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Abstract

Deciding on a model structure is a fundamental problem in machine learning. We are
interested in building a data-based model for the governing equations of a physical system
from a library of discrete components. In addition to optimizing the model for performance,
we consider crash and inequality constraints that arise from additional model requirements,
such as real-time capability and model complexity regularization. We address this task of
model structure selection with a focus on dynamical systems and propose to search over
potential model structures efficiently using a constrained combinatorial Bayesian Optimization
(BO) algorithm. We propose expressive surrogate models suited for combinatorial domains
and a novel acquisition function that can handle both inequality and crash constraints and
can be computed in closed form. We provide simulated benchmark problems within the
domain of equation discovery of nonlinear dynamical systems. Our method outperforms
the state-of-the-art in constrained combinatorial optimization of black-box functions and
has a favorable computational overhead compared to other BO methods. As a real-world
application example, we apply our method to optimize the configuration of an electric
vehicle’s digital twin while ensuring its real-time capability for the use in one of the world’s
largest driving simulators.

1 Introduction

The task of minimizing the discrepancy between the simulated behavior of digital twins and the measured
behavior of the observed system is essential in engineering applications and is commonly known as system
identification (Ljung, 1998) or model learning (Nguyen-Tuong & Peters, 2011). In general, system identification
comprises two interleaved sub-tasks, structure identification and parameter estimation. The former aims
to determine the structure of model equations, while the latter focuses on finding the model parameters
(Tanevski et al., 2015). While a lot of the machine learning literature focuses on the second task, in this
paper, we are interested in the first.

Structure identification methods work by exploring the space of potential models that provide the best-fitting
representation of the dynamical system. On the one hand, structure identification can be approached by
symbolic-regression methods (Bongard & Lipson, 2007; Schmidt & Lipson, 2009; Brunton et al., 2016),
which explore the space of possible arithmetical expressions for building mathematical models and often use
regularization techniques to introduce bias towards simpler models (Tanevski et al., 2020). These methods
can be very general and require only the definition of the mathematical operations and functions that
can compose the description of the system’s behavior. On the other hand, knowledge-driven approaches
(Bradley et al., 2001) require experts to encode domain-specific knowledge into model fragments, usually
following known relationships, physical laws, constraints, or structural properties of the observed system.
In both approaches, the idea is to break down the overall model into smaller, more manageable fragments
or sub-models. This decomposition allows for a more modular representation of the system dynamics and
enables the identification of local relationships or subsystem behaviors, which is especially important when
dealing with complex systems. In addition, both methods provide flexibility in defining the structure and
form of the model fragments, which can be combined, composed, or connected in a way that reflects the
relationships and interactions between the different components of the system.
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Figure 1: The process of system identification

In Figure 1, we depict an iterative process of system identification. In the structure identification phase,
model components are selected from a model library of predefined parameterized templates that align with the
system’s characteristics. In the next step, regression algorithms are employed to estimate the coefficients or
parameters associated with the selected templates of the model fragments. The final model is then evaluated
using criteria such as goodness-of-fit, model complexity, or predictive performance. This evaluation helps
determine the quality and suitability of the identified model and is used as feedback to search algorithms in
order to select better model structures for the next iteration.

In practice, structure identification search algorithms enumerate plausible model structures and select the
model templates that result in the best model evaluation (Tanevski et al., 2020). Due to the discrete
nature of the problem, this task is often approached as a combinatorial optimization problem. Nevertheless,
this is not a trivial task. By design, the interplay between components disallows selecting templates
independently, and exhaustively searching over all potential model structures quickly becomes infeasible due
to the combinatorial explosion of the search domain. In addition, evaluating a model structure candidate
involves fitting coefficients and simulating dynamical systems, which can be computationally demanding and
not necessarily differentiable. For this reason, a sample-efficient optimization method allows finding better
models in larger search spaces. Bayesian Optimization (BO) methods (Garnett, 2023) are sample efficient
and designed for expensive-to-evaluate black-box objective functions.

Moreover, the ability to handle inequality constraints and evaluation failures during the search for the best
model structure plays an important role in system identification. Inequality constraints are important because
they can be used to limit the computational budget available for the model, help mitigate overfitting, model
over-completeness, and can prevent the choice of models that violate physical principles. In addition, the
selection of certain templates might lead to an invalid composition and, in the worst case, lead to a model
that is numerically unstable during simulation (Chakrabarty et al., 2021). Inconveniently, these failures or
‘crashes’ prohibit the assessment of the model performance (Bachoc et al., 2020).

For the above-mentioned reasons, we address the task of model structure selection as a combinatorial BO
problem and propose a method especially designed for models that have additional requirements that can
be translated into inequality and crash constraints in the optimization. Our method efficiently searches
over potential model structures with a novel constrained combinatorial BO algorithm that handles these
constraints and can efficiently scale up to many design parameters, allowing to find better models faster. Our
optimization method employs expressive surrogate models suited for combinatorial spaces and implements an
acquisition function that handles both inequality and crash constraints. While our contribution focuses on
finding models for dynamical systems, the method we propose is general and can be used for a wide variety
of machine learning tasks.

We empirically evaluate the method on established symbolic benchmark problems in the context of equation
discovery of nonlinear dynamical systems (Brunton et al., 2016; Mangan et al., 2017). We extend these
benchmarks to include inequality constraints in the form of Lasso regularization to combat overfitting, while
tackling model numerical instabilities or failures that arise from choosing certain model structures in the
form of a crash constraint. As a real-world application example, we further employ the method to optimize a
knowledge-driven formulation of a multibody dynamical system of an electric vehicle, which operates in a
driving simulator. Because the model simulates the dynamic response to the driver’s inputs, it must match
the timing and movement of a real car on the road and therefore must run in real time. Thus, besides
optimizing the model performance, we consider the real-time capability as an inequality constraint in the
model structure search problem.
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Our contributions are as follows:

• We propose a general formulation for model structure selection as part of a constrained combinatorial
optimization problem that considers inequality and crash constraints as a way to handle additional
model requirements during the model search.

• We present a constrained combinatorial Bayesian optimization algorithm (CBO-FRCHEI) that can
solve the model structure selection problem efficiently and is able to solve combinatorial optimization
problems with up to 1018 combinations. CBO-FRCHEI employs a novel and efficient-to-compute
acquisition function and combines recently proposed surrogate models for discrete domains.

• We show empirical evidence that the proposed algorithm outperforms state-of-the-art methods on
benchmark problems for equation discovery and further provide a real-world application example
where CBO-FRCHEI can build a digital twin for a driving simulator from a large library of modules,
while ensuring its real-time capability.

This article continues as follows: in Section 2 we provide a general problem formulation for structure selection.
The related work is discussed in Section 3. The proposed combinatorial BO method is described in Section 4.
In Section 5, we investigate the performance of our method with various system identification problems and
compare to other approaches.

The code for the optimizer and the benchmark problems are publicly available at https://github.com/

2 Problem Statement

The structure identification problem at hand requires four main elements. (i) First, we require noisy time
measurements of the states and inputs that were collected during the operation of the real system. These are
used to measure the model performance as well as to estimate the model parameters. (ii) Next, we require a
library of model templates X and a symbolic-regression or knowledge-driven procedure for composing the
selected templates in order to generate the resulting differential equation. The selection of model templates
are to be parameterized with a vector of categorical decision variables denoted as x ∈ X . (iii) Further, we
require a method for estimating the free parameters associated with the selected templates. (iv) Finally, we
need an evaluation metric f(x) for the model performance and optionally inequality g(x) ≤ 0 and binary
equality h(x) = 1 constraint functions that can be used for additional model requirements. The inequality
constraint can be used, for example, to restrict the computational budget, the model complexity or as a
regularization, while the binary equality constraint is used to indicate evaluation failures.

We address this structure identification problem as a constrained combinatorial optimization problem. We
introduce the objective function f : X 7→ R that maps the decision variables x defined over a combinatorial
domain X = X1 ×X2 × · · · × Xd with d categorical decision variables with respective cardinalities k1, . . . , kd.
In practice, this function represents both parameter estimation and model evaluation depicted in Figure 1 and
measures the performance of the model structure specified by x ∈ X . Similarly, we define the M inequality
constraints as gj : X → R with j ∈ {1, . . . , M}, and the binary equality constraint function as h : X → {0, 1}.

We formulate the structure selection problem as the search for the global optimizer x∗ that fulfills:

x∗ = arg min
x∈X

f(x) (1)

s.t. gj(x) ≤ 0 ∀j ∈ {1, . . . , M}
h(x) = 1 .

The functions f , g, and h are all expensive-to-evaluate black-box functions and can only be obtained
simultaneously. The function f and g are noisy and can only be assessed when the experiment is successful,
i.e.

(y, c, l) =
{

(f(x) + ϵy, g(x) + ϵc, 1) if x is evaluation success
(∅, ∅ 0) if x is evaluation failure (2)

where the noise ϵy ∼ N (0, σ2
y) and ϵc ∼ N (0, diag(σ2

c )) are i.i.d. and normally distributed. All past
observations are collected in a dataset D = {(x(i), y(i), c(i), l(i))}i∈[N ], where N is the number of experiments.
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3 Related Work

Several approaches have been proposed to address the challenge of model structure selection within the
field of system identification, which has usually been tackled as a combinatorial optimization problem, with
approaches ranging from exhaustive search methods to elaborated heuristic algorithms. In this section,
we review some of the existing literature and highlight the potential of employing combinatorial Bayesian
optimization as a promising approach.

Model Structure Selection. Traditional methods for structure selection involve exhaustive search over the
space of potential model structures, such as random search, A* search, and simulated annealing (Bertsimas
& Tsitsiklis, 1993) algorithms. Others employed evolutionary algorithms (Schmidt & Lipson, 2009; Tanevski
et al., 2020) or causal inference (Baumann et al., 2022). However, the main limitation of these methods is
their sample efficiency, as the number of potential model structures grows exponentially with the number of
discrete variables. Generally, these algorithms are not suitable for expensive-to-evaluate system identification
problems.

Mangan et al. (2017) proposed a sparse symbolic-regression structure selection approach using SINDy (Brunton
et al., 2016) as a tool to down-sample parsimonious models from the combinatorially large model space and
further used information criteria to rank the remaining models. Reducing the search space allowed them to
brute-force and search for the best model among the remaining ones. In essence, SINDy works by recursively
performing linear regression and pruning terms with small model coefficients up to a certain threshold.
Although very efficient, this method, as well as other backward-elimination algorithms, over-exploits the
model space and does not guarantee to find the optimal set of features (Guyon & Elisseeff, 2003). In addition,
SINDy cannot handle constraint problems and can only be applied to symbolic-regression and therefore is
not applicable to knowledge-driven problems. Another limitation is that the coefficients are pruned based on
the regression results obtained by fitting a prediction model, which is not always the best strategy if the
model is to be used as a simulation or auto-regressive model. BO methods are more general and allow for
arbitrary cost functions, whereas SINDy decides on the structure based on the least squares cost.

Combinatorial Bayesian Optimization. Recently, progress has been made in the field of combinatorial
Bayesian optimization (Luong et al., 2019). The two main challenges in this field are the development of (i)
better probabilistic regression approaches that can capture the complex interaction between discrete variables
in the combinatorial domain and (ii) acquisition function optimizers that efficiently search the combinatorial
space using the surrogates. While many of the methods have been defined over a mixed space of continuous
and discrete variables, we focus here on the specific characteristics that are useful for discrete domains. SMAC
(Hutter et al., 2011) leveraged tree-based surrogate models and used random walks to obtain a local optimum
of acquisition function. This method can be applied to mixed input spaces but neglect high-order interaction
between variables. BOCS (Baptista & Poloczek, 2018) encoded categorical variables in a combinatorial one-hot
binary domain and used polynomial features within sparse Bayesian linear regression (Carvalho et al., 2010;
Makalic & Schmidt, 2015) combined with Thompson sampling to express the interaction between variables
and their effect on the objective function. They optimized the acquisition function using simulated annealing
and semi-definite programming. Dadkhahi et al. (2022) extended BOCS and proposed a more compact but
still complete and unique encoding that results in fewer monomials. Hase et al. (2018) and Häse et al. (2021)
combined Bayesian neural networks and density kernel estimation as a surrogate for BO with categorical
variables. Wan et al. (2021) proposed the Cosmopolitan algorithm and used a modified Hamming kernel as
part of Gaussian process regression, which is tailored for combinatorial spaces and defines the correlation
between two inputs by their Hamming distance in the combinatorial graph. To avoid over-exploration due to
high-dimensional combinatorial spaces they adapted the trust region algorithm from TURBO (Eriksson et al.,
2019) to explore only locally near the best location found so far. Further, Oh et al. (2019) proposed COMBO,
which used the discrete diffusion kernel built from the graph cartesian product of discrete parameters and was
able to model high-order interactions between variables leading to better performance. COMBO was improved
by Deshwal et al. (2021) (HyBO) by using the closed-form of the discrete diffusion kernel proposed in Imre
(2002).

Constrained Bayesian optimization is an active area of research for continuous domains (Gardner et al.,
2014; Eriksson & Poloczek, 2021; Ungredda & Branke, 2021; Marco et al., 2021) but rarely investigated for
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discrete variables. Daulton et al. (2022) proposed Probabilistic Reparameterization (PR), the first method for
constrained combinatorial BO, which reparameterized the discrete acquisition function optimization problem
by introducing discrete probability distributions defined by continuous parameters. This allowed them to
optimize the AF using gradient-based methods. We also note that other methods, such as Papalexopoulos
et al. (2022), exist for constrained combinatorial optimization but only consider inexpensive and white-box
constraint functions, which is not applicable to our problem.

As pointed out by Daulton et al. (2022), there are many computational issues with most of the existing
methods that make it difficult to apply them to constrained optimization problems. Our proposed method
combines ideas from the literature and extends to constrained problems. In addition, most of the existing
methods scale poorly with respect to the number of inputs and the number of data points, since they rely
on expensive MCMC methods to infer the posterior distributions, making them impracticable for high
dimensional discrete problems that arise from structure model selection. Therefore, we focus on reducing
the high computational overhead of the state-of-the-art methods by relying on closed-form models and AF,
avoiding expensive approximations.

4 Methods

In the context of structure model selection, Bayesian optimization can be employed to find the optimal model
structure that minimizes a chosen evaluation metric. Bayesian optimization is particularly useful when the
objective function is expensive-to-evaluate and has no explicit expression. Based on past observations, the BO
algorithm constructs a probabilistic surrogate model of the objective and the constraints, typically a Gaussian
Process (GP) (Rasmussen et al., 2006). The surrogate model is iteratively updated by incorporating new
evaluations, allowing for the sequential exploration of the search space. The selection of the next promising
evaluation point is guided by an acquisition function, which bases on the surrogate model’s predictions and
the uncertainty associated with them to balance the exploration-exploitation trade-off.
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Library
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Figure 2: The proposed method for model structure selection using combinatorial Bayesian optimization.
Every iteration, the model structure selection algorithm proposes a new model structure x from the model
library. Using measurements, the model’s parameters are estimated and the composed model performance
is evaluated according to objective y = f(x) + ϵy, inequality constraints c = g(x) + ϵc and crash l = h(x)
function evaluations.

We call our method Combinatorial Bayesian Optimization with Failure-Robust Constrained Hierarchical
Expected Improvement (CBO-FRCHEI). In the following subsections, we present a detailed description of this
method. We define (i) probabilistic surrogate models for regression, which will approximate the black-box
objective and constraint functions, (ii) a probabilistic model for classification, which will approximate the
black-box binary function for failures and finally (iii) the acquisition function. An overview of the method is
depicted in Figure 2, and the algorithm is given in Algorithm 2.
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4.1 Probabilistic Surrogate Model for Regression

We consider the setting, where objective function observations are given by y(i) = f(x(i))+ ϵ
(i)
y and we assume

the observation noise ϵ
(i)
y ∼ N (0, σ2

y) to be an i.i.d. Gaussian random variable with unknown variance σ2
y

(cf. Equation 2). After making N observations, the joint distribution of observations is

y | X, σ2
y ∼ N (f(X), σ2

yIN ) , (3)

where X = [x(i), . . . , x(N)]⊤ ∈ XN , f(X) = [f(x(i)), . . . , f(x(N))]⊤ ∈ RN , y = [y(i), . . . , y(N)] ∈ RN and
IN ∈ RN×N is the identity matrix. We assume the objective and constraints to be conditionally independent
given X and use the same setup for each j-th dimension of constraint function evaluations c

(i)
j = gj(x(i))+ ϵ

(i)
cj .

Similarly, cj | X, σ2
c ∼ N (gj(X), σ2

c IN ).

We now present a surrogate model for the expensive function f as a Gaussian process prior over f

f | σ2 ∼ GP (m, k) , (4)

where the mean function m : X → R and the kernel k : X × X → R are the crucial ingredients in GP
regression since they define the kind of structure that will be captured by the regression model. These
components are to be defined in the following subsections.

The posterior predictive distribution of a function value f(X ′) at test points X ′ is given analytically
(Rasmussen et al., 2006)

f(X ′) | X ′, y, X, σ2 ∼ N (µ̄f , Σ̄f ) (5)

with
µ̄f = m(X ′) + K(X ′, X)(K(X, X) + IN σ2

y)−1(y −m(X))

Σ̄f = K(X ′, X ′)−K(X ′, X)(K(X, X) + IN σ2
y)−1K(X, X ′)

,

where m(X)i = m(xi) and K(X, X ′)i,j = k(xi, x′
j).

One of the limitations of Gaussian process regression is the light tails of the predictive distribution, which are
not robust to outliers (Duvenaud, 2014) and might not capture well enough the discrepancy of the surrogate
model (Baptista & Poloczek, 2018). To allow for better robustness against outliers and characterization of the
uncertainty in the prediction while still allowing for a closed-form posterior, we make use of hierarchical priors.
A hierarchical Bayesian model is a model in which the prior distribution of some of the model parameters
depends on other parameters, which are also assigned a prior (Elster et al., 2015). We place the following
hierarchical GP prior over f

f | σ2 ∼ GP
(
m, σ2 k

)
(6)

σ2 ∼ Γ−1(ν, σ2
m) , (7)

which leads to p(f(X), σ2) being an inverse-gamma-normal distribution. To ease the derivations, we use a
more intuitive inverse-gamma parameterization, whose shape is a = ν/2 and scale b = σ2

m ν/2 (Taboga, 2017).
This parameterization directly reflects the mean and the variance of this distribution since E[1/σ2] = 1/σ2

m

and V ar[1/σ2] = 2/(νσ4
m). Therefore σ2

m can be interpreted as the best guess of the regression precision,
while ν expresses the degree of confidence about the precision. We follow Chen et al. (2023) and place
hyper-prior distributions over ν ∼ Γ(ζν , ξν) and σ2

m ∼ Γ(ζσ2
m

, ξσ2
m

).

The predictive prior distribution at X can be calculated analytically by

f(X) | X ∼
∫

p(f(X) | σ2, X) p(σ2) dσ2 = T (ν, m(X), σ2
m K(X, X)) , (8)
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where T (ν, µ, Σ) is the multivariate t-distribution, with degrees of freedom ν, mean µ and scale matrix Σ.
Furthermore, the predictive posterior distribution at test points X ′ is also given in closed-form by

f(X ′) | X ′, y, X ∼
∫

p(f(X ′) | X ′, y, X, σ2) p(σ2 | y, X) dσ2 = T (ν̄f , µ̄f , Σ̄f ) (9)

with ν̄f = ν + N

µ̄f = m(X ′) + K(X ′, X ′) (K(X, X) + I)−1 (y −m(X))

Σ̄f = σ̄2
m

(
K(X ′, X ′)−K(X ′, X) (K(X, X) + I)−1

K(X, X ′)
)

σ̄2
m =

(
ν σ2

m + (y −m(X))⊤ (K(X, X) + I)−1 (y −m(X))
)

/
(
ν + N

)
,

which defines the so-called t-Process (T P) regression framework (Shah et al., 2013; Tracey & Wolpert,
2018). Interestingly, one can show that as N goes to infinity, the T P prior and posterior tends to the GP
distributions. Moreover, the equations above show that the parameters ν, σ2

m defined in the inverse-Gamma
distribution of the prediction uncertainty σ2 directly impose how heavy-tailed the predictive distribution will
be. The probabilistic graph models for both GP and T P are provided in Figure 3.

(a) Gaussian Process Regression (b) T Process Regression

Figure 3: Graph model of two probabilistic regression models. The array θk refers to the kernel function k
hyperparameters.

4.1.1 Kernel Design

Kernels play a crucial role in GP and T P regression because they define the assumptions and properties of
the underlying probabilistic model. The kernel defines correlations between candidates and is required for
accurate and meaningful predictions. Notably, common kernels found in the literature for continuous spaces
rely on a natural order of candidates, which is not given in categorical spaces. To address this limitation,
many kernels specialized for categorical spaces have been recently proposed in the literature (Imre, 2002;
Wan et al., 2021; Deshwal et al., 2021; Oh et al., 2019; Baptista & Poloczek, 2018; Dadkhahi et al., 2022).

In particular, the automatic relevance determination (ARD) discrete diffusion kernel became recently popular
and is the discrete analog to the diffusion kernel over continuous spaces, aka the radial basis function (RBF)
(Imre, 2002; Deshwal et al., 2021). This kernel defines diffusion over the entire discrete space represented by
a combinatorial graph, where two nodes are connected if two configurations differ in exactly one variable. It
is given by

kdiff(x, x′) =
d∏

i=1

(
1− e−kiβi

1 + (ki − 1)e−kiβi

)δ(xi,x′
i)

, (10)

where ki is the cardinality of the i-th categorical input variable, δ(xi, xj) is equal zero if xi is equal xj and
equal one otherwise, and βi are hyperparameters that control the importance of the i-th discrete variable.
Intuitively, this kernel is well suited for globally capturing interactions between configurations. However,
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one of the main limitations is that it captures similarity based on exact matches and does not consider the
degree of dissimilarity between categories, which may lead to a loss of information when trying to model
relationships or interactions between categorical variables.

Alternatively, Baptista & Poloczek (2018) proposed a polynomial kernel that was used in a Bayesian linear
regression scheme. They observed that a universal surrogate model for a binary discrete input domain
X̄ = {0, 1}d̄ is given by f(x) =

∑
S∈2X̄ αS

∏
i∈S x̄i, where 2X̄ is the power set of the domain, αS is the

coefficient vector, and x̄ ∈ X̄ is the one-hot encoding of the categorical input x. In fact, this model describes
all the possible configurations and becomes quickly impractical due to the exponential number of monomials.
The idea presented is to truncate monomials up to a certain degree

f(x) = α0 +
∑

j

αjx̄j +
∑
i,j>i

αijx̄ix̄j +
∑

i,j>i,k>j

αijkx̄ix̄jx̄k + . . . , (11)

which can be naturally modeled as a kernel

kpoly(x, x′) = σ2
α

1 +
d̄∑
i

x̄i x̄′
i +

d̄∑
i,j>i

x̄ix̄j x̄′
ix̄

′
j +

d̄∑
i,j>i,k>j

x̄ix̄jx̄k x̄′
ix̄

′
jx̄′

k + · · ·

 , (12)

where σ2
α is the hyperparameter related to the prior variance of the coefficients. Notably, this kernel is more

complex than the discrete diffusion kernel, especially when considering higher polynomial degrees, since it
can capture higher-order interactions between categories. However, as the degree increases, the number of
parameters becomes prohibitively high. By design, it also suffers from the combinatorial explosion of the
discrete domain. Note also that this kernel distinguishes not only the degree of dissimilarity between different
categories but the interaction between them.

In this paper, we propose to combine the strength of multiple kernels (Duvenaud, 2014) in the following way

kpolydiff(x, x′) = λ (kpoly(x, x′) · kdiff(x, x′)) + (1− λ) (kpoly(x, x′) + kdiff(x, x′)) (13)

where λ ∼ Beta(αλ, βλ) ∈ [0, 1] is a hyper-parameter that controls whether the kernels should be added or
multiplied together. The idea is to combine the global approximation properties of the discrete diffusion
kernel with the high-order interaction and non-stationary properties of polynomial kernels. In the appendix
Section A.4, we provide an ablation study of different kernels applied to our benchmark problems.

4.1.2 Hyperprior-parameter estimation

To optimize the hyper-parameters, we resort to empirical Bayes, as suggested by Chen et al. (2023), to
avoid expensive MCMC samplings. This is possible because both GP and T P regression methods have
tractable marginal likelihoods. We achieve this by maximizing the marginal a-posteriori (MMAP) for the
prior hyperparameters

θ∗ = arg max
θ

p(y |X, θ)
∏

i

p(θi) , (14)

where the marginal likelihood p(y|X, θ) = T (ν, m(X), σ2
mK(X, X) + σ2

mIN ) and the hyperprior distribution
p(θi) is assumed conditionally independent and is specifically designed for each hyperparameter θi. Hyper-
parameters without defined hyper-priors are treated as non-informative and are set to the Jeffrey’s prior
p(θi) ∝ 1. Note that we train all model hyperparameters in the model, which for the example of the T P
model with kpolydiff kernel consists of θ = {ν, σ2

m, σα, β, λ}.

4.2 Probabilistic Surrogate Model for Classification

When searching for possible structures of dynamical systems, it is to be expected that simulating the dynamical
system might fail due to numerical instabilities. Unfortunately, it is usually not possible to delimit the regions
that lead to instabilities a-priori. We model the set of feasible candidates as black-box functions and learn the
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failure regions from data using a probabilistic GP classifier. In this way, the Bayesian optimization algorithm
can learn to avoid these regions while searching for the optimum. We use respectively the following prior and
likelihood functions

h ∼ GP(m(x), k(x, x′)) (15)

l | h(X) ∼
∏

i

Bernoulli(li; S(h(Xi))) , (16)

where S is the sigmoid function, and l are previous failure observations.

We approximate the intractable Bernoulli posterior distribution p(h(X∗) | X∗, l, X) with Laplacian approxi-
mation, which is simple to implement and can approximate the posterior distribution in closed-form. We use
the same kernel as in Equation 13. We implement the alternating optimization procedure from Rasmussen
et al. (2006) for finding the posterior mode of the Laplacian approximation (Newton-Raphson combined with
Strong-Wolfe linear search) and the model hyper-parameters (L-BFGS).

4.3 Acquisition Function

The goal of the acquisition function (AF) is to guide the search for the optimal solution in an optimization
problem addressing the tension between exploitation and exploration. For the constrained problem, the AF
needs to balance the potential utility of a candidate and the probability of feasibility and success. The next
candidate model x(t) to be evaluated at iteration t is the one that maximizes the acquisition function α for
the current model:

x(t) = arg max
x′∈X

α(x′) . (17)

The AF needs to be optimized in every BO iteration. Generally, this optimization problem is the main
computational bottleneck in BO which is why we look for an acquisition function that is cheap to evaluate
and given in closed-form. In this work, we combine recent ideas in the field of Bayesian optimization and
propose a new acquisition function called Failure-Robust Constrained Hierarchical Expected Improvement
(FRCHEI), defined as follows

α(x′) = FRCHEI(x′) = Psucc(x′)βsucc n/N · Pfeas(x′)βfeas n/N ·HEI(x′) , (18)

where

Psucc(x′) = p(h(x′) = 1 | x′, l, X) (19)

Pfeas(x′) =
m∏
j

p(gj(x′) ≤ 0 | x′, cj , X) (20)

HEI(x′) = Ef(x′)∼p(f(x′)|x′,y,X)
[
max{0, y+ − f(x′)}

]
. (21)

The idea of this AF is twofold. First, we consider the hierarchical expected improvement (HEI) (similar to
Chen et al. (2023)). The HEI uses the objective function probabilistic surrogate p(f(x′)|x′, y, X) to quantify
the potential improvement in the objective value over the current best feasible solution found so far y+ ∈ y.
Samples with lower predicted mean values and higher uncertainties are more likely to be explored as they
offer the potential for a better solution. HEI modifies the traditional EI by replacing the GP surrogate by
T P regression, which should improve the predictive performance while preserving the closed-form solution of
the AF, which is given by

HEI(x′) = σ̄f

[
τ+ΦT

(
τ+; ν̄f , 0, 1

)︸ ︷︷ ︸
exploitation

+ ν̄f + (τ+)2

ν̄f − 1 T (τ+; ν̄f , 0, 1)︸ ︷︷ ︸
exploration

]
, (22)

where τ+ = (y+ − µ̄f )/σ̄f , and ϕT is the CDF and T is the PDF of the t-distribution, respectively. The
parameters ν̄f , µ̄f , σ̄2

f are from the posterior t-distribution at x′ and given as in Equation 9. Note also that as
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Figure 4: Illustration of the FRCHEI acquisition function for a one-dimensional continuous space example. The
true unknown functions are depicted as dashed lines, the observations as crosses and the surrogate predictive
posteriors mean and confidence region as purple lines and areas, respectively. Note that no observations could
be assessed for the objective and constraint functions in failure regions {x : h(x) = 0}. The next candidate
point x∗ is obtained by searching for the maximum of the FRCHEI function. Clearly, the surrogate for the
constraint functions g and h push down regions of the expected improvement HEI which are likely to be
unfeasible or fail. Without these two surrogates, the next candidate would be sampled on an unfeasible and
failure-prone region, where the HEI is maximized. Note that the search space for the experiments we consider
is discrete and high-dimensional, which can not be well displayed. For illustration purposes, we employed the
same method but replaced the combinatorial kernels with a squared exponential.

ν̄f →∞, the EI of the t-distributed posterior converges to the EI of a normal distributed posterior, which is
expected since t-distributions converge to Gaussian distributions as the degrees of freedom parameter ν →∞.
The derivation of Equation 22 is given in the appendix Section A.1.

Second, we avoid unfeasible regions by multiplying HEI with the probability of feasibility Pfeas, similar to
Gardner et al. (2014) and avoid instability regions by multiplying the HEI with the probability of success
Psucc, as proposed in Chakrabarty et al. (2021). Following Hvarfner et al. (2022), we scale these probabilities
with βfeas n/N and βsucc n/N , where n is the current iteration number, N is the maximum number of
iterations and βfeas, βsucc are hyper-parameters. The idea is to relax the constraints at the beginning of the
optimization when we do not have much knowledge about these black-box functions. As the optimization
progresses, we increasingly trust these surrogate models. Note that even though unfeasible models are never
considered the best experiment, they are still useful to improve the predictive posterior distributions (Gardner
et al., 2014). An illustration of this acquisition function for a one-dimensional continuous problem example
can be seen in Figure 4.

4.3.1 Acquisition Function Optimization

Since the input space is fully discrete, optimization of the AF can not be done directly using gradient-based
methods. Instead, we use simulated annealing (Bertsimas & Tsitsiklis, 1993), which is a standard and
performant method for unconstrained optimization over discrete spaces. We use the same simulated annealing
approach presented in Dadkhahi et al. (2022), since it is simple, computationally efficient, and can optimize
over categorical variables. For completeness, we present the algorithm again in Algorithm 1.
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Algorithm 1 Simulated annealing for categorical variables
1: function SA(objective function f , categorical domain X , starting point x(0), annealing scheduler s(t))
2: for t = 1 to N do
3: i ∼ unif(d)
4: x(t) ← x(t−1)

5: x
(t)
i ∼ Softmax ({−f(xi = w, x−i)/s(t)}w∈Xi

)
6: return x(t)

4.4 Algorithm

We present our final algorithm for black-box constrained combinatorial optimization in Algorithm 2. The
algorithm requires an initial dataset D(1) = {(x(i), y(i), c(i), l(i))}N

i=1, which can be obtained by evaluating
the model structure at N randomly sampled initial points x(i). It has been shown in recent studies (Wan
et al., 2021; Deshwal et al., 2021; Müller et al., 2021; Daulton et al., 2022) that local exploitation is beneficial,
especially for high-dimensional discrete spaces. When maximizing the AF, in line 8, we make use of this idea
and set the initial starting point for the SA optimization method as the best feasible sample evaluated so far.

Algorithm 2 Bayesian Optimization for Model Structure Selection
1: function CBO-FHCHEI(initial dataset D(1))
2: for t = 1 to N do
3: Train surrogates:
4: θf ← MMAP(D(t)) (Equation 14)
5: θg ← MMAP(D(t)) (Equation 14)
6: θl ← LaplaceMode-MMAP(D(t)) (Section 4.2)
7: Optimize acquisition function:
8: x← arg maxx∈X FRCHEI(x, θf , θg, θl,D(t)) (Algorithm 1 with Equation 18)
9: y, c, l← EvaluateModelStructure(x)

10: Update data D(t+1) = D(t) ∪ {(x, y, c, l)}
11: return lowest feasible evaluation x∗ = arg minx {y : (x, y, c, l) ∈ D, ci(x) ≤ 0, l(x) = 1}
12:
13: function EvaluateModelStructure(x)
14: Estimate model parameters, simulate and evaluate performance (f, g, h).
15: if Failure then
16: return {∅,∅, l = 0}
17: else
18: return {y, c, l = 1}

5 Experiments and Results

In this section, we evaluate the empirical performance of CBO-FHCHEI on a set of constrained equation
discovery problems for nonlinear dynamical systems as well as a knowledge-driven configuration of a driving
simulator. On the benchmark examples, we compare against two simple baselines, random sampling (RS)
and simulated annealing (SA). We also compare against the state-of-the-art in constrained combinatorial
optimization probabilistic reparameterization (PR) (Daulton et al., 2022). In our experiments, we find:

1. On the equation discovery problems, CBO-FHCHEI is either competitive with or outperforms the other
methods consistently. It always yields good equations independent of the random seed.

2. At a fixed budget of 500 evaluations, CBO-FHCHEI is approximately 10× faster than PR in terms of
wall clock time. This highlights the reduced computational overhead due to the closed-form inference
and acquisition function.
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3. Both constrained BO methods CBO-FHCHEI and PR perform especially well when finding feasible
solutions is more difficult.

4. CBO-FHCHEI is able to tune a complex driving simulator with approximately 1014 possible configu-
rations towards a driver’s preference with the constraint that the simulation needs to be real-time
capable.

While other methods such as BOCS, Cosmopolitan, COMBO, and HyBO would be interesting for this investigation,
they have not been considered since there are issues that prevent them from naively handling constraints of
any kind, and their very high computational demands exceeded an acceptable time budget for the optimization
Daulton et al. (2022). These issues made them inappropriate for our use-case.

5.1 Equation Discovery for Nonlinear Dynamical Systems

In this section, we investigate system identification for the set of low-dimensional nonlinear dynamical systems
shown in Figure 5. We use some of the benchmark problems and a similar learning setup from Brunton et al.
(2016); Mangan et al. (2017). We investigate a range of dynamical systems: a simple nonlinear damped
oscillator, a disease transmission model (SEIR), the chaotic Lorenz Oscillator, and the mean-field model for
the cylinder wake in reduced coordinates. More details about these dynamical systems can be found in the
appendix section A.3.

Nonlinear Damped Osc.
ẋ = −αx3 + βy3

ẏ = −βx3 − αy3

SEIR
Ṡ = µ − µS − β SI

Ė = −(µ + α)E + β SI

İ = α E − (µ + γ)I

Cylinder Wake
ẋ = µ x − ω y + A xz

ẏ = ω x + µ y + A yz

ż = −λ z + λ x2 + λ y2

Lorenz Oscillator
ẋ = −σ x + σy

ẏ = ρ x − 1 y − 1 xz

ż = −β z + 1 xy

Figure 5: Equation discovery benchmark problems

Let z(t) =
[
z

(t)
1 · · · z

(t)
d

]
∈ Rd and Z =

[
z(1) · · · z(N)]⊤ ∈ RN×d be the matrix of N noisy time

measurements of all d states, which are available for learning the system. By differentiating the state
measurements, we obtain noisy estimates of the state derivatives over time ż(t) = fode(z(t)) + ϵ, with
ϵ ∼ N (0, σ2

sn). We seek to find the structure of the governing nonlinear differential equation fode, which
yields the best simulation model.

A common practice in regression problems is to assume that each dimension of fode can be represented
by a linear combination of features Θ(Z) ∈ RN×nf , weighted by the coefficient vector Ξ ∈ Rnf ×d. These
nf features compose a large library of possible nonlinear candidate functions that can represent the real
system. For the benchmark problems at hand, we consider that each ODE dimension can be represented by
polynomial terms up to degree p, which is indeed true for all the problems. In vector form, we can write

 | |
ż1 · · · żd

| |


︸ ︷︷ ︸

Ż

=


1 z

(1)
1 · · · z

(1)
d (z

(1)
1 )2 z

(1)
1 z

(1)
2 · · · (z

(1)
d )p

...
...

. . .
...

...
...

. . .
...

1 z
(N)
1 · · · z

(N)
d (z

(N)
1 )2 z

(N)
1 z

(N)
2 · · · (z

(N)
d )p


︸ ︷︷ ︸

Θ(Z)

·

 | |
ξ1 · · · ξd

| |


︸ ︷︷ ︸

Ξ

+ϵ , (23)
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which can be solved for the model coefficients Ξ, using a least squares estimator.

Considering a large feature library enhances the flexibility and possibly the accuracy of the model up to the
point that the predictive error Ż −Θ(Z) Ξ approaches zero. However, especially in the presence of noise,
complex models have the potential to overfit the data leading to a deterioration of the simulation performance
and even instabilities. To address this issue, we want to consider a large feature library but use structure
selection to search efficiently and globally for the optimal subset of terms that construct parsimonious models,
i.e., the least number of terms that significantly reduce the simulation error (Brunton et al., 2016).

Note that the number of monomials is equal to nt = d nf = d
∑p

i=0
(

d+i−1
i

)
, and the total number of possible

model structure combinations is given by nm = 2nt , which grows exponentially with the number of monomials,
which further grows factorially with the number of dimensions and the polynomial degree. An overview of
the search space dimension for the benchmark problems is given in Table 1. Notably, the number of models
is in the order of quintillions.

Table 1: Equation discovery benchmark problems

Dynamical System d p nt nm

Nonlinear Damped Oscillator 2 5 42 4.4e+12
SEIR 3 3 60 1.2e+18
Cylinder Wake 3 3 60 1.2e+18
Lorenz Oscillator 3 3 60 1.2e+18

We define the optimization problem in the same form as Equation 1 as follows

x∗ = arg min
x∈X

f(x) = log10
1
N

N∑
t

∥z(t)
sim(x)− z(t)∥1 + λ log2

∑
x (24)

s.t. g(x) =
d∑
i

∥ξi(x)∥1 − δ ≤ 0 (25)

h(x) = 1 (26)
Żsim = Θ(Zsim) · Ξ(x) , (27)

where x ∈ {0, 1}nt are the nt = d nf binary decision variables that select which of the nf features or
columns of Θ(Z) will be present in the model for each of the d dimensions. λ is a hyper-parameter, δ is a
constraint threshold, and zsim(x) is the auto-regressive simulation trajectory of the system. The coefficients
Ξ(x) =

[
ξ1 . . . ξd

]
∈ Rnf ×d of the selected system are estimated by solving the least squares problem for

each subset of ξi, selected by x. The first right-hand-side term of Equation 24 quantifies the mean absolute
error between the measurements and the simulated system. The second term is a parsimony-based criterion
that rewards models with fewer monomials. The inequality in Equation 25 describes the Lasso constraint and
is used to restrict the model complexity. If the simulation is unstable, then h(x) = 0. The final identified
simulation model is given by Equation 27.

We run our method CBO-FRCHEI, as in Algorithm 2, with batch size equal two to reduce the computation
needed for the same evaluation budget. For RS we pick a configuration uniformly at random, and SA is
the same as shown in Algorithm 1, with the difference that we set the objective function to infinity if the
constraint is violated or the simulation is unstable. PR is used with the recommended settings for discrete
binary optimization and batch size equal one. We provide the same randomly sampled 50 evaluations and let
the optimizers run for additional 450 model evaluations. We execute each method 10 times and report mean
performance and standard error.

Figure 6 shows the best feasible objective function found after a number of evaluations. The proposed
method is able to find good model structures after only a few evaluations and consistently gives the best
performances for all benchmark problems. Additionally, our method is around 10× faster than PR, mainly
because our AF can be calculated in closed-form, while PR requires expensive MCMC sampling methods.
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Figure 6: Best feasible objective function evaluation, wall-time per evaluation, and frequency of feasible
solutions over the number of iterations for different optimization methods applied to the equation discovery
problem.

After 500 evaluations, the wall-clock time of PR is around 30− 42 hours, while our method achieves similar or
better results in 3− 5 hours. The RS and SA methods have a negligible computation time, and a simulation
takes around 4 seconds. As we gather more data points, the cubic scaling of GP regression will dominate
the computation times. Note that our method runs with a batch size of two, meaning that we choose two
candidates in each iteration, which halves the computational overhead. In appendix Section A.4 we show
that a batch size of two is a good compromise between computation time and performance. For the SEIR
and cylinder wake systems, SA never improves from the initial feasible solution. This is because the algorithm
changes only one variable at a time, which seems to lead to either constraint violations or crashes. This
highlights the need for global search methods that can escape from bad initial configurations. Both SA and PR
do not perform well for the Lorenz chaotic oscillator and are stuck in local minima, where the states converge
fast to a stationary point around the oscillation center (cf. Figure 7a and Figure 7b). In Figure 6 we also
show the frequency of feasible points evaluated by all methods. Our proposed AF (Equation 18) encourages
early exploration and, as the classifier and constraint functions are learned, evaluates more feasible points
and therefore finds better solutions. The frequency of infeasible evaluations of the baselines further motivates
the benefits of constraint BO. If the search space contains many infeasible points the surrogate model can
learn these regions and concentrate the search on feasible regions. This leads to better overall solutions.

Figures 7a and 7b compare, for each method, the measurements with the simulation trajectories of the
resulting optimized model for the best and worst among 10 optimization runs. Notably, our method can yield
good models for all runs and benchmark problems, while other methods exhibit a much higher variance. Low
variance results are desirable for expensive optimization problems since we usually run them only once. The
pure exploratory policy from RS also does not perform well, even in the best case. Overall, it is important
that the method for structure selection provides a good balance between exploitation and exploration, such
that it can visit a wide range of different model structures and also avoid local minima. Our experiments
show that the proposed method CBO-FRCHEI achieves a favorable trade-off.
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RS SA PR FRCHEI

(a) Best models among 10 optimization runs.

RS SA PR FRCHEI

(b) Worst models among 10 optimization runs.

Figure 7: Comparison between measurements (orange) depicted without noise and simulated trajectories of
the best feasible model after optimization (blue).
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The appendix Section A.4 provides ablation studies with further insights and analysis of the proposed method.
We investigate the performance of CBO-FRCEI and CBO-CHEI, two variants of the proposed method. The first
is similar to CBO-FRCHEI but uses a GP instead of a hierarchical T P prior for the regression surrogates. The
second does not account for failures in the AF. Further, we investigate the effect of using different kernels and
show that the proposed combination of popular kernels outperforms others for these benchmark problems.
Finally, we investigate the effect of varying the batch size.

5.2 Real-time Multibody Dynamics Model Optimization

In this experiment, we want to find a configuration for a digital twin of an electric vehicle for a driving
simulator. For years, driving simulators have played a key role in driving dynamics and advanced driver
assistance systems development. They reduce the number of prototypes required and the duration of the
development cycle. Many aspects of the car development can be tested under varying, realistic conditions
before road testing has even started (BMW AG, 2020). To allow for a realistic reproduction of driving
dynamics, there is the need to account for simulators with hardware specifications that can reproduce the
dynamics in the operation range of the dynamical system, as well as accurate real-time capable motion cueing
and digital-twin vehicle models. From the hardware perspective, companies have invested many millions
of euros in state-of-the-art simulators that fulfill those requirements. Altogether, the design of accurate
simulation models is one of the main enablers and a key factor in virtual vehicle development. Figure 8 shows
the high-fidelity simulator at the BMW AG driving simulation site.

Figure 8: High-fidelity driving simulator with 9 degrees of freedom, motion area of nearly 400 square meters
and a peak electrical power required up to 6.5 MW. Source BMW AG (2020).

The digital twin is a multibody dynamics model, which consist of multiple entities (bodies, joints, force and
control elements, etc.) (Featherstone, 2014). Every entity has multiple possible implementations, and the
goal is to choose a suitable one from a library while retaining the overall model real-time capability. For
different use-cases of the driving simulator, different implementations are necessary. This requires the digital
twin to be adapted on a regular basis. We aim to automate this process using our proposed BO method.
For example, a damper can be implemented as a simple lookup table or as a differential equation. While a
complex damper model improves simulation accuracy on a bumpy road, a simple lookup table is sufficient for
longitudinal dynamics maneuvers. In addition, entities are interacting. For example, reproducing accurately
vertical dynamics requires an accurate tire model that provides the correct inputs to the damper model and,
subsequently, the right forces to the chassis. In summary, the major challenge in system identification for the
driving simulator boils down to selecting the appropriate templates for each entity in order to optimize model
simulation accuracy while simultaneously constraining the computational complexity to enable real-time
simulations. From a system identification perspective, the task of selecting among the available templates
can be viewed as a knowledge-driven structure selection task.

However, this task is not straightforward. Model designers face an overwhelming number of potential
configurations arising from the combinatorial explosion when selecting templates. Furthermore, increasing
the complexity of a specific component does not necessarily guarantee overall model accuracy improvement.
Similarly, enhancing the computational complexity of a single component does not linearly affect the
complexity of the entire vehicle model. For example, replacing a rigid joint with a force element allows
for the representation of compliance between joints, consequently increasing the total number of degrees of
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freedom and potentially slowing down the simulation. Nevertheless, modern simulation softwares optimize
and parallelize computations. Conversely, removing a joint may split the kinematic topology of the multibody
system into two separate, parallelizable systems, resulting in faster simulations.

We investigate automatic template selection for knowledge-driven structure selection with our proposed
combinatorial BO method CBO-FRCHEI. We model the vehicle using the Simpack simulation software (Dassault
Systemes, 2023) and parameterize the model with 46 categorical variables that alter the template of different
components. The vehicle for one of the configurations is depicted in Figure 9a. All the template coefficients
were identified in a preliminary phase, so there is no need for a parameter estimator. The discrete design
space X is defined as follows:

• 5 binary variables switch between rigid and flexible formulation of bodies.
• 6 categorical variables switch the number of modes used in the model-order-reduction of various

flexible bodies.
• 2 binary variables switch the tire contact model approach.
• 4 binary variables switch between rigid (joint) and compliant (force element) motor mounts, suspension

rods and stabilizer bushings.
• 29 binary variables switching the complexity of lookup tables (linear and nonlinear) representing the

stiffness of various compliant bushing elements.

The structure identification as a constrained combinatorial optimization problem is defined as

x∗ = arg min
x∈X

f(x) (28)

s.t. g(x) = RTImax(x)− 1 ≤ 0
h(x) = 1 ,

where the function f(x) : X → R defines the model performance. In our experiment, the objective function
reflects the preference of expert drivers for one model over another. The real-time-index (RTI), is defined as
the ratio of the time required to advance one time step in the simulation divided by the simulation time step
size. Real-time models must have an RTI below 1 in 99% after the first 2 seconds of ‘warming-up’. Simulation
failures arise from certain input combinations that result in numerical instabilities or in an invalid model, for
instance, when it induces kinematic loops that can not be handled by an ODE solver.

(a) 3D view of the multibody dy-
namical model representing the ve-
hicle.
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Figure 9: Optimization results for the multibody dynamics problem

We provide the evaluation of 30 initial random samples for the optimizer, with a total evaluation budget of
300 evaluations and run the optimization twice. Figure 9b shows the simulation results for the problem at
hand. It can be seen that the proposed method finds good real-time capable configurations. Figure 9c depicts
the RTI signal for the first 10 seconds of simulation for the best feasible model found during optimization
among the two runs. We leave the detailed objective and subjective evaluation of the optimized simulation
model for future work.
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6 Conclusion and Outlook

In this paper, we address the task of structure identification for dynamical systems, where the model evaluation
is subject to constraints and failures. Constraints can be used to limit the computational budget available for
the model and help to mitigate overfitting and over-completeness of models. We propose to search efficiently
over potential model structures with combinatorial Bayesian optimization. We proposed CBO-FRCHEI, an
efficient and competitive combinatorial BO algorithm that handles both constraints and failures and has
relatively little computational overhead.

We encode the choice of the structure of the dynamical system using binary and categorical decision variables.
Our method handles these discrete inputs by designing kernels specific for discrete inputs. We combine
recent ideas in kernel design and show that the proposed kernel outperforms state-of-the-art kernels. Our
method handles the black-box constraint and failure functions by learning them with Bayesian regression
and classification methods and therefore learns to avoid these regions during search. Finally, we focus on
scalability up to a large number of discrete decision variables and make design choices that favour the run
time. Our surrogate model and acquisition function is evaluated in closed-form. This allows our method to
optimize problems with up to 1018 possible combinations.

We provide benchmark problems in the field of symbolic-regression that provide evidence that our method
outperforms other methods for system identification of a variety of nonlinear dynamical systems, such as
disease models, oscillators and chaotic systems. In addition, we provide a complex real-world application
example of knowledge-driven system identification where the choice of templates of a multibody dynamical
system of an electric vehicle are optimized for accuracy, real-time capabilities and numerical robustness.
As the proposed method is not specific to the presented application, it is in principle applicable to other
constrained combinatorial problems. Investigating its potential and performance on problems, such as network
structure optimization (Du et al., 2022), wait-and-judge scenario optimization (Campi & Garatti, 2018),
neural structure optimization with pure categorical variables, etc. are interesting topics for future research.

Promising future research directions are improved surrogate models that capture higher-order interactions of
variables or leverage the structure of dynamical systems. In addition, there is often a lot of additional prior
knowledge about the problem at hand that can be incorporated. For example, promising candidates based on
expert knowledge or qualitative knowledge about the interaction of terms which can be modeled as graphs.
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A Appendix

A.1 Constrained Hierarchical Expected Improvement

In this section, we provide the remaining ingredients to derive the closed-form expression for the acquisition
function used: the failure-robust constrained hierarchical expected improvement (FRCHEI) as defined in
equations 18-22.

Let the hierarchical predictive posterior for the objective and for each i-th constraint function at a test
point x′ be defined as f̃(x′) = f(x′) | x′, y, X ∼ T (ν̄f , µ̄f , σ̄2

f ) and g̃i(x′) = gi(x′) | x′, y, X ∼ T (ν̄gi , µ̄gi , σ̄2
gi

)
respectively. The definition of the constrained hierarchical improvement function is inspired by Gardner et al.
(2014) and is defined as

CHI(x′) = ∆(x′) max{0, y+ − f̃(x′)} , (29)

where y+ is the lowest feasible objective function observed so far and ∆(x′) ∼ Bernoulli(γ(x′)) ∈ {0, 1} is
the feasibility indicator function with parameter

Pfeas(x′) := γ(x′) (30)
= E [∆(x′)] (31)
= p(g̃1(x′) ≤ 0, . . . , g̃m(x′) ≤ 0) (32)

=
m∏

i=1
p(g̃i(x′) ≤ 0) (33)

=
m∏

i=1

∫ 0

−∞
p(gi(x′) | x′, y, X) dgi(x′) (34)
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=
m∏

i=1
ΦT (0; ν̄gi

, µgi
, σ2

gi
) . (35)

Note that from Equation 32 to Equation 33 we assumed the simplest case, where are constraints are
conditionally independent given x′. In addition, Equation 34 is a simple product of univariate cumulative
density of the t-distribution ΦT evaluated at 0, which can be calculated analytically for any x′.

The constrained hierarchical expected improvement is obtained by taking the expectation of Equation 29:

CHEI(x′) = E [CHI(x′)] (36)
= E [∆(x′)] E

[
max{0, y+ − f̃(x′)

]
(37)

= Pfeas(x′) HEI(x′) , (38)

where Pfeas(x′) is defined as in Equation 30 and HEI can be obtained with the help of the reparameterization
trick (Tracey & Wolpert, 2018) with τ ∼ T (ν̄f , 0, 1) and τ+ = (y+ − µ̄y)/σ̄y:

HEI(x′) = Ef(x′)∼p(f(x′)|x′,y,X)
[
max{0, y+ − f(x′)

]
(39)

=
∫ y+

−∞
(y+ − f(x′)) T (f(x′) ; ν̄f , µ̄f , σ̄2

f ) df(x′) (40)

=
∫ τ+

−∞
(y+ − µ̄f − σ̄f τ) T (τ ; ν̄f , µ̄f , σ̄2

f ) dτ (41)

= (y+ − µ̄f ) ΦT

(
τ+; µ̄f , 0, 1

)
− σ̄f

∫ τ+

−∞
τ T (τ ; ν̄f , µ̄f , σ̄2

f ) dτ (42)

= σ̄f τ+ ΦT

(
τ+; ν̄f , 0, 1

)
+ σ̄f

(
ν̄f

ν̄f − 1

) (
1 + τ+2

ν̄f

)
T (τ+ ; ν̄f , 0, 1) (43)

= σ̄f

[
τ+ ΦT

(
τ+; ν̄f , 0, 1

)
+ ν̄f + τ+2

ν̄f − 1 T (τ+ ; ν̄f , 0, 1)
]

. (44)

The other minor modifications to turn CHEI into FRCHEI are defined in Section 4.3.

A.2 Implementation Details

We implement Gaussian and student-t process regression, Gaussian process classification, acquisition function
and optimization from scratch using PyTorch (Paszke et al., 2017) and Pyro (Bingham et al., 2019). All
the simulations for the symbolic-regression problems have been performed with a fixed-step RK45 solver,
where the 5th stage has been used to detect numerical instabilities, which stops the simulation and reports
the failure to the main program. We provide a self-implementation of this solver that performs simulations
in parallel and is useful to speed up computation when many simulations are to be made with the same
integration time but with different model parameters.

A.3 Experiment Details

In this section, we provide the experiment details required to reproduce each benchmark problem in Section 5.1.
Details are provided in Table 2. The parameters θode refer to the differential equations for each benchmark
problem, as depicted in Figure 5. The available noisy measurements for parameter estimation and model
evaluation consists of a single simulation run, starting at an initial state x(t0 = 0), simulated with a fixed
simulation time step size ∆t up to the stop time tf . The state measurements are corrupted equally for each
dimension with a zero-mean Gaussian noise with standard deviation σsn. All measurements have been filtered
using the Total Variation Regularized Denoising technique (Chartrand, 2011; Van Breugel et al., 2022) with
the same regularization parameter Tγ = 0.01 and number of iterations Ti = 10.

The benchmark experiments ran on Intel Xeon Platinum 8160 Processors “SkyLake” at 2.1 GHz, on 4 isolated
physical cores. The optimization and the simulations of the multibody dynamical problem were performed on
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Table 2: Benchmark problem parameters

Dynamical System θode x(t0) ∆t tf σsn

Nonlinear Damped Osc. α=0.1, β=1.75, γ=1/2 [2, 0] 0.01 35 0.1
SEIR µ=1e−5, α=1/5, β=1.75, γ=1/2 [0.9995, 4e−4, 1e−4] 0.1 150 0.01
Cylinder Wake ω=1, µ=0.1, A=− 1, λ=1. [0.001, 0, 0.1] 0.1 100 0.01
Lorenz Oscillator σ=10, ρ=28, β=8./3 [10, 10, 10] 0.01 20 1

a 2x Intel Xeon Gold 6256 3.6Hz computer, running a RedHawk Linux RTOS (by Concurrent Real-Time).
The first 12 cores were dedicated to the optimizer, while the remaining 12 cores of the second CPU socket
were shielded and dedicated to simulations.

A.4 Ablation Studies

In this section, we provide ablation studies that reinforce the design choices made for the proposed algorithm.

Figure 10 shows simulation trajectories for the best feasible and stable models found over the progress of
the optimization for the CBO-FRCHEI method. It can be verified that the CBO-FRCHEI algorithm quickly and
progressively improves the model simulation performance. The model with the optimized model structure
represents the measurements well and shows to be a good simulation model, despite the high noise level
present in the measurements.

Figure 10: Comparison between measurements (orange) depicted without noise and simulated trajectories
(blue) for the best feasible model found in the course of optimization for the Cylinder Wake problem and
CBO-FRCHEI. From the left to the right are depicted the models at iteration 8, 163, 200 and 436, respectively.

In Figure 11, we compare CBO-FRCHEI to CBO-FRCEI and CBO-CHEI, two variants of the proposed method. The
first is similar to CBO-FRCHEI but uses a GP instead of a hierarchical T P prior for the regression surrogates.
The second does not account for failures in the AF. It can be seen that FRCHEI outperforms CHEI for all
benchmarks, which agrees with Chakrabarty et al. (2021) and is an indication that learning failure regions
improves the optimizer. As expected, CBO-FRCHEI has a higher success rate than CBO-CHEI for all benchmark
problems. Evaluating failures is a waste of resources because no value for the cost function is obtained, and
the candidate configuration is never considered the best experiment. In addition, this data point does not
contribute to training the surrogates due to the missing target value. For this reason, the optimizer might get
stuck into failure regions, where the objective function surrogate considers there is a substantial expected
improvement. In Figure 12 it can be visually verified that CHEI has more failure evaluations than random
sampling and all other methods, while FRCHEI has the least failure rate. Clearly, CHEI does not make progress,
over-exploits the input space and falls into many failure regions. FRCHEI provides a good balance between
exploration and exploitation, which is a desired characteristic for Bayesian optimization methods.

It can be further seen in Figure 11 that FRCEI provides similar performance and sometimes slightly outperforms
FRCHEI. The idea behind hierarchical priors is to be able to better describe the model discrepancy towards
outliers while preserving the closed-form solution of the acquisition function. One side effect of this approach
is the inflation of the predictive posterior uncertainty that might lead to over-exploration of the design space,
which is critical for Bayesian optimization in high-dimensional discrete problems. Nevertheless, we still
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employ T P regression to our framework since it is a more robust and flexible probabilistic model. It does not
increase the implementation complexity and computation time, and may work better for other problems.
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Figure 11: Optimization results for different variants of CBO-FRCHEI. CBO-CHEI is the variant that does not
handle failures, and CBO-FRCEI is the variant that implements a GP instead of T P regression.
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Figure 12: Graph for the configurations evaluated during optimization of the Nonlinear Damped Oscillator
experiment for different methods. Each node represents one configuration evaluated. Nodes are connected if
the hamming distance between them is equal to 1, i.e., if they only differ in only one variable. Failures are
displayed as black squares. Color map ranges from white (high objective values) to red (low objective values).
Our method CBO-FRCHEI presents the best optimization results by balancing well between exploration and
exploitation.

Moreover, we investigate the effect of varying the batch size in Figure 13. We choose the batch size equal 2,
since it provides a good trade-off between optimization performance and wall time. Throughout this paper,
all the other experiments with CBO-FRCHEI and its variants have been conducted with batch size equal 2. It
is also important to note that we do not employ more involving batch evaluation strategies, such as Kriging
believer strategy (Ginsbourger et al., 2010), which can potentially increase even more the performance at the
cost of increasing the wall time.
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Finally, in Figure 14, we compare the performance of the proposed method with different kernels. Evidently,
combining the degree 2 polynomial kernel with the discrete diffusion kernel as in Equation 13 provides the
best results. Note that the wall time for the polynomial kernel scales almost linearly with the number of
samples but is expensive due to the number of multiplications that arise due to the large number of features
resulting from the second-order polynomial combination of inputs. The discrete diffusion kernel results in a
lower wall time at low number of evaluations but increases at a higher rate. This is due to the complexity of
calculating pair-wise delta functions between all inputs in the dataset. In terms of computational complexity,
the final performance should be evaluated individually for the problem at hand and depends on the number
of samples and the number of input dimensions.

100 200 300 400 500

−0.9

−0.8

−0.7

−0.6

−0.5

B
es

t
fe

a
si

b
le

o
b

je
ct

iv
e

Nonlinear Damped Oscillator

100 200 300 400 500

−1.5

−1.0

−0.5

0.0
SEIR

100 200 300 400 500

−1.0

−0.5

0.0
Cylinder Wake

100 200 300 400 500
−0.20

−0.15

−0.10

−0.05

0.00
Lorenz Oscillator

100 200 300 400 500

Number of evaluations

10−1

100

101

W
a
ll

ti
m

e
[m

in
]

100 200 300 400 500

Number of evaluations

10−1

100

101

100 200 300 400 500

Number of evaluations

10−1

100

101

100 200 300 400 500

Number of evaluations

10−1

100

101

FRCHEI bs1 FRCHEI bs2 FRCHEI bs4

Figure 13: Optimization results for CBO-FRCHEI method for different batch sizes of 1, 2 and 4.
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Figure 14: Optimization results for CBO-FRCHEI method with different kernel functions: Kpoly is the
polynomial kernel, Kdiff the discrete diffusion kernel and Kpolydiff the combination of the two.
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