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ABSTRACT

In this paper, we explore the composition of word embeddings to create richer,
more meaningful representations of multi-word units. Existing methods, such as
averaging word embeddings, provide simple and efficient approaches. However,
they often fail to capture the complexity of multi-word interactions. To address
this, we employ the Pyramidal Recursive learning (PyRv) method, which recur-
sively combines word embeddings into unified representations. Originally de-
veloped for constructing representations hierarchically from subwords to phrases,
PyRv is well-suited for progressively merging individual word vectors into phrase
vectors. We evaluate the effectiveness of PyRv for embedding composition using
fastText embeddings on the dependency relation labeling task. Using a single fast-
Text word embedding yields an accuracy of 71%. Averaging five fastText word
embeddings (the middle word and its four neighboring words) results in a signif-
icant drop in accuracy to 34%. In contrast, by composing five word embeddings
with PyRv, we achieve an accuracy of 77%, demonstrating the superior ability
of PyRv to integrate multiple word embeddings into more expressive representa-
tions. These findings highlight the potential of PyRv as a lightweight yet powerful
technique for word embedding composition.

1 INTRODUCTION

Word embeddings are foundational to many natural language processing (NLP) tasks, providing a
way to map words into continuous vector spaces that capture semantic relationships between them.
By converting words into numerical representations, word embeddings allow machines to process
and understand text in a way that retains important linguistic properties. Popular word embedding
methods, such as Word2Vec (Mikolov et al., 2013)), GloVe (Pennington et al., 2014)), and FastText
(Bojanowski et al., 2017), have demonstrated the utility of these representations by positioning
semantically similar words closer in the vector space. The effectiveness of NLP models often hinges
on the quality of these embeddings, as richer and more informative representations can lead to
improved performance across various downstream tasks.

In many real-world applications, however, understanding text at the word level alone is insufficient.
The need to represent larger linguistic units, such as phrases or sentences, necessitates techniques
for combining word embeddings into more complex structures. Word composition, which involves
aggregating individual word embeddings to represent multi-word expressions or entire sentences,
serves this purpose. By integrating information from multiple word vectors, compositional methods
aim to capture both the meanings of individual words and the syntactic and semantic interactions
between them, particularly in morphologically complex languages, such as Croatian, which was
used for evaluation in this paper.

There are several established methods for combining word embeddings. Simple techniques include
element-wise operations such as addition, averaging, or multiplication, which produce a composite
vector by leveraging individual word vectors (such as inJoulin et al.| (2016) and|Arora et al.| (2017)).
These methods, while computationally efficient, may fail to fully capture the complexity of phrase
or sentence meaning. More sophisticated approaches employ weighted combinations, context-aware
methods, or syntactic structures to improve the expressiveness of the resultant embeddings (such as
in|Socher et al.|(2013) and |Bahdanaul (2014)).
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While transformer-based models, such as BERT (Devlin et al., [2018)) and GPT (Brown et al ., [2020),
offer robust pre-trained sentence embeddings by learning deep contextual representations, they are
often computationally expensive and may not always align with the specific needs of certain tasks.
Word composition methods provide a more lightweight and flexible alternative, especially in cases
where transparency and control over the aggregation process are crucial. Additionally, word-level
composition techniques can better retain the granularity of individual word meanings, which is
sometimes diluted in sentence-level embeddings produced by transformer models.

Word composition provides a valuable approach for constructing meaningful representations of
multi-word units, balancing computational efficiency and interpretability. These methods remain
relevant, particularly in domains where sentence embedding techniques may obscure important de-
tails or where domain-specific customization of embedding composition is required.
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Figure 1: A visualized example of a pyramidal recursion in the PyRv method. The lowest-level
nodes correspond to input tokens. Moving upward, the nodes within the three pyramids represent
combined subword embeddings. At the pyramid peaks, nodes represent word embeddings, and
higher nodes signify combined word embeddings, representing phrases.
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Figure 2: A visual representation of pyramidal recursion in the PyRv+FT method. The lowest-level
nodes correspond to fastText-embedded words. As we move upward, the nodes represent combined
word embeddings, capturing phrase-level meanings.

In this work, we leverage the Pyramidal Recursive learning (PyRv) method, introduced in |Babic
& Mestrovi¢| (2024), to compose multiple word embeddings into unified representations. PyRv
facilitates structured composition through its hierarchical learning approach, recursively combining
representations at each level of abstraction. Initially developed for constructing representations from
tokens (subwords) up to phrases (as illustrated in Figure[I)), PyRv is well-suited for combining word
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embeddings by progressively merging individual word vectors into phrase vectors (as is shown in
Figure[2).

One of the key properties of the PyRv method is representation compositionality, which enables the
composition of multiple embeddings into a coherent, semantically rich representation. This property
aligns with the objective of this paper, where the focus is on effectively combining word embeddings
to capture more complex linguistic structures. By recursively merging embeddings, PyRv maintains
the semantic integrity of each word while constructing increasingly abstract representations at higher
levels of the hierarchy.

The primary contribution of this paper is the introduction of a method for composing multi-word
units into unified representations using Pyramidal Recursive learning (PyRv). To assess the effec-
tiveness of this approach, we train the PyRv embedding model on Croatian texts and compare its
performance to the widely-used baseline method of averaging word embeddings. In addition, we
explore the structure of the representation space generated by PyRv’s composition method. Our
evaluation results validate PyRv’s compositionality property.

Following this introduction, the subsequent sections of this paper are structured as follows: In Sec-
tion |2} "Related Work,” we explore prior research, highlighting methods that compose word embed-
dings. Section[3] "Embedding Method,” presents our method for composition of word embeddings.
Section E} “Evaluation,” details the datasets, experiment setup, and results. Finally, in Section E],
”Conclusion,” we conclude with a summary of our contributions to the field and discuss future di-
rections.

2 RELATED WORK

Composing word embeddings to generate meaningful representations of larger text units remains a
critical area of study in natural language processing. Approaches to this problem span from simple
aggregation techniques that compose word embeddings to more complex neural architectures that
embed entire sentences, each offering unique advantages in different contexts.

A common approach is to average word embeddings to generate a single vector representing a phrase
or sentence. Joulin et al.| (2016) introduced this idea in the context of fastText, where word embed-
dings are averaged and subsequently used for efficient text classification. This technique, inspired
by the continuous bag of words (CBOW) model (Mikolov et al.| |2013), offers a computationally
lightweight solution that performs competitively with deeper models in various NLP tasks.

Building upon this, |Arora et al.|(2017) proposed an enhanced version where word embeddings are
combined using weighted averages, followed by post-processing through PCA/SVD. The weighting
scheme they propose significantly improves performance on textual similarity tasks. This method
demonstrates that simple compositional techniques can rival more complex architectures, especially
in unsupervised settings.

Wieting et al.|(2015) conducted a comparative study that highlighted the trade-offs between simple
word averaging and more complex models like LSTMs for sentence embedding. Their findings
showed that while LSTMs perform well on in-domain data, simple word averaging techniques tend
to outperform LSTMs in out-of-domain tasks. This suggests that straightforward compositional
methods, despite their simplicity, are robust and generalizable across diverse datasets.

Recursive models have also been explored for word compositionality. [Socher et al.|(2013)) proposed
a recursive neural network based on syntactic parse trees to generate phrase and sentence repre-
sentations, useful in tasks like sentiment analysis. [Zhao et al.| (2015) introduced a Self-Adaptive
Hierarchical Sentence Model, using recursive structures without relying on syntax, showing that
supervised learning can effectively capture compositional semantics in a non-syntactic hierarchy.

Transformer (Vaswani, [2017) architectures use attention mechanism to compose embeddings. [Bah-
danau| (2014) introduced the attention mechanism in neural machine translation, allowing models
to dynamically focus on different parts of the input sequence during decoding. The introduction
of attention helped relieve the encoder from compressing all information into a single fixed-length
vector, thus enabling more flexible and effective composition of representations over sequential data.
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In this work, we build on these approaches by applying the Pyramidal Recursive learning (PyRv)
method (Babi¢ & Mestrovic, |2024) to recursively combine word embeddings into more abstract
representations. Unlike the averaging techniques of Joulin et al.| (2016)) and |Arora et al.|(2017), PyRv
enables hierarchical composition, capturing both word-level and higher-level semantic structures in
a more structured way. Unlike most other recursive models, such as the one introduced by [Socher
et al. (2013)), which rely on syntactic trees, PyRv operates without requiring explicit parse structures,
and unlike the model introduced by [Zhao et al.|(2015), it is fully unsupervised. Additionally, by
recursively merging embeddings, our approach offers a simpler alternative to attention mechanisms
for constructing rich representations of text.

3 EMBEDDING METHOD

In this section, we introduce word embeddings and common composition techniques, followed by a
detailed explanation of how the PyRv method is applied to compose word embeddings.

3.1 WORD EMBEDDING

Word embeddings, such as those produced by fastText (Bojanowski et al., 2017), are commonly
used to represent individual words. To represent multiple words, basic techniques like averaging or
concatenation can be applied. However, both approaches come with notable limitations.

When averaging embeddings (e.g., taking the mean of multiple word vectors), important informa-
tion, particularly word order, is lost. Concatenation preserves all information but presents two sig-
nificant challenges.

First, concatenated embeddings vary in dimensionality depending on the number of words, which
complicates their use as input for models that require a fixed input size. Second, the dimensionality
of concatenated representations can grow excessively large. For instance, a 5-word phrase embedded
with 300-dimensional fastText results in a 1500-dimensional vector (5x300).

In our evaluation, we use averaging to compose Croatian fastText embeddings (Grave et al., [2018)
to maintain a consistent dimensionality across all methods, ensuring that the results are comparable.

3.2 PYRV WITH FASTTEXT WORD EMBEDDINGS

Pyramidal Recursive learning (PyRv) is a method designed to construct hierarchical representations
of text, moving progressively from low-level units such as characters or subwords to higher-level
representations such as words, phrases, sentences, and even paragraphs. PyRv combines represen-
tations recursively, forming increasingly abstract and semantically rich embeddings at each level of
the hierarchy.

To address the limitations of averaging and concatenation, we explore the use of PyRv for composing
multiple word embeddings into a single, unified representation. Unlike previous work on PyRv
(Babi¢ & Mestrovic, [2024), where the recursion starts from subwords or tokens, in this study we
begin with word embeddings produced by fastText. This hybrid approach is referred to as PyRv+FT.

For this paper, we use pre-trained Croatian fastText word vectors (Grave et al.l 2018)) to embed
words, which are then recursively combined into phrase embeddings via the PyRvNN model. The
PyRv+FT embeddings are trained on Croatian Wikipedia texts (Wikimedia public dump, January
11, 2020) for 10 epochs.

We evaluate PyRv+FT on two downstream tasks, described in detail in the next section. Through
this process, we investigate how PyRv improves the compositionality of word embeddings, while
maintaining manageable dimensionality and enhancing representational quality.

4 EVALUATION

In this section, we describe the evaluation of fastText and PyRv+FT embeddings on two key NLP
tasks: Universal Part-of-Speech tagging (UPOS) and Universal Dependency Relation labeling (DE-
PREL). UPOS tags represent core grammatical categories such as nouns, verbs, and adjectives, while
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DEPREL captures the syntactic relationships between words in a sentence, indicating dependencies
like subjects, objects, and modifiers.

For this evaluation, we use the hr500k 2.0 dataset (Ljubesic et al. 2016)), a Croatian corpus with
labeled data for both UPOS and DEPREL tasks (amongst others). This dataset contains 901 texts,
24,763 sentences, and a total of 499,635 tokens.

Additionally, we perform a qualitative analysis of PyRv+FT embeddings by visualizing the repre-
sentation space to gain deeper insights into its structure and characteristics.

4.1 EXPERIMENT SETUP

To assess the performance of different embedding methods on the downstream tasks of UPOS and
DEPREL, we use a multi-layer perceptron (MLP) model with one hidden layer. The hidden layer
consists of 1,000 neurons and uses the ReLU activation function. The input to the model is a 300-
dimensional vector (the size of both fastText and PyRv+FT embeddings). The output layer, with
softmax activation, adjusts to the number of classes in each task: 17 classes for UPOS and 37
classes for DEPREL. Each evaluation is conducted by training the MLP for one epoch.

The embedding procedure remains consistent across both UPOS and DEPREL tasks, differing only
in the MLP output labels.

The method of embedding a word from a sentence depends on the embedding strategy employed:

* fastText 1 word: Embeds only the target word, ignoring its surrounding context.

* mean fastText N words: Represents the target word by embedding all N words (the target
word and its N-1 neighboring context words) separately and averaging the embeddings to
obtain a final representation.

* PyRv+FT N words: Embeds each word using fastText, but instead of averaging the N
embeddings, it recursively combines them using the PyRvINN model to generate a single,
unified embedding.

4.2 QUANTITATIVE RESULTS

Table 1: UPOS results, Macro and Weighted averages.

Accuracy Precision Recall F1 score
M.avg W.avg | M.avg W.avg | M.avg W.avg
fastText 1 word 0.95 | 0.91 095 | 0.89 095 | 0.89 0.95
mean fastText 3 words 0.61 0.57 0.61 0.59 0.61 0.57 0.61
PyRv+FT 3 words 0.93 0.9 0.93 0.89 0.93 0.9 0.93

Table 2: DEPREL results, Macro and Weighted averages.

Accuracy Precision Recall F1 score
M.avg W.avg | M.avg W.avg | M.avg W.avg
fastText 1 word 0.71 | 0.52 0.68 | 0.48 0.71 | 0.47 0.68
mean fastText 5 words 0.34 0.25 0.34 0.19 0.34 0.19 0.31
PyRv+FT 5 words 0.77 0.58 0.77 0.55 0.77 0.56 0.76

UPOS. Part-of-speech tagging is a relatively simple task where the surrounding word context does
not provide significant benefits for classification. We include UPOS evaluation primarily to demon-
strate how averaging fastText word embeddings can degrade downstream performance, while com-
bining fastText word embeddings using PyRvNN preserves much of the embedding quality.

When using fastText to embed a single word without considering its context, we achieve an accuracy
of 95%. However, averaging fastText embeddings over three words leads to a substantial drop in
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Ratios: "mean fastText 5 words" / "fastText 1 word" Ratios: "PyRv+FT 5 words" / "fastText 1 word"
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Figure 3: DEPREL relative F1 score ratios (by class) comparing different composition methods.
The left plot (a) shows the ratio of F1 scores for "mean fastText 5 words” versus “fastText 1 word”,
while the right plot (b) compares "PyRv+FT 5 words” versus “fastText 1 word”. Each bar represents
a class, and the length of the bar indicates the relative performance of the model. Classes are ordered
by support value in the test set (larger on the top).

performance, with accuracy falling to 61%. In contrast, when combining fastText embeddings for
three words using PyRvNN, the performance degradation is minimized, yielding an accuracy of
93%. These results highlight how PyRvNN can effectively mitigate the loss of information that
occurs when averaging word embeddings. Detailed results are shown in Table[T}

DEPREL. The dependency relation task is more complex than UPOS, as it requires understanding
the syntactic relationships between words. In this case, enriching word embeddings with surround-
ing context can significantly improve classification performance.

When embedding a single word using fastText (without its context), the model achieves an accuracy
of 71%. However, averaging five fastText word embeddings, including the target word and its four
neighbors, results in a sharp decline in performance, with accuracy dropping to 34%. This reduction
in accuracy reflects how averaging word embeddings leads to the loss of important information,
including word order and syntactic structure. By contrast, composing five fastText word embeddings
using PyRVNN boosts accuracy to 77%, demonstrating the method’s ability to capture more nuanced
relationships between words.

Evaluation results are presented in Table |Z| with more detailed results (by class) available in Tables
Bl[6l and[7)in the Appendix.

Figure 3] presents bar plots comparing F1 scores between two composition methods, mean averaging
and PyRy, relative to single word fastText embeddings’ performance. The left plot [3a)illustrates the
F1 score ratio between “mean fastText 5 words” and “fastText 1 word”, while the right plot 3b]
contrasts "PyRv+FT 5 words” with "fastText 1 word”.

In the following analysis, we focus on three notable classes: punctuation, conjuncts, and adnominal
clauses. These were selected because punctuation classification does not rely on context, classifying
conjuncts without context is nearly impossible, and for adnominal clauses, context is helpful but
averaging tends to degrade performance.

Punctuation (punct) refers to punctuation marks such as ”.”, 77, 1”7, and ”,”. Since punctuation
is straightforward to classify without context, a single fastText embedding for the target word alone
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achieves a perfect F1 score of 1. Averaging five fastText embeddings (the target word and its four
neighboring words) significantly degrades performance, reducing the F1 score to 0.61. However,
using PyRv to compose these embeddings preserves the high performance, maintaining an F1 score
of 1.

Conjunct (conj) denotes a relation between elements connected by coordinating conjunctions like
”and,” “or,” or ”,”. In coordinate structures, the first element is conventionally treated as the head,
with subsequent elements connected through the conj relation. For example, in the sentence “'Bill is
big and honest,” the word “honest” is labeled as conj (connected to big”). Similarly, in "He came
home, took a shower and immediately went to bed,” the words ”took” and “went” are both labeled
as conj (connected to “came”). Classifying conjuncts accurately requires contextual information. A
single fastText word embedding, without any context, yields a poor F1 score of 0.03. Averaging the
embeddings of the target word and its four neighbors improves performance significantly, achieving
an F1 score of 0.32 (a 10.8x improvement). Composing these embeddings using PyRv further boosts
performance, reaching an F1 score of 0.64 (a 21.85x improvement over the single word embedding).

Adnominal clause (acl) refers to finite or non-finite clauses that modify a nominal. For instance,
in "the issues as he sees them,” the word “sees” is labeled as acl (connected to issues”). In ”There
are many online sifes offering booking facilities,” the word offering” is labeled as acl (connected to
sites”). Using a single fastText word embedding results in an F1 score of 0.14. Averaging the target
word’s embedding with its four neighbors actually degrades performance slightly, reducing the F1
score to 0.11. In contrast, composing these word embeddings with PyRv substantially improves
performance, raising the F1 score to 0.53 (a 3.84x improvement over the single word embedding).

4.3 QUALITATIVE ANALYSIS

To gain qualitative insights into the structure of PyRv+FT embeddings, we visualize the represen-
tation space. A portion of this space is shown in Figures 4] and [3] (in the Appendix). In these
visualizations, each node represents a phrase consisting of two or three words. A two-word phrase
is connected to a three-word phrase if the shorter phrase is part of the longer one.

We highlight specific clusters within the visualized space, with detailed examples of phrases from
these clusters (translated to English) provided in Tables [3] and [4] (Tables with original phrases in
Croatian are in Appendix: [§|and [9). The areas circled in the figures contain phrases built around
the prepositions u” (Croatian for ”in”) and na” (Croatian for ”on”). For example, Area C contains
two-word phrases like “primjena na” (eng. “application on”), while Area A includes phrases such
as ’na svijet” (eng. “on the world”). Similarly, Area B features three-word phrases like “primjena
na svijet” (eng. “application on the world”), and Area D includes phrases like ’na svijet oko” (eng.

ELIT)

”on the world around”). Same holds for the preposition "u”.

The organization of phrases in the representation space is not random: phrases with similar syntactic
structures (e.g., where the preposition appears at the beginning, middle, or end of the phrase) tend
to cluster together. Furthermore, within these broader areas, smaller sub-clusters form based on the
specific preposition (u” or na”) present in the phrase.

5 CONCLUSION

In this paper, we explored the use of Pyramidal Recursive learning (PyRv) for the composition of
word embeddings and evaluated its ability to generate meaningful representations of multi-word
units. Our findings show that PyRv outperforms simple averaging methods in embedding composi-
tion.

In the part-of-speech tagging task, where word context is less crucial, single word embeddings
achieve an accuracy of 95%. Averaging 3-word context embeddings reduces this to 61% due to the
loss of word order information, while PyRv retains a high accuracy of 93% by effectively preserving
word order. In the more complex task of dependency relation labeling, where single word embed-
dings reach 71% accuracy, averaging embeddings for 5-word contexts results in a sharp decline to
34%. In contrast, composing context words with PyRv attains a significantly higher accuracy of
77%, demonstrating its superior capability in integrating multiple word embeddings into cohesive
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Table 3: Phrases by areas (A, B, and C) in the PyRv+FT representation space, translated to English

(some phrases are longer when translated).

Preposition ”on” (cro. ’na”)

Area C Area B Area A
application on  application on the world  on the world
are on are on local on local
assistant on assistant on the subject  on the subject
media on media on protest on the protest
vat on vat on tickets on tickets
based on based on data on data
finance on finance on revenues on revenues
0s on os on which on which
dollars on dollars on google on google
found on found on the third on the third
relation on relation on the past on the past
Preposition "’in” (cro. ’u”)
Area C Area B Area A
enthusiast in enthusiast in the river in the river
currently in currently in testing in testing
released in released in circulation in circulation
circulationin  circulation in June in June
by activity in by activity in teaching in teaching
work in work in the wood in the wood
tickets in tickets in europe in europe
musician in musician in croatia in croatia
only in only in the past in the past
drop in drop in the sea in the sea
is in is in the past in the past
year in year in croatia in croatia
percent in percent in relation in relation
and in and in the average in the average
.in . in this in this

Table 4: Phrases in area D in the PyRv+FT representation space, translated to English (some phrases

are longer when translated).

AreaD

Preposition on” (cro. ’na”) \ Preposition ’in” (cro. ’u”)

on the world around

on local elections

on the subject of organization
on the protest of musicians
on tickets for

on the data collected

on budget revenues

on which this

on google play

on the third position

on the past year

in the river which

in testing and

in circulation in

in june 2009

in teaching 1982

in the wood industry
in europe .

in croatia only

in the past two

in the sea of state

in the past year

in croatia is not

in relation to

in the average spends
in this praise
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and expressive representations. This validates the effectiveness of the compositionality property of
PyRv in real-world tasks.

The primary contribution of this work is the introduction of a method for composing multi-word
units into unified representations using PyRv. We provided an evaluation of its effectiveness com-
pared to averaging word embeddings and validated its compositionality property. Additionally, we
explored the structure of the representation space generated by PyRv’s compositional approach. By
training the PyRv model on Croatian texts, we demonstrated its flexibility and potential for applica-
tion across diverse languages.

Looking ahead, future work could include expanding the evaluation of PyRv to other NLP tasks,
beyond the UPOS and DEPREL tasks, and it could include comparison with more composition
methods. Investigating different PyRv architectures also presents an exciting opportunity for future
research.
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A APPENDIX

Table 5: DEPREL evaluation results using the fastText embedding method (single-word embed-
dings).

Class Precision Recall F1score Support
punct 1 1 1 3037
nmod 0.6 0.58 0.59 2437
case 0.96 0.98 0.97 2364
amod 0.79 0.93 0.85 2355
nsubj 0.53 0.66 0.59 1725
obl 0.48 0.57 0.52 1607
root 0.45 0.67 0.53 1136
conj 0.19 0.02 0.03 1134
obj 0.49 0.44 0.46 1072
aux 0.75 0.96 0.84 1037
cc 0.83 0.97 0.89 887
advmod 0.8 0.88 0.84 825
flat 0.54 0.69 0.61 689
mark 0.85 0.91 0.88 471
acl 0.44 0.08 0.14 452
cop 0.58 0.22 0.32 415
det 0.87 0.87 0.87 400
xcomp 0.61 0.7 0.65 350
expl 0.85 1 0.92 302
parataxis 0.63 0.38 0.47 300
ccomp 0.18 0.02 0.03 230
discourse 0.48 0.21 0.29 208
advcl 0.29 0.08 0.12 198
nummod:gov  0.72 0.9 0.8 187
appos 1 0.01 0.02 130
nummod 0.82 0.63 0.71 117
fixed 0.34 0.33 0.34 100
csubj 0 0 0 40
det:numgov 0.73 0.66 0.69 29
orphan 0 0 0 13
advmod:emph 0 0 0 5
flat:foreign 0 0 0 4
vocative 0 0 0 3
compound 0 0 0 1
macro avg 0.52 0.48 0.47

weighted avg  0.68 0.71 0.68

11
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Table 6: DEPREL evaluation results using the fastText embedding method (averaging embeddings
of five words).

Class Precision Recall F1score Support
punct 0.54 0.71 0.61 3037
nmod 0.42 0.35 0.39 2437
case 0.28 0.56 0.37 2364
amod 0.3 0.4 0.34 2355
nsubj 0.3 0.3 0.3 1725
obl 0.29 0.03 0.06 1607
root 0.26 0.17 0.21 1136
conj 0.27 0.38 0.32 1134
obj 0.26 0.12 0.16 1072
aux 0.35 0.34 0.35 1037
cc 0.22 0.25 0.24 887
advmod 0.29 0.24 0.26 825
flat 0.44 0.43 0.44 689
mark 0.33 0.27 0.3 471
acl 0.23 0.07 0.11 452
cop 0.22 0.14 0.17 415
det 0.25 0.13 0.17 400
xcomp 0.35 0.15 0.21 350
expl 0.26 0.35 0.3 302
parataxis 0.76 0.09 0.16 300
ccomp 0 0 0 230
discourse 0.67 0.03 0.06 208
advcl 0.14 0.01 0.01 198
nummod:gov  0.27 0.6 0.37 187
appos 0.2 0.02 0.04 130
nummod 0.24 0.13 0.17 117
fixed 0.31 0.24 0.27 100
csubj 0 0 0 40
det:numgov 0 0 0 29
orphan 0 0 0 13
advmod:emph 0 0 0 5
flat:foreign 0 0 0 4
vocative 0 0 0 3
compound 0 0 0 1
macro avg 0.25 0.19 0.19

weighted avg 0.34 0.34 0.31
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Table 7: DEPREL evaluation results using the PyRv+FT embedding method (composing embed-
dings of five words).

Class Precision Recall F1score Support
punct 1 1 1 3037
nmod 0.74 0.71 0.73 2437
case 0.98 0.97 0.97 2364
amod 0.81 0.82 0.82 2355
nsubj 0.7 0.7 0.7 1725
obl 0.59 0.63 0.61 1607
root 0.61 0.69 0.65 1136
conj 0.66 0.62 0.64 1134
obj 0.52 0.65 0.58 1072
aux 0.78 0.94 0.85 1037
cc 0.91 0.95 0.93 887
advmod 0.68 0.82 0.74 825
flat 0.77 0.69 0.73 689
mark 0.91 0.91 0.91 471
acl 0.6 0.47 0.53 452
cop 0.69 0.39 0.5 415
det 0.72 0.69 0.71 400
xcomp 0.67 0.59 0.63 350
expl 0.86 0.99 0.92 302
parataxis 0.83 0.56 0.67 300
ccomp 0.41 0.16 0.23 230
discourse 0.65 0.52 0.58 208
advcl 0.38 0.22 0.28 198
nummod:gov  0.82 0.76 0.79 187
appos 0.42 0.38 0.4 130
nummod 0.67 0.76 0.71 117
fixed 0.67 0.61 0.64 100
csubj 0 0 0 40
det:numgov 0.5 0.52 0.51 29
orphan 0 0 0 13
advmod:emph 0 0 0 5
flat:foreign 0 0 0 4
vocative 0 0 0 3
compound 0 0 0 1
macro avg 0.58 0.55 0.56

weighted avg 0.77 0.77 0.76
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Table 8: Phrases by areas (A, B, and C) in the PyRv+FT representation space (original Croatian
phrases).

Preposition ’na” (eng. ’on”)

Area C Area B Area A
primjena na primjena na svijet na svijet

su na su na lokalnim na lokalnim
asistentent na  asistentent na predmetu  na predmetu
medije na medije na prosvjed na prosvjed
pdv-a na pdv-a na ulaznice na ulaznice

baziranim na
financija na

baziranim na podacima
financija na prihodima

na podacima
na prihodima

os na os na koji na koji
dolara na dolara na google na google
nalazi na nalazi na trecoj na trecoj
odnosu na odnosu na proSlu na proslu
Preposition ’u”’ (eng. ”’in”)
Area C Area B Area A
entuzijastau  entuzijasta u rijeci u rijeci
trenutno u trenutno u testiranju u testiranju
pustena u pustena u opticaj u opticaj
opticaj u opticaj u lipnju u lipnju
aktivnoS¢uu  aktivnoScu u nastavi u nastavi
radau rada u drvnoj u drvnoj
ulaznice u ulaznice u europi u europi
glazbenikau  glazbenika u hrvatskoj  u hrvatskoj
samo u samo u protekle u protekle
kapu kap u moru u moru
seu se u protekloj u protekloj
godini u godini u hrvatskoj u hrvatskoj
posto u posto u odnosu u odnosu
iu iu prosjeku u prosjeku
.u . uovoj u ovoj

Table 9: Phrases in area D in the PyRv+FT representation space (original Croatian phrases).

Area D
Preposition ’na” (eng. ’on”) \ Preposition ”’u” (eng. ”’in”)

na svijet oko

na lokalnim izborima

na predmetu organizacije
na prosvjed glazbanika
na ulaznice u

na podacima prikupljenim
na prihodima proracuna
na koji ova

na google play

na tre¢oj poziciji

na proslu godinu

u rijeci koji

u testiranju i

u opticaj u

u lipnju 2009.

u nastavi 1982.

u drvnoj industriji
u europi .

u hrvatskoj samo
u protekle dvije

u moru drZavnog
u protekloj godini
u hrvatskoj nije

u odnosu na

u prosjeku trosi

u ovoj hvale
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(eng. ’in’). Tables [8|and 9] (translated: [3|and @) provide detailed examples of these phrases and their

t-SNE). Highlighted areas A, B, and C contain phrases with the prepositions 'na’ (eng. on’) and "u’
connections within the space.

Figure 4: Visualization of the PyRv+FT representation space (reduced from 300 dimensions using
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Figure 5: Visualization of the PyRv+FT representation space (reduced from 300 dimensions using
t-SNE). Highlighted areas A and D contain phrases structured around the prepositions 'na’ (eng.
’on’) and "u’ (eng. ’in’). Tables[8]and [0] (translated: [3]and ) present examples of these phrases and
their relationships in the embedding space.
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