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ABSTRACT

Self-play methods have demonstrated remarkable success in enhancing model
capabilities across various domains. In the context of Reinforcement Learning
from Human Feedback (RLHF), self-play not only boosts Large Language Model
(LLM) performance but also overcomes the limitations of traditional Bradley-Terry
(BT) model assumptions by finding the Nash equilibrium (NE) of a preference-
based, two-player constant-sum game. However, existing methods either guarantee
only average-iterate convergence, incurring high storage and inference costs, or
converge to the NE of a regularized game, failing to accurately reflect true human
preferences. In this paper, we introduce Magnetic Preference Optimization (MPO),
a novel approach capable of achieving last-iterate convergence to the NE of the
original game, effectively overcoming the limitations of existing methods. Building
upon Magnetic Mirror Descent (MMD), MPO attains a linear convergence rate,
making it particularly suitable for fine-tuning LLMs. To ensure our algorithm is
both theoretically sound and practically viable, we present a simple yet effective
implementation that adapts the theoretical insights to the RLHF setting. Empirical
results demonstrate that MPO can significantly enhance the performance of LLMs,
highlighting the potential of self-play methods in alignment.

1 INTRODUCTION

Self-play has emerged as an effective method for improving model performance, particularly in
domains that require strategic decision-making and complex problem-solving (Silver et al., 2017;
Vinyals et al., 2019; Perolat et al., 2021). By allowing models to iteratively refine their strategies
through self-competition, self-play enables them to discover optimal policies. In the realm of
Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Peng et al., 2023;
Achiam et al., 2023), self-play not only has proven effective in enabling Large Language Models
(LLMs) to better align with human preferences (Chen et al., 2024; Wu et al., 2024; Zhang et al., 2024),
but also offers unique advantages by addressing the limitations of traditional preference modeling
methods (Munos et al., 2023; Swamy et al., 2024).

Conventional RLHF methods typically rely on the Bradley-Terry (BT) (Bradley & Terry, 1952)
assumption for preference modeling, which presumes transitivity in human preferences—if response
A is preferred over B, and B over C, then A should also be preferred over C. While this may hold
for individuals in specific contexts, generalizing transitive preferences across broader populations
often fails due to the presence of non-transitive preferences (Swamy et al., 2024). This limitation
undermines the ability of existing RLHF methods to capture the complexity of human preferences.
Self-play, however, offers a solution by finding the Nash equilibrium (NE) of a two-player constant-
sum game based on human preferences (Munos et al., 2023; Swamy et al., 2024).

Despite its promise, self-play in the context of LLM alignment presents unique challenges. Most
existing methods, such as Self-Play Preference Optimization (SPO) (Swamy et al., 2024), rely on
Mirror Descent (MD) (Beck & Teboulle, 2003) based Deep RL methods like PPO (Schulman et al.,
2017) and SAC (Haarnoja et al., 2018) to learn the NE of the preference-based game. However,
from a theoretical perspective, MD only guarantees average-iterate convergence to the NE, while
the last-iterate policy tends to oscillate around the NE (Mertikopoulos et al., 2018b;a; Perolat et al.,
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Figure 2: An illustration of MPO and its background. Non-transitive preferences are prevalent across
diverse populations, necessitating a more generalized preference model that frames the alignment
problem as a two-player constant-sum game. Existing methods either converge to the NE of a
regularized game or require maintaining multiple models. In contrast, MPO achieves last-iterate
convergence to the original NE, aligning with diverse human preferences using only a single model.

2021). This limitation implies that a single LLM cannot fully align with human preferences without
maintaining multiple models for joint inference, leading to increased storage and computational costs.
As shown in Figure 1, where the duality gap measures the distance between the current policy and
the NE, classic Deep RL methods exhibit poor last-iterate convergence, even in a simple Kuhn Poker
game. This underscores the importance of achieving last-iterate convergence in RLHF tasks.

Figure 1: Kuhn Poker Experiments.

On the other hand, Nash Learning from Human Feedback
(NLHF) (Munos et al., 2023) also leverages MD but achieves
last-iterate convergence by employing a geometric mixture of
the current policy and a reference poliy, commonly referred to
as a first-order approximation of the reference policy (Munos
et al., 2023). However, this approximation lacks rigorous the-
oretical guarantees and ultimately only converges to the NE of
the KL regularized game, failing to capture true human pref-
erences. In summary, existing methods fail to obtain a single
LLM policy that aligns with human preferences in the orig-
inal game. The reliance on multiple LLMs as proxies leads
to inefficiency and high cost (Swamy et al., 2024; Wu et al.,
2024; Rosset et al., 2024), while various approximation meth-
ods result in misalignment (Munos et al., 2023; Calandriello et al., 2024; Zhang et al., 2024). These
limitations collectively represent the core challenges in preference alignment of LLMs.

In this paper, we introduce the Magnetic Preference Optimization (MPO) framework, which guaran-
tees last-iterate convergence to the NE of the original game. This method offers a lightweight and
efficient solution for aligning diverse human preferences by utilizing only the final trained model,
without the need for storing multiple policies. Specifically, we adapt the insight of Magnetic Mirror
Descent (MMD) (Sokota et al., 2022) to the RLHF context to derive MPO and further established
theoretical guarantees for convergence to the original NE. The key insight lies in the periodically
updated magnetic policy, which effectively guides the policy towards the NE. Our results show that
MPO achieves last-iterate convergence at a significantly faster rate than standard Mirror Descent
(MD), with empirical evaluations demonstrating substantial improvements in LLM performance,
further emphasizing the potential of self-play methods for preference alignment.
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2 PRELIMINARIES

We consider a Large Language Model (LLM) denoted by π P Π and parametrized by θ P Θ.
The model receives a prompt x “ rx1, . . . , xns, and generates a corresponding output sequence
y “ ry1, . . . , yms. The output y is sampled from the conditional probability distribution πp¨ | xq.
In LLMs, xi and yi represent individual tokens from a predetermined vocabulary V . The model
generates tokens autoregressively, producing each token sequentially based on the input and all
previously generated tokens. This autoregressive property allows us to decompose the conditional
probability as

πpy | xq “

T
ź

t“1

πpyt | x,yătq,

where yăt “ ry1, . . . , yt´1s for t ą 1, and yă1 is an empty sequence.

2.1 TOKEN-LEVEL MDP FORMULATION FOR LLMS

We frame the RLHF problem as a Markov decision process (MDP) (Puterman, 2014), defined by
the tuple M “ pS,A,P,R, ρ, T q. In this formulation, S represents the state space, where each
state st “ rx,yăts includes the prompt x and all response tokens produced up to that point. The
action space A consists of possible tokens, where each action at “ yt represents a token from the
vocabulary V . The policy π : S Ñ ∆pAq maps states to distributions over actions. The transition
kernel P : S ˆ A Ñ ∆pSq describes the dynamics of the environment. In the context of LLMs,
this transition is deterministic: given st “ rx,yăts and at “ yt, the environment will transition
to st`1 “ rx,yăt`1s with probability 1. The token-wise reward function R : S ˆ A Ñ R is
defined as Rt :“ Rpst, atq “ Rprx,yăts, ytq. The accumulative reward for the generated text is
řT
t“1 γ

t´1Rprx,yăts, ytq. The initial state distribution ρ is determined by the distribution of input
prompts, while T denotes the maximal interaction steps, characterizing the length limit for outputs.

2.2 TWO-PLAYER CONSTANT-SUM GAMES AND MIRROR DESCENT

We consider a constant-sum game where the sum of payoffs for any outcome remains constant. Let
I “ t1, 2u represent a set of two players, and Πi Ă Ri denote the compact, convex strategy space
for player i. The joint strategy space Π is defined as ˆiPIΠi. The strategy of player i is denoted by
πi P Πi, while the strategies of all other players, denoted by π´i, lie in Π´i :“ ˆjPIztiuΠj , where
´i refers to all players except player i. Each player i has a continuous payoff function fi : Π Ñ R.
In a two-player constant-sum normal-form game, both players simultaneously choose their strategies,
π1 P Π1 and π2 P Π2, respectively. The payoff for player i is then given by fipπi, π´iq, where the
sum of the payoffs satisfies

ř

iPI fipπi, π´iq “ c, with c P R being a constant.

To determine the optimal strategies for both players, it is essential to find the Nash equilibrium (NE)
of the game. An NE is a strategy profile pπ˚

1 , π
˚
2 q such that neither player can improve their payoff

by unilaterally deviating from it:

fpπ1, π
˚
2 q ď fpπ˚

1 , π
˚
2 q ď fpπ˚

1 , π2q, @pπ1, π2q P Π.

In a two-player constant-sum game, the NE strategies for both players are unique and identical, i.e.,
π˚
1 “ π˚

2 “ π˚ (Zhang et al., 2024; Ye et al., 2024; Swamy et al., 2024). Given the monotonicity of
the game (i.e., f is convex-concave), it is well known that finding the NE is equivalent to solving the
associated Variational Inequality (VI) problem (Mertikopoulos & Zhou, 2019; Sokota et al., 2022).
Formally, let F be the monotone operator defined as F pπq “ p∇π1

fpπ1, π2q,´∇π2
fpπ1, π2qqT .

The NE π˚ is a solution to the VI problem VIpΠ, F q, which requires finding π˚ P Π such that:

xF pπ˚q, π ´ π˚y ě 0, @π P Π.

To measure the distance from a given strategy profile π to the NE, we define the duality gap (Wei
et al., 2020; Abe et al., 2024) as

ϵpπq :“ max
π1PΠ

ÿ

iPI
x∇πi

fipπi, π´iq, π
1
i ´ πiy.
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Mirror Descent (MD) (Beck & Teboulle, 2003; Beck, 2017) is a first-order optimization algorithm
capable of solving such games. The update rule for MD applied to player i is given by:

πk`1 “ argmin
πPΠ

"

xF pπkq, πy `
1

η
Bψpπ, πkq

*

,

where η ą 0 is the learning rate, and Bψpπ, π1q “ ψpπq ´ψpπ1q ´ x∇ψpπ1q, π´π1y is the Bregman
divergence associated with a strongly convex function ψ. In a two-player constant-sum game, if both
players follow the MD update rule, the algorithm achieves average-iterate convergence to the Nash
equilibrium (NE). Formally, average-iterate convergence is defined as follows:
Definition 2.1 (Average-Iterate Convergence). Given a non-empty set of equilibria Π˚ Ă Π, a
sequence tπkukě1 is said to exhibit average-iterate convergence if π̄k converges to some π˚ P Π˚ as
K Ñ 8, where π̄k “ 1

K

řK
k“1 π

k.

2.3 RLHF WITH BRADLEY-TERRY MODEL

In the standard RLHF pipeline, where the true reward function r is unknown, a reward model rϕ
parameterized by ϕ is trained using a dataset D “ px,yw,ylq, where yw represents the preferred
response over yl. The distribution of the preference dataset is assumed to follow the Bradley-Terry
(BT) model (Bradley & Terry, 1952; Christiano et al., 2017)

Pϕpyw ą yl|xq “
expprϕpx,ywqq

expprϕpx,ywqq ` expprϕpx,ylqq
“ σprϕpx,ywq ´ rϕpx,ylqq, (1)

where σ “ 1{p1 ` expp´xqq is the sigmoid function. Based on the dataset D, the reward model is
trained by minimizing the negative log-likelihood of (1)

Lprϕq “ ´Epx,yw,ylq„Drlog σprϕpx,ywq ´ rϕpx,ylqqs.

Given the trained reward model rϕ, online RL algorithms, typically PPO (Schulman et al., 2017) are
leveraged to optimized the following objective

max
π

Ex„D,y„πp¨|xqrrϕpx,yqs ´ αDKLrπp¨ | xq}πrefp¨ | xqs, (2)

where α ą 0 controls the strength of KL penalty. The KL-regularized objective is widely adopted
to prevent from deviating too much from the reference policy (Ziegler et al., 1909; Liu et al., 2020;
Ouyang et al., 2022; Zheng et al., 2023).

2.4 RLHF WITH GENERAL PREFERENCE

Although the BT model has been widely adopted in RLHF for modeling human preferences, it has
many limitations, including independence of comparisons, linearity of preferences, transitivity and so
on (Shah et al., 2016; Lanctot et al., 2023). Recent works (Munos et al., 2023; Swamy et al., 2024)
propose modeling the RLHF problem as a symmetric two-player constant-sum game. This approach
introduces a preference model Ppy1 ą y2 | xq, which defines the preference between two policies as

Ppπ1 ą π2q “ Ex„D,y1„π1,y2„π2rPpy1 ą y2 | xqs.

Typically, leveraging the capability of LLMs as next-token predictors for preference modeling (Dong
et al., 2024; Munos et al., 2023; Jiang et al., 2023). The preference model can be trained via a cross
entropy loss

LpPq “ ´Epx,y1,y2q„DrlogPpy1 ą y2 | xqs,

where D is the dataset of annotated preference pairs. Unlike the BT model, the preference model
does not assume a global intrinsic quality score for each response, thereby enabling the modeling of
intransitive preferences.

Given the preference model, the NE of this game is defined as

π˚ “ argmax
π1

min
π2

Ppπ1 ą π2q. (3)

Intuitively, this NE represents a policy that minimizes the worst-case scenario of dissatisfaction and
satisfies a variety of desirable consistency properties in social choice theory (Swamy et al., 2024).
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3 MAGNETIC PREFERENCE OPTIMIZATION

In this section, we introduce the Magnetic Preference Optimization (MPO) algorithm based on
Magnetic Mirror Descent (MMD) (Sokota et al., 2022), which enjoys a theoretical guarantee for
last-iterate convergence to the Nash equilibrium (NE) of the game.

3.1 MAGNETIC MIRROR DESCENT

While the game defined in (3) can be solved when both players employ Mirror Descent (MD) (Swamy
et al., 2024), only the average-sequence tπ̄kukě1 converges to the NE, where π̄k “ 1

K

řK
k“1 π

k.
The actual sequence tπkukě1, as is shown in Figure 3, does not converge and cycles around the
NE (Mertikopoulos et al., 2018b;a; Perolat et al., 2021).

Figure 3: MD and MMD.

In the context of LLMs, this limitation poses significant practical
challenges. Average-iterate convergence necessitates the storage of
historical policies, leading to prohibitively high storage and inference
costs. This limitation raises a key question: can we devise an algorithm
that achieves last-iterate convergence, thereby circumventing the need
for storing and averaging over historical policies?

One solution to this problem is Magnetic Mirror Descent
(MMD) (Sokota et al., 2022). To better understand MMD, we first
define last-iterate convergence.
Definition 3.1 (Last-Iterate Convergence). Consider nonempty set
of equilibria Π˚ Ă Π, we say that a sequence tπkukě1 exhibits last-
iterate convergence if πk converges to π˚ P Π˚ as k Ñ 8.

Compared to MD, MMD introduces an additional magnetic term. Formally, the MMD update rule
can be expressed as

πk`1 P argmin
πPΠ

txF pπkq, πy ` αBψpπ;πrefq `
1

η
Bψpπ;πkqu, (4)

where πref is the magnet, which means πk`1 is attracted to either minπPΠ ψpπq or πref, α is the
regularization temperature, η is the learning rate. In contrast to MD, MMD solves the regularized
game

min
π1PΠ1

max
π2PΠ2

αgpπ1q ` fpπ1, π2q ´ αgpπ2q, (5)

where f and g are both convex functions and g can be taken either ψ or Bψp¨;πrefq for some πref .
Let π˚

r be the solution of (5). This problem corresponds to the following VI problem VIpΠ, F `∇gq

xF pπ˚
r q ` ∇gpπ˚

r q, π ´ π˚
r y ě 0, @π P Π.

The key advantage of MMD lies in its ability to achieve linear last-iterate convergence to the NE of
the regularized game. This property is formally stated in the following theorem Sokota et al. (2022):
Theorem 3.2 (Adapted from Theorem 3.4 in (Sokota et al., 2022)). Consider the MMD update rule
in (4). Assume πk`1 P int domψ and Π is bounded, F is monotone and L-smooth with respect
to } ¨ }, g is 1-strongly convex relative to ψ over Π with g differentiable over int domψ. Then the
sequence tπkukě1 generated by MMD exhibits linear last-iterate convergence to the solution π˚

r if
η ď α

L2 . Specifically,

Bψpπ˚
r ;π

k`1q ď Bψpπ˚
r ;π

1q

ˆ

1

1 ` ηα

˙k

,

where α ą 0 is the regularization temperature and η ą 0 is the learning rate.

Theorem 3.2 demonstrates that when both players follow the MMD update rule in (4), their policies
converge to the NE π˚

r of the regularized game with a last-iterate convergence rate of Opp1{p1 `

ηαqqkq. This property is particularly valuable in the context of LLMs, as it eliminates the need for
storing and averaging over historical policies, and achieves much faster convergence rate than vanilla
MD, which converges at Op1{

?
kq (Beck, 2017). This substantially reducing computational and

storage requirements.
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3.2 CONVERGENCE TO THE NASH EQUILIBRIUM OF THE ORIGINAL GAME

While Theorem 3.2 establishes the last-iterate convergence property of MMD, it only converges to
the NE of the regularized game, not the original one. As is illustrated in Figure 3, increasing the
regularization strength accelerates MMD convergence, but simultaneously causes the learned NE to
deviate further from the NE of the original game. This deviation potentially leads to a equilibrium
that fails to accurately reflect the true human preferences. Consequently, we face a crucial challenge:
how can we achieve last-iterate convergence to the NE of the original game defined in (3)?

Formally, we define the n-th regularized game as

Jnpπ1, π2q “ min
π1PΠ1

max
π2PΠ2

Ppπ1 ą π2q ` αDKLpπ1}π˚,n´1
r q ´ αDKLpπ2}π˚,n´1

r q, (6)

where π˚,n´1
r is the NE of the pn´ 1q-th regularized game. Intuitively, as the number of iterations

increases, we expect the sequence of regularized NEs, tπ˚,n
r uně1, to converge to the original NE π˚.

This intuition is formalized in the following theorem.
Lemma 3.3. Let tπ˚,n

r uně1 be the sequence of NEs of the regularized games generated by iteratively
solving (6), where π˚,1

r is an arbitrary initial reference policy in the interior of Π. For any n ě 1, if
π˚,n
r P Π R Π˚, we have

min
π˚PΠ˚

DKLpπ˚}π˚,n`1
r q ă min

π˚PΠ˚
DKLpπ˚}π˚,n

r q.

Otherwise, if π˚,n
r P Π˚, then π˚,n`1

r “ π˚,n
r P Π˚.

Theorem 3.4. If Lemma 3.3 holds, the sequence tπ˚,n
r uně1 converges to the NE π˚ P Π˚ of the

original game defined in (3) as n Ñ 8.

Theorem 3.4 suggests a two-stage convergence process for MMD to reach the NE of the original game.
First, as established in Theorem 3.2, MMD achieves linear last-iterate convergence to the NE of each
regularized game. Then, by iteratively updating the magnet policy to the most recent regularized NE,
we guide the sequence of regularized NEs tπ˚,n

r uně1 towards the NE π˚ of the original game (Meng
et al., 2023; Perolat et al., 2021). Importantly, any algorithm that guarantees last-iterate convergence
(e.g., Nash-MD (Munos et al., 2023)) can be employed to solve the regularized games. Additionally,
Theorem F.4 extends the analysis to scenarios where only an approximate solution to π˚,n

r is obtained.

3.3 PRACTICAL IMPLEMENTATION

We now describe how to adapt these theoretical insights into a practical, computationally efficient
algorithm for RLHF with general preference models.

In the context of RLHF, the MMD update rule in (4) can be expressed as:

πk`1 “ argmax
πPΠ

Ex„ρ,y1„π,y2„πref rA
kpx,y1,y2qs ´ αDKLpπ}πrefq ´

1

η
DKLpπ}πkq, (7)

where Ak denotes the advantage function. To compute Ak, we assign the preference Ppy1 ą y2 | xq
between two responses y1 and y2 as the token-level reward Rt. The advantage function is then
calculated via REINFORCE (Williams, 1992), where the baseline can be computed using ReMax (Li
et al., 2023) or Leave-One-Out (Kool et al., 2019; Ahmadian et al., 2024). The KL divergence in (7)
between two LLM policies π1 and π2 is estimated as:

DKLpπ1}π2q “

T
ÿ

t“1

DKLpπ1p¨ | rx,yătsq}π2p¨ | rx,yătsqq.

This estimation, also known as the sequential KL divergence (Zeng et al., 2024), has shown effective
in controlling the KL divergence between two LLM policies. The optimization objective in (7) can
be written in parameter space Θ as:

max
θ

ΨMMD
pθq “ max

θ
Ex„D

”

Ey1„πθ,y2„πθ1

“

Aθk px,y1,y2q
‰

´ αDKLpπθ}πθ1 q ´
1

η
DKLpπθ}πθk q

ı

. (8)

To optimize this objective, we draw inspiration from Mirror Descent Policy Optimization
(MDPO) (Tomar et al., 2020), which provides an RL implementation of MD, making it suitable for

6
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our algorithm. Similar to MDPO, we take multiple gradient steps at each iteration k to ensure trust
region constraints and introduce an annealed stepsize, ηk “ 1 ´ k{Tk, where Tk is the maximum
number of iterations. These considerations culminate in our MPO algorithm, detailed in Algorithm 1.

An important aspect of MMD is that it is equivalent to solving the regularized objective in (5) using
standard MD with a specific stepsize (Sokota et al., 2022), as formalized in the following theorem.

Theorem 3.5. The update rule of MMD in (4) is equivalent to the following rule:

πk`1 P argmin
πPΠ

"

xF pπkq ` α∇πkBψpπk;πrefq, πy `
1

η̄
Bψpπ;πkq

*

,

where the stepsize is defined as η̄ “
η

1`ηα .

This theorem establishes a connection between MMD and MD, showing that MMD can be seen as a
special case of MD with an adjusted gradient and stepsize. This insight allows us to derive a theoreti-
cally equivalent algorithm, which we refer to as MPO-RT (i.e., Reward Transformation (Perolat et al.,
2021; 2022; Meng et al., 2023)). In contrast to MPO, MPO-RT enforces a hard constraint on KL
divergence by directly modifying the reward function. This approach aligns with the idea of standard
RLHF methods (Orabona, 2019; Ouyang et al., 2022; Zheng et al., 2023). Detailed discussion and
additional results for MPO-RT are provided in Appendix A.2.

Although the theoretical framework requires simultaneous updates for both players to converge to the
NE, this presents practical challenges in RLHF due to the added memory costs. By leveraging the
symmetry of the game, we can simplify the approach by requiring only a single player to play against
their own iterates (Swamy et al., 2024; Ye et al., 2024).

Another challenge arises from Theorem 3.4, which implies that convergence to the NE of the original
game requires periodically updating the reference policy with the NE of the previous regularized
game. In practice, however, it can be difficult to determine when the current policy has reached
the NE. Therefore, we update the reference policy every τ iteration, when a predefined number of
iterations Tk is reached (Abe et al., 2024), i.e., πτr “ πτTk . In this case, the convergence rate to the
NE of the regularized game depends on the value of Tk. Formally, we present the following lemma.

Lemma 3.6. Consider the sequence tπτr uτě1 generated by the update rule in (7), where the reference
policy πτr is updated every Tk iterations as πτr “ πτTk . Assume πτr P int domψ, and that P is
monotone and L-smooth with respect to } ¨ }. Then, the sequence tπτr uτě1 satisfies:

DKLpπ˚
r }πτ`1

r q ď DKLpπ˚
r }πτr q

ˆ

1

1 ` ηα

˙Tk

,

where α ą 0 is the regularization temperature, and η ą 0 is the learning rate.

Lemma 3.6 implies that when the update interval Tk is sufficiently large, πτ`1
r closely approximates

π˚
r . Based on this result, we derive the following theorem.

Theorem 3.7. If Lemma 3.6 holds, the sequence tπτr uτě1 converges to π˚ as τ Ñ 8, where π˚ is
the Nash equilibrium of the original game defined in (3).

In practice, as detailed in Algorithm 1, we simultaneously replace both the opponent and the
reference policy with the current policy πk every Tk iterations. This implementation reduces
storage requirements by maintaining only one additional model, while capturing the key insight of
Theorem 3.4 by periodically updating the reference policy.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to validate the effectiveness of our proposed
MPO algorithm. We start by focusing on safety as the primary alignment metric. Since safety is a
single, well-defined dimension, it provides a clear and straightforward way to evaluate the algorithm’s
ability to align with human preferences. We then extend the evaluation to the model’s general
capabilities, offering a more complex, multi-dimensional analysis. This broader evaluation explores
MPO’s scalability and examines how specific abilities improve or decline during self-play, providing
deeper insights into the strengths and limitations of self-play methods in alignment.
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4.1 SAFETY ALIGNMENT EVALUATION

Experiment Setup. We use the open-source LLM Gemma-2B (Team et al., 2024) as our base
model. Following the methodology of (Dai et al., 2023), we first perform supervised fine-tuning
on the Alpaca (Taori et al., 2023) dataset, which we refer to as the Gemma-2B-SFT model. To
train a preference model that avoids overfitting to specific tasks and is suitable for general-purpose
use, we train our preference model on a mixture of widely-used open-source preference datasets1,
resulting in a preference model we term Gemma-2B-PM. The RewardBench (Lambert et al., 2024)
scores for Gemma-2B-PM are presented in the Appendix B. Next, we fine-tune the SFT model using
prompts sourced from the PKU-SafeRLHF (Ji et al., 2024) dataset and the HH-Harmless section of
the Anthropic Helpful and Harmless dialogue (HH) (Bai et al., 2022) dataset. These prompts are
equally divided and used over three rounds of self-play. More experimental details are available in
Appendix B.

Evaluation Metrics. We employ two evaluation metrics to validate the effectiveness of our methods:
(1) Cost Model Based Evaluation. We evaluate the performance our method using the publicly
available cost models released by (Dai et al., 2023). (2) GPT-4o Based Evaluation. We use the same
prompts as (Dai et al., 2023) to ask GPT-4o to compare the quality of responses generated by two
models under identical inputs. We use evaluation questions from the official codebase (Dai et al.,
2023), which includes eight safety-related categories. This approach allows us to analyze the models’
performance across various safety-related dimensions.

Models/Datasets PKU-SafeRLHF Ó HH-Harmless Ó

SFT 6.37 11.33

MPO Iter.1 -3.76 4.93
MPO Iter.2 -8.96 -0.87
MPO Iter.3 -11.38 -3.86
MPO wo. SP -4.18 6.41

Table 1: Cost model evaluation results.

Result Analysis. We present our cost model evaluation results in Table 1, where lower cost means
safer outputs. From the table, we can observe that our method significantly enhances model safety
across three self-play iterations on both datasets. The GPT-4o evaluation results, shown in Table 2,
reveal that our method substantially improves the model’s win rate compared to the SFT model.
This pattern is further illustrated in Figure 4, where our approach consistently boosts the win rate
across eight safety-related categories. These comprehensive results underscore the effectiveness of
our method in aligning LLMs with human preferences. Additionally, we also investigate the case
where self-play is omitted, and the results show significantly poorer performance compared to the
self-play setting. Since both settings are fine-tuned using the same amount of prompts, this reveals
an important insight: while RLHF with BT models runs the risk of overfitting to the reward model,
RLHF with general preference models faces the risk of overfitting to the opponent. In this context,
self-play is not simply a strategy to enhance performance but a necessity to prevent degradation.
Without self-play, the model’s performance is severely compromised, underscoring the critical role of
self-play in maintaining robust performance.

Figure 5: Ablation study.

Ablation Study. To further evaluate the effectiveness of each in-
dividual component of MPO, we conduct an ablation study shown
in Figure 5. First, we compare our baseline method to a scenario
where the reference policy is fixed throughout the entire training
process. Theoretically, this approach is expected to converge only
to the Nash equilibrium (NE) of the regularized game. The results
in the figure confirm this, with the baseline method significantly
outperforming the fixed policy case, indicating the importance of
periodically update the reference policy. We also explored replac-
ing the KL divergence loss with clipping to enforce trust region
constraints. The results show it perform worse than KL loss.

1https://huggingface.co/datasets/weqweasdas/preference_datase_mixture2_and_safe_pku
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GPT-4o-Evaluation

Settings Win Ò Lose Ó Tie Ø

MPO Iter.1 51.8% 21.7% 26.5%
MPO Iter.2 69.9% 10.8 % 19.3%
MPO Iter.3 79.5% 9.6 % 10.9%

MPO wo.SP 30.1% 15.7% 54.2%

Table 2: MPO demonstrates a steady improve-
ment in win rates across three iterations. In
contrast, MPO without self-play underper-
forms, even compared to the first iteration
of self-play.

Figure 4: Performance across each safety-related
category for three self-play iterations of MPO.

4.2 GENERAL CAPABILITY ALIGNMENT AND ANALYSIS

Experiment Setup. We use the open-souce LLM Llama-3-8B(Dubey et al., 2024) as our base
model. Following the recipe of (Dong et al., 2024), we first perform supervised fine-tuning on
the open-source SFT-OpenHermes-2.5-Standard2 dataset. The obtained SFT model serves a good
foundation for our experiments. Next, we train a preference model based on a mixture of open-source
preference dataset3. We then fine-tune the SFT model using 30K prompts selected from a collection
of UltraFeedback (Cui et al., 2023), HelpSteer (Wang et al., 2023), OpenOrca (Lian et al., 2023),
UltraInteract (Yuan et al., 2024), Capybara (Daniele & Suphavadeeprasit, 2023) datasets for four
rounds of self-play. More experimental details are available in Appendix C, and we also conduct
general capability alignment experiments of Gemma-2B-SFT detailed in Appendix D.1.

Figure 6: MixEval Hard score.

Evaluation Metrics. To evaluate the general capabilities of the self-
play fine-tuned models, we employ MixEval (Ni et al., 2024) and
Open LLM Leaderboard v2 (Fourrier et al., 2024) for benchmark
evaluation. MixEval generates scores by combining real-world user
queries with traditional benchmark queries, creating a more compre-
hensive and realistic assessment. It exhibits a strong correlation of
0.93 with human preferences, as demonstrated by its alignment with
the Chatbot Arena Elo (Chiang et al., 2024), a widely recognized
gold standard for user-facing evaluations. Additionally, MixEval-
Hard, a more challenging subset of this benchmark, shows a higher
correlation of 0.96 with Chatbot Arena Elo. Open LLM Leaderboard
v2 is a popular benchmark released by Huggingface for evaluating
the performance of LLMs. By replacing the original evaluation tasks with much more difficult
ones, Open LLM Leaderboard v2 are more challenging and meaningful for evaluating LLMs. These
benchmark evaluation results ensure that our evaluation closely aligns with human judgment.

Model IFEval BBH Math Hard GPQA MUSR MMLU PRO Average
SFT 41.63 48.54 4.87 28.95 42.32 32.64 33.16

MPO Iter.1 41.61 50.72 5.02 30.12 42.25 32.79 33.75
MPO Iter.2 42.36 50.30 4.61 30.29 41.93 32.81 33.72
MPO Iter.3 42.75 51.22 5.51 30.12 40.61 32.81 33.84
MPO Iter.4 42.97 51.38 5.06 30.54 40.87 32.85 33.95

Table 3: Evaluation results on Open LLM Leaderboard v2.

Result Analysis. We present the overall scores from the MixEval-Hard evaluation in Figure 6,
with detailed results shown in Figures 8 and 9 and baseline comparisons included in Appendix D.1.
From Figure 6, we observe consistent improvements in model capabilities across iterations of self-

2https://huggingface.co/datasets/RLHFlow/SFT-OpenHermes-2.5-Standard
3https://huggingface.co/datasets/hendrydong/preference_700K
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play. Notably, Figure 8 shows significant gains in categories like MBPP (programming) and PIQA
(physical commonsense reasoning), reflecting enhanced logical reasoning and problem-solving
skills. CommonsenseQA and BBH also demonstrate steady progress, indicating better performance
in general knowledge and high-level reasoning tasks. However, categories like OpenBookQA
and SIQA (social interaction reasoning) show limited improvement after Iteration 2, while BoolQ
experiences a slight decline. Overall, self-play significantly enhances the model’s logical reasoning
and commonsense understanding, but specific knowledge tasks may require additional fine-tuning.
For Open LLM Leaderboard v2, the evaluation results in Table 3 show consistent improvement
in average scores. Iteration 4 outperforms earlier iterations in several key benchmarks, including
IFEval, BBH, and MMLU PRO, highlighting the model’s enhanced ability to handle reasoning and
general knowledge tasks. However, progress remains slower in the Math Hard, where scores are
consistently lower. This suggests that while MPO iterations are becoming more robust overall, further
optimization is needed for specialized tasks like complex mathematical reasoning.

5 RELATED WORK

Bradley-Terry Model Based RLHF. RLHF has seen significant success in aligning LLMs with
human preferences (Ouyang et al., 2022; Peng et al., 2023; Achiam et al., 2023). Classical RLHF
methods typically scalarize human preferences into rewards (Zheng et al., 2023; Wang et al., 2024;
Dong et al., 2024) and optimize a KL-regularized objective using PPO (Schulman et al., 2017). To
streamline the RLHF process, Direct Preference Optimization (DPO) (Rafailov et al., 2024) directly
learns a policy from preference datasets. Extensions like Online DPO (Dong et al., 2024; Tang et al.,
2024; Chen et al., 2024) enhance DPO’s performance by adopting an iterative learning approach.
However, all these methods are fundamentally based on the Bradley-Terry (BT) model (Bradley &
Terry, 1952), which assumes transitivity in human preferences—a limitation that has been noted in
the literature (Cattelan, 2012; Swamy et al., 2024; Munos et al., 2023). In contrast, we explore a
more general preference model and adopt a game-theoretic approach to better capture the complexity
of human preferences.

RLHF as a Two-Player Constant-Sum Game. To address the limitations of the BT model, recent
research has proposed reformulating the RLHF problem as a two-player constant-sum game (Munos
et al., 2023; Swamy et al., 2024; Chen et al., 2024). In this setup, the goal is to find the Nash
equilibrium (NE), which represents the optimal policy distribution that accounts for diverse and
often conflicting human preferences. Following this framework, Self-play Preference Optimization
(SPO) (Swamy et al., 2024) learns the NE of the original game through MD. This approach only
achieves average-iterate convergence while the last-iterate policy cycles around the NE. In contrast,
our method achieves last-iterate convergence. Nash Learning from Human Feedback (NLHF) (Munos
et al., 2023) learns the NE of the KL-regularized game through Mirror Descent (MD) (Beck &
Teboulle, 2003; Beck, 2017). However, NLHF achieves only sublinear last-iterate convergence,
relying on a geometric mixture reference policy. In contrast, our method achieves linear last-iterate
convergence and ensures convergence to the NE of the original game. Another line of work seeks to
directly learn the NE over a preference dataset, these methods either only guarantees average-iterate
convergence (Wu et al., 2024; Rosset et al., 2024) or only achieves last-iterate convergence of the NE
of the regularized game (Calandriello et al., 2024; Zhang et al., 2024).

6 CONCLUSION

This paper introduced Magnetic Preference Optimization (MPO), a novel framework for aligning
Large Language Models (LLMs) with human preferences through self-play. MPO achieves last-
iterate convergence to the Nash equilibrium (NE) of the original preference game, offering significant
improvements over traditional approaches that rely on average-iterate convergence or regularized
games. Our experiments demonstrate that MPO significantly improves model performance. Overall,
MPO represents a robust and efficient approach to LLM alignment, highlighting the potential of
self-play methods in aligning diverse human preferences.
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A PSEUDOCODE AND IMPLEMENTATION DETAILS

In this section, we present the pseudocode and implementation details for our proposed MPO and
MPO-RT algorithms. Both algorithms take multiple SGD steps to ensure trust region constraints.
The key difference lies in how they handle KL regularization: MPO employs a KL loss to prevent
significant deviation from the reference policy, while MPO-RT modifies the reward directly. The
baseline b can be computed using ReMax (Li et al., 2023), Leave-One-Out (Ahmadian et al., 2024),
or simply set to 1/2 as suggested in (Munos et al., 2023). In our experiments, we adopt ReMax for
both algorithms due to its ability to provide a strong baseline with only one additional sample.

A.1 MPO

The pseudocode of MPO is provided in Algorithm 1.

Algorithm 1 MPO

Input: Initial policy πθ, preference model Pϕ, dataset D of prompts, regularization temperature α,
learning rate η, update interval Tk, max iterations K

Initialize: Reference policy πθ1 Ð πθ, k Ð 0, τ Ð 0
1: for k “ 1, . . . ,K do
2: Sample batch Dn “ txiu

N
i“1 from D

3: for i “ 1, . . . , N do
4: Sample responses y1 „ πθp¨|xiq, y2 „ πθτ p¨|xiq
5: for t “ 1, . . . , T do
6: Compute preference Rt “ Ppy1 ą y2 | xiq

7: Estimate advantage At “
řT
ℓ“t γ

ℓ´tRℓ ´ b
8: end for
9: end for

10: Update policy πθk by perform m SGD steps on (8)
11: θk

p0q
“ θk

12: for j “ 1, . . . ,m´ 1 do
13: θk

pj`1q
Ð θk

pjq
` η∇θΨ

MMDpθ, θkq
ˇ

ˇ

θ“θk
pjq

14: end for
15: θk`1 “ θk

pmq

16: if k mod Tk “ 0 then
17: πθτ Ð πθk , τ “ τ ` 1
18: end if
19: η Ð 1 ´ k

Tk

20: end for
Output: Final policy πθK

A.2 MPO-RT

For MPO-RT, we directly incorporate the KL regularization into the reward function, resulting in a
hard constraint on the policy updates. Specifically, the reward Rt is transformed as follows:

Rt “ Ppy1 ą y2 | xq ´ α plog πpy1 | xq ´ log πrefpy1 | xqq ,

and the optimization objective becomes:

max
θ

ΨMDpθq “ max
θ

Ex„D

”

Ey1„πθ,y2„πθ1

“

Aθkpx,y1,y2q
‰

´
1

η
DKLpπθ}πθkq

ı

. (9)

The key difference between MPO and MPO-RT lies in how they handle the KL regularization. MPO
uses a soft constraint on KL divergence via a KL loss, while MPO-RT applies a hard constraint by
directly modifying the reward function, which aligns well with the standard RLHF methods (Orabona,
2019; Ouyang et al., 2022; Zheng et al., 2023). The choice between these two algorithms depends on
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the specific task requirements. The pseudocode of MPO-RT is provided in Algorithm 2. We also
provide additional results for MPO-RT in D.2

Algorithm 2 MPO-RT

Input: Initial policy πθ, preference model Pϕ, dataset D of prompts, regularization temperature α,
learning rate η, update interval Tk, max iterations K

Initialize: Reference policy πθ1 Ð πθ, k Ð 0, τ Ð 0
1: for k “ 1, . . . ,K do
2: Sample batch Dn “ txiu

N
i“1 from D

3: for i “ 1, . . . , N do
4: Sample responses y1 „ πθp¨|xiq, y2 „ πθτ p¨|xiq
5: for t “ 1, . . . , T do
6: Compute preference Rt “ Ppy1 ą y2 | xiq ´αplog πθpy1 | xiq ´ log πθτ py1 | xiqq

7: Estimate advantage At “
řT
ℓ“t γ

ℓ´tRℓ ´ b
8: end for
9: end for

10: Update policy πθk by perform m SGD steps on (9)
11: θk

p0q
“ θk

12: for j “ 1, . . . ,m´ 1 do
13: θk

pj`1q
Ð θk

pjq
` η∇θΨ

MDpθ, θkq
ˇ

ˇ

θ“θk
pjq

14: end for
15: θk`1 “ θk

pmq

16: if k mod Tk “ 0 then
17: πθτ Ð πθk , τ “ τ ` 1
18: end if
19: η Ð 1 ´ k

Tk

20: end for
Output: Final policy πθK

B DETAILS FOR SAFETY ALIGNMENT EXPERIMENTS

In this section, we provide details of our safety alignment experiments. These experiments are
conducted on an 8×A800-40GB GPU server.

B.1 PREFERENCE MODEL TRAINING DETAILS

We train our preference model based on the official codebase4 of (Dong et al., 2024). The preference
model is initialized with Gemma-2B-It (Team et al., 2024). To train a preference model that avoids
overfitting to specific tasks and is suitable for general-purpose use, we train our preference model
on a open-source preference dataset5, which is a mixture of widely-used preference dataset. The
hyper-parameters used during training are listed in Table 4.

We also evaluate the trained preference model Gemma-2B-PM on RewardBench (Lambert et al.,
2024). The RewardBench scores are presented in Table 8.

Model Chat Chat Hard Safety Reasoning

Gemma-2B-PM 95.0 42.3 81.4 81.2

Table 5: RewardBench scores for Gemma-2B-PM.

4https://github.com/RLHFlow/RLHF-Reward-Modeling
5https://huggingface.co/datasets/weqweasdas/preference_datase_mixture2_and_safe_pku
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Hyper-parameters Gemma-2B-PM Llama-3-8B-PM
num_epochs 1 1
warmup_steps 40 40
sequence_len 3072 3072
gradient_checkpointing false true
gradient_accumulation_steps 16 8
micro_batch_size 1 1
lr_scheduler cosine cosine
learning_rate 1e-5 5e-6
weight_decay 0.0 0.0
max_grad_norm 1.0 1.0
sample_packing true true
pad_to_sequence_len true true
flash_attention true true
optimizer adam_torch_fused adam_torch_fused

Table 4: Hyper-parameters of preference model training.

B.2 SUPERVISED FINE-TUNING DETAILS.

We use Gemma-2B (Team et al., 2024) as pretrained model and perform supervised fine-tuning (SFT)
based on the official codebase of Safe-RLHF6 (Dai et al., 2023). For dataset, we use open-source
Alpaca (Taori et al., 2023) dataset. The hyper-parameters used during SFT training process are
presented in Table 6.

Hyper-parameters Gemma-2B-SFT Llama-3-8B-SFT
epochs 3 1
max_length 512 2048
per_device_train_batch_size 16 8
gradient_checkpointing true true
gradient_accumulation_steps 8 4
micro_batch_size 1 2
lr_scheduler_type cosine cosine
learning_rate 2e-5 2e-5
lr_warmup_ratio 0.03 0.03
weight_decay 0.0 0.0
max_grad_norm 1.0 1.0
flash_attention true true
zero_stage 2 2
offload none none

Table 6: Hyper-parameters of supervised fine-tuning.

B.3 SELF-PLAY TRAINING DETAILS.

We implement our proposed algorithms based on the official Safe-RLHF codebase (Dai et al., 2023)
and fine-tune the SFT model with prompts sourced from the PKU-SafeRLHF dataset (Ji et al., 2024)
and the HH-Harmless subset of the Anthropic Helpful and Harmless dialogue dataset (HH) (Bai et al.,
2022). These prompts are evenly split across three rounds of self-play. The hyper-parameters used
for training on both datasets are detailed in Table 7.

B.4 EVALUATION DETAILS

For the cost model based evaluation, we employ the publicly available beaver-7b-v1.0-cost model7,
released by (Dai et al., 2023). Note that this model is not included in the training process. For GPT-4o

6https://github.com/PKU-Alignment/safe-rlhf
7https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost
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Hyper-parameters PKU-SafeRLHF HH-Harmless Prompt-Collection-v0.1
sp_epochs 3 3 4
max_length 512 1024 1024
α 0.2 0.2 0.3
m 4 4 4
γ 0.95 0.95 1.0
per_device_train_batch_size 4 4 4
gradient_checkpointing true true true
gradient_accumulation_steps 2 2 2
micro_batch_size 1 1 1
lr_scheduler_type cosine cosine cosine
learning_rate 5e-6 5e-6 5e-7
lr_warmup_ratio 0.03 0.03 0.03
weight_decay 0.01 0.01 0.01
max_grad_norm 1.0 1.0 1.0
flash_attention true true true
zero_stage 2 3 2
offload none optimizer none

Table 7: Hyper-parameters of self-play.

based evaluation, we utilize the official evaluation problems8 and prompts in the official codebase
by (Dai et al., 2023). We also provide specific evaluation prompts used for GPT-4o.

You are a helpful, harmless, and precise assistant for checking the quality of the answer.
[Question]
{question}

[The Start of Assistant 1’s Answer]
{answer1}

[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
{answer2}

[The End of Assistant 2’s Answer]

[System]
We would like to request your feedback on the performance of two AI assistants in response
to the user question displayed above.
Please rate the harmlessness, helpfulness, and level of detail of their responses. Please
prioritize the harmlessness. Please focus on whether there is discrimination and prejudice in
the reply, whether it abides by the law, whether it avoids pornography and insults, whether it
avoids porn content, and whether it protects privacy. Each assistant receives an overall score
on a scale of 1 to 10, where a higher score indicates better overall performance.
Please first output a single line containing only two values indicating the scores for Assistant
1 and 2, respectively. The two scores are separated by a space. In the subsequent line, please
provide a comprehensive explanation of your evaluation, avoiding any potential bias and
ensuring that the order in which the responses were presented does not affect your judgment.

8https://github.com/PKU-Alignment/safe-rlhf/blob/main/safe_rlhf/evaluate/gpt4/problem.json
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C DETAILS FOR GENERAL CAPABILITY ALIGNMENT

In this section, we provide details of our general capability alignment experiments. These experiments
are conducted on a 8×A800-80GB GPU server.

C.1 PREFERENCE MODEL TRAINING DETAILS

We initialize our preference model with Llama-3-8B-Instruct9. We use the same codebase as we
train Gemma-2B-PM. To train a good preference model, we use an open-source preference dataset10,
which is a mixture of widely-used preference dataset. The hyper-parameters used during training are
listed in Table 4.

We also evaluate the trained preference model Llama-3-8B-PM on RewardBench. The RewardBench
scores are presented in Table 8. The performance of this preference model is significantly better than
that of Gemma-2B-PM.

Model Chat Chat Hard Safety Reasoning

Llama-3-8B-PM 97.6 66.7 90.4 93.3

Table 8: RewardBench scores for Llama-3-8B-PM.

C.2 SUPERVISED FINE-TUNING DETAILS.

We use Llama-3-8B (Team et al., 2024) as pretrained model and perform supervised fine-tuning (SFT)
based on the official codebase of Safe-RLHF11 (Dai et al., 2023). For dataset, we use open-source
SFT-OpenHermes-2.5-Standard12 dataset. The hyper-parameters used during SFT training process
are presented in Table 6.

C.3 SELF-PLAY TRAINING DETAILS.

We fine-tune the SFT model with 30K prompts selected from open-source prompt-collection-v0.113

dataset. These prompts are evenly split across four rounds of self-play. The hyper-parameters used
for training on the dataset are detailed in Table 7.

D ADDITIONAL RESULTS

In this section, we provide additional results for our proposed algorithms.

D.1 ADDITION RESULTS FOR MPO

To demonstrate the effectiveness of MPO, we perform a comparative analysis with two baseline
methods for fine-tuning LLMs: PPO and Iterative DPO (Dong et al., 2024).

To ensure a fair comparison, we employ the same SFT model and datasets as outlined in Appendix C.
Specifically, the datasets used for training the preference model are also utilized to train the reward
model, referred to as Llama-3-8B-RM. The RewardBench score for Llama-3-8B-RM is provided in
Table 9. This reward model is then used for PPO and Iterative DPO training. For PPO, we conduct
experiments based on the official codebase of Safe RLHF (Dai et al., 2023). We follow the official
default hyper-parameters for PPO, with a few adjustments to align the settings with those of MPO.
Specifically, we set the actor learning rate to 5e-7, the max length to 1024, the batch size to 64, the
ptx coefficient to 0 and the critic learning rate to 9e-6. For Iterative DPO, we use the implementation

9https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
10https://huggingface.co/datasets/hendrydong/preference_700K
11https://github.com/PKU-Alignment/safe-rlhf
12https://huggingface.co/datasets/RLHFlow/SFT-OpenHermes-2.5-Standard
13https://huggingface.co/datasets/OpenRLHF/prompt-collection-v0.1
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provided in OpenRLHF (Hu et al., 2024). The default hyper-parameters are used, with the max length
adjusted to 1024 to match the MPO setup.

Figure 7: Baseline Comparison of MPO, PPO, and Iterative DPO on MixEval-Hard Benchmark

The evaluation results are presented in the Figure 7. From the results, we observe that MPO
significantly outperforms PPO, Iterative DPO (Best-of-8), and Iterative DPO (Best-of-4). Additionally,
Iterative DPO generally performs better than PPO, which can be attributed to the complementary
effects of on-policy sampling and the negative gradient, as detailed in (Tajwar et al., 2024). We also
find that the performance of Iterative DPO largely depends on the Best-of-N sampling strategy, where
a larger N leads to improved results but comes at the cost of increased computational overhead (Sessa
et al., 2024). These evaluation results demonstrate that MPO delivers strong performance compared
to PPO and Iterative DPO.

Model Chat Chat Hard Safety Reasoning

Llama-3-8B-RM 98.9 66.1 88.5 91.7

Table 9: RewardBench scores for Llama-3-8B-RM.

We also provide detailed MixEval evaluation results for MPO in Figure 9. Across the four rounds of
self-play, several benchmarks saw improvements while others experienced declines. Notably, PIQA,
BoolIQ, and OpenBookQA demonstrated consistent gains across iterations, indicating enhanced
reasoning and factual recall abilities. CommonsenseQA and ARC also exhibited stable performance.
In contrast, WinoGrande showed fluctuating performance with a drop in Iter.4, and GPQA demon-
strated volatility with a sharp decrease in Iter.3 followed by partial recovery. This suggests that while
general reasoning abilities improved, there are still challenges in areas requiring specific contextual
understanding or nuanced judgment. This aligns with the results of MixEval Hard.

Additionally, we conduct experiments with Gemma-2B-SFT on general capability using the same
setup, as detailed in Appendix C.3. The MixEval-Hard evaluation results are presented in Figure 11.
From this figure, we can observe that the model’s capability improves consistently over the four
rounds of self-play, aligning with the experimental results of Llama-3. This trend demonstrates the
effectiveness of self-play in enhancing the model’s general capabilities across multiple evaluation
categories. We also provide detailed the detailed evaluation results in Figure 10.

D.2 ADDITIONAL RESULTS FOR MPO-RT

Following the same experimental setup for safety alignment, we train the Gemma-2B-SFT model
over three rounds of self-play. The hyperparameters are aligned with those used in MPO, with the
exception of α, which is set to 0.02 due to the application of KL regularization directly on the reward.
The evaluation results of the cost model are presented in Table 10. From the table, we can observe that
while the model’s performance improves significantly after three rounds of self-play, the magnitude of
improvement is notably smaller than that of MPO, with only a slight advantage over the non-self-play
baseline.

To further understand the performance of MPO-RT, we also conduct experiments with Gemma-2B-
SFT on general capability using the same setup, as detailed in Appendix C.3. The evaluation results
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Figure 8: Detailed MixEval-Hard evaluation results across tasks for four self-play iterations of MPO.

Figure 9: MixEval general ability evalution results.
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Figure 10: MixEval Hard general ability evalution results for MPO with Gemma-2B-SFT.

on MixEval Hard are shown in Figure 11. From these results, we observe that the performance gains
from each round of self-play in MPO-RT are significantly lower than those in MPO, especially in
the final two rounds. This result is consistent with the results from the safety alignment evaluation.
Additionally, we provide detailed MixEval Hard results for each category, presented in Figure 12.
These results indicate that, although theoretically equivalent, directly employ KL regularization on
rewards performs much worse than using a KL loss.

Models/Datasets PKU-SafeRLHF
SFT 6.37
MPO Iter.1 -3.76
MPO Iter.2 -8.96
MPO Iter.3 -11.38
MPO-RT Iter.1 4.36
MPO-RT Iter.2 0.83
MPO-RT Iter.3 -4.81
MPO wo. SP -4.18

Table 10: Cost model evaluation results.
Figure 11: MixEval Hard overall scores
for MPO and MPO-RT.

E PROOFS

E.1 ADDITIONAL LEMMAS

Lemma E.1 (Proposition 1, (Munos et al., 2023)). There exists a unique Nash equilibrium pπ˚
1 , π

˚
2 q

for the game Jpπ1, π2q defined in (2) and π˚
1 “ π˚

2 .
Proof. Since we have that Ppπ1 ą πq “ 1 ´ Ppπ ą π1q. The minimax game can be repressed as a
symmetric two-player game with payoffs of policy π1 and π2 are defined as

Rpπ;π1q “ Ppπ ą π1q ´ αDKLpπ||πrefq,
and

Rpπ1;πq “ Ppπ1 ą πq ´ αDKLpπ1||πrefq.

We first prove the existence the Nash equilibrium. Since the payoff of the game is concave with
respect to π and π1, thus the game processes a Nash equilibrium (Rosen, 1965).
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Figure 12: MixEval Hard general ability evalution results for MPO-RT.

For uniqueness, we need to show that the corresponding variational inequality is strictly mono-
tone (Rosen, 1965). Let π̄ “ rπ, π1s and vpπ̄q “ r∇πRpπ;π1q,∇π1Rpπ1;πqs. For every Nash
equilibrium of the game satisfy

vJpπ̄˚qpπ̄˚ ´ π̄q ď 0, @π̄ P Π.

The variational inequality is strictly monotone if and only if for every π̄1 and π̄2, we have

pvpπ̄1q ´ vpπ̄2qqJpπ̄1 ´ π̄2q ď 0,

with equality only holds at π̄1 “ π̄2 (Rosen, 1965). We can show this inequality holds by expanding
the terms on LHS. For every context x, denote vpπ̄qpxq as the partial derivative for x. We have:

vpπ̄qpxq “ ρpxqrPpy ą π1
| xq ´ α logpπ{πref | xq ´ 1,Ppy ą π|xq ´ α logpπ1

{πref | xq ´ 1s,

Combining this with Eq E.1 and then exploiting the non-negativity of KL-divergence implies:

pvpπ̄1q ´ vpπ̄2qqJpπ̄1 ´ π̄2q “ Ppπ1 ą π1
1q ` Ppπ1

1 ą π1q ` Ppπ2 ą π1
2q ` Ppπ1

2 ą π2q

´ Ppπ2 ą π1
1q ` Ppπ1

1 ą π2q ` Ppπ1 ą π1
2q ` Ppπ1

2 ą π1q

´ αpDKLpπ1|π2q `DKLpπ2|π1q `DKLpπ1
1|π1

2q `DKLpπ1
2|π1

1qq

“ ´αpDKLpπ1|π2q `DKLpπ2|π1q `DKLpπ1
1|π1

2q `DKLpπ1
2|π1

1qq ď 0.

with equality only at π̄1 “ π̄2. This completes the proof.

Lemma E.2. Under the assumptions of Theorem 3.2, we have for all π P Π,

Bψpπ;πk`1q ď Bψpπ;πkq ´Bψpπk`1;πkq ` xηF pπkq ` ηα∇gpπk`1qq, π ´ πk`1y.

Proof. Note that

πk`1 P argmin
πPΠ

ηxF pπkq, πy ` ηαgpπq `Bψpπ;πkq,

we have
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0 ď ηxF pπkq, π ´ πk`1y ` ηα
`

gpπq ´ gpπk`1q
˘

`Bψpπ;πkq ´Bψpπk`1;πkq

“ ηxF pπkq, π ´ πk`1y ` ηα
`

gpπq ´ gpπk`1q
˘

` ψpπq ´ ψpπk`1q ´ x∇ψpπkq, π ´ πk`1y

ď ηxF pπkq, π ´ πk`1y ` ηαx∇gpπk`1q, π ´ πk`1y ` x∇ψpπk`1q ´ ∇ψpπkq, π ´ πk`1y

“ xηF pπkq ` ηα∇gpπk`1q, π ´ πk`1y ` x∇ψpπk`1q ´ ∇ψpπkq, π ´ πk`1y

“ xηF pπkq ` ηα∇gpπk`1q, π ´ πk`1y `Bψpπ;πkq ´Bψpπ;πk`1q ´Bψpπk`1;πkq.

The first inequality relies on the fact that πk`1 achieves the minimum value of the objective function.
The second inequality results from the first-order optimality condition. Finally, the last equality
is derived from either the non-Euclidean prox theorem or the three-point property, as detailed in
Bauschke et al. (2003), Beck (2017), Tseng (2008).

Lemma E.3. Under the assumptions of Theorem 3.2, let π˚
r be the solution to VIpΠ, F ` α∇gq,

then, for @π P Π X int domψ, the following equality holds

xηF pπq ` ηα∇gpπq, π˚
r ´ πy ď ´ηα

`

Bψpπ;π˚
r q `Bψpπ˚

r ;πq
˘

.

Proof. We have
xηF pπq ` ηα∇gpπq, π˚

r ´ πy “ xηF pπq ` ηα∇gpπq ´ ηF pπ˚
r q ´ ηα∇gpπ˚

r q, π˚
r ´ πy

` xηF pπ˚
r q ` ηα∇gpπ˚

r q, π˚
r ´ πy

“ xηF pπq ´ ηF pπ˚
r q, π˚

r ´ πy ` ηαx∇gpπq ´ ∇gpπ˚
r q, π˚

r ´ πy

` xηF pπ˚
r q ` ηα∇gpπ˚

r q, π˚
r ´ πy

ď ηαx∇gpπq ´ ∇gpπ˚
r q, π˚

r ´ πy

ď ´ηαx∇ψpπq ´ ∇ψpπ˚
r q, π ´ π˚

r y

“ ´ηα
`

Bψpπ;π˚
r q `Bψpπ˚

r ;πq
˘

.

The first inequality follows from the monotonicity of the function F and the definition of the solution
π˚
r . The second inequality holds because g is 1-strongly convex relative to ψ, and the final equality is

derived from the same references as in Lemma E.2.

Lemma E.4. Under the assumptions of Theorem 3.2, let π˚
r be the Nash equilibrium of the regularized

game and π˚ be the Nash equilibrium of the original game. Then the following inequality holds:
ÿ

iPI
x∇πi

gipπ
˚
ri, π

˚
´riq, π

˚
ri ´ π˚

i y ď 0.

Proof. Since π˚
r is the Nash equilibrium of the regularized game, from the first-order optimality

condition for π˚
r , we have for all π P Π:

ÿ

iPI
x∇πifipπ

˚
ri, π

˚
´riq ´ α∇πigipπ

˚
ri, π

˚
´riq, πi ´ π˚

riy ď 0.

Taking π as π˚ P Π˚ and rearranging the inequality, we obtain

ÿ

iPI
x∇gipπ˚

ri, π
˚
´riq, π

˚
ri ´ π˚

i y ď
1

α

ÿ

iPI
x∇πifipπ

˚
ri, π

˚
´riq, π

˚
ri ´ π˚

i y

ď
1

α

ÿ

iPI
x∇πi

fipπ
˚
i , π

˚
´iq, π

˚
ri ´ π˚

i y,

where the second inequality holds because the game is monotonous. Since π˚ is the Nash equilibrium
of the original game, the first-order optimality condition implies that for all π P Π,

1

α

ÿ

iPI
x∇πi

fipπ
˚
i , π

˚
´iq, πi ´ π˚

i y ď 0, @π P Π.
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Then,
ÿ

iPI
x∇πigipπ

˚
ri, π

˚
´riq, π

˚
ri ´ π˚

i y ď
1

α

ÿ

iPI
x∇πifipπ

˚
i , π

˚
´riq, π

˚
ri ´ π˚

i y ď 0.

This concludes the proof.

E.2 PROOF OF THEOREM 3.2

Proof.
Bψpπ˚

r ;π
k`1

q ď Bψpπ˚
r ;π

k
q ´ Bψpπk`1;πkq ` xηF pπkq ` ηα∇gpπk`1

q, π˚
r ´ πk`1

y

“ Bψpπ˚
r ;π

k
q ´ Bψpπk`1;πkq ` xηF pπkq ´ ηF pπk`1

q, π˚
r ´ πk`1

y ` xηF pπk`1
q ` ηα∇gpπk`1

q, π˚
r ´ πk`1

y

ď Bψpπ˚
r ;π

k
q ´ Bψpπk`1;πkq ` xηF pπkq ´ ηF pπk`1

q, π˚
r ´ πk`1

y ´ ηα
`

Bψpπk`1;π˚
r q ` Bψpπ˚

r ;π
k`1

q
˘

ď Bψpπ˚
r ;π

k
q ´ Bψpπk`1;πkq ` ηL || πk ´ πk`1

|| || π˚
r ´ πk`1

|| ´ηα
`

Bψpπk`1;π˚
r q ` Bψpπ˚

r ;π
k`1

q
˘

ď Bψpπ˚
r ;π

k
q ´ Bψpπk`1;πkq `

|| πk ´ πk`1
||
2

2
`

η2L2
|| π˚

r ´ πk`1
||
2

2
´ ηα

`

Bψpπk`1;π˚
r q ` Bψpπ˚

r ;π
k`1

q
˘

ď Bψpπ˚
r ;π

k
q ` η2L2Bψpπk`1;π˚

r q ´ ηα
`

Bψpπk`1;π˚
r q ` Bψpπ˚

r ;π
k`1

q
˘

ď Bψpπ˚
r ;π

k
q ´ ηαBψpπ˚

r ;π
k`1

q.

The first inequality follows from Lemma E.2, the second inequality from Lemma E.3, the third
inequality by the Cauchy-Schwarz inequality and the smoothness of F . The fourth inequality is
derived from an elementary inequality, and the last inequality follows from the strong convexity of ψ
and Bψ . Finally, we obtain

Bψpπ˚
r ;π

k`1q ď
1

1 ` ηα
Bψpπ˚

r ;π
kq.

By iteration, we obtain the result in Theorem 3.2.

E.3 PROOF OF LEMMA 3.3

Proof. To prove this lemma, we first show that if π˚,n`1
r ‰ π˚,n

r , for k ě 1, we have

DKLpπ˚}π˚,n`1
r q ă DKLpπ˚}π˚,n

r q.

Consider the KL divergence between consecutive iterates. By definition:

DKLpπ˚,n
r }π˚,n`1

r q “
ÿ

jPJ
π˚,n
rj ln

π˚,n
rj

π˚,n`1
rj

.

For any Nash equilibrium π˚ P Π˚, we can write:
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ÿ

iPI
x∇iDKLpπ˚,n

ri }π˚,n`1
ri q, π˚,n`1

ri ´ π˚
i y “

ÿ

iPI

ÿ

jPJ
pπ˚
ij ´ π˚,n`1

rij q
π˚,n
rij

π˚,n`1
rij

“ I exp
`

ln
`1

I

ÿ

iPI

ÿ

jPJ
π˚
ij

π˚,n
rij

π˚,n`1
rij

˘˘

´ I

ě I exp
`1

I

ÿ

iPI

ÿ

jPJ
π˚
ij ln

π˚,n
rij

π˚,n`1
rij

˘

´ I

“ I exp
`1

I
pDKLpπ˚}π˚,n`1

r q ´DKLpπ˚}π˚,n
r qq

˘

´ I,

where the first equality follows from the gradient of KL divergence, the third inequality follows from
Jensen’s inequality since lnp¨q is concave, and the last equality is by the definition of KL divergence.

Since π˚,n`1
r ‰ π˚,n

r , we can rearrange to get:

DKLpπ˚}π˚,n`1
r q ´DKLpπ˚}π˚,n

r q ă I ln
`

1 `
1

I

ÿ

iPI
x∇iDKLpπ˚,n

ri }π˚,n`1
ri q, π˚,n`1

ri ´ π˚
i y

˘

ď
ÿ

iPI
x∇iDKLpπ˚,n

ri }π˚,n`1
ri q, π˚,n`1

ri ´ π˚
i y,

where the the second inequality uses the fact that ln px` 1q ď x for x ą ´1.

Now, we have that

DKLpπ˚}π˚,n`1
r q ´DKLpπ˚}π˚,n

r q ď
ÿ

iPI
x∇iDKLpπ˚,n

ri }π˚,n`1
ri q, π˚,n`1

ri ´ π˚
i y.

Since π˚ is the Nash equilibrium of the original game, π˚
r is the Nash equilibrium of the regularized

game, and π˚,n`1
r ‰ π˚,n

r , according to Lemma E.4, we have:

DKLpπ˚}π˚,n`1
r q ´DKLpπ˚}π˚,n

r q ď π˚,n
r q ď

ÿ

iPI
x∇iDKLpπ˚,n

ri }π˚,n`1
ri q, π˚,n`1

ri ´ π˚
i y ă 0.

Finally, let π˚ “ argminπ˚PΠ˚ DKLpπ˚}π˚,n
r q. If π˚,n

r P ΠzΠ˚, then:

min
π˚PΠ˚

DKLpπ˚}π˚,n`1
r q “ DKLpπ˚}π˚,n`1

r q ă DKLpπ˚}π˚,n
r q “ min

π˚PΠ˚
DKLpπ˚}π˚,n

r q.

This shows that the sequence of regularized Nash equilibria strictly approaches the of Nash equilib-
rium of the original game, completing the proof.

E.4 PROOF OF THEOREM 3.4

Proof. We will prove that If Lemma 3.3 holds, then the sequence tπ˚,n
r uně1 converges to π˚ P Π˚

as n Ñ 8, where π˚ is the Nash equilibrium of the original game.

Let us begin by noting that since minπ˚PΠ˚ DKLpπ˚}π˚,n
r q is bounded below by 0, and according to

Lemma 3.3, this sequence is strictly decreasing unless π˚,n
r P Π˚, we can conclude that the sequence

converges to some value b ě 0. We will prove by contradiction that b “ 0.

Suppose b ą 0. Let us define:
c “ min

π˚PΠ˚
DKLpπ˚}π˚,1

r q,

Ωb,c “ tπr P Π | b ď min
π˚PΠ˚

DKLpπ˚}πrq ď cu.

Since minπ˚PΠ˚ DKLpπ˚}π˚,n
r q decreases monotonically according to Lemma 3.3, we have π˚,n

r P

Ωb,c for all n ě 1.

First, we prove that Ωb,c is a compact set. Note that minπ˚PΠ˚ DKLpπ˚}¨q is a continuous function
on Π, and rb, cs is a closed set. Therefore, Ωb,c, being the preimage of rb, cs under a continuous
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function, is closed. Furthermore, since Π is bounded by assumption, Ωb,c is also bounded. Thus, Ωb,c
is compact as it is both closed and bounded.

Let F pπrq : Π Ñ Π be the function that maps πr to π˚
r . As proved in Lemma F.7 of Abe et al.

(2024), F is a continuous function in our case. When F is continuous, minπ˚PΠ˚ DKLpπ˚}F pπrqq´

minπ˚PΠ˚ DKLpπ˚}πrq is also continuous.

Since Ωb,c is compact and this difference is continuous, there exists a maximum value:

ν “ max
πrPΩb,c

t min
π˚PΠ˚

DKLpπ˚}F pπrqq ´ min
π˚PΠ˚

DKLpπ˚}πrqu.

From Lemma 3.3, we know that ν ă 0. Therefore:

min
π˚PΠ˚

DKLpπ˚}π˚,N
r q “ min

π˚PΠ˚
DKLpπ˚}π˚,1

r q

`

N
ÿ

n“1

p min
π˚PΠ˚

DKLpπ˚}π˚,n`1
r q ´ min

π˚PΠ˚
DKLpπ˚}π˚,n

r qq

ď c`Nν.

This implies that there exists some N large enough such that c ` Nν ď 0, contradicting our
assumption that b ą 0. Therefore, we must have b “ 0 and this proves that the sequence tπ˚,n

r uně1

converges to π˚ P Π˚, completing our proof.

E.5 PROOF OF THEOREM 3.5

Proof. According to the definition of πk`1, we can directly derive the following equivalence

πk`1 “ argmin
πPΠ

η
`

xF pπkq, πy ` αBψpπ;πrefq
˘

`Bψpπ;πkq

ôπk`1 “ argmin
πPΠ

xηF pπkq ´ ηα∇ψpπrefq ´ ∇ψpπkq, πy ` p1 ` ηαqψpπq

ôπk`1 “ argmin
πPΠ

x
ηF pπkq ´ ηα∇ψpπrefq ` ∇ψpπkq

1 ` ηα
, πy ` ψpπq

ôπk`1 “ argmin
πPΠ

x
ηF pπkq ´ ηα∇ψpπrefq ` ηα∇ψpπkq

1 ` ηα
´ ∇ψpπkq, πy ` ψpπq

ôπk`1 “ argmin
πPΠ

xη̄
`

F pπkq ` α∇ψpπkq ´ α∇ψpπrefq
˘

´ ∇ψpπkq, πy ` ψpπq

ôπk`1 “ argmin
πPΠ

xη̄
`

F pπkq ` α∇πkBψpπk;πrefq
˘

´ ∇ψpπkq, πy ` ψpπq

ôπk`1 “ argmin
πPΠ

η̄xF pπkq ` α∇πkBψpπk;πrefq, πy `Bψpπ;πkq.

This completes the proof.

E.6 PROOF OF LEMMA 3.6

Proof. Following the proof of Theorem 3.2, we have
DKLpπ˚

r }πk`1
r q ď DKLpπ˚

r }πkr q ´ ηαDKLpπ˚
r }πk`1

r q,

for any k P tτTk, τTk ` 1, τTk ` 2, . . . , pk ` 1qTk ´ 1u,

DKLpπ˚
r }πk`1

r q ď DKLpπ˚
r }πτTk

r qp
1

1 ` ηα
qk´τTk`1.

Taking k “ pτ ` 1qTk ´ 1, we have

DKLpπ˚
r }πpτ`1qTk

r q ď DKLpπ˚
r }πτTk

r qp
1

1 ` ηα
qTk .

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Since πτr “ πτTk , we complete our proof.

E.7 PROOF OF THEOREM 3.7

Proof. From Lemma 3.6, we have when Tk Ñ 8, DKLpπ˚
r }πτ`1

r q ď 0. Since DKLpπ˚
r }πτ`1

r q is
never negative, we have DKLpπ˚

r }πτ`1
r q “ 0. Then, for any k P tτTk, τTk ` 1, τTk ` 2, . . . , pk `

1qTk ´ 1u, we obtain our results follows the proof of Theorem 3.4

F DUALITY GAP AND CONVERGENCE RATE

In this section, we provide an addition theorem for duality gap and show that Theorem 3.2 can be
leveraged to guarantee linear convergence of the gap.

Theorem F.1 ((Sokota et al., 2022) Proposition D.8). Assume that g is twice continuously differen-
tiable over int domψ, Π is bounded, and the assumptions in Theorem 3.2 hold. Let G “ F ` α∇g.
For all k ě 1, the duality gap ϵ is bounded as

ϵpπk`1q “ sup
πPΠ

xGpπkq, πk ´ πy ď O
`

p
1

1 ` ηα
q

k
2

˘

.

Proof. From Theorem 3.2, we have that tπkukě1 Y tπ˚u is eventually within a closed ball centered
at π˚. So there exists k1 and a closed ball B such thattπkukěk1 Y tz˚u Ď int domψ. Since B is
compact and ∇2g is continuous over B, we have that ∇2gpzq is bounded on B. Therefore, there
exists LB such that }∇gpπ1q ´ ∇gpπq}˚ ď LB}π ´ π1} for any π, π1 P B. We have that for any
π, π1 P B, }Gpπq ´Gpπ1q}˚ ď L̃}π ´ π1} for L̃ “ L` LB .

For any π P Π, we have

xGpπ˚q, πk`1 ´ πy “ xGpπ˚q, πk`1 ´ πy ` xGpπk`1q ´Gpπ˚q, πk`1 ´ πy

“ xGpπ˚q, π˚ ´ πy ` xGpπ˚q, πk`1 ´ π˚y ` xGpπk`1q ´Gpπ˚q, πk`1 ´ πy

ď }Gpπ˚q}˚}πk`1 ´ π˚} ` L̃}πk`1 ´ π˚}}πk`1 ´ π}

ď

´

}Gpπ˚q}˚ ` L̃D
¯

}πk`1 ´ π˚}

ď C
b

Bψpπ˚;πk`1q

ď C

ˆ
c

1

1 ` ηα

˙k
b

Bψpπ˚;π1q,

where D is such that maxπ,π1P⋄ }π ´ π1} ď D and C “ }Gpπ˚q}˚ ` L̃D.

The first inequality is by the generalized Cauchy-Schwarz inequality and the Lipschitz property of G.
The second inequality is by boundness of Π. The third inequality is by the fact that Bψpπ˚;πkq ě
1
2}π˚ ´ πk}2.

Lemma F.2. Let tπ˚,n
r uně1 be the sequence of NEs of the regularized games, and πτr be the

approximation of π˚,n
r solved via the update rule of (4). Under the assumptions of Theorem 3.2, for

any n ě 1, if π˚,n
r P Π R Π˚, we have the following inequality:

Bψpπ˚;π˚,n
r q ď Bψpπ˚;πτr q ´Bψpπ˚,n

r ;πτr q.

Proof. By the definition of Bregman divergence, we have:

Bψpπ˚;π˚,n
r q ´Bψpπ˚;πτr q `Bψpπ˚,n

r ;πτr q “
ÿ

iPI
x∇ψpπ˚,n

ri q ´ ∇ψpπτriq, π
˚,n
ri ´ π˚

i y.
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Since π˚,n
r is the Nash equilibrium of the n-th regularized game, by the first-order optimality

condition, we have:
ÿ

iPI
x∇πifipπ

˚,n
ri q ´ α∇πiBψpπ˚,n

ri ;πτriq, πi ´ π˚,n
ri y ď 0, @π P Π.

Taking π “ π˚, we obtain:

ÿ

iPI
x∇πi

Bψpπ˚,n
ri ;πτriq, π

˚,n
ri ´ π˚

i y ď
1

α

ÿ

iPI
x∇πi

fipπ
˚,n
ri q, π˚,n

ri ´ π˚
i y

ď
1

α

ÿ

iPI
x∇πi

fipπ
˚
i q, π˚,n

ri ´ π˚
i y,

where the second inequality holds because the game is monotonous. Since π˚ is the Nash equilibrium
of the original game, the first-order optimality condition implies that for all π P Π,

1

α

ÿ

iPI
x∇πifipπ

˚
i , π

˚
´iq, πi ´ π˚

i y ď 0, @π P Π.

Then, taking π “ π˚,n
r , we have:

ÿ

iPI
x∇πi

Bψpπ˚,n
ri ;πτriq, π

˚,n
ri ´ π˚

i y “
ÿ

iPI
x∇ψpπ˚,n

ri q ´ ∇ψpπτriq, π
˚,n
ri ´ π˚

i y

ď
1

α

ÿ

iPI
x∇πi

fipπ
˚
i q, π˚,n

ri ´ π˚
i y ď 0.

Thus, we have:

Bψpπ˚;π˚,n
r q ´Bψpπ˚;πτr q `Bψpπ˚,n

r ;πτr q “
ÿ

iPI
x∇ψpπ˚,n

ri q ´ ∇ψpπτriq, π
˚,n
ri ´ π˚

i y ď 0.

This completes the proof.

Lemma F.3. Under the assumptions of Lemma F.2, the duality gap for πτr is bounded as:

ϵpπτr q ď ϵpπ˚,n
r q `Op}π˚,n

r ´ πτr }q.

Proof. By the definition of duality gap, we have

ϵpπτr q “ max
πiPΠ

ÿ

iPI
x∇πi

fipπ
τ
ri, π

τ
´riq, π

τ
i ´ πriy

“ max
πiPΠ

ÿ

iPI
x∇πi

fipπ
˚,n
ri , π

˚,n
´riq, π

˚,n
ri ´ πiy ` max

πiPΠ

ÿ

iPI
x∇πi

fipπ
τ
ri, π

τ
´riq, π

τ
ri ´ πiy

´ max
πiPΠ

ÿ

iPI
x∇πifipπ

˚,n
ri , π

˚,n
´riq, π

˚,n
ri ´ πiy

ď ϵpπ˚,n
r q ` max

πiPΠ

ÿ

iPI
x∇πi

fipπ
˚,n
ri , π

˚,n
´riq ´ ∇πi

fipπ
τ
ri, π

τ
´riq, πiy

ď ϵpπ˚,n
r q ` L

ÿ

iPI
}π˚,n
ri ´ πτri} “ ϵpπ˚,n

r q ` L}π˚,n
r ´ πτr },

where the second inequlity follows from the Lipschitz continuity of the gradient with constant L.
This completes the proof.
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Theorem F.4. Under the assumptions of Lemma F.2, suppose ψ is Lψ-smooth. Then, for any N ě 1,
@1 ď n ď N , we have

ϵpπτ`1
r q ď Op

1
?
N

q.

Proof. From Lemma F.3, we have

ϵpπτ`1
r q “ ϵpπ˚,n

r q ` L0}π˚,n
r ´ πτ`1

r },

where L0 is a game-dependant constant.

Following the bounding technique for the gap function with tangent residuals (Cai et al., 2022) and
the first-order optimality condition for π˚,n

r , we have

rtanpπ˚,n
r q ď L1}π˚,n

r ´ πτr },

where rtanpπτ`1
r q denotes the tangent residual (Cai et al., 2022) of π˚,n

r and L1 is a constant that
depends on the original game. From Lemma 2 of (Cai et al., 2022), for @π P Π, we obtain

ϵpπ˚,n
r q ď L2r

tanpπ˚,n
r q,

where L2 is a game-dependent constant. According to Theorem 3.2, let ψ “ 1
2} ¨ }2, we have

ϵpπτ`1
r q ď L1L2}π˚,n

r ´ πτr } ` L0}π˚,n
r ´ πτ`1

r }.

ď L1L2}π˚,n
r ´ πτr } ` L0

}π˚,n
r ´ πτr }

N c
,

where c ą 0 is an arbitrary constant. According to Lemma F.2, we have

Bψpπ˚;π˚,n
r q ď Bψpπ˚;πτr q ´Bψpπ˚,n

r ;πτr q

ô 0 ď Bψpπ˚;πτr q ´Bψpπ˚,n
r ;πτr q ´Bψpπ˚;π˚,n

r q

ô 0 ď Bψpπ˚;πτr q ´Bψpπ˚,n
r ;πτr q ´Bψpπ˚;πτ`1

r q ´Bψpπτ`1
r ;π˚,n

r q

` x∇ψpπ˚,n
r q ´ ∇ψpπτ`1

r q, π˚ ´ πτ`1
r y,

where the last line comes from the three-point property of Bregman divergence. For x∇ψpπ˚,n
r q ´

∇ψpπτ`1
r q, π˚ ´ πτ`1

r y, we have

x∇ψpπ˚,n
r q ´ ∇ψpπτ`1

r q, π˚ ´ πτ`1
r y ď }∇ψpπ˚,n

r q ´ ∇ψpπτ`1
r q}}π˚ ´ πτ`1

r }

ď
N c}∇ψpπ˚,n

r q ´ ∇ψpπτ`1
r q}2

2
`

}π˚ ´ πτ`1
r }2

2N c

ď
N c}π˚,n

r ´ πτ`1
r }2

2
`

}π˚ ´ πτ`1
r }2

2N c
,

where the the first inequality follows from the Cauchy-Schwarz inequality, the second inequality
follows from ab ď ρa2{2 ` b2{2ρ,@ρ ą 0, and the third inequality follows the smoothness of ψp¨q.
Thus, we have

0 ď Bψpπ˚;πτr q ´Bψpπ˚,n
r ;πτr q ´Bψpπ˚;πτ`1

r q ´Bψpπτ`1
r ;π˚,n

r q

` x∇ψpπ˚,n
r q ´ ∇ψpπτ`1

r q, π˚ ´ πτ`1
r y

ď Bψpπ˚;πτr q ´Bψpπ˚,n
r ;πτr q ´Bψpπ˚;πτ`1

r q ´Bψpπτ`1
r ;π˚,n

r q

`
N c}π˚,n

r ´ πτ`1
r }2

2
`

}π˚ ´ πτ`1
r }2

2N c
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Further, we obtain
Bψpπ˚,n

r ;πτr q ď Bψpπ˚;πτr q ´Bψpπ˚;πτ`1
r q ´Bψpπτ`1

r ;π˚,n
r q

`
}π˚,n
r ´ πτr }2

2
`

}π˚ ´ πτ`1
r }2

2N c
.

ď Bψpπ˚;πτr q ´Bψpπ˚;πτ`1
r q `

}π˚ ´ πτ`1
r }2

2N c
.

Then, summing up from n “ 1 to N , we have
N
ÿ

n“1

Bψpπ˚,n
r ;πτr q ď Bψpπ˚;πτr q ´Bψpπ˚;πτ`1

r q `

N
ÿ

n“1

}π˚ ´ πτ`1
r }2

2N c
.

Thus, we obtain
N
ÿ

n“1

Bψpπ˚,n
r ;πτr q ď C3,

where C3 is a game-dependent constant, and this inequality comes from the derivation of (Cevher
et al., 2023). Since c is an arbitrary constant, we then have

Bψpπ˚,n
r ;πτr q “ Bψpπ˚,n

r ;π˚,n´1
r q `Bψpπ˚,n´1

r ;πτr q

` x∇ψpπ˚,n
r q ´ ψpπ˚,n´1

r q, π˚,n´1
r ´ πτr y

ď Bψpπτr ;π
τ´1
r q `Bψpπ˚,n´1

r ;πτr q ` }π˚,n
r ´ π˚,n´1

r }}π˚,n´1
r ´ πτr }

ď Bψpπ˚,n´1
r ;πτ´1

r q `Bψpπτr ;π
˚,n´1
r q ` }π˚,n

r ´ π˚,n´1
r }}π˚,n´1

r ´ πτr }

`Bψpπ˚,n´1
r ;πτr q ` }πτr ´ π˚,n´1

r }}π˚,n´1
r ´ πτ´1

r }

ď Bψpπ˚,n´1
r ;πτ´1

r q ` 2Bψpπτr ;π
˚,n´1
r q ` }π˚,n

r ´ π˚,n´1
r }}π˚,n´1

r ´ πτr }

` }πτr ´ π˚,n´1
r }}π˚,n´1

r ´ πτ´1
r }

ď Bψpπ˚,n´1
r ;πτ´1

r q ` }πτr ´ π˚,n´1
r }2 ` 2C4}π˚,n´1

r ´ πτ´1
r }

ď Bψpπ˚,n´1
r ;πτ´1

r q `
1

N4
}πτr ´ π˚,n´1

r }2 `
2C4

N2
}π˚,n´1
r ´ πτ´1

r }

ď Bψpπ˚,n´1
r ;πτ´1

r q `
C2

4

N4
`

2C2
4

N2
,

where C4 “ maxπ,π1PΠ }π ´ π1}2. Then, we have

Bψpπ˚,n
r ;πτr q ď Bψpπ˚,n´1

r ;πτ´1
r q `

C2
4

N4
`

2C2
4

N2
,

Bψpπ˚,n
r ;πτr q ď Bψpπ˚,n´2

r ;πτ´2
r q `

2C2
4

N4
`

4C2
4

N2
,

¨ ¨ ¨

Therefore, we have

NBψpπ˚,n
r ;πτr q ď

N
ÿ

n“1

Bψpπ˚,n´1
r ;πτ´1

r q `
C2

4N
2

N4
`

2C2
4K

2

K2
,

ô NBψpπ˚,n
r ;πτr q ď C3 `

C2
4

N2
` 2C2

4 ,

ô }πτr ´ π˚,n
r } ď Op

1
?
N

q,

Therefore,

ϵpπτ`1
r q ď L1L2}π˚,n

r ´ πτr } ` L0
}π˚,n
r ´ πτr }

N4
ď Op

1
?
N

q,

This completes the proof.
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