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ABSTRACT

Semi-supervised Learning (SSL) has witnessed great success owing to the im-
pressive performances brought by various methods based on pseudo labeling and
consistency regularization. However, we argue that existing methods might fail
to utilize the unlabeled data more effectively since they either use a pre-defined
/ fixed threshold or an ad-hoc threshold adjusting scheme, resulting in inferior
performance and slow convergence. We first analyze a motivating example to ob-
tain intuitions on the relationship between the desirable threshold and model’s
learning status. Based on the analysis, we hence propose FreeMatch to ad-
just the confidence threshold in a self-adaptive manner according to the model’s
learning status. We further introduce a self-adaptive class fairness regularization
penalty to encourage the model for diverse predictions during the early training
stage. Extensive experiments indicate the superiority of FreeMatch especially
when the labeled data are extremely rare. FreeMatch achieves 5.78%, 13.59%,
and 1.28% error rate reduction over the latest state-of-the-art method FlexMatch
on CIFAR-10 with 1 label per class, STL-10 with 4 labels per class, and Im-
ageNet with 100 labels per class, respectively. Moreover, FreeMatch can also
boost the performance of imbalanced SSL. The codes can be found at https:
//github. com/microsoft/Semi—supervised—learning

1 INTRODUCTION

The superior performance of deep learning heavily relies on supervised training with sufficient la-
beled data (He et al., 2016} Vaswani et al., [2017; Dong et al.,|2018). However, it remains laborious
and expensive to obtain massive labeled data. To alleviate such reliance, semi-supervised learning
(SSL) (Zhul [2005; Zhu & Goldberg, [2009; Sohn et al., 2020; Rosenberg et al., | 2005; |Gong et al.,
2016; [Kervadec et al., 2019} |Dai et al., [2017) is developed to improve the model’s generalization
performance by exploiting a large volume of unlabeled data. Pseudo labeling (Lee et al.,[2013; Xie
et al.,|2020b; McLachlan, |1975; |Rizve et al., |2020) and consistency regularization (Bachman et al.,
2014; Samuli & Timo} |2017; |Sajjadi et al.l [2016) are two popular paradigms designed for modern
SSL. Recently, their combinations have shown promising results (Xie et al., [2020a; [Sohn et al.,
2020; |[Pham et al.,|[2021}; | Xu et al., [2021} [Zhang et al.| 2021). The key idea is that the model should
produce similar predictions or the same pseudo labels for the same unlabeled data under different
perturbations following the smoothness and low-density assumptions in SSL (Chapelle et al.|[2006).

A potential limitation of these threshold-based methods is that they either need a fixed threshold (Xie
et al.,2020a; Sohn et al., 2020} Zhang et al., [2021;|Guo & Li, 2022)) or an ad-hoc threshold adjusting
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"Note the results of this paper are obtained using TorchSSL (Zhang et al.|[2021). We also provide codes and
logs in USB (Wang et al.| 2022).
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Figure 1: Demonstration of how FreeMatch works on the “two-moon” dataset. (a) Decision bound-
ary of FreeMatch and other SSL methods. (b) Decision boundary improvement of self-adaptive
fairness (SAF) on two labeled samples per class. (c) Class-average confidence threshold. (d) Class-
average sampling rate of FreeMatch during training. The experimental details are in Appendix Elll
scheme (Xu et al., 2021) to compute the loss with only confident unlabeled samples. Specifically,
UDA (Xie et al.}|2020a) and FixMatch (Sohn et al.,|2020) retain a fixed high threshold to ensure the
quality of pseudo labels. However, a fixed high threshold (0.95) could lead to low data utilization
in the early training stages and ignore the different learning difficulties of different classes. Dash
(Xu et al., 2021)) and AdaMatch (Berthelot et al., [2022) propose to gradually grow the fixed global
(dataset-specific) threshold as the training progresses. Although the utilization of unlabeled data is
improved, their ad-hoc threshold adjusting scheme is arbitrarily controlled by hyper-parameters and
thus disconnected from model’s learning process. FlexMatch (Zhang et al.| 2021)) demonstrates that
different classes should have different local (class-specific) thresholds. While the local thresholds
take into account the learning difficulties of different classes, they are still mapped from a pre-
defined fixed global threshold. Adsh (Guo & Li,[2022)) obtains adaptive thresholds from a pre-defined
threshold for imbalanced Semi-supervised Learning by optimizing the the number of pseudo labels
for each class. In a nutshell, these methods might be incapable or insufficient in terms of adjusting
thresholds according to model’s learning progress, thus impeding the training process especially
when labeled data is too scarce to provide adequate supervision.

For example, as shown in Figure [I(a)} on the “two-moon” dataset with only 1 labeled sample for
each class, the decision boundaries obtained by previous methods fail in the low-density assumption.
Then, two questions naturally arise: 1) Is it necessary to determine the threshold based on the model
learning status? and 2) How to adaptively adjust the threshold for best training efficiency?

In this paper, we first leverage a motivating example to demonstrate that different datasets and classes
should determine their global (dataset-specific) and local (class-specific) thresholds based on the
model’s learning status. Intuitively, we need a low global threshold to utilize more unlabeled data
and speed up convergence at early training stages. As the prediction confidence increases, a higher
global threshold is necessary to filter out wrong pseudo labels to alleviate the confirmation bias
(Arazo et al.| [2020). Besides, a local threshold should be defined on each class based on the model’s
confidence about its predictions. The “two-moon” example in Figure [I(a)| shows that the decision
boundary is more reasonable when adjusting the thresholds based on the model’s learning status.

We then propose FreeMatch to adjust the thresholds in a self-adaptive manner according to learning
status of each class (Guo et al., 2017). Specifically, FreeMatch uses the self-adaptive thresholding
(SAT) technique to estimate both the global (dataset-specific) and local thresholds (class-specific)
via the exponential moving average (EMA) of the unlabeled data confidence. To handle barely su-
pervised settings (Sohn et al.,|2020) more effectively, we further propose a class fairness objective
to encourage the model to produce fair (i.e., diverse) predictions among all classes (as shown in
Figure [I(b)). The overall training objective of FreeMatch maximizes the mutual information be-
tween model’s input and output (John Bridlel [1991)), producing confident and diverse predictions on
unlabeled data. Benchmark results validate its effectiveness. To conclude, our contributions are:

» Using a motivating example, we discuss why thresholds should reflect the model’s learning status
and provide some intuitions for designing a threshold-adjusting scheme.

m We propose a novel approach, FreeMatch, which consists of Self-Adaptive Thresholding (SAT)
and Self-Adaptive class Fairness regularization (SAF). SAT is a threshold-adjusting scheme that
is free of setting thresholds manually and SAF encourages diverse predictions.

m Extensive results demonstrate the superior performance of FreeMatch on various SSL bench-
marks, especially when the number of labels is very limited (e.g, an error reduction of 5.78% on
CIFAR-10 with 1 labeled sample per class).
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2 A MOTIVATING EXAMPLE

In this section, we introduce a binary classification example to motivate our threshold-adjusting
scheme. Despite the simplification of the actual model and training process, the analysis leads to
some interesting implications and provides insight into how the thresholds should be set.

We aim to demonstrate the necessity of the self-adaptability and increased granularity in confidence
thresholding for SSL. Inspired by (Yang & Xu, |2020), we consider a binary classification problem
where the true distribution is an even mixture of two Gaussians (i.e., the label Y is equally likely to
be positive (+1) or negative (—1)). The input X has the following conditional distribution:

X|Y =1~ N, 02), X | Y = +1 ~ N(ug, 02). (1

We assume po > 11 without loss of generality. Suppose that our classifier outputs confidence score
s(z) = 1/[14exp(—B(z—£1512))], where 3 is a positive parameter that reflects the model learning
status and it is expected to gradually grow during training as the model becomes more confident.
Note that “17;”” is in fact the Bayes’ optimal linear decision boundary. We consider the scenario
where a fixed threshold 7 € (%, 1) is used to generate pseudo labels. A sample x is assigned pseudo
label +1 if s(x) > 7 and —1 if s(x) < 1 — 7. The pseudo label is 0 (masked) if 1 — 7 < s(x) < 7.

We then derive the following theorem to show the necessity of self-adaptive threshold:

Theorem 2.1. For a binary classification problem as mentioned above, the pseudo label Y, has the
following probability distribution:

1 ot Llog(+Z) 1 gtz - Liog(:Z)
P(Y, = 1) = 50(———15) 1 S —

)7

2 o2 2 o1
| g Llog(pf) Mg Llog(iT) @)
P(Y, = 1) = J#( - )+ 50 - )

P(Y,=0)=1-P(Y,=1)~ P(Y, = 1),

where ® is the cumulative distribution function of a standard normal distribution. Moreover,
P(Y, = 0) increases as o — 1 gets smaller.

The proof is offered in Appendix [B] Theorem [2.1] has the following implications or interpretations:

(i) Trivially, unlabeled data utilization (sampling rate) 1 — P(Y,, = 0) is directly controlled by thresh-
old 7. As the confidence threshold 7 gets larger, the unlabeled data utilization gets lower. At early
training stages, adopting a high threshold may lead to low sampling rate and slow convergence
since (3 is still small.

(i) More interestingly, P(Y, = 1) # P(Y, = —1) if 01 # o2. In fact, the larger 7 is, the more
imbalanced the pseudo labels are. This is potentially undesirable in the sense that we aim to tackle
a balanced classification problem. Imbalanced pseudo labels may distort the decision boundary
and lead to the so-called pseudo label bias. An easy remedy for this is to use class-specific
thresholds 75 and 1 — 73 to assign pseudo labels.

(iii) The sampling rate 1 — P(Y,, = 0) decreases as po — p1 gets smaller. In other words, the more
similar the two classes are, the more likely an unlabeled sample will be masked. As the two
classes get more similar, there would be more samples mixed in feature space where the model is
less confident about its predictions, thus a moderate threshold is needed to balance the sampling
rate. Otherwise we may not have enough samples to train the model to classify the already
difficult-to-classify classes.

The intuitions provided by Theorem [2.1]is that at the early training stages, 7 should be low to en-
courage diverse pseudo labels, improve unlabeled data utilization and fasten convergence. However,
as training continues and 3 grows larger, a consistently low threshold will lead to unacceptable con-
firmation bias. Ideally, the threshold 7 should increase along with 8 to maintain a stable sampling
rate throughout. Since different classes have different levels of intra-class diversity (different o) and
some classes are harder to classify than others (s — w1 being small), a fine-grained class-specific
threshold is desirable to encourage fair assignment of pseudo labels to different classes. The chal-
lenge is how to design a threshold adjusting scheme that takes all implications into account, which is
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the main contribution of this paper. We demonstrate our algorithm by plotting the average threshold
trend and marginal pseudo label probability (i.e. sampling rate) during training in Figure [1(c)| and
To sum up, we should determine global (dataset-specific) and local (class-specific) thresholds
by estimating the learning status via predictions from the model. Then, we detail FreeMatch.

3 PRELIMINARIES

In SSL, the training data consists of labeled and unlabeled data. Let Dy, = {(zp,y) : b € [Np]}
and Dy = {up : b € [N, U]be the labeled and unlabeled data, where Ny, and Vi is their number
of samples, respectively. The supervised loss for labeled data is:

B
Lo= 5 3 Hlgopmlyle(m))), )

b=1

where B is the batch size, H(-, -) refers to cross-entropy loss, w(-) means the stochastic data aug-
mentation function, and p,, (-) is the output probability from the model.

For unlabeled data, we focus on pseudo labeling using cross-entropy loss with confidence threshold
for entropy minimization. We also adopt the “Weak and Strong Augmentation” strategy introduced
by UDA (Xie et al., |2020a)). Formally, the unsupervised training objective for unlabeled data is:

nB

£u= S Amasa) > 7) - M ) @
b=1

We use g, and Qy, to denote abbreviation of p,, (y|w(up)) and p,, (y|Q(up)), respectively. gy is the
hard “one-hot” label converted from g, 1 is the ratio of unlabeled data batch size to labeled data
batch size, and 1(- > 7) is the indicator function for confidence-based thresholding with 7 being
the threshold. The weak augmentation (i.e., random crop and flip) and strong augmentation (i.e.,
RandAugment |Cubuk et al.|(2020)) is represented by w(-) and €)(-) respectively.

Besides, a fairness objective L is usually introduced to encourage the model to predict each class
at the same frequency, which usually has the form of Ly = UlogIE, [g5] (Andreas Krausel 2010),
where U is a uniform prior distribution. One may notice that using a uniform prior not only pre-
vents the generalization to non-uniform data distribution but also ignores the fact that the underlying
pseudo label distribution for a mini-batch may be imbalanced due to the sampling mechanism. The
uniformity across a batch is essential for fair utilization of samples with per-class threshold, espe-
cially for early-training stages.

4 FREEMATCH

4.1 SELF-ADAPTIVE THRESHOLDING

We advocate that the key to determining thresholds for SSL is that thresholds should reflect the learn-
ing status. The learning effect can be estimated by the prediction confidence of a well-calibrated
model (Guo et al.| 2017). Hence, we propose self-adaptive thresholding (SAT) that automatically
defines and adaptively adjusts the confidence threshold for each class by leveraging the model pre-
dictions during training. SAT first estimates a global threshold as the EMA of the confidence from
the model. Then, SAT modulates the global threshold via the local class-specific thresholds es-
timated as the EMA of the probability for each class from the model. When training starts, the
threshold is low to accept more possibly correct samples into training. As the model becomes more
confident, the threshold adaptively increases to filter out possibly incorrect samples to reduce the
confirmation bias. Thus, as shown in Figure 2] we define SAT as 7;(c) indicating the threshold for
class c at the ¢-th iteration.

Self-adaptive Global Threshold We design the global threshold based on the following two prin-
ciples. First, the global threshold in SAT should be related to the model’s confidence on unlabeled

2[N]:={1,2,...,N}.
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Figure 2: Illustration of Self-Adaptive Thresholding (SAT). FreeMatch adopts both global and local
self-adaptive thresholds computed from the EMA of prediction statistics from unlabeled samples.
Filtered (masked) samples are marked with red X.

data, reflecting the overall learning status. Moreover, the global threshold should stably increase
during training to ensure incorrect pseudo labels are discarded. We set the global threshold 7; as av-
erage confidence from the model on unlabeled data, where ¢ represents the ¢-th time step (iteration).
However, it would be time-consuming to compute the confidence for all unlabeled data at every time
step or even every training epoch due to its large volume. Instead, we estimate the global confidence
as the exponential moving average (EMA) of the confidence at each training time step. We initialize
Ty as % where C indicates the number of classes. The global threshold 7, is defined and adjusted as:

(4 ift =0, )
T A+ (1— /\)I—L% S5 max(gy), otherwise,

where A € (0,1) is the momentum decay of EMA.

Self-adaptive Local Threshold The local threshold aims to modulate the global threshold in a
class-specific fashion to account for the intra-class diversity and the possible class adjacency. We
compute the expectation of the model’s predictions on each class c to estimate the class-specific
learning status:

52 (c) = &, ift =0, ©
PROZ Miea (@) + (1= N 5 S0 au(e),  otherwise,

where p; = [p(1),:(2), ..., P+ (C)] is the list containing all p,(c). Integrating the global and local
thresholds, we obtain the final self-adaptive threshold 7 (c) as:

pe(c)
max{p;(c) : c € [C]}

where MaxNorm is the Maximum Normalization (i.e., ' = mamw). Finally, the unsupervised
training objective £,, at the ¢-th iteration is:

7(c) = MaxNorm(p;(c)) - 7 =

Tt (N

1 LB

” :M—B 1(max(gqp) > T¢(argmax (gp)) - H(Gs, Qp)- (8)
b=1

4.2 SELF-ADAPTIVE FAIRNESS

We include the class fairness objective as mentioned in Section [3] into FreeMatch to encourage
the model to make diverse predictions for each class and thus produce a meaningful self-adaptive
threshold, especially under the settings where labeled data are rare. Instead of using a uniform prior
as in (Arazo et al.| [2020), we use the EMA of model predictions p; from Eq. |§| as an estimate of
the expectation of prediction distribution over unlabeled data. We optimize the cross-entropy of p;
and p = E,, g[pm (y|Q(up))] over mini-batch as an estimate of H (IE,, [p,,(y|u)]). Considering that
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the underlying pseudo label distribution may not be uniform, we propose to modulate the fairness
objective in a self-adaptive way, i.e., normalizing the expectation of probability by the histogram
distribution of pseudo labels to counter the negative effect of imbalance as:

B
1 (max (gp) > me(argmax (qp)) Qb,
1 9)

= Hist,p (1 (max (gy) > 7o(arg max () Qs )

=

1
P="5

<
Il

Similar to j;, we compute h; as:

he = A1 + (1 — \) Hist,z (Gy) - (10)

The self-adaptive fairness (SAF) L at the ¢-th iteration is formulated as:

Ly=—-H <SumNorm <]?f) , SumNorm (€)>) , (11
hy h
where SumNorm = (-)/ >_(-). SAF encourages the expectation of the output probability for each
mini-batch to be close to a marginal class distribution of the model, after normalized by histogram
distribution. It helps the model produce diverse predictions especially for barely supervised settings
(Sohn et al.;,|2020), thus converges faster and generalizes better. This is also showed in Figure[1(b)

The overall objective for FreeMatch at ¢-th iteration is:
£:£s+wu£u+wf£f, (12)

where w,, and w; represents the loss weight for £,, and £y respectively. With £,, and £y, FreeMatch
maximizes the mutual information between its outputs and inputs. We present the procedure of
FreeMatch in Algorithm [I]of Appendix.

5 EXPERIMENTS

5.1 SETUP

We evaluate FreeMatch on common benchmarks: CIFAR-10/100 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011), STL-10 (Coates et al., 2011)) and ImageNet (Deng et al., 2009). Fol-
lowing previous work (Sohn et al} [2020; |Xu et al.| 2021} [Zhang et al., 2021} Oliver et al., [2018),
we conduct experiments with varying amounts of labeled data. In addition to the commonly-chosen
labeled amounts, following (Sohn et al.| [2020), we further include the most challenging case of
CIFAR-10: each class has only one labeled sample.

For fair comparison, we train and evaluate all methods using the unified codebase TorchSSL (Zhang
et al., |2021) with the same backbones and hyperparameters. Concretely, we use Wide ResNet-
28-2 (Zagoruyko & Komodakis| 2016) for CIFAR-10, Wide ResNet-28-8 for CIFAR-100, Wide
ResNet-37-2 (Zhou et al., [2020) for STL-10, and ResNet-50 (He et al., [2016) for ImageNet. We
use SGD with a momentum of 0.9 as optimizer. The initial learning rate is 0.03 with a cosine
learning rate decay schedule as n = g COS(IGLI]?), where 7)o is the initial learning rate, k(K) is
the current (total) training step and we set K = 229 for all datasets. At the testing phase, we
use an exponential moving average with the momentum of 0.999 of the training model to conduct
inference for all algorithms. The batch size of labeled data is 64 except for ImageNet where we
set 128. We use the same weight decay value, pre-defined threshold 7, unlabeled batch ratio ;. and
loss weights introduced for Pseudo-Label (Lee et al., [2013), II model (Rasmus et al.| 2015)), Mean
Teacher (Tarvainen & Valpolal[2017), VAT (Miyato et al.,|2018)), MixMatch (Berthelot et al., 2019b),
ReMixMatch (Berthelot et al., 2019a), UDA (Xie et al., |2020a), FixMatch (Sohn et al., [2020), and
FlexMatch (Zhang et al., 2021)).

We implement MPL based on UDA as in (Pham et al., |2021)), where we set temperature as 0.8
and w,, as 10. We do not fine-tune MPL on labeled data as in (Pham et al., [2021) since we find
fine-tuning will make the model overfit the labeled data especially with very few of them. For
Dash, we use the same parameters as in (Xu et al., 2021) except we warm-up on labeled data for
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Table 1: Error rates on CIFAR-10/100, SVHN, and STL-10 datasets. The fully-supervised results of
STL-10 are unavailable since we do not have label information for its unlabeled data. Bold indicates
the best result and underline indicates the second-best result. The significant tests and average error
rates for each dataset can be found in Appendix

Dataset | CIFAR-10 | CIFAR-100 | SVHN | STL-10

# Label |10 40 250 4000 | 400 2500 10000 | 40 250 1000 | 40 1000
IT Model {Rasmus et al 12013] 79.185111 7434176 46244129 13.13205 | 86964080 58.801066 36.65:000 | 67481095 1330112 7.062011 | 74314085 32782040
Pseudo Label {Lee et al.12013] 80214055 7461026 46494220 15.082019 | 87455085 57.744028  36. 64.61256 15594005 9404032 | 74.68109 32645071
VAT (Miyato et al ] 2018 79816117 74665212 41034179 10514012 | 85204140  46.841070 74754338 4332012 4114020 | T4.T4r03 37955112
Mean Teacher { larvainen & Valpolal2017] | 76374041 70094160 37.461330  8.10021 | 8L11k1as  45.17+106 36.094398 345007 3274005 | 71724145 3390413
MixMatch {Berthelot et al. 120195 65.76+706  36.19:648  13.63405  6.66202 | 67594066 39.76+04 30.604539 45603 3694037 | 54.931095 21.70+068
ReMixMatch {Berthelot et al. 201 9a 20774745 9.88£103 6304005 4.84x001 | 42754105 26034035 24042913 636022 5164031 | 32124624 6.74%014
UDA (Xie et al.|1 2020a 345321060 10.624375  5.16+006 4291007 | 46394159 27.73%021 5124427 192005 1.89+001 | 37424844 6.642017
FixMach {Sohn et al.]| 2020 24.79:765  T47:02  486:00s 4212008 | 46425082 28.03%016 22 3814108 2.02£002 1964003 | 35.974414 625203
Dash (Xu et al.|[2021] 272841409 893:am1  5.061023  436:0n1 | 44824096 2715402 21.88:007 | 2094018 2041000 197001 | 3452430 6394056
MPL (Pham et al12021] 23556601 6.62:091 5764024  4.55:004 | 46264184 27.71k010 21745009 | 933as02 2294004 2284002 | 35764483 6.66£000
FlexMatch (Zhang et al.|2021 13.85:1200 4975006 4984000 4194001 | 3994116 26494020 21.90:01s | 8.194320 6594220  6.72+030 | 29.151416 5774018
FreeMatch 807421 490:000 4884018 4101002 | 37984042 26474020 21684003 | 1974002 1974001  1.96+003 | 15564055  5.63+015
Fully-Supervised | 4624005 | 19304000 | 213001 |

2 epochs since too much warm-up will lead to the overfitting (i.e. 2,048 training iterations). For
FreeMatch, we set w,, = 1 for all experiments. Besides, we set wy = 0.01 for CIFAR-10 with
10 labels, CIFAR-100 with 400 labels, STL-10 with 40 labels, ImageNet with 100k labels, and all
experiments for SVHN. For other settings, we use wy = 0.05. For SVHN, we find that using a low
threshold at early training stage impedes the model to cluster the unlabeled data, thus we adopt two
training techniques for SVHN: (1) warm-up the model on only labeled data for 2 epochs as Dash;
and (2) restrict the SAT within the range [0.9, 0.95]. The detailed hyperparameters are introduced in
Appendix [D] We train each algorithm 3 times using different random seeds and report the best error
rates of all checkpoints (Zhang et al., 2021).

5.2 QUANTITATIVE RESULTS

The Top-1 classification error rates of CIFAR-10/100, SVHN, and STL-10 are reported in Table
The results on ImageNet with 100 labels per class are in Table[2] We also provide detailed results on
precision, recall, F1 score, and confusion matrix in Appendix [E.3] These quantitative results demon-
strate that FreeMatch achieves the best performance on CIFAR-10, STL-10, and ImageNet datasets,
and it produces very close results on SVHN to the best competitor. On CIFAR-100, FreeMatch
is better than ReMixMatch when there are 400 labels. The good performances of ReMixMatch on
CIFAR-100 (2500) and CIFAR-100 (10000) are probably brought by the mix up (Zhang et al.,[2017)
technique and the self-supervised learning part. On ImageNet with 100k labels, FreeMatch signif-
icantly outperforms the latest counterpart FlexMatch by 1.28”7zﬂ We also notice that FreeMatch
exhibits fast computation in ImageNet from Table 2] Note that FlexMatch is much slower than Fix-
Match and FreeMatch because it needs to maintain a list that records whether each sample is clean,
which needs heavy indexing computation budget on large datasets.

Noteworthy is that, FreeMatch consistently outperforms
other methods by a large margin on settings with extremely .
limited labeled data: 5.78% on CIFAR-10 with 10 labels, [mageNet with 100 labels per class.
1.96% on CIFAR-100 with 400 labels, and surprisingly -
13.59% on STL-10 with 40 labels. STL-10 is a more ‘ Top-1 Top-5 (]:;“/tl‘::re)
realistic and challenging dataset compared to others, which

Table 2: Error rates and runtime on

. . .. FixMatch | 43.66 21.80 0.4
consists of a large unlabeled set of 100k images. The signif- FlexMatch | 41.85 19.48 0.6
icant improvements demonstrate the capability and poten- FreeMatch | 40.57 18.77 0.4

tial of FreeMatch to be deployed in real-world applications.

5.3 QUALITATIVE ANALYSIS

We present some qualitative analysis: Why and how does FreeMatch work? What other benefits
does it bring? We evaluate the class average threshold and average sampling rate on STL-10 (40)
(i.e., 40 labeled samples on STL-10) of FreeMatch to demonstrate how it works aligning with our
theoretical analysis. We record the threshold and compute the sampling rate for each batch during

uB
Zb ]l(max(qu>BTt(argmax(qb)). We

training. The sampling rate is calculated on unlabeled data as

3Following (Zhang et al.l 2021), we train ImageNet for 220

son. We use 4 Tesla V100 GPUs on ImageNet.

iterations like other datasets for a fair compari-
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Figure 3: How FreeMatch works in STL-10 with 40 labels, compared to others. (a) Class-average
confidence threshold; (b) class-average sampling rate; (c) convergence speed in terms of accuracy;
(d) confusion matrix, where fading colors of diagonal elements refer to the disparity of accuracy.

also plot the convergence speed in terms of accuracy and the confusion matrix to show the proposed
component in FreeMatch helps improve performance. From Figure [3(a)] and Figure 3(b)| one can
observe that the threshold and sampling rate change of FreeMatch is mostly consistent with our
theoretical analysis. That is, at the early stage of training, the threshold of FreeMatch is relatively
lower, compared to FlexMatch and FixMatch, resulting in higher unlabeled data utilization (sam-
pling rate), which fastens the convergence. As the model learns better and becomes more confident,
the threshold of FreeMatch increases to a high value to alleviate the confirmation bias, leading to
stably high sampling rate. Correspondingly, the accuracy of FreeMatch increases vastly (as shown
in Figure and resulting better class-wise accuracy (as shown in Figure 3(d)). Note that Dash
fails to learn properly due to the employment of the high sampling rate until 100k iterations.

To further demonstrate the effectiveness of the class-specific threshold in FreeMatch, we present the
t-SNE (Van der Maaten & Hinton, [2008) visualization of features of FlexMatch and FreeMatch on
STL-10 (40) in Figure [5] of Appendix [E.§] We exhibit the corresponding local threshold for each
class. Interestingly, FlexMatch has a high threshold, i.e., pre-defined 0.95, for class 0 and class 6,
yet their feature variances are very large and are confused with other classes. This means the class-
wise thresholds in FlexMatch cannot accurately reflect the learning status. In contrast, FreeMatch
clusters most classes better. Besides, for the similar classes 1,3,5,7 that are confused with each
other, FreeMatch retains a higher average threshold 0.87 than 0.84 of FlexMatch, enabling to mask
more wrong pseudo labels. We also study the pseudo label accuracy in Appendix [E.9] and shows
FreeMatch can reduce noise during training.

5.4 ABLATION STUDY

Self-adaptive Threshold We conduct experiments on the components of SAT in FreeMatch
and compare to the components in FlexMatch (Zhang et al.l 2021), FixMatch (Sohn et al.,
2020), Class-Balanced Self-Training (CBST) (Zou et all [2018)), and Relative Threshold (RT) in
AdaMatch (Berthelot et al.,|2022)). The ablation is conducted on CIFAR-10 (40 labels).

As shown in Table[3] SAT achieves the best performance among all  Table 3: Comparison of dif-
the threshold schemes. Self-adaptive global threshold 7; and local ferent thresholding schemes.
threshold MaxNorm(p:(c)) themselves also achieve comparable

results, compared to the fixed threshold 7, demonstrating both local = Threshold CIFAR-10 (40)
and global threshold proposed are good learning effect estimators. :f}\’j}‘(/lg“&‘;; FloMach)  doren
When using CPL M((c)) to adjust 74, the result is worse than the  r+ MaxNorm(p;(c)) 5134003
fixed threshold and exhibits larger variance, indicating potential 7 iGAlflt(’glgc)) o oss
instability of CPL. AdaMatch (Berthelot et all, 2022) uses the CBsT - 16651290
RT, which can be viewed as a global threshold at ¢-th iteration *;,Ié’?éiﬁﬁgii‘;d Local) b

computed on the predictions of labeled data without EMA, whereas
FreeMatch conducts computation of 7, with EMA on unlabeled data that can better reflect the
overall data distribution. For class-wise threshold, CBST (Zou et al., |2018)) maintains a pre-defined
sampling rate, which could be the reason for its bad performance since the sampling rate should be
changed during training as we analyzed in Sec. 2} Note that we did not include L in this ablation
for a fair comparison. Ablation study in Appendix and on FixMatch and FlexMatch with
different thresholds shows SAT serves to reduce hyperparameter-tuning computation or overall
training time in the event of similar performance for an optimally selected threshold.
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Self-adaptive Fairness As illustrated in Table 4} we also empir- Table 4: Comparison of dif-
ically study the effect of SAF on CIFAR-10 (10 labels). We study ferent class fairness items.
the original version of fairness objective as in (Arazo et al., [2020).

. — — Fairness CIFAR-10 (10

Based on that, we study the operation of normalization probability aumes 1o
. . A w/o fairness 10.37+7.70
by histograms and show that countering the effect of imbalanced 71,45 0571667
underlying distribution indeed helps the model to learn and diverse = Ulog SumNorm(Z)  12.07+523
better. One may notice that adding original fairness regularization DA (AdaMatch) 32.94+183
. . DA (ReMixMatch) 11.06+8.21
alone already helps improve the performance. Whereas adding ¢,p 807240

normalization operation in the log operation hurts the performance,
suggesting the underlying batch data are indeed not uniformly distributed. We also evaluate
Distribution Alignment (DA) for class fairness in ReMixMatch (Berthelot et al., 2019a) and
AdaMatch (Berthelot et al., 2022), showing inferior results than SAF. A possible reason for the
worse performance of DA (AdaMatch) is that it only uses labeled batch prediction as the target
distribution which cannot reflect the true data distribution especially when labeled data is scarce and
changing the target distribution to the ground truth uniform, i.e., DA (ReMixMatch), is better for the
case with extremely limited labels. We also proved SAF can be easily plugged into FlexMatch and
bring improvements in Appendix The EMA decay ablation and performances of imbalanced

settings are in Appendix [E.5]and Appendix

6 RELATED WORK

To reduce confirmation bias (Arazo et al.,[2020) in pseudo labeling, confidence-based thresholding
techniques are proposed to ensure the quality of pseudo labels (Xie et al., 2020a; |Sohn et al.| 2020;
Zhang et al.| 2021; | Xu et al.| |2021)), where only the unlabeled data whose confidences are higher
than the threshold are retained. UDA (Xie et al., 2020a)) and FixMatch (Sohn et al.l 2020) keep the
fixed pre-defined threshold during training. FlexMatch (Zhang et al., [2021) adjusts the pre-defined
threshold in a class-specific fashion according to the per-class learning status estimated by the
number of confident unlabeled data. A co-current work Adsh (Guo & Li,[2022) explicitly optimizes
the number of pseudo labels for each class in the SSL objective to obtain adaptive thresholds for
imbalanced Semi-supervised Learning. However, it still needs a user-predefined threshold. Dash
(Xu et al., 2021)) defines a threshold according to the loss on labeled data and adjusts the threshold
according to a fixed mechanism. A more recent work, AdaMatch (Berthelot et al., 2022), aims to
unify SSL and domain adaptation using a pre-defined threshold multiplying the average confidence
of the labeled data batch to mask noisy pseudo labels. It needs a pre-defined threshold and ignores
the unlabeled data distribution especially when labeled data is too rare to reflect the unlabeled
data distribution. Besides, distribution alignment (Berthelot et al.| [2019a; 2022) is also utilized in
Adamatch to encourage fair predictions on unlabeled data. Previous methods might fail to choose
meaningful thresholds due to ignorance of the relationship between the model learning status and
thresholds. |(Chen et al.|(2020);(Kumar et al.|(2020) try to understand self-training / thresholding from
the theoretical perspective. We use a motivating example to derive some implications and further
adjust meaningful thresholds according to the learning status satisfying the derived implications.

Except consistency regularization, entropy-based regularization is also used in SSL. Entropy
minimization (Grandvalet et al., |2005) encourages the model to make confident predictions for
all samples disregarding the actual class predicted. Maximization of expectation of entropy
(Andreas Krause, 2010; |/Arazo et al., 2020) over all samples is also proposed to induce fairness
to the model, enforcing the model to predict each class at the same frequency. But previous ones
assume a uniform prior for underlying data distribution and also ignore the batch data distribution.
Distribution alignment (Berthelot et al.l 2019a)) adjusts the pseudo labels according to labeled data
distribution and the EMA of model predictions.

7 CONCLUSION

We proposed FreeMatch that utilizes self-adaptive thresholding and class-fairness regularization for
SSL. FreeMatch outperforms strong competitors across a variety of SSL benchmarks, especially
in the barely-supervised setting. We believe that confidence thresholding has more potential in
SSL. A potential limitation is that the adaptiveness still originates from the heuristics of the model
prediction, and we hope the efficacy of FreeMatch inspires more research for optimal thresholding.
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A  EXPERIMENTAL DETAILS OF THE “TWO-MOON” DATASET.

We generate only two labeled data points (one label per each class, denoted by black dot and round
circle) and 1,000 unlabeled data points (in gray) in 2-D space. We train a 3-layer MLP with 64 neu-
rons in each layer and ReLU activation for 2,000 iterations. The red samples indicate the different
samples whose confidence values are above the threshold of FreeMatch but below that of FixMatch.
The sampling rate is computed on unlabeled data as ZévU 1(max(gy) > 7)/Ny. Results are aver-
aged 5 times.

B PROOF OF THEOREM 2.1

Theorem 2.1 For a binary classification problem as mentioned above, the pseudo label Y, has the
following probability distribution:

1 Mz;m _ %log(ﬁ) 1 m;uz _ %log(ﬁ)
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where ® is the cumulative distribution function of a standard normal distribution. Moreover,
P(Y, = 0) = 0 increases as ps — 1 gets smaller.

Proof. A sample x will be assigned pseudo label 1 if
1
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If we integrate over x, we arrive at the following conditional probabilities:
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Recall that P(Y = 1) = P(Y = —1) = 0.5, therefore
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Now, let’s use z to denote o — pi1, to show that P(Y,, = 0) increases as p1o — 1 gets smaller, we
only need to show P(Y, = —1) + P(Y, =1) gets bigger. We write P(Y,, = —1) + P(Y, = 1) as

1
P(Yp = 1) —+ P(Yp = ].) = 5@((112’ — bl) + 7<I>(falz — bl) + 5@((122 — bg) + 5@(7&22 — bg),

1 1
where a; = Til,ag = 202 by = Og[gjn*) b Ogéa ) are positive constants. We futher only
need to show that f(z) = £®(a1z — by) + 2®(—ay1z — by) is monotone increasing on (0, 0o). Take

the derivative of z, we have

£1(2) = g6z = ba) = a1z = b)),

where ¢ is the probability density function of a standard normal distribution. Since |a1z — by| <
| — a1z — by|, we have f/(z) > 0, and the proof is complete.

O

C ALGORITHM

We present the pseudo algorithm of FreeMatch. Compared to FixMatch, each training step involves
updating the global threshold and local threshold from the unlabeled data batch, and computing
corresponding histograms. FreeMatchs introduce a very trivial computation budget compared to
FixMatch, demonstrated also in our main paper.

Algorithm 1 FreeMatch algorithm at ¢-th iteration.

1: Input: Number of classes C, labeled batch X = {(zp,y5) : b € (1,2,...,B)}, unlabeled
batch U/ = {up : b € (1,2,...,uB)}, unsupervised loss weight w,,, fairness loss weight wy,
and EMA decay \.

2: Compute L for labeled data

Lo= 4300 Htb, o (y]w(s)))
3. Update the global threshold
7= A1+ (1 — )uB Zb L max(qy) {qp is an abbreviation of p, (y|w(uy)), shape of 74
(1]}
4: Update the local threshold
Pt = Apr—1 + (1 — )uB S5 gy {Shape of f;: [C]}
5: Update histogram for p,
hi = My—1 + (1 — \) Hist,.p (¢5) {Shape of h;: [C]}
forc=1to C do
7:(¢) = MaxNorm(p:(c)) - 7+ {Calculate SAT}
end for
Compute £,, on unlabeled data
Ly = 75 Y48 1 (max () > i (arg max (g5))) -H(ds, Q)
10: Compute expectation of probability on unlabeled data
D= uB Z“B 1 (max (qp) > 7(argmax (gy)) Qp {Qp is an abbr. of p,, (y|2(uy)), shape of p:
[C1}
11: Compute histogram for p
h = Hist,,p (]l (max (gp) > 7 (arg max (gp)) Qb) {Shape of h: [C]}
12: Compute L on unlabeled data
Ly=—-H (SumNorm(pf) SumNorm(%))
13: Return: Lg + w,, - Lo, +wy - Ly

R s

D HYPERPARAMETER SETTING

For reproduction, we show the detailed hyperparameter setting for FreeMatch in Table 5] and [6} for
algorithm-dependent and algorithm-independent hyperparameters, respectively.
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Table 5: Algorithm dependent hyperparameters.

Algorithm FreeMatch
Unlabeled Data to Labeled Data Ratio (CIFAR-10/100, STL-10, SVHN) 7
Unlabeled Data to Labeled Data Ratio (ImageNet) 1
Loss weight w,, for all experiments 1
Loss weight wy for CIFAR-10 (10), CIFAR-100 (400), STL-10 (40), ImageNet (100k), SVHN 0.01
Loss weight wy for others 0.05

Thresholding EMA decay for all experiments 0.999

Table 6: Algorithm independent hyperparameters.

Dataset CIFAR-10  CIFAR-100 STL-10 SVHN ImageNet
Model WRN-28-2  WRN-28-8 WRN-37-2 WRN-28-2 ResNet-50
Weight decay Se-4 le-3 Se-4 Se-4 3e-4
Batch size 64 128
Learning rate 0.03
SGD momentum 0.9
EMA decay 0.999

Note that for ImageNet experiments, we used the same learning rate, optimizer scheme, and training
iterations as other experiments, and a batch size of 128 is adopted, whereas, in FixMatch, a large
batch size of 1024 and a different optimizer is used. From our experiments, we found that training
ImageNet with only 22° is not enough, and the model starts converging at the end of training. Longer
training iterations on ImageNet will be explored in the future. Single NVIDIA V100 is used for
training on CIFAR-10, CIFAR-100, SVHN and STL-10. It costs about 2 days to train on CIFAR-10
and SVHN. 10 days are needed for the training on CIFAR-100 and STL-10.

E EXTENSIVE EXPERIMENT DETAILS AND RESULTS

We present extensive experiment details and results as complementary to the experiments in the
main paper.

E.1 SIGNIFICANT TESTS

We did significance test using the Friedman test. We choose the top 7 algorithms on 4 datasets
(i.e., N = 4,k = 7). Then, we compute the F value as 7 = 3.56, which is clearly larger than
the thresholds 2.661(ac = 0.05) and 2.130(« = 0.1). This test indicates that there are significant
differences between all algorithms.

To further show our significance, we report the average error rates for each dataset in Table[/] We
can see FreeMatch outperforms most SSL algorithms significantly.

E.2 CIFAR-10 (10) LABELED DATA

Following (Sohn et al., |2020), we investigate the limitations of SSL algorithms by giving only one
labeled training sample per class. The selected 3 labeled training sets are visualized in Figure 4
which are obtained by (Sohn et al.l 2020) using ordering mechanism (Carlini et al.,[2019).

E.3 DETAILED RESULTS

To comprehensively evaluate the performance of all methods in a classification setting, we further
report the precision, recall, f1 score, and AUC (area under curve) results of CIFAR-10 with the same
10 labels, CIFAR-100 with 400 labels, SVHN with 40 labels, and STL-10 with 40 labels. As shown
in TableB] and@], FreeMatch also has the best performance on precision, recall, F1 score, and AUC
in addition to the top1 error rates reported in the main paper.
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Table 7: The average error rates for each dataset.

| CIFAR-10 CIFAR-100 SVHN STL-10 Total Average

II Model 53.22 60.80 29.31 53.55 49.19
Pseudo Label 54.10 60.58 29.87 53.66 49.59
VAT 51.50 54.73 27.73 56.35 47.17
MeanTeacher 48.01 52.68 14.27 52.81 41.54
MixMatch 30.56 45.04 12.95 38.32 31.07
ReMixMatch 10.45 29.60 11.85 19.43 17.08
UDA 13.65 32.20 2.98 22.03 17.02
FixMatch 10.33 32.22 2.60 21.11 15.67
Dash 11.43 31.28 2.07 20.46 15.56
MPL 10.12 31.90 4.63 21.21 16.04
FlexMatch 7.00 29.44 7.17 17.46 14.40
FreeMatch 5.49 28.71 1.97 10.60 11.26

Figure 4: CIFAR-10 (10) labeled samples visualization, sorted from the most prototypical dataset
(first row) to least prototypical dataset (last row).

E.4 ABLATION OF PRE-DEFINED THRESHOLDS ON FIXMATCH AND FLEXMATCH

As shown in Table[T2] the performance of FixMatch and FlexMatch is quite sensitive to the changes
of the pre-defined threshold 7.

E.5 ABLATION ON EMA DECAY ON CIFAR-10 (40)

We provide the ablation study on EMA decay parameter A in Equation (5) and Equation (6). One
can observe that different decay A produces the close results on CIFAR-10 with 40 labels, indicating
that FreeMatch is not sensitive to this hyper-parameter. A large A is not encouraged since it could
impede the update of global / local thresholds.

E.6 ABLATION OF SAF ON FLEXMATCH AND FREEMATCH

In Table [I3] we present the comparison of different class fairness objectives on CIFAR-10 with 10
labels. FreeMatch is better than FlexMatch in both settings. In addition, SAF is also proved effective
when combined with FlexMatch.

E.7 ABLATION OF IMBALANCED SSL

To further prove the effectiveness of FreeMatch, We evaluate FreeMatch on the imbalanced SSL
setting [Kim et al.] (2020); [Wei et al.| (2021)); [Lee et al.| (2021)); [Fan et al| (2021]), where the labeled
and the unlabeled data are both imbalanced. We conduct experiments on CIFAR-10-LT and CIFAR-
100-LT with different imbalance ratios. The imbalance ratio used on CIFAR datasets is defined as
¥ = Niaz/Nmin where Ny,q. is the number of samples on the head (frequent) class and N,,,;,, the
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Table 8: Precision, recall, f1 score and AUC results on CIFAR-10/100.

Datasets | CIFAR-10 (10) | CIFAR-100 (400)

Criteria \ Precision Recall FI Score AUC  Precision Recall FI Score AUC
UDA 0.5304  0.5121 04754 0.8258 | 0.5813  0.5484  0.5087  0.9475
FixMatch 0.6436  0.6622  0.6110  0.8934 | 0.5574 0.5430 0.4946  0.9363
Dash 0.6409  0.5410 0.4955 0.8458 | 0.5833  0.5649  0.5215  0.9456
MPL 0.6286  0.6857  0.6178  0.7993 | 0.5799  0.5606  0.5193  0.9316

FlexMatch | 0.6769  0.6861  0.6780  0.9126 | 0.6135  0.6193  0.6107  0.9675
FreeMatch | 0.8619  0.8593  0.8523  0.9843 | 0.6243  0.6261  0.6137  0.9692

Table 9: Precision, recall, f1 score and AUC results on SVHN and STL-10.

Datasets | SVHN (40) | STL-10 (40)

Criteria \ Precision Recall FI Score AUC  Precision Recall FI Score AUC
UDA 09783 09777 09780 0.9977 | 0.6385  0.5319  0.4765  0.8581
FixMatch 0.9731 09706 09716 0.9962 | 0.6590 0.5830  0.5405  0.8862
Dash 09782  0.9778 09780 0.9978 | 0.8117  0.6020  0.5448  0.8827
MPL 0.9564  0.9513 09512 09844 | 0.6191 0.5740 0.4999  0.8529

FlexMatch | 0.9566  0.9691  0.9625 0.9975 | 0.6403  0.6755 0.6518  0.9249
FreeMatch | 0.9783  0.9800 0.9791  0.9979 | 0.8489  0.8439 0.8354  0.9792

tail (rare). Note that the number of samples for class k is computed as N = Nm,w*y_%, where
C is the number of classes. Following (Lee et al., 2021} [Fan et al.| 2021)), we set N,,q, = 1500
for CIFAR-10 and N,,,, = 150 for CIFAR-100, and the number of unlabeled data is twice as
many for each class. We use a WRN-28-2 (Zagoruyko & Komodakis, [2016) as the backbone. We
use Adam (Kingma & Bal 2014) as the optimizer. The initial learning rate is 0.002 with a cosine
learning rate decay schedule as 1 = no cos(722 ), where 7 is the initial learning rate, k(K) is the
current (total) training step and we set K = 2.5 x 10° for all datasets. The batch size of labeled and
unlabeled data is 64 and 128, respectively. Weight decay is set as 4e-5. Each experiment is run on

three different data splits, and we report the average of the best error rates.

The results are summarized in Table @ Compared with other standard SSL methods, FreeMach
achieves the best performance across all settings. Especially on CIFAR-10 at imbalance ratio 150,
FreeMatch outperforms the second best by 2.4%. Moreover, when plugged in the other imbalanced
SSL method (Lee et al.,|2021), FreeMatch still attains the best performance in most of the settings.

E.8 T-SNE VISUALIZATION ON STL-10 (40)

We plot the T-SNE visualization of the features on STL-10 with 40 labels from FlexMatch (Zhang
et al., [2021) and FreeMatch. FreeMatch shows better feature space than FlexMatch with less con-
fusing clusters.

E.9 PSEUDO LABEL ACCURACY ON CIFAR-10 (10)

We average the pseudo label accuracy with three random seeds and report them in Figure [6] This
indicates that mapping thresholds from a high fixed threshold like FlexMatch did can prevent un-
labeled samples from being involved in training. In this case, the model can overfit on labeled
data and a small amount of unlabeled data. Thus the predictions on unlabeled data will incorporate

Table 10: FixMatch and FlexMatch with different thresholds on CIFAR-10 (40).

7 | FixMatch FlexMatch

0.25 | 11.76+£0.60  18.84+0.36
0.5 | 16.29+0.31 14.16+0.21
0.75 | 15.61+x0.23  6.08+0.17
0.95 | 7.47£0.28  4.97+0.06
0.98 | 8.01+0.91 5.40+0.11
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Table 11: Error rates of different thresholding EMA decay.

Thresholding EMA decay CIFAR-10 (40)

0.9
0.99
0.999
0.9999

4.9440.06
4.9240.08
4.90-+0.04
5.03+0.07

Table 12: FixMatch and FlexMatch with different thresholds on CIFAR-10 (40).

7 | FixMatch FlexMatch
0.25 | 11.76+0.60 18.84+0.36
0.5 16.29+0.31 14.16+0.21
0.75 | 15.61+0.23  6.08+0.17
0.95 | 7.47+0.28 4.97+0.06
0.98 | 8.01+0.91 5.40+0.11

* 1(0)=0.95
T(1)=0.84
T(2)=0.75
T(3)=0.89
T(4)=0.84
T(5)=0.84

* T(6)=0.95

« w(7)=0.80

+ Ti(8)=0.88

-« 7(9)=0.81

(a) FlexMatch (train, test)

(b) FreeMatch (train, test)

 T{0)=0.94

7(1)=0.88
T(2)=0.93
7(3)=0.85
T(4)=0.88
T(5)=0.91

« 1(6)=0.88
« T(7)=0.83
+ T(8)=0.91
-« (9)=0.89

Figure 5: T-SNE visualization of FlexMatch and FreeMatch features on STL-10 (40). Unlabeled

data is indicated by gray color. Local threshold 7;(c) for each class is shown on the legend.

more noise. Introducing appropriate unlabeled data at training time can avoid overfitting on labeled

datasets and a small amount of unlabeled data and bring more accurate pseudo labels.

E.10 CIFAR-10 (10) CONFUSION MATRIX

We plot the confusion matrix of FreeMatch and other SSL methods on CIFAR-10 (10) in Figure[7}
It is worth noting that even with the least prototypical labeled data in our setting, FreeMatch still
gets good results while other SSL methods fail to separate the unlabeled data into different clusters,
showing inconsistency with the low-density assumption in SSL.

Table 13: Ablation of SAF on FlexMatch and FreeMatch on CIFAR-10 (10)

Fairness Objective | FlexMatch ~ FreeMatch
w/o SAF 13.85+12.04 10.37+7.70
w/ SAF 12.60£8.16  8.07+4.24
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Table 14: Error rates (%) of imbalanced SSL using 3 different random seeds.

Dataset CIFAR-10-LT

50 150

CIFAR-100-LT
20 100

Imbalance ~

FixMatch 18.5+048 31.2+1.08 | 49.1x062  62.5+0.36
FlexMatch 17.8+024  29.5+047 | 48.9+071  62.7+0.08
FreeMatch 17.7+033 28.8+064 | 48.4+091 62.5+023
FixMatch w/ ABC 14.0+022  22.3+1.08 | 46.6+069 58.3+0.41
FlexMatch w/ ABC | 14.2+034 23.1+070 | 46.2+047 58.9+051
FreeMatch w/ ABC | 13.9+003 22.3+026 | 45.6+076 58.9+055
0.9
0.8
0.7
0 0.6
&) 05 —— FreeMatch
g . —— FlexMatch
0.4
0.3
0.2
0.1
250k 500k 750k 1000k
Iter.
CIFAR-10 (10)
Figure 6: CIFAR-10 (10) Pseudo Label accuracy visualization.
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(a) The most prototypical labeled samples
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(b) The second-most prototypical labeled samples
FixMatch FlexMatch FreeMatch
1
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. 3 0.8
4
E 5 0.6
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T 0.2
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(c) The least prototypical labeled samples

Figure 7: Confusion matrix on the test set of CIFAR-10 (10). Rows correspond to the rows in
FigureEl Columns correspond to different SSL methods.
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