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Figure 1: Text-to-video results before and after applying FlowMo on (a) Wan2.1 [1] and
CogVideoX-5B [2]. We present FlowMo, an inference-time guidance method to enhance temporal
coherence in text-to-video models. Our method mitigates severe temporal artifacts, such as additional
limbs (woman, 1st row, 2nd row), objects that appear or disappear (flamingo, 2nd row), and object
distortions (woman, dolphin, 1st row), without requiring additional training or conditioning signals.

Abstract

Text-to-video diffusion models are notoriously limited in their ability to model
temporal aspects such as motion, physics, and dynamic interactions. Existing
approaches address this limitation by retraining the model or introducing external
conditioning signals to enforce temporal consistency. In this work, we explore
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whether a meaningful temporal representation can be extracted directly from the
predictions of a pre-trained model without any additional training or auxiliary in-
puts. We introduce FlowMo, a novel training-free guidance method that enhances
motion coherence using only the model’s own predictions in each diffusion step.
FlowMo first derives an appearance-debiased temporal representation by measuring
the distance between latents corresponding to consecutive frames. This highlights
the implicit temporal structure predicted by the model. It then estimates motion
coherence by measuring the patch-wise variance across the temporal dimension and
guides the model to reduce this variance dynamically during sampling. Extensive
experiments across multiple text-to-video models demonstrate that FlowMo sig-
nificantly improves motion coherence without sacrificing visual quality or prompt
alignment, offering an effective plug-and-play solution for enhancing the temporal
fidelity of pre-trained video diffusion models.

1 Introduction

Despite recent progress, text-to-video diffusion models remain far from faithfully capturing the
temporal dynamics of the real world. Generated videos frequently exhibit temporal artifacts such as
objects appearing and disappearing, duplicated or missing limbs, and abrupt motion discontinuities [3,
4, 5]. These issues highlight the limited capability of text-to-video models to reason about motion,
physics, and dynamic interactions over time. To mitigate these shortcomings, prior works have
proposed fine-tuning models with explicit motion-related objectives [3], conditioning the generation
on external motion signals such as optical flow or pixel trajectories [6, 7, 8, 9], or designing complex
model architectures tailored to capture temporal dependencies [10, 11, 12].

However, these approaches require either retraining the model [3, 11, 12] or introducing rigid external
constraints that dictate motion [6, 7], limiting flexibility and generality. In this work, we propose
an alternative strategy dubbed FlowMo, a training-free guidance method that improves temporal
consistency using the model’s own internal representations during sampling. FlowMo extracts a
latent temporal signal directly from the pre-trained model during inference and leverages its statistics
to derive a guidance signal, without any architectural modifications, training, or external supervision.

Our method is grounded in the following key observation: the temporal evolution of individual spatial
patches tends to be smooth when the motion is coherent. Namely, the shifts in the representation of
each patch over time are expected to be relatively small, leading to low patch-wise variance across
frames. In contrast, incoherent motion intuitively manifests as abrupt changes in appearance or
structure, producing high temporal variance in the patches that display temporal artifacts.

Notably, measuring temporal relations in a way that is disentangled from appearance information is
challenging. As observed by previous works [3], the predictions of text-to-video models are biased
toward appearance-based features. To obtain a meaningful appearance-debiased representation, we
use the model’s latent predictions to compute pairwise distances between frames. This enables us to
measure the shifts in patch representations using patch-wise variance over time while neutralizing
their shared appearance content. This is motivated by prior works demonstrating that the latent
spaces of generative models capture semantically meaningful transformations, where simple vector
operations correspond to interpretable changes [13, 14, 15].

We explore the above intuition extensively in Sec. 3.2. First, we collect a set of generated videos
that exhibit significant motion. We categorize these videos into coherent and incoherent sets, and
compute the patch-based variance over time given the appearance-debiased representations discussed
above. Our experiments yield two complementary observations. First, we find a clear correlation
between high patch-based variance and motion incoherence, indicating that measuring the shift in
patch representations over time can serve as a reliable metric to estimate coherence. Second, we
observe both qualitatively and quantitatively that while coarse appearance-based features such as
scene layout and spatial structure are established very early in the generation process, temporal
information emerges only at later, intermediate denoising steps.

Motivated by these findings, we present FlowMo, a method that dynamically guides text-to-video
diffusion models toward temporally coherent generations. At selected timesteps in the denoising
process, we compute the maximal patch-wise variance over time, given the appearance-debiased
latent prediction. We then optimize the model’s prediction to reduce this temporal variance, thereby
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encouraging smoother, more coherent motion. This guidance is applied iteratively across timesteps,
allowing FlowMo to influence both coarse and fine motion dynamics in the generation process.

We demonstrate our method’s effectiveness on two of the most popular open-source models, Wan2.1-
1.3B [1] and CogVideoX-5B [2]. Across a wide range of metrics, we evaluate the impact of our
method on motion quality, overall video quality, and prompt alignment, using both the automatic
evaluation metrics proposed by VBench [16] and human-based assessments. In all cases, we find
that FlowMo consistently and significantly improves the temporal coherence of the generated videos,
while preserving the aesthetic quality, text alignment, and motion magnitude (see Fig. 1).

Our results show that it is possible to extract meaningful temporal signals from the learned latent
representations of text-to-video models. Such signals not only encapsulate the temporal structure of
the generated videos but also serve as actionable guidance cues.

2 Related Work

Text-to-video generation Diffusion models have revolutionized visual content creation, starting
with image generation [17, 18, 19] and rapidly expanding to diverse applications such as text-to-image
synthesis [20, 21] and image editing [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. This success has spurred
their adoption for video generation, from cascaded diffusion models [32, 33, 34, 35, 36, 37, 38,
39, 40, 41], to most recently Diffusion Transformers (DiT) [42, 43] based on Flow Matching (FM)
[44, 45, 46], which constitute the current state-of-the-art, and form the basis of our work.

Inference-time guidance has emerged as a powerful technique to steer and refine the outputs
of generative models across various tasks without training [47, 48, 49, 28, 50]. Such methods
typically optimize the model predictions based on an auxiliary loss. Inference-time guidance for
video generation has only recently emerged as a promising research vector [51, 52]. While our
work also explores inference-time optimization for video generation, existing objectives and guiding
signals inherently differ from ours. Li et al. [51] focus on steering video models using external motion
priors, which requires access to additional motion-specific inputs, while Wei et al. [52] propose
to minimize a global 3D variance loss. In contrast, our method leverages the internal latent-space
dynamics to perform guidance without any auxiliary networks, perceptual objectives, or task-specific
priors, making it a lightweight and fully self-supervised plug-and-play module.

Improving temporal coherence in video generation Temporal coherence remains a core challenge
in video synthesis [3, 4, 5, 12], and existing solutions generally fall into three categories. First, training
with temporal objectives [3, 11, 53, 54], which improves consistency but demands significant compute
and access to training data. Second, guiding the generation with external motion signals such as
optical flow or trajectories [6, 7, 8, 9], which enforce coherence but require external inputs and are
restricted to the conditioning motion. Third, architectures designed for temporal modeling [10, 11,
55, 56, 57, 58], which are often complex and not easily applied to pre-trained models. In contrast,
FlowMo improves temporal coherence directly at inference time by leveraging the model’s internal
representations, without additional data, inputs, or retraining.

Closest to our work, FreeInit [59] and VideoGuide [60] propose methods to reduce spatio-temporal
incoherence in video generation. However, both were designed for earlier UNet-based models
trained with DDPM or DDIM samplers [61, 45], which suffered from severe signal-to-noise ratio
(SNR) mismatches between training and inference [59]. In contrast, modern Transformer-based
FM architectures are substantially more robust, rendering these techniques less effective. For
completeness, we include a comparison to FreeInit (which can be reasonably adapted to DiTs) in
App. A. In our experiments, we find that applying FreeInit to DiTs results in a drop in key metrics
such as the overall video quality, as well as a significant drop in the amount of generated motion.

3 Method

3.1 Preliminaries: Flow Matching in a VAE Latent Space

Following common practice in state-of-the-art image and video generation models [62, 63, 1], we
consider models that leverage FM [44] to define the objective function and operate in the learned
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latent space of a Variational Autoencoder (VAE) for efficiency. The VAE consists of an encoder-
decoder pair (E ,D), where E maps input data x ∼ X from the pixel space to a lower-dimensional
latent representation z = E(x) ∈ Z , and D yields a reconstruction x ≈ D(z). Given a pre-trained
VAE, FM learns a transformation from a standard Gaussian distribution in latent space z0 ∼ N (0, I),
to a target distribution z1 observed from applying E on the data.

At each training step, FM draws a timestep t ∈ [0, 1], and obtains a noised intermediate latent by
interpolating between z0 and z1, namely zt = (1− t) · z1 + t · z0. The model uθ is then optimized to
predict the velocity vt =

dzt
dt = z0 − z1, namely:

LFM = Ex1,t∼U(0,1),z0∼N (0,I)

[
∥uθ(zt, t)− (z0 − z1)∥2

]
. (1)

Once trained, samples can be generated from an initial noisy latent z0 ∼ N (0, I) by applying a
sequence of denoising steps over a discrete schedule. At time ti, zti is denoised to produce zti+1

by
applying zti+1

= (1−σti) ·zti −σti ·uθ(zti , ti), where σti is an interpolation coefficient determined
by the scheduler.

3.2 Motivation

In the following, we conduct qualitative and quantitative experiments to motivate the construction of
FlowMo. The experiments in this section are conducted on Wan2.1-1.3B [1] for efficiency.

We begin by describing the latent representation on which FlowMo operates. As mentioned in
Sec. 3.1, at each denoinsing step, the model prediction uθ,t := uθ(zt, t) is an estimate of the velocity
vt, which represents the direction from the noise distribution to the latent space distribution. To
extract a temporal representation from the prediction, we propose a debiasing operator ∆, which
computes the ℓ1-distance between consecutive latent frames to eliminate their common appearance
information. Formally, ∆: RF×W×H×C → R(F−1)×W×H×C is defined as:

∀f ∈ [F−1],∀w ∈ [W ],∀h ∈ [H],∀c ∈ [C] (∆uθ,t)f,w,h,c = ∥(uθ,t)f+1,w,h,c−(uθ,t)f,w,h,c∥1.
(2)

Next, we describe the motivational experiments conducted to examine the statistical characteristics of
our proposed latent space.

0 5 10 15 20 25 30 35 40
Timestep
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Incoherent (59 videos)
Coherent (61 videos)

Figure 2: Quantitative motivation. We mea-
sure the mean temporal variance of spatial
patches for coherent and incoherent videos.
Incoherent videos portray higher variance.
The separation is visible from step 5 onward.
95%-confidence interval was computed using
the seaborn python package.

Quantitative motivation. Our central hypothesis
is that temporally coherent motion corresponds to a
form of local stability in uθ,t. Specifically, in videos
with smooth and consistent motion, object trajectories
evolve gradually, yielding lower temporal variance
in uθ,t. Incoherent motion, in contrast, introduces
abrupt changes, manifesting as larger fluctuations
and higher patch-wise variance in the latent predic-
tions. Formally, given uθ,t, we define its temporal
patch-wise variance tensor σ2 ∈ RW×H×C as the
variance across frames per patch and channel, i.e.
∀w ∈ [W ],∀h ∈ [H],∀c ∈ [C],

σ2
w,h,c = Vf∼[F−1] [(∆uθ,t)f,w,h,c] , (3)

where V(X) = E[(X − E[X])2].

To empirically validate our hypothesis, we conducted
a user study wherein several hundred generated
videos were rated on a 1-5 scale for both coherence
and perceived amount of motion (higher is more mo-
tion/better coherence). To isolate the effects of motion magnitude on video coherence, we focused on
videos with a substantial amount of motion (rated ≥ 3), and compared those labeled as completely
incoherent (1), or completely coherent (5). As illustrated in Fig. 2, a clear negative correlation
emerges: low-coherence videos consistently exhibit higher variance. This supports our intuition that
temporal patch-wise variance is a meaningful measure of perceived coherence.
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Notably, the separation in variance becomes prominent from approximately the fifth generation
timestep onward. Next, we wish to conduct a qualitative experiment to motivate this phenomenon.

t=
0

Frame 8 Frame 14 Frame 20

t=
4

t=
8

Figure 3: Qualitative motivation. We visual-
ize the model prediction per timestep across
the generation. Coarse spatial information is
determined in the first steps (0-4), whereas
motion is determined around steps 5-8, and
refined in later steps.

Qualitative motivation. To qualitatively explore
the process of motion generation in text-to-video
models, we visualize the evolution of the model’s
latent space prediction across the generation steps.

First, observe that by Sec. 3.1, the model prediction
uθ,t estimates the velocity vt = z0− z1. We can thus
obtain an estimation of the fully denoised latent, z̄1,
at any intermediary step t as follows:

z̄1 = zt − σt · uθ,t, (4)

where σt is the signal-to-noise ratio at step t, which
is defined by the noise scheduler.

Note that z̄1 is a latent-space representation where
channels do not represent RGB information. We thus
arbitrarily select the first channel, to obtain z̄1,c0 ∈
RF×H×W , and visualize the grayscale video via:

Vz̄1,c0 = 255· z̄1,c0 −minF,H,W (z̄1,c0)

maxF,H,W (z̄1,c0)−minF,H,W (z̄1,c0)
.

(5)

The resulting visualizations of Vz̄1,c0 in representative timesteps are presented in Fig. 3. As can
be observed, coarse spatial information begins to emerge from the first generation step, where the
training bar and some of the outline of the person are visible. By step 4, most of the structure of
the scene is already determined. Conversely, the motion appears to be added to the scene between
steps 4 and 8, as evidenced by the strong similarity between all frames in times 0,4, whereas step 8
shows significant variance between these same frames (e.g., the person bends down between frames
14 and 20). Visualizations on additional timesteps and latent channels are provided in Appendix B.
Note that the above supports the quantitative experiment presented in Fig. 2. Since motion emerges
only around the later initial steps of the denoising process (4-8), we would expect our variance-based
metric to be meaningful only in the steps that depict measurable differences over time.

In App. C, we show quantitative evidence that, in addition to enhancing coherence, FlowMo reduces
the variance in generation steps that correspond to the above intuition.

3.3 FlowMo

Motivated by the previous section, Algorithm 1 outlines the FlowMo guidance mechanism, ap-
plied within a single FM denoising step. We perform the FlowMo guidance at specific timesteps
{τ1, . . . , τℓ}, corresponding to the early-to-mid stages of generation, following the motivation pre-
sented in Fig. 3.

Each denoising step ti begins by obtaining the model prediction uθ,ti , given an input text prompt
P . To encourage alignment between the prediction and the textual prompt, Classifier-free guidance
(CFG) [64] is first employed with a scale of ρ (Line 3).

If we are not in a refinement step, we jump to Line 14, in which we perform a standard FM step to
obtain the next latent zti+1

as a linear combination of the current latent and the predicted velocity:

zti+1
= (1− σti) · zti − σti · uθ,ti , (6)

where σti is a time-dependent coefficient representing the signal-to-noise ratio.

If, however, ti ∈ {τi}ℓ1, a FlowMo refinement step is performed (Line 5 to Line 12). We first compute
the appearance-debiased representation, ∆uθ,ti , as defined in Equation (2) (Line 5).

Subsequently, drawing on the motivation presented in Fig. 2, we calculate the temporal variance
σ2
w,h,c for each spatial patch (w, h, c) as defined in Equation (3) (Line 6). These patch-wise variances
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are then averaged across the channel dimension to produce a single spatial map sw,h indicating a
motion coherence score per patch (Line 7):

∀w ∈ [W ],∀h ∈ [H] sw,h = Ec∼[C]

[
σ2
w,h,c

]
=

1

C

C∑
c=1

σ2
w,h,c. (7)

Algorithm 1 A Single FlowMo Denoising Step

Input: A text prompt P , a timestep ti, a set of
iterations for refinement {τ1, . . . , τℓ}, and a
trained Flow Matching model FM .
Output: A noised latent zti+1 for the next
timestep ti+1

1: uθ,ti|P ← FM(zti , ti,P)
2: uθ,ti|∅ ← FM(zti , ti, ∅)
3: uθ,ti ← uθ,ti|∅ + ρ · (uθ,ti|P − uθ,ti|∅)
4: if ti ∈ {τ1, . . . , τℓ} then
5: Compute (∆uθ,ti) as in Equation (2)
6: Compute σ2 as in Equation (3)
7: sw,h ← Ec∼[C]

[
σ2
w,h,c

]
∀w∀h

8: L ← maxw∼[W ],h∼[H] sw,h

9: zti ← zti − η · ∇zti
L

10: uθ,ti|P ← FM(zti , ti,P)
11: uθ,ti|∅ ← FM(zti , ti, ∅)
12: uθ,ti ← uθ,ti|P + ρ ·

(
uθ,ti|P − uθ,ti|∅

)
13: end if
14: zti+1

← (1− σti) · zti − σti · uθ,ti
15: Return zti+1

The final FlowMo loss L is then determined by
the maximal value in this map, thereby targeting
the most dynamically-incoherent patch (Line 8):

L = max
w∼[W ],h∼[H]

sw,h. (8)

Intuitively, this formulation encourages the
model to produce a prediction uθ,ti wherein the
latent space distances of each spatial patch over
time are smoother, resulting in more coherent
and gradual transitions in the generated video.

Inspired by existing guidance mechanisms that
optimize spatial information [47], we propose
to use the loss in Eq. 7 to optimize the input
latent to the diffusion step, zti (Line 9). Intu-
itively, this allows our optimization to modify
low-level features in the generated video, includ-
ing the coarse motion. Thus, the optimization is
performed as a gradient descent step:

zti = zti − η · ∇zti
L , (9)

where η is the learning rate. Following this re-
finement, we repeat the denoising step ti with
the optimized latent zti (Lines 10 to 12).

4 Experiments

We conduct qualitative and quantitative experiments to demonstrate FlowMo’s effectiveness. Our
experiments evaluate the improvement in temporal coherence enabled by our method, as well as its
ability to maintain or even enhance other aspects of the generation, such as appearance quality and
text alignment. We provide our code and a website with video results in the supplemental materials.

Implementation details We employ two of the most popular publicly available text-to-video
models: Wan2.1-1.3B [1] and CogVideoX-5B [2], using their officially provided weights and default
configurations. Motivated by the insights from Sec. 3.2, we apply FlowMo in the first 12 timesteps
of the generation, since these are responsible for coarse motion and structure. All our experiments
employ a learning rate of η = 0.005, using the Adam optimizer, on two NVIDIA H100 GPUs, with
80GB memory each. Wan2.1 is evaluated at a resolution of 480×832, and CogVideoX at 480×720,
both generating 81 frames at 16 frames per second, resulting in 5-second videos.

4.1 Qualitative Results

Figures 1, 4 contain representative results demonstrating the impact of FlowMo on pre-trained text-to-
video models. As can be observed, our method mitigates severe temporal artifacts that are common
to text-to-video models. For example, the generations tend to display extra limbs (women in Fig. 1(a)
and Fig. 4, 2nd, 3rd row), distortions of objects over time (dolphin in Fig. 1(a) and deer in Fig. 4, 4th
row), and objects that suddenly appear or disappear (flamingo in Fig. 1(b) and rope, violin in Fig. 4,
2nd, 3rd row). These results demonstrate that temporal artifacts correspond to abrupt changes in the
latent representations of video patches. This, in turn, drives our optimization process to encourage
smoother representations of the affected patches, resulting in improved temporal coherence.
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“A senior couple dancing at sunset on a pier” “A boy skipping rope in a backyard” 

“A violinist performing a solo on stage” “A figure skater gliding across the ice” 

            (a)

“A deer leaping over a fallen log” 
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            (b)
“A teenager skateboarding down a handrail” 

“A boy with glasses flying a kite in a grassy field” “A roulette wheel in a dimly lit room or casino floor” 

Figure 4: Qualitative results. Text-to-video results before and after applying FlowMo on (a)
Wan2.1 [1] and (b) CogVideoX [2]. FlowMo mitigates severe temporal artifacts, e.g., extra limbs
(women, 2nd, 3rd row), objects that appear or disappear (2nd, 3rd row), and distortions (4th row).

4.2 Quantitative Results

We employ both the VBench benchmark [16] and human-based evaluations, which serve as the
standard evaluation protocols for measuring the quality of text-to-video generation [2, 65, 66, 67, 68].
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Motion

Quality

Text
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Wan2.1-1.3B
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17.6%
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CogVideoX-5B

Ours Both Baseline

Figure 5: User study conducted on Wan2.1-1.3B [1] (left) and CogVideoX-5B [2] (right) using
VideoJAM-bench [3], designed specifically to evaluate motion coherence. Our method significantly
improves temporal coherence in all models, while maintaining or improving the visual quality and
the text alignment of the resulting videos. 95%-confidence intervals were calculated using Dirichlet
sampling, assuming a multinomial distribution with Laplace smoothing applied to the counts.

Table 1: VBench evaluation results. A comparison of the overall video quality before and after
applying FlowMo on Wan2.1-1.3B [1] and CogVideoX-5B [2] using VBench [16]. We enclose
both the motion-specific and the aggregated scores. FlowMo consistently improves the Final Score
representing the overall video quality by at least 5%.

Motion Metrics Aggregated Scores

Models Motion
Smoothness

Dynamic
Degree

Semantic
Score

Quality
Score

Final
Score

Wan2.1-1.3B 96.43% 83.21% 84.70% 65.58% 75.14%
+ FlowMo 98.56% 81.96% 89.11% 73.58% 81.34% (+6.20%)

CogVideoX-5B 95.01% 65.29% 70.03% 60.83% 65.43%
+ FlowMo 97.29% 63.92% 69.26% 72.11% 70.69% (+5.26%)

User study. We conduct a human preference study using the VideoJAM benchmark [3], which
was specifically designed to test motion coherence. For each prompt, we generate a pair of videos
(with and without FlowMo) with a fixed seed in the setting described above, and randomly shuffle the
order of the results. Each prompt was evaluated by five different participants, resulting in 640 unique
responses per baseline. Annotators were asked to compare the videos based on their alignment to the
text prompt, the aesthetic quality of the videos, and the motion quality (see App. D).

The results, presented in Fig. 5, demonstrate a consistent human preference for FlowMo-guided
videos across all criteria. Specifically for Motion Coherence, FlowMo was favored in 44.3% of
comparisons for Wan2.1 (vs. 16.2% for baseline) and 43.0% for CogVideoX (vs. 17.6% for baseline).
A similar trend was observed for Aesthetic Quality, where FlowMo was preferred in 31.1% of
Wan2.1 pairs (vs. 14.0% for baseline) and 31.7% of CogVideoX pairs (vs. 17.1% for baseline).
Interestingly, FlowMo also showed improved Text-Video Alignment, with preference rates of 14.9%
for Wan2.1 (vs. 7.2% for baseline) and 15.6% for CogVideoX (vs. 8.7% for baseline).

These findings highlight that FlowMo not only enhances temporal coherence but also contributes
positively to the overall perceived video quality and faithfulness to the input prompt.

Automatic metrics. The results of the automatic metrics on the VBench benchmark [16] are
summarized in Tab. 1. We enclose both the motion-based metrics, and the aggregated metrics,
which constitute an average of all the benchmark dimensions, and measure the overall quality of the
generations. A full breakdown of all metrics is provided in App. E.

Notably, FlowMo significantly improves the Final Score by 6.2%, 5.26% for Wan, CogVideoX,
respectively. This metric represents the overall quality score, considering all the evaluation dimensions.
This improvement is supported by gains in the Quality Score (Wan2.1: +8.0%; CogVideoX: +11.28%)
and Semantic Score for Wan2.1 (+4.41%), with a negligible decrease of 0.77% for CogVideoX.

Considering the motion metrics, FlowMo boosts Motion Smoothness (Wan2.1: +2.13%; CogVideoX:
+2.28%), which is a key metric that evaluates the motion coherence. Finally, note that some decrease
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to the dynamic degree is expected. This is since temporal artifacts such as objects appearing and
disappearing increases the amount on motion in the video.

In summary, both human evaluations and automated VBench metrics consistently demonstrate
FlowMo’s effectiveness in improving motion coherence and overall video quality.

4.3 Comparison with FreeInit

We compare FlowMo to FreeInit [59], the most conceptually related method. The full comparison
between FlowMo and FreeInit is provided in App. A.

A qualitative comparison between FlowMo and the adapted FreeInit is presented in Fig. 6. These
examples highlight FlowMo’s superiority in generating visually coherent motion. For instance, in
the top-left example, FlowMo successfully generates a plausible marching motion, whereas FreeInit
produces disappearing feet and less convincing movement. Similarly, in the top-right example,
FlowMo depicts coherent walking, while the rendition produced by FreeInit suffers from partially
disappearing feet and a less natural gait. The bottom-left example shows FlowMo maintaining the
integrity of the man and rope, while in the video refined with FreeInit, the rope distorts and disappears
and the man has a less stable form. Finally, in the bottom-right example, FlowMo maintains a
consistent orientation, whereas the front and back sides of the person flip spontaneously in the version
generated with FreeInit. Overall, these visual examples show that FlowMo demonstrates a significant
advantage in producing more coherent and artifact-free motion compared to FreeInit.
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“A close-up of a person’s feet as they walk” “A person lifts one knee high in a marching motion” 

Figure 6: Qualitative results. Text-to-video results of FreeInit [59] (1st, 3rd row) and FlowMo (2nd,
4th row) when applied on Wan2.1-1.3B [1]. FlowMo better mitigates severe temporal artifacts, e.g.
distortions and object that appear and disappear.

We further compare FlowMo to the adapted FreeInit method through a human preference study
and quantitative benchmarks. Human evaluators consistently favored FlowMo-guided videos over
FreeInit and the baseline across Motion Coherence (38.7% vs. 23.4%), Aesthetic Quality (28.1% vs.
14.8%), and Text-Video alignment (16.5% vs. 5.2%). Quantitative results on VBench corroborate
these findings: FlowMo improves Motion Smoothness by +2.13% and Overall Quality and Semantic
Scores by +7.36% and +3.20%, respectively, achieving a Final Score of 81.34% compared to FreeInit’s
75.06%. Full per-dimension comparisons, and the full implementation details are provided in App. A.

9



4.4 Ablation Study
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Figure 7: Ablation study. We ablate the main design choices
of FlowMo, i.e., using the maximal variance for the objective
(3rd row), using the appearance-debiasing operator (4th row),
the selection of the optimization steps (5th row), and show
that FlowMo is significantly superior to all variants.

We ablate the primary design choices
of FlowMo, namely using the patch
with the maximal variance in the loss
(Eq. 8), the appearance debiasing op-
erator (Eq. 2), and the choice of steps
to apply the optimization (1-12).

Results of the ablation study on
Wan2.1 are reported in Fig. 7. For
each prompt, we enclose the result
with FlowMo (1st row), Wan2.1 (2nd
row) and the ablations (3rd-5th row).
Replacing the maximum with the
mean (3rd row) significantly weakens
the effect, likely because most patches
are static, leading to a smaller loss and
diminished gradients. Removing the
debiasing operator (4th row) yields a
similar effect. This can be attributed
to the fact that, as observed by previ-
ous works [3], predictions by text-to-
video models tend to be appearance-
based, reducing the influence of mo-
tion on the loss. Finally, applying
FlowMo across all steps (5th row) in-
troduces artifacts, as the optimization interferes with high frequencies and fine details in steps where
motion is already determined.

4.5 Limitations

While our method enables substantial improvements in motion coherence and overall quality of
generated videos, it still has a few limitations. First, due to the calculation and propagation of gradients
by our method (Alg. 1), there is some slowdown in the inference time. On average, generating a
video with FlowMo takes 160.67 seconds compared to 99.27 seconds without it, corresponding to a
×1.82 increase. This overhead could be mitigated by integrating FlowMo into the training phase,
eliminating the need for gradient-based optimization at inference time.

Second, since FlowMo does not modify the model weights, it is bounded by the learned capabilities
of the pre-trained model. While it can improve the coherence of motion predicted by the model, it
cannot synthesize motion types the model has not learned to represent. We believe this limitation can
be addressed by incorporating motion-based objectives based on the model’s internal representations
during training, encouraging richer temporal understanding in generative video models.

5 Conclusions

Can we extract meaningful temporal representations from a model with limited temporal understand-
ing? In this work, we propose a new approach to address temporal artifacts in text-to-video models.
Instead of relying on external signals, additional data, or specialized architectures, we repurpose
the model’s own learned representations as a source of temporal guidance. Specifically, we find
that the semantic latent space learned by text-to-video diffusion models implicitly encodes valuable
temporal information. Through extensive analysis (Sec. 3.2), we show that distances between pairs of
frames in this latent space correlate with intuitive measures of temporal artifacts, such as patch-wise
variance over time. Building on these insights, we implement an inference-time guidance method
that encourages smoother transitions in the latent space, and observe that this maps to smoother
behavior in pixel space as well, significantly boosting motion coherence while preserving and even
improving other aspects of the generation. We hope this work sparks further interest in exploring
the temporal properties of semantic latent spaces and encourages the development of methods that
improve temporal coherence by looking inward rather than outward.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims stated in the abstract and introduction are supported both with
quantitative and qualitative motivations Sec. 3.2, and match both the quantitative and
qualitative experiments Sec. 4 conducted.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in detail in Sec. 4.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The suggested optimization is written in pseudo-code in Algorithm 1. All
experiments are described in detail and are easily reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is submitted as supplemental material, and will be published as an
open source repository once the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting is detailed in Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: 95%-confidence intervals were calculated for all applicable quantitative results,
including user study statistics (Fig. 5) and the motivational experiments (Fig. 2). The method
of computation is detailed in the captions accompanying the figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental setting is detailed in Sec. 4. Time of execution is detailed
in Sec. 4.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. As such, there are many potential societal consequences of our work, none which
we feel must be specifically highlighted here.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets user in the paper are open source assets, and were properly cited and
credited. This includes the Wan2.1 model [1], the CogVideoX model [2], the VideoJAM
benchmark [3], the VBench benchmark [16], and the FreeInit method [59].
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our fully-documented code is submitted as supplemental material, and will
be published as an open source repository once the paper is accepted. The paper does not
introduce additional assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The user study is described in detail in Sec. 4, and the full text of instructions
given to participants in our user study appears in the supplemental material. All subjects
were compensated.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]
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Justification: Our user study involved human annotators evaluating pairs of generated videos
based on quality, without any exposure to personal or sensitive information. The participants
were not the subject of the study themselves but acted as evaluators of machine-generated
content. Based on the guidelines of our institution, this type of evaluation did not require
IRB approval. We ensured that participants were blinded to experimental conditions, and no
identifiable or private data was collected.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research is original, and LLMs were not
used in designing it.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Comparison between FlowMo and FreeInit

In this appendix, we compare FlowMo with FreeInit [59], which is most closely related to our method.
FreeInit was designed for earlier UNet-based models that employ DDPM or DDIM [61, 45]. Its
approach is motivated by the observation that such models often exhibit significant spatio-temporal
inconsistencies in scene elements across frames (e.g., character identities and backgrounds changing
between frames). Their primary observation is that these models exhibit discrepancies in signal-to-
noise ratios (SNR) between training and inference phases, causing temporal artifacts. In contrast,
modern Transformer-based architectures, as used in our work, are generally more robust to these
inconsistencies due to more powerful architectures, more stable training frameworks (using FM), and
larger training datasets. Thus, these models are able to maintain consistent appearance across frames
and are less susceptive to these types of artifacts.

To provide a fair comparison, we adapted FreeInit for use with FM-based DiT models. This involved
re-noising a denoised latent and combining this re-noised latent with random noise to initialize the
low-frequency components, before repeating the denoising process, as per FreeInit’s methodology.
We then conducted both quantitative (user study and VBench automatic metrics) and qualitative
comparisons between FlowMo and our adapted FreeInit. The experiments are demonstrated hereafter.

Implementation details. All experiments were done on the Wan2.1-1.3B model, for efficiency.
The experimental setting for the vanilla baseline and FlowMo-guided model is the same as in Sec. 4.
FreeInit was implemented based on its publicly available open-source code [59] and its default
configuration, namely employing the butterworth filter with n = 4, ds = dt = 0.25. To remain
comparable with our work, we performed one refinement iteration with each of the methods.

A.1 User Study

Consistent with the experiments presented in the main paper, we compare FlowMo to the FreeInit
baseline using both the VBench benchmark [16] and human evaluation results.
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Figure 8: User studies conducted on Wan2.1-1.3B [1] using VideoJAM-bench [3]. The studies
compare three variants of the model: vanilla (Wan2.1-1.3B), with FlowMo, and with FreeInit. Our
method significantly outperforms the baselines in both studies. 95%-confidence intervals were
calculated using Dirichlet sampling, assuming a multinomial distribution with Laplace smoothing
applied to the counts.

We conducted a human preference study that compared videos generated by Wan2.1-1.3B guided by
FlowMo with those guided by FreeInit. Videos from both models were sampled given prompts from
the VideoJAM benchmark [3] in the same setting described in Sec. 4.2 of the main paper.

The results, presented in Fig. 8, clearly indicate a strong human preference for FlowMo across all
evaluated categories, in comparison to FreeInit as well as the vanilla Wan2.1-1.3B model. Comparing
FreeInit and FlowMo, for Motion Coherence, FlowMo was preferred in 38.7% of comparisons,
substantially more than FreeInit (23.4%). In terms of Aesthetic Quality, FlowMo was chosen
in 28.1% of pairs, nearly double the preference for FreeInit (14.8%). Furthermore, FlowMo also
outperformed FreeInit in Text-Video Alignment, with a preference rate of 16.5% compared to
FreeInit’s 5.2%. These results demonstrate that human evaluators find FlowMo-guided videos to be
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significantly more coherent, aesthetically pleasing, and better aligned with textual prompts than those
guided by the adapted FreeInit.

A.2 VBench Benchmark

Table 2: VBench evaluation results per dimension. Each column represents a model variant,
Wan2.1 (Baseline), with FlowMo, and with FreeInit. Rows correspond to the 16 VBench evaluation
dimensions. While FlowMo significantly increases the overall quality of the videos (+6.20%), FreeInit
reduces it (-0.08%), and is unable to compare with the Baseline and FlowMo in any of the dimensions.

Dimension Wan2.1-1.3B
Baseline + FlowMo + FreeInit

Subject Consistency 95.61% 96.54% 93.71%
Background Consistency 97.25% 97.02% 97.12%
Temporal Flickering 99.15% 98.93% 97.77%
Motion Smoothness 96.43% 98.56% 96.54%
Dynamic Degree 83.21% 81.96% 67.01%
Aesthetic Quality 56.77% 58.03% 50.99%
Imaging Quality 61.01% 64.89% 57.19%
Object Class 91.37% 95.35% 92.11%
Multiple Objects 77.98% 82.27% 73.26%
Human Action 98.27% 97.23% 97.98%
Color 87.94% 87.28% 86.53%
Spatial Relationship 75.21% 78.42% 76.52%
Scene 49.84% 49.41% 48.32%
Appearance Style 20.95% 28.45% 21.59%
Temporal Style 26.35% 27.30% 24.24%
Overall Consistency 23.65% 25.53% 22.13%

Semantic Score 84.70% 89.11% 85.91%
Quality Score 65.58% 73.58% 64.22%
Final Score 75.14% 81.34% (+6.20%) 75.06 (-0.08%)

We further evaluate FlowMo against the adapted FreeInit using the VBench benchmark. The detailed
results per dimension are presented in Tab. 2.

The VBench metrics [16] corroborate the user study findings, showing FlowMo’s superiority. First,
observe that across the comprehensive suite of VBench metrics detailed in Tab. 2, the adapted FreeInit
does not achieve a superior score to both FlowMo and the baseline in any individual dimension.

Considering the main metrics related to motion coherence, FreeInit achieves only a marginal improve-
ment in Motion Smoothness (+0.11% over baseline) compared to FlowMo’s substantial +2.13%
gain. Critically, FreeInit significantly degrades the Dynamic Degree by -16.20% from the baseline
(from 83.21% to 67.01%), whereas FlowMo maintains a comparable dynamic level (81.96%). This
large reduction in motion by FreeInit suggests that its apparent coherence might stem from producing
less dynamic videos, which are inherently easier to keep coherent, rather than genuinely improving
the quality of complex motion. Furthermore, FreeInit performs worse than both the baseline and
FlowMo in several other important quality aspects. For instance, its Aesthetic Quality (50.99%)
is lower than both baseline (56.77%) and FlowMo (58.03%). Similar trends are observed for other
important qualities, e.g. Temporal Flickering (FreeInit: 97.77% vs. FlowMo: 98.93%, Baseline:
99.15%), Imaging Quality (FreeInit: 57.19% vs. FlowMo: 64.89%), Appearance Style (FreeInit:
21.59% vs. FlowMo: 28.45%), Temporal Style (FreeInit: 24.24% vs. FlowMo: 27.30%), and
Overall Consistency (FreeInit: 22.13% vs. FlowMo: 25.53%).

Finally, FlowMo significantly outperforms FreeInit in the aggregated VBench metrics. FlowMo
achieves a Final Score of 81.34%, a +6.20% improvement over the baseline, while FreeInit scores
75.06%, slightly below the baseline. Similarly, FlowMo leads in Quality Score (73.58% vs. FreeInit’s
64.22%) and Semantic Score (89.11% vs. FreeInit’s 85.91%). These results underscore that FlowMo
provides a more effective and well-rounded improvement to video generation quality compared to
the adapted FreeInit on modern FM-based DiT architectures.
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B Additional Qualitative Motivation Results

To complement the qualitative observations in the main paper, we present additional visualizations
of the latent-space predictions z̄1,c across timesteps during the generation process. The two figures
below show a grid of frames from six different time indices (10–20) and ten representative diffusion
steps (0–18), providing a spatio-temporal view of how motion emerges over time within the latent
space.

Fig. 9 displays predictions for channel 0, used in the main paper, while Fig. 10 shows results for a
randomly selected channel (channel 7). In both cases, we observe that coarse spatial structure appears
in early steps, while coarse motion emerges primarily between steps 4 and 8. Although motion is
refined in later steps, as seen in timesteps t = 10 onward, its coarse features are determined earlier,
making the first timesteps the most crucial for coherent motion generation. These patterns reinforce
our interpretation that motion is added into the generation during these intermediate steps, which
underpins our focus on this range for motion-aware optimization in FlowMo.
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Figure 9: A visualization of channel 0 (selected arbitrarily, and used in the main paper) of the latent
prediction at different timesteps of the generation.
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Figure 10: A visualization of channel 7 (selected randomly) of the latent prediction at different
timesteps of the generation.
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C The Effect of FlowMo on Patch-Wise Variance
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Figure 11: FlowMo effect on patch-wise
variance. We plot the maximal temporal vari-
ance of spatial patches for videos with and
without applying FlowMo guidance, and ob-
serve that our method significantly reduces
and stabilizes the variance in the generation
steps that impact motion the most by our anal-
ysis from Sec. 3.2. 95%-confidence inter-
val was computed using the seaborn python
package.

This section demonstrates the alignment between
FlowMo’s optimization mechanism and our motivat-
ing insights from Sec. 3.2. Fig. 11 plots the maxi-
mal patch-wise temporal variance (FlowMo’s loss,
Equation (7)) for videos generated with and without
FlowMo guidance.

We observe that the results demonstrate a strong cor-
relation with the conclusions from Sec. 3.2. First, the
application of FlowMo results in a significant reduc-
tion and stabilization of this maximal variance, which
is particularly evident from approximately timestep 5
onward. This observation is consistent with our ear-
lier finding (Fig. 2) that the variance characteristics
of coherent and incoherent videos begin to diverge at
this stage.

Second, FlowMo’s optimization is applied during the
initial 12 timesteps of the generation process. This
targeted intervention aligns with our qualitative mo-
tivation (Fig. 3), which indicates that coarse motion
patterns are predominantly established within these
early stages of the generation. As can be observed,
applying the optimization at these steps indeed stabi-
lizes the maximal variance in all other, non-optimized steps as well.

Consequently, Fig. 11 illustrates that FlowMo guidance leads to a notable decrease in the maximal
patch-wise temporal variance. Videos generated with FlowMo exhibit consistently lower variance,
especially within the critical timesteps 5-15, compared to the higher and more fluctuating variance
observed in videos generated without FlowMo. This empirically validates that FlowMo operates as
intended by reducing the target variance metric during the crucial phases of motion formation.
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D User Study: Instructions Provided to Participants

As part of the evaluations we performed on our method, we conducted a user study, as described in
Sec. 4.2. The study was designed to assess human preferences on videos generated with and without
FlowMo, using the videoJAM benchmark [3], which focuses on motion coherence.

The study was conducted using Google Forms. For each prompt, participants were shown a pair of
videos—one with FlowMo and one without—generated with the same random seed (1024). The
order of the videos was randomized to avoid positional bias. Each pair was evaluated by five different
participants, resulting in 640 responses per baseline.

Participants were asked to evaluate the videos based on three criteria: text alignment, aesthetic quality,
and motion coherence. The instructions provided to annotators are reproduced below, followed by a
screenshot of the interface used:

Hello! We need your help to read a caption, and then watch two generated videos.
After watching the videos, we want you to answer a few questions about them:

• Text alignment: Which video better matches the caption?
• Quality: Aesthetically, which video is better?
• Motion: Which video has more coherent and physically plausible motion?

(Do note: it is OK if the quality is less impressive as long as the motion looks better.)

Figure 12: Screenshot of the Google Form used in the user study.
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E VBench Metrics Breakdown

Table 3: VBench evaluation results per dimension. Each column represents a model variant, with
and without FlowMo. Rows correspond to the 16 VBench evaluation dimensions.

Dimension Wan2.1-1.3B CogVideoX-5B
Baseline + FlowMo Baseline + FlowMo

Subject Consistency 95.61% 96.54% 95.79% 97.02%
Background Consistency 97.25% 97.02% 96.53% 97.53%
Temporal Flickering 99.15% 98.93% 99.23% 96.21%
Motion Smoothness 96.43% 98.56% 95.01% 97.29%
Dynamic Degree 83.21% 81.96% 65.29% 63.92%
Aesthetic Quality 56.77% 58.03% 55.51% 58.29%
Imaging Quality 61.01% 64.89% 58.91% 58.75%
Object Class 91.37% 95.35% 82.72% 88.41%
Multiple Objects 77.98% 82.27% 60.17% 61.27%
Human Action 98.27% 97.23% 97.81% 95.69%
Color 87.94% 87.28% 82.75% 80.82%
Spatial Relationship 75.21% 78.42% 67.89% 67.23%
Scene 49.84% 49.41% 51.55% 54.13%
Appearance Style 20.95% 28.45% 23.53% 30.29%
Temporal Style 26.35% 27.30% 25.04% 31.26%
Overall Consistency 23.65% 25.53% 26.43% 24.28%

Semantic Score 84.70% 89.11% 70.03% 69.26%
Quality Score 65.58% 73.58% 60.83% 72.11%
Final Score 75.14% 81.34% (+6.20%) 65.43% 70.69% (+5.26%)

In Sec. 4.2, we reported the aggregated VBench [16] metrics, as well as specific metrics that
correspond to motion coherence and magnitude. Here, we provide the complete breakdown across all
16 individual evaluation dimensions for both Wan2.1 and CogVideoX.

Tab. 3 compares the baseline models with their FlowMo-guided counterparts. FlowMo leads to
consistent improvements in key dimensions, including Subject Consistency, Motion Smoothness,
and Object Class, while maintaining or slightly improving aesthetic and perceptual metrics such as
Aesthetic Quality, Appearance Style, and Spatial Relationship. Although a small decrease is observed
in Dynamic Degree, this aligns with our expectation that reducing motion artifacts also reduces
spurious motion.

Critically, as mentioned in the main text, FlowMo consistently and significantly boosts the overall
quality metric (Final Score) by at least 5% across all models. This is a clear indication of the positive
impact our method has on the overall quality of the produced viseos.
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F Additional Quantitative Ablation Results

Table 4: Comparison of baseline(WAN2.1-1.3B), FlowMo, and ablations across VBench metrics.
FlowMo achieves the best Motion Smoothness and the highest overall Final Score.

Dimension Mean W/O Debias Steps 0–30 Baseline +FlowMo

Subject Consistency 94.26% 95.02% 83.56% 95.61% 96.54%
Background Consistency 97.69% 96.72% 92.24% 97.25% 97.02%
Temporal Flickering 99.02% 99.45% 91.82% 99.15% 98.93%
Motion Smoothness 97.53% 98.01% 80.42% 96.43% 98.56%
Dynamic Degree 82.99% 82.12% 72.98% 83.21% 81.96%
Aesthetic Quality 53.81% 54.65% 43.27% 56.77% 58.03%
Imaging Quality 59.22% 58.72% 49.71% 61.04% 64.89%
Object Class 92.89% 90.74% 74.33% 91.37% 95.34%
Multiple Objects 78.01% 78.48% 58.92% 77.98% 82.27%
Human Action 98.51% 98.08% 77.89% 98.27% 97.23%
Color 86.23% 86.98% 82.73% 87.94% 87.28%
Spatial Relationship 77.85% 76.36% 72.90% 75.21% 78.42%
Scene 47.77% 48.62% 40.98% 49.44% 49.41%
Appearance Style 22.03% 21.22% 16.04% 20.95% 28.45%
Temporal Style 27.01% 26.76% 22.58% 26.35% 27.30%
Overall Consistency 23.81% 24.92% 15.87% 23.65% 25.53%

Semantic Score 82.35% 82.15% 69.27% 84.09% 89.11%
Quality Score 66.27% 67.51% 53.37% 65.58% 73.58%
Final Score 74.76% 76.31% 58.17% 75.14% 81.34%

In Sec. 4.4, we reported the show qualitative results for our ablation study. Here, we provide the
complete breakdown across all 16 individual evaluation dimensions for Wan2.1.

Tab. 4 shows a quantitative comparison of VBench metrics between the WAN2.1-1.3B baseline,
FlowMo, and the following ablations: Mean (i.e., regulating mean patch-wise variance of the debiased
latent), W/O Debias (i.e., regulating max patch-wise variance of the un-debiased latent), and Steps
0–30 (applying optimization over the first 30 steps, instead of all 50, due to computational and time
constraints).

In accordance with the qualitative results presented in the paper (Fig. 7), FlowMo demonstrates
the best Motion Smoothness, with roughly 50% more improvement over the best ablation. It also
achieves the strongest performance across the three aggregated metrics: +5.86% on Semantic Score,
+6.07% on Quality Score, and +5.03% on Final Score compared to the closest ablation. As for
Dynamic Degree, applying optimization over 30 steps leads to a significant drop, whereas the other
ablations, and FlowMo itself, show no meaningful degradation, indicating that motion magnitude is
largely preserved.

The quantitative metrics are consistent with our motivation and theoretical justification (see Sec. 3.2
and Appendix E). Replacing the max operation with a mean significantly weakens the effect of the
optimization, as was also argued theoretically above. Removing the debiasing operator results in
a comparable degradation, which aligns with prior observations that text-to-video models tend to
prioritize appearance features, which can overshadow motion in the loss signal (e.g., [3]). Lastly,
applying the optimization across the first 30 denoising steps leads to a clear performance drop. This
is because the coarse denoising steps primarily determine motion, structure, and overall layout. In
later steps, these aspects are already fixed, and the loss, although still valid, can only influence
high-frequency details. As a result, applying the optimization at later stages tends to introduce
artifacts rather than improve motion quality. This observation aligns with findings from prior works
(e.g., [47, 69]), which similarly emphasize the importance of applying optimization during the early
denoising stages.
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G On Choosing to Optimize Maximal Patch-Wise Variance

We provide both intuitive and theoretical justifications for the choice of the max operator in our
optimization.

Intuitive justification. Artifacts are typically a local phenomenon dominated by specific spatiotem-
poral locations in which the patch statistics are abnormal (compared to the training set). Using the
mean operator dilutes the impact of these anomalies, as it is dominated by the majority of patches. In
contrast, their presence can be captured by a max operator, making it a natural choice to detect and
mitigate inconsistencies.

Theoretical justification. The following lemmas justify optimizing the maximum patch-wise
variance to keep generated latents in distribution.
Lemma G.1. Noising of real videos keeps patch-wise temporal variance bounded by a dataset-
dependent constant C, which bounds patch-wise variance for all patches of all videos in the training
data.

Since the model was trained on a finite dataset of real-valued latents, such a constant C exists.
Assuming the dataset consists of natural videos, and since VAEs minimize latent variance, C is likely
to be relatively small. Recall that noising a latent of a real video x0 to timestep t is done by:

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). (10)

Thus, the temporal variance of each patch p is given by:
Vart(p) = (1− ᾱt)Var(ϵp), (11)

and hence the maximum patch-wise variance of all samples during training is bounded.
Lemma G.2. Consider the denoising process starting from pure Gaussian noise. Suppose that in early
timesteps (i.e., when t is small), each patch of the denoised latent remains approximately Gaussian
but with unknown variance due to guidance, decoder mismatch, or score error, i.e., xp

t ∼ N (0, σ2
p),

with σp varying across space. Then, the maximal patch-wise variance is O(log(NfNwNh)) with
high probability (w.h.p.), where Nf , Nw, and Nh are the number of frames, width, and height of the
latent, respectively.

Empirically, this assumption holds in early denoising timesteps: the denoised latent remains approxi-
mately Gaussian, and patch-wise variances exhibit spatial variability consistent with the stated form.
Intuitively, this holds because at high noise levels, the per-pixel variance distribution is heavy-tailed,
so outliers are likely to occur. Formally, given the assumptions above, the temporal variance of each
patch is distributed χ2

Nf
, where Nf is the number of latent frames. The maximal patch-wise variance

is thus the maximum over such N = NfNwNh distributions, which lies in the Gumbel domain and
satisfies the property in the lemma.

Hence, as the number of patches N grows, local outliers (i.e., patches with high patch-wise variance)
appear with non-negligible probability.
Lemma G.3. A global stability condition for the numerical integration step in the denoising process
requires that |Jp| vp ≤ C, where Jp is the Jacobian at patch p, vp its patch-wise variance, and C the
Courant number.

Let f(xt) denote a linearization of the denoising step. A stability condition for solving the ODE
numerically is the CFL condition, which requires every patch p to satisfy |Jp|∆t ≤ C. Otherwise, the
numerical process could be unstable or fail to converge. If the CFL condition holds, the local step
magnitude satisfies:

∥∆xp∥ ≈ |Jp| vp, (12)
leading to the stated global stability condition. If a single patch attains a large vp, the product above
can cross the stability boundary, causing a local overshoot that pushes that region off the training
manifold.
Corollary G.4. During training, patch-wise variance is bounded. However, when denoising pure
Gaussian noise, high patch-wise variance is a likely local phenomenon, which may drive generation
out-of-distribution. Minimizing the maximum patch-wise variance is thus a practical strategy to
improve ODE stability and ensure generated latents remain in-distribution.
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