Stochastic Policy Optimization with Heuristic
Information for Robot Learning

Seonghyun Kim, Ingook Jang, Samyeul Noh, Hyunseok Kim*
Electronics and Telecommunications Research Institute
218 Gajeong-ro, Daejeon, Korea
{kim-sh, ingook, samuel, hertzkim}@etri.re.kr

Abstract: Stochastic policy-based deep reinforcement learning (RL) approaches
have remarkably succeeded to deal with continuous control tasks. However, ap-
plying these methods to manipulation tasks remains a challenge since actuators
of a robot manipulator require high dimensional continuous action spaces. In
this paper, we propose exploration-bounded exploration actor-critic (EBE-AC),
a novel deep RL approach to combine stochastic policy optimization with inter-
pretable human knowledge. The human knowledge is defined as heuristic in-
formation based on both physical relationships between a robot and objects and
binary signals of whether the robot has achieved certain states. The proposed ap-
proach, EBE-AC, combines an off-policy actor-critic algorithm with an entropy
maximization based on the heuristic information. On a robotic manipulation task,
we demonstrate that EBE-AC outperforms prior state-of-the-art off-policy actor-
critic deep RL algorithms in terms of sample efficiency. In addition, we found that
EBE-AC can be easily combined with latent information, where EBE-AC with la-
tent information further improved sample efficiency and robustness.
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1 Introduction

A challenge to human-level Al [1] is still ongoing research area and recently deep reinforcement
learning (RL) approaches have remarkably shown outstanding results beyond human in the fields of
board and video games [2, 3]. As a greatly unexplored area which adapts deep RL, robot manipula-
tion is one of the challenging applications due to complex nonlinear dynamics and huge continuous
action spaces [4]-[7]. Various and stable robot manipulation skills in real-world environments [8],
where the laws of physics are strictly applied, are required to solve complex tasks, such as moving,
grasping, pushing, and placing. It is, therefore, still a challenge to solve complex tasks through deep
RL approaches.

In front of the advanced dexterity capabilities of human hands, learning the dexterity with func-
tionality to autonomously pick and place objects has always been a long-standing challenge for
robotics [9, 10]. To solve complex manipulation tasks, various approaches have been presented
to utilize human knowledge, which includes learning from human demonstrations and optimizing
hyper-parameters empirically [11]-[18]. The first improves sample efficiency of learning by provid-
ing good expert demonstration data to solve a given task [13]-[16]. In general, the human demon-
strations can be used not only as a loss function of inverse RL but also as reusable experience data
of off-policy RL. However, it is expensive to obtain real-world demonstrations for every single task.

As the second approach utilizing human knowledge, empirical hyper-parameter tuning [19], has
helped optimize learning progress since hyper-parameters are highly related to not only neural net-
work architectures but also reward designs in the deep RL. On the whole, hyper-parameter tuning
is widely used to ensure that learning algorithms gain good performance, however, it is vulnerable
to initial hyper-parameter settings for each task [18]. This results in the inefficiency of the learning
process because it is necessary to perform hyper-parameter tuning every task.
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A heuristic (informed) strategy using problem-specific knowledge has been generally known as
a more efficient solution than an uninformed strategy using only the problem itself [20]. Since
manipulation skills are under the laws of physics, informed human knowledge, such as moving in
the direction of narrowing the distance, being in alignment with the target object, and grasping the
center of gravity of the object, can be helpful to find solutions efficiently in robot manipulation.

In this paper, we propose a novel deep RL approach to combine stochastic policy optimization with
human knowledge, which is exploration-bounded exploration actor-critic (EBE-AC). EBE-AC ap-
plies interpretable and reusable human knowledge, heuristic information based on both physical re-
lationships between a robot and objects and binary signals of whether the robot has achieved certain
states, to an off-policy actor-critic algorithm. The main contributions of this paper are summarized
as follows:

* We design a novel information theoretic metric in order for EBE-AC to have dependencies
between actions and heuristic information.

* We propose an e-exploration method using two types of stochastic policies, exploration and
bounded exploration, in order to store diverse experiences in a shared replay buffer.

* We propose a temperature optimization for given entropies corresponding to the two poli-
cies, in order to balance between the two.

To verify the performance of EBE-AC, we conducted experiments on a robotic manipulation task,
Pick-and-Lift. The experimental results show that EBE-AC outperforms prior state-of-the-art off-
policy actor-critic deep RL algorithms in terms of sample efficiency. In addition, we found that
EBE-AC can be easily combined with latent information as DIAYN [21] does, where EBE-AC with
latent information further improved sample efficiency and robustness.

2 Related Work

Due to the difficulty of obtaining stable and steady improvement of deterministic policy in applying
complex and high dimensional tasks, stochastic policy optimization based on information theory
has been examined in problems with continuous state-action spaces [22]-[24]. Many works show
that applying a stochastic policy’s entropy to an objective function results in good performances.
In particular, regularizing both policy and value functions with entropy shows the convergence and
stability improvements during training processes.

Through maximum entropy RL [23], a policy is encouraged to perform diverse actions to widely
explore a state space while maximizing expected returns. Owing to the diverse actions being able to
maximize expected returns, the learned policy can have multiple optimal solutions and obtain stable
performance regardless of random initial states. In addition, the maximum entropy approaches are
also robust to environmental disturbances such as the presence of adversaries and dynamics change
over time because these works focus on the entropy of the action distribution for a given state.

In the unsupervised emergence of diverse skills dictating the states [21], the mutual information
between states and latent variables is leveraged to autonomously discover diverse skills. To ensure
the different skills being distinguishable, the mutual information between actions and skills should
be minimized for a given state. By utilizing the mutual information as a metric of the objective
function, a stochastic policy can be also stably and steadily improved under the consideration of
additional latent variables.

These prior works utilize rich exploration to obtain various experiences at the beginning of learn-
ing, and tend to reduce the exploration as the learning progresses in order to acquire good expected
returns stably. However, when a policy is stuck in inevitable local optimums which must be passed
to complete a given complex task, the policy needs to utilize rich exploration in order to escape the
local optimums even in the middle of learning. In other words, it is necessary that a policy simul-
taneously pursues rich exploration and stable expected returns throughout the learning period. This
paper proposes a novel way to combine human knowledge with a stochastic policy by leveraging
the information theoretic metrics. Unlike reducing the mutual information between actions and la-
tent variables in [21], the proposed method increases the mutual information between actions and
heuristic information based on human knowledge. As a result, the dependency between actions and
heuristic information will be guaranteed and experiences obtained by actions are related to heuristic



information. Based on the metric, e-exploration method using two types of stochastic policies is pro-
posed in order to maintain rich exploration throughout the learning period. Based on the proposed
method, the sample efficiency is also improved and the stochastic policy achieves the robustness to
complex tasks.

3 Preliminaries

3.1 Notation

A Markov decision process is defined by the tuple (S,.4,p,r), where S is a state space, A is a
continuous action space, p : S X A x & — R, is a transition probability distribution, and r :
S x A — R is a reward function. In episodic tasks, a discounted return at time ¢ is given as
G, = ZZZH_I y*=t=1r (s, ax), where T is an episode horizon, v is a discount factor, and r (s, ax)

is a reward for the state-action pair (s, ax). A value function for a policy 7(a¢|s;) is represented as
’Uﬂ(St) = Eﬂ—[Gt]

3.2 Objective function

We consider combining RL with the information theoretic metrics, which can encourage policy
optimization in both ways to diverse actions and specific actions in a given state. Therefore, we
propose an objective function to learn a policy conditioned on heuristic information according to
human knowledge, where the policy can select actions considering not only the states but also the
heuristic information.

First, we define an information theoretic reward as
T(S¢,a) = r(se, ap) + wsl(ag; 2¢|5¢) + wohp, (at|se, 2¢) (D
= 1(st,at) + ws{hp, (arlse) — by (ar|se, 2e)} +wahp (at]se, 2e), 2)

where z; is heuristic information, I(a¢;2¢|s¢) is a mutual information between a; and z; for the
given s¢, h,(-) is an entropy for the distribution p, w, and w, are positive temperatures, and p,
and p, are distributions of action a; conditioned on s; and (s, z;), respectively. The distributions
ps and p, are induced by a policy 7. The heuristic information z; is defined by external function
2zt = f(s¢) based on s;, where f(-) can be physical information between a robot and objects in
addition to binary signals representing specific states.’

Maximizing the reward 7(s;, a;) in Equation (1) means that a policy has to find an optimal solution
to maximize the reward from the environment while guaranteeing high relation between a; and
zt, and diverse actions for given information s; and z;. In episodic tasks, a discounted return for
7(s¢, ap) is derived as

T
Gy = Z VT sk an) = G+ woHp, (ad]se) + (w2 — ws) Hy_(ag]se, 21), 3)
k=t+1

where H,(-) = Z;‘::Hl yk=t=1h,(-) is a discounted sum of entropy.
By using the discounted return in Equation (3), the objective function is defined as follows:
Ta(st) = Ex[Gi] = vr(se) + wiH,, (ar]st) + (ws — wi)H,. (as]ss, 20), 4)
where H,(-) = Ex[H,()].
To maximize the objective function in Equation (4) with a simple and fast way to implement, this
paper designs e-exploration based policy using two types of stochastic policies as follows:?
r—m = ms(ag|se), for pn(s) =1—¢ 5)
. (at]se, zt), for ppm(z) =€

Detailed examples of heuristic information are described in Appendix D.3.

3In comparison with an e-greedy method which uses policy-based actions and random actions with e prob-
ability for exploration effects, the e-exploration method uses two types of policies having different exploration
characteristics measured in entropies where one learns to maximize a return with rich explorations and the other
learns to maximize a return with bounded explorations.
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Figure 1: EBE-AC Algorithm: EBE-AC algorithm consists of two types of policies. Each policy
shares the replay buffer and updates its own soft Q-function in an off-policy soft actor-critic(SAC)
manner. After updating the soft Q-function and policies, the temperatures are updated.

where p,,(x) = P(m = x) is a probability mass function for selecting policy 7, and € is a positive
constant. By Equation (5), the objective function in Equation (4) is reformulated as follows:

Jnm (St) = Eme{s,z} [’Uﬂ-m (St) + Fﬂ'm}

= (1= e){vn, (81) + w5 Hr, (at]s:)}

+ E{Uﬂz (st) + (wz — ws)Hr, (at‘sh Zt)} = Jr.m. (st), (6)
where
— wsH ., (at]sy), for m=s
H, = S . 7
" { (wz*ws)sz(a“Stazt)v for m =z ( )
Thus, the maximization problem for Equation (6) is represented as
max Jn r.(St), Vst €S. (8)

Ty T2

4 Exploration-Bounded Exploration Actor-Critic

4.1 Problem decomposition

The maximization problem in Equation (8) is decomposed into two sub-problems: a maximization
problem with exploration entropy and a maximization problem with bounded exploration entropy
for the policies 74 and 7., respectively.

4.1.1 Learning with exploration entropy

For the policy 7, the problem in Equation (8) is reduced as

max Jr, (s;), Vs; €S, 9)

where Jr_(S¢) = vn_(St) + wsHr_(at]s:). By representing Jr_(s¢) = vr,_(s¢), Equation (9) can be
derived as follows:

Ir,(5¢) = U, (5¢) = Er_[@r, (5S¢, a1) + wshr, (ai]5¢)] (10)

where gr, (s¢,a;) = r(s¢,ar) + VEq,, ~p[Ur, (s:41)] is the soft Q-function for 7, [23]. Because
the entropy term wsh._ (a:|s:) incentivizes the policy to choose actions with a high variance, the
policy learns to be exploratory for given states.

*Detailed derivations of Equation (10) are described in Appendix A.



4.1.2 Learning with bounded exploration entropy

For the policy 7., the problem in Equation (8) is reduced as
max Jr (st), Vs; €S, (11

where J;_(s:) = vx,(8t) + (w, — ws)H, (a¢|se, 2¢). Without loss of generality, v,_(s:) can be
rewritten as v,_(S¢) = vr_ (s, 2¢) because z; = f(s;) is a deterministic function of s,. Through the
same procedure in Section 4.1.1 with a replacement s; = (s, 2¢), Jr_ (8¢) is derived as

Ir.(st) = Un.(57) = B, [Gr. (54, ar) + (wz — ws) i, (arlsy)], (12)
where Uy (s;) and gy (s}, a;) are the soft value function and soft Q-function for 7, under the given
sy = (8¢, 2t), respectively.

Unlike the entropy term wgsh, (a¢|s¢) in Equation (10) which incentivizes the policy to have rich
exploration, the entropy term (w, — ws)hx_ (a¢|s}) in Equation (12) does not guarantee that the
policy has rich exploration. The variance of the policy’s actions depends on whether (w, — w;) is
positive or not. For example, when (w, — w;) is negative, the policy gets a penalty for actions with a
high variance. Thus, the policy learned from Equation (12) has bounded exploration. The bounded
exploration reduces an action variance such that the policy focuses on exploring around a given state
and does not explore unnecessarily widely. In a perspective of experience data for learning, detailed
experiences from 7, can supplement widely obtained experiences from 7.

4.2 Automating entropy adjustment

Because an entropy of policy is affected by not only its own distribution but also the type of task
and the magnitude of rewards, the entropy of the policy can vary during training. For this reason,
the temperatures ws and w, need to be set according to these considerations. As shown in [25], a
temperature can be adjusted by optimizing dual problem for a constrained optimization problem.

First, the objective function in Equation (4) can be represented by soft Q-function as follows:
Jﬂ'(st) = Eﬂ' [Ej‘n’(stv at) + wShPs (at‘8t> + (wz - ws)hpz (at|st> Zt)L (13)

where @ (s¢,ar) = r(s¢, 1) + YEs,  ~op[Un(S141)] and U (sy) = Ex [G] are the soft Q-function
and soft value function for 7, respectively.

For the objective function in Equation (13), a constrained optimization problem can be derived as

max E.[qx(s¢,at)] (14)
s.t. E‘n’[hps (at\st) — hpz (at|st, Zt)] > 0, (15)
Eﬂ[hpz (at|st, Zt)] Z 0. (16)

For the constrained optimization problem, each entropy can be the bound condition to each other,
ie., h,,(a¢|s;) is the upper bound from the perspective of h,_(as|s:, z;) and h,_(ai|se, z¢) is the
lower bound from the perspective of h,_(a:|s¢). Because h,_(a¢|s:) does not have an upper bound,
the policy is able to pursue diverse actions only using the state. Using the state and heuristic in-
formation, however, the policy is limited to get diverse actions due to the upper bound h,,_(a¢|s:).
Thus, for the case of the given state and heuristic information, the policy has to find balanced actions
between the upper bound £, (a:|s;) and the lower bound 0.

A dual problem for the constrained optimization problem is defined as
min K [qx(s¢,a¢) + wshp, (a¢|se) + (w, — WS)hpz (at|st, )], (17)

where w; and w, are the Lagrange multipliers. The primal problem for 7 and the dual problem for
(ws, w, ) can be solved by using gradient descent method recursively. In practice, the soft Q-function
is modeled by function approximation based on deep RL. Under the consideration of a parameterized
soft Q-function for a fixed policy, G- (s¢, a;) does not affect to the Lagrange multipliers. Then, the
optimal Lagrange multipliers for the given policy can be obtained by
wi,w; =argmin Jyy, (18)

where w = [wg, w,] and

Jw = Ex[wsh,, (ai]st) + (w. —we)h,, (at]se, 2¢)]. (19)
After obtaining the optimal Lagrange multipliers, the optimization for the policy is performed for
the given Lagrange multipliers. Therefore, m and w are updated by such a recursive optimization.



Algorithm 1 EBE-AC

1: Initialize parameters 6,,, and ¢,,, for m € {s, z}.
2: Initialize temperatures w.

3: Set: 0,, + 0,, and D < (.

4: for each iteration do

5 for each environment step do

6: Select behavior policy index: m; ~ p,, (x)
7.

8

Sample action: a; ~ mp,, (at|st)
Step environment: (Sq1,7:) ~ D(St41, 7't|St, ar)

9: Store a transition: D < D U (my, S¢, at, Tty St41)
10:  end for
11:  for each gradient step do
12: Update soft Q-functions:
13: O O — AV, Jy, form € {s, z} using Equation (20)
14: Update policies:
15: Gm — ¢m — AV, Jy, form € {s, z} using Equations (10) and (12)
16: Update temperatures:
17: w ¢ w — AV, Jy using Equation (19)
18: Update target soft Q-functions:
19: O 70 + (1 = 7)0,, form € {s, 2z}
20:  end for
21: end for

4.3 Exploration-bounded exploration actor-critic algorithm

To solve the optimization problems in Section 4.1, actor-critic method with function approximation
is adopted. For function approximations, parameterization method is applied to soft Q-function
qo,, (s¢,a;) and policy mg, for m € {s,z} in Equations (10) and (12). As shown in [25], the
parameterized soft Q-function gy, (¢, a;) is trained to minimize the soft Bellman residual as

m

1, . 2
Jo,. = E(s;,a0)~D {2{%,” (st,ar) — (r(st,a1) + VBsy s mplUa,, (s041)]) 1| (20)
where D is a replay buffer, gy, (s¢,at) is o, (8¢, a¢) for m = s and qy_ (s}, at) for m = z,

)

U5 (St41) = { 5é5(5t+1aat+1)+wshw¢s (at|sit1), for m=s
O, \St+ o, (84415 at41) + (Wz — we)hr,_(ai]siy ), for m =z

and 6, is the parameters of a target soft Q-function obtained as an exponentially moving average of
the soft Q-function parameters. After obtaining the parameterized soft Q-functions, the parameter-
ized policies and temperatures are updated sequentially.

These updates are summarized in Algorithm 1. The soft Q-functions and policies are updated in the
same manner with SAC [25]. As SAC uses two soft Q-functions to mitigate positive bias in a policy
improvement, we also use two soft Q-functions for each policy. For the simplicity of Algorithm 1,
we omit a detailed description of the two soft Q-functions for each policy.

S Experiments

In order to validate our method, we implement a robotic manipulation task, Pick-and-Lift, modified
from that of RLBench [26], where the task environment consists of a single UR3 arm with 6 DoF
including the two-finger gripper, a cube object on a table, and a target position. We design the
reward of Pick-and-Lift as the sum of dense and sparse rewards, in detail the rewards for reaching
and moving sub-tasks are given by dense terms of distances among the robot’s gripper, the cube
and the target position, and the rewards for grasping is given by sparse terms of the binary signal
according to whether or not to succeed in grasping.’

Details of Pick-and-Lift are described in Appendix D.
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Figure 2: Training curves for Pick-and-Lift according to the number of episodes. In our experiments,
the performance is measured by learning from scratch without any pre-trained models.

To demonstrate our method, we evaluate EBE-AC compared to SAC [25] and DIAYN [21], state-of-
the-art methods in the field of stochastic policy based on deep RL. In addition, we evaluate EBE-AC
with DIAYN to show effects of our method combining with latent information used in DIAYN.

5.1 Policy evaluation

We evaluate EBE-AC(¢) and EBE-AC(¢) combined with DIAYN, where € is the probability defined
in Equation (5).° Figure 2 represents training curves for episode rewards and success rates. In Figure
2a, a range of the episode reward in y-axis is roughly divided into three cases as follows:

* Range 1. (episode reward < 0): The robot tries to reach the cube.
* Range 2. (0 < episode reward < 100): The robot tries to grasp the cube.
* Range 3. (100 < episode reward): The robot tries to move the cube to the target position.

Compared with SAC and DIAYN, EBE-AC methods reach Range 2 faster than the other methods.
SAC can not reach Range 3 and it means that SAC are stuck in local optimums Range 2 during
training. EBE-AC(0.1) and EBE-AC(0.2) with DIAYN methods reach Range 3 faster than DIAYN.
Especially, EBE-AC(0.2) with DIAYN is noticeably faster than DIAYN. ’

In Figure 2b which represents the success rate, it is also observed that only the methods reaching
Range 3 have meaningful success rates. EBE-AC(0.2) with DIAYN outperforms the other methods
and EBE-AC(0.1) has better success rates than DIAYN. Since EBE-AC is composed of the policy
with exploration entropy and the policy with bounded exploration entropy, it can be seen as the
combination of SAC’s policy and the proposed policy with bounded exploration entropy, where the
policies are linked by the temperature optimization. Through the composition characteristics of
EBE-AC and experimental results for the fast convergences, therefore, it is shown that our method
is able to help the prior works in terms of the sample efficiency.

5.2 Temperature Comparison

Figure 3 represents an analysis for temperatures according to the number of episodes,® where the
temperatures of SAC and DIAYN are optimized in the same manner with SAC [25].

As shown in Figure 3, temperatures of all the methods decrease rapidly at the beginning of learning.
The degradation of temperatures affects to reducing the proportion of entropy in a soft value function

SEmpirically, we could gain the best performance for EBE-AC methods with the values ¢ = 0.1 and 0.2
for EBE-AC and EBE-AC with DIAYN, respectively. Results for various e are described in Appendix D.5.

"Details of the episode rewards are described in Appendix D.6.

8For readability of Figure 3, we omit EBE-AC(0.2) with DIAYN because EBE-AC(0.1) is enough to explain
the temperatures.
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Figure 3: Compared to SAC and DIAYN, EBE-AC(0.1) utilizes the temperatures more dynamic
than SAC and DIAYN.

which is a sum of soft Q-function and entropy. It means that the learning takes into account expected
returns approximated by the soft Q-function more importantly.

The value of w, is always higher than that of w; and it leads to the value (w, — w;) to be positive.
Thus, the entropy term in Equation (11) affects 7, to maintain exploratory. In addition, it is observed
that w, in Equation (10) is higher than (w, — ws). It means that 7, is affected from the entropy
and pursues more exploration than m,. The temperatures of EBE-AC(0.1) increase rapidly at about
3000 and 8000 in x-axis, which is consistent with the increase of episode reward in Figure 2a. This
feature is also observed for DIAYN at about 5000 and 10000 in x-axis. Therefore, EBE-AC(0.1)
considers weighted entropies more than SAC and DIAYN, and is more exploratory than SAC and
DIAYN. For this reason, EBE-AC(0.1) has better sample efficiency than SAC and DIAYN.

6 Conclusion

In this paper, we proposed exploration-bounded exploration actor-critic (EBE-AC), a novel deep RL
algorithm that can optimize a stochastic policy through the use of heuristic information. The heuris-
tic information includes interpretable human knowledge related to physical relationships between a
robot and objects, which can be reused in various learning tasks. In a robotic manipulation task, we
demonstrated that the proposed algorithm outperformed state-of-the-art off-policy actor-critic deep
RL algorithms, such as SAC and DIAYN, in terms of sample efficiency. In addition, we extended
the algorithm by means of latent information as DIAYN such that the extended algorithm can further
improve sample efficiency and robustness.
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