

si,h+1∼P̂i,h(·|c,si,h,ai,h),s−i,h+1∼d̂
π−i
h+1(·|c)

[
V̂

µi◦π−i,r̂
i,h+1 (c, sh+1)

]
= E

(s−i,h,a−i,h)∼d̂
π−i
h (·|c) [r̂i,h(c, sh,ah)] + Esi,h+1∼P̂i,h(·|c,si,h,ai,h)

[
V̂

µi◦π−i,r̂
i,h (c, si,h+1)

]
.

This concludes our proof.

F.4 PROOF OF LEMMA 12

Let r̃i,h(c, si, ai) denote E
(s−i,a−i)∼d

π−i
h (·|c) [ri,h(c, s,a)]. From Lemma 11, we have

V
µ′
i◦π−i,r

i,1 (c, si,1)− V
µi◦π−i,r
i,1 (c, si,1) = Eµ′

i

[
H∑

h=1

r̃i,h(c, si,h, ai,h)
∣∣∣c]− V

µi◦π−i,r
i,1 (c, si,1)

= Eµ′
i

[
H∑

h=2

r̃i,h(c, si,h, ai,h)
∣∣∣c]+ Eµ′

i

[
r̃i,1(si,1, ai,1)− V

µi◦π−i,r
i,1 (c, si,1)

∣∣∣c]
= Eµ′

i

[
H∑

h=2

r̃i,h(c, si,h, ai,h)
∣∣∣c]+ Eµ′

i

[
Q

µi◦π−i,r
i,1 (c, si,1, ai,1)− V

µi◦π−i,r
i,2 (c, si,2)− V

µi◦π−i,r
i,1 (c, si,1)

∣∣∣c]
= Eµ′

i

[
H∑

h=2

r̃i,h(c, si,h, ai,h)
∣∣∣c]− Eµ′

i

[
V

µi◦π−i,r
i,2 (c, si,2)

]
+ E

si,1∼d
µ′
i

1 (·|c)

[〈
Q

µi◦π−i,r
i,1 (c, si,1, ·), µ′

i,1(·|c, si,1)− µi,1(·|c, si,1)
〉]

.

Here the first step is due to the definition of value function and the third step is due to Lemma 11. Now
apply the above arguments recursively to Eµ′

i

[∑H
h=2 r̃i,h(c, si,h, ai,h)

∣∣∣c]−Eµ′
i

[
V

µi◦π−i,r
i,2 (c, si,2)

]
and we have

V
µ′
i◦π−i,r

i,1 (c, si,1)− V
µi◦π−i,r
i,1 (c, si,1) =

H∑
h=1

E
si,h∼d

µ′
i

h (·|c)

[〈
Q

µi◦π−i,r
i,h (c, si,h, ·), µ′

i,h(·|c, si,h)− µi,h(·|c, si,h)
〉]

.

This concludes our proof.
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G AUXILIARY LEMMAS

Lemma 13 (Song et al. (2022)). Let {(xm, ym)}Mm=1 be M samples that are independently sampled
from xm ∼ p and ym ∼ q(·|xm) := f⋆(xm) + ϵm where ϵm is a random noise. Suppose that
ym ∈ [0, 1] for all m ∈ [M ] and we have access to a function class G : X → [0, 1] which satisfies
f⋆ ∈ G. Then if {ϵm}Mm=1 are independent and E[ym|xm] = f⋆(xm), we have with probability at
least 1− δ that

Ex∼p[(f̂(x)− f⋆(x))2] ≲
log(|G|/δ)

M
,

where f̂ = argminf∈G
∑M

m=1(f(xm)− ym)2 is the LSR solution.

Lemma 14 (Zhan et al. (2023b)). Let {(xm, ym)}Mm=1 be M samples that are i.i.d. sampled from
xm ∼ p and ym ∼ q⋆(·|xm). Suppose we have access to a probability model class Q which satisfies
q⋆ ∈ Q. Then we have with probability at least 1− δ that

Ex∼p

[
∥q̂(·|x)− q⋆(·|x)∥21

]
≲

log(|Q|/δ)
M

,

where q̂ = argminq∈Q
∑M

m=1 log q(ym|xm) is the MLE solution.
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