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ABSTRACT

The context of modern smart voice assistants are often multi-modal, where im-
ages, audio and video content are consumed by users simultaneously. In such a
setup, co-reference resolution is especially challenging, and runs across modalities
and dialogue turns. We explore the problem of multi-modal co-reference resolu-
tion in multi-turn dialogues and quantify the performance of multi-modal LLMs
on a specially curated dataset of long, image-interleaved conversations between a
voice assistant and a human for a shopping use case. We propose and evaluate a
custom architecture for multi-modal embedding alignment using a novel parame-
ter augmentation technique. Our proposed Parameter Augmented LLM approach
shows a 4.9% absolute F1 improvement above a baseline while reducing the num-
ber of parameters being trained by 13.3% for a complex co-referencinging task on
a multi-turn shopping dataset.

1 INTRODUCTION

Large Language Models’ (LLMs) success on text-only language tasks have been naturally followed
by the question of whether they can generalize well to multi-modal tasks. To this end, several adap-
tation approaches have been proposed in the literature and tested on multi-modal tasks such as Image
Captioning, Visual Question Answering (VQA), Image Selection, Image Instruction Following etc.
Such tasks have a logical separation between image & text sequences, and the image-text input
appears in a non-interleaved manner.

Compared to tasks such as VQA, there has been fewer work on multi-modal co-reference resolu-
tion in multi-turn dialogues that have interleaved images and text. Furthermore, most multi-modal
dialogue datasets are based on one or two images, so most recent related work has been limited to
this setup (Zang et al., 2021; Kottur et al., 2021). In this work, we go beyond this and leverage a
multi-modal dataset with long dialogues ranging between 5 - 66 utterances that also has multiple
images that are heavily co-referenced.

We propose a novel and efficient technique to convert a uni-modal LLM to a multi-modal one and
test it on image selection and image retrieval tasks in a conversational setting. A sample dialogue
is shown in Figure 1, where we color code the complex co-references that happen in the multi-turn
dialog to give a sense of the difficulty of the task. Our approach tackles the co-reference problem
across modalities by preserving the interleaved nature of multi-modal sequences and at the same
time embedding text and images in a common space.

To quantify the performance of our proposal, we use an image selection task and an image retrieval
task that occur within a multi-turn conversation as proxy for co-reference resolution. The image
selection task involves a user making a visual attribute based referring utterance to select a spe-
cific image among many images on display (e.g., ”select the red dress with orange stripes”). Here,
we generate the position of the image that best suites a criterion using the Multi-Modal Context
Carryover (MMCC) dataset (Wanigasekara et al., 2022; 2023). For image retrieval, we determine
the images that are relevant at the final turn of a multi-modal multi-turn dialogue after curating the
Multi-Modal Domain-Aware dataset (Saha et al., 2018) as depicted in Figure 1.
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Figure 1: An example of a multi-turn dialogue with multi-modal co-referencing. The co-references
are color coded and shown by arrows.

The summary of our contributions is as follows: (1) We propose and evaluate a parameter aug-
mentation technique for transformer architectures and demonstrate a use case in adapting LLMs for
multi-modal contexts. (2) We propose a novel approach for embedding alignment that preserves the
spatial attributes of multi-modal interleaved data during processing. (3) We propose a cross modal-
ity normalization that is based on the Root Mean Square Layer Normalization (Zhang & Sennrich,
2019).

Our approach demonstrates an improvement over the best baseline (Accuracy=+1.19%, F1=+4.9%)
as seen in Table 3 for the image retrieval task, implying better multi-modal co-reference resolution.

2 RELATED WORK

There have been several elaborate image-text models over the years, such as CLIP (Radford et al.,
2021) and BLIP models (Li et al., 2022; 2023). These separately train image and text encoders then
train a text decoder to generate text conditioned on both the image and the text. This is achieved
through some form of embedding alignment technique, e.g., CLIP (Radford et al., 2021) uses con-
trastive learning, BLIP (Li et al., 2022) uses cross attention while BLIP-2 (Li et al., 2023) uses a
querying transformer.

Such models have been limited by the scale of available multi-modal data, which is far less than the
currently available uni-modal data. To bridge this gap, large multi-modal datasets such as LAION
(Schuhmann et al., 2022) have been proposed, but these are still significantly less than uni-modal
datasets. For example LAION provides 2B English image-caption pairs but LLMs (Touvron et al.,
2023a;b) are trained on trillions of text tokens. This has prompted the community to explore more
on embedding alignment techniques, and so bring the best of Vision Models (VMs) and language
models (LLMs) together to solve multi-modal problems. As demonstrated by MACAW (Lyu et al.,
2023) and AnyMal (Moon et al., 2023), these same techniques generalize beyond image and text to
audio, IMU sensor data and other modalities of data (Driess et al., 2023).

2.1 MULTI-MODAL ALIGNMENT APPROACHES

Image-text Alignment can be classified as either natural language alignment or embedding align-
ment. Natural language alignment between vision and language foundation models consists of first
representing the vision input as text using an image-text model (such as CLIP, BLIP, and BLIP-2)
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then processing the unified text using a language model (Guo et al., 2023; Wu et al., 2023). This has
shown to have zero-shot capabilities, but can be limited because of its discrete nature. To overcome
this, Visual ChatGPT (Wu et al., 2023) combines 22 vision foundation models for different vision
tasks and a prompt manager that determines how the vision foundation models are used, a complex
and resource-intensive setup.

Embedding alignment employs neural approaches to translate the embeddings of the vision founda-
tion model to the embedding space of the language model. This approach can be robust, but does
not have zero-shot capabilities unless pretrained on a multi-modal dataset first. To achieve such an
alignment, Flamingo models (Alayrac et al., 2022; Awadalla et al., 2023) use a cross attention and
contrastive learning objective, achieving state-of-the-art performance in several multi-modal tasks.
Mini-GPT4 (Zhu et al., 2023) uses the querying transformer previously introduced in BLIP-2 (Li
et al., 2023). Alternatively, one can use convolution and linear layer (Koh et al., 2023a; Lyu et al.,
2023) with or without a separate modality encoder (Lyu et al., 2023; Moon et al., 2023; Koh et al.,
2023b).

There are currently closed-source pipelines (OpenAI, 2023; Yang et al., 2023) that perform a similar
multi-modal co-reference resolution task as ours. Given that they are closed-source and have the
possibility of being a multi-modal mixture of experts setup, we do not directly compare them with
our work.

2.2 MULTI-MODAL CO-REFERENCE RESOLUTION

To resolve the co-references in scene understanding multi-modal context, (Lee et al., 2022) proposes
a binary classifier head on top of a transformer that predicts whether a current utterance mentions
an object. To avoid a separate module for co-referencing, SHIKRA (Chen et al., 2023) instead
uses numerical and language representation to point to specific parts of a scene, and this is infused
in the text. A more systematic approach is to use a graph to relate visual and text entities (Guo
et al., 2022). We instead choose to leverage LLM attention layers to learn multi-modal co-reference
resolution because it will generalize over more contexts.

3 OUR APPROACH

3.1 MOTIVATION

In the techniques discussed previously (Alayrac et al., 2022; Awadalla et al., 2023; Zhu et al., 2023;
Lyu et al., 2023; Koh et al., 2023a) there is a logical separation of input from the different modalities,
even though the model may accept interleaved multi-modal input. For instance, cross attention
uses one modality as attention query and another modality as attention key whereas the querying
transformer learns queries from one modality then feeds it through self and cross attention layers
to the other modality. We argue that such a logical separation, though sufficient for types of tasks
where modalities are separate e.g. VQA, Image Captioning etc., is suboptimal for a multi-modal
co-reference resolution. This is in line with findings from (Koh et al., 2023b) who observed poor
performance when performing image retrieval task over multiple co-referenced images. We test out
this hypothesis with OpenFlamingo (Awadalla et al., 2023) and our proposed Parameter Augmented
LLM approach, which preserves the sequence of the multi-modal information during processing.

3.2 PROBLEM FORMULATION

In our setup, a multi-modal dialogue D := {(Ui, Si, Ii)}si=1 contains s turns, each of them com-
posed of a user textual utterance Ui, the system answer Si, and the images Ii.

Due to the nature of the chosen datasets (i.e. shopping context), at each turn, the images Ii are
interleaved within the system utterance, while the user utterance is fully uni-modal. Note however
that both the user and the system can reference textual or image entities from past turns, requiring
multi-modal co-reference resolution. An example of such an interaction is shown in Figure 1.

In what follows, we refer to token and image embeddings as xt and xv . Our approach relies on aug-
menting a pre-trained LLM hθ(x

t) with frozen parameters θ and hidden dimension dllm. We denote
their augmented counterparts with a hat superscript: the augmented LLM is noted hθ,θ̂(x

t), with
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Figure 2: LLM-Agnostic Architecture for Parameter Augmentation. Boxes with t and v refers to
text and image embeddings, respectively. We optimize the linear layer, cross RMS normalization
module, and the augmented parameters, the rest of the LLM remains frozen. The Multi-Modal In-
terleaver looks up the position of the images in the input sequence and inserts the image embeddings
in their respective positions.

the set of additional parameters θ̂ and the final augmented hidden dimension d̂llm. The difference
∆d̂ = d̂llm − dllm > 0 measures the amount of parameters augmentation.

3.3 ARCHITECTURE

3.3.1 PROMPTING

To aid the LLM to perform multi-modal co-referencing, we introduce special tokens to delineate the
beginning and end of dialogues, as well as the beginning and end of images. We also introduce a
special token (< im >) to mark the positions of images in the text. This will then be used by the
Multi-Modal Interleaver shown in Figure 2 to insert the image embeddings into the text embeddings
at the same position the image was in the input, i.e, fusing the special token embeddings with the
respective image embeddings.

<dialogue>
...
<image><im></image>
...

</dialogue>

3.3.2 LINEAR LAYER

Image embeddings are obtained from a frozen image encoder vϕ that maps the collection of p images
to vectors xvm ∈ Rp×dvm (e.g., CLIP (Radford et al., 2021)). These visual embeddings need to be
aligned with text embeddings coming from the LLM hθ(x

t) ∈ Rdllm (which also includes the
placeholder < im > tokens).
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To achieve this, we simply apply a linear transformation by multipling with Wl ∈ Rdvm×dllm similar
to (Lyu et al., 2023; Koh et al., 2023b):

xv = WT
l xvm , xv ∈ Rp×dllm (1)

3.3.3 CROSS-MODALITY NORMALIZATION

Previous works have demonstrated neural architectures to be especially sensitive to the statistics of
their activations, exemplified by popular layer normalization blocks such as LayerNorm or RMS
(Zhang & Sennrich, 2019) used in LLM architectures. As we wish to fuse the image embeddings
xv onto LLM token representations xt, we compute the magnitude of xt, averaged across the in-
terleaved sequence, and use them to rescale xv component-wise. More precisely, considering a
sequence of n textual embeddings xt ∈ Rn×dllm :

σt =

√
1

dllm × n

∑
i,j

(
xt
ij − µ(xt)

)2
(2)

xv ← xv/σt (3)

with 0 < i < n indexing the tokens sequence, 0 < j < dllm indexing the features and µ(·) the
mean over both sequence and feature dimensions.

3.3.4 MULTI-MODAL INTERLEAVER

The role of the Multi-Modal Interleaver (shown in Figure 2, right-hand side) is to preserve the
integrity of the sequence of multi-modal input. Since the images are separated from the text so that
they can be processed by the image encoder, it is possible to lose the original order of the multi-
modal input. Recent works (Lyu et al., 2023) concatenate the multi-modal aligned embeddings, but
this changes the sequence of the inputs that will be processed by the model. We replace the removed
images with the special token < im > which marks the position of the images. These special tokens
will be replaced with cross-modalities normalized embeddings by the Multi-Modal Interleaver.

Figure 3:
LEFT: Multi-modal Attention has the advantage of implying both self and cross attention using the
same parameters, while preserving the original order of the interleaved image-text sequence.
RIGHT: LLM parameters are depicted with the ice icon, showing they are frozen. The Parameter
Augmented LLM weights are obtained by concatenating the frozen weights of the LLM and the
augmented parameters.

We fuse the embeddings of the special token < im > with the respective aligned image embeddings
by a simple elementwise addition operation. The resulting multi-modal embeddings are then passed
on to the rest of the LLM Layers as interleaved text and image embeddings as seen in Figure 2.
This has the advantage of performing the essential cross attention operation as shown in Figure 3a
without the use of a separate module. It also preserves the distances between tokens and images in
the dialogue, which is likely helpful for co-reference resolution.
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3.3.5 PARAMETER AUGMENTATION

LLMs have been shown to exhibit the catastrophic forgetting phenomena after being fine-tuned on
data with a different underlying distribution (Zhai et al., 2023). A straightforward mitigation is to
freeze the LLM (Zhai et al., 2023). This is the foundation principle behind Parameter Augmenta-
tion i.e., we freeze the uni-modal LLM parameters θ and introduce separate parameters θ̂ to map
separate modalities together as seen in Figures 2 and 3b. We argue that this preserves the robust-
ness of LLMs, allowing the transfer of their high-quality representations to other modalities. To
upcycle the LLM hθ(·) to hθ,θ̂(·), we augment the modules at each layer by extending the hidden
dimension dllm through concatenation of additional weights: for each existing LLM weight matrix
Wllm ∈ Rr×dllm , we create Ŵllm = (Wllm|Waug), with trainable weights where Waug ∈ Rr×∆d̂.
All subsequent operations (attention, normalization, feed forward) are therefore between inputs and
augmented weights Ŵllm. We demonstrate that even a small increase ∆d̂ along the hidden dimen-
sion is sufficient for the augmented LLM to learn complex relationships such as those in Figure 1.
By only optimizing Waug (and freezing Wllm), our approach reaps computation and memory bene-
fits. As a comparison, the baseline (Awadalla et al., 2023) increases the LLM parameters by 18.7%
while our approach increases it by 5.3%.

After the multi-model interleaver, the sequence of n fused image and token vectors x ∈ Rn×dllm are
still of the dimension of the original LLM dllm. To map them to x̂ ∈ Rn×d̂llm , we add an additional
linear adapter Wc ∈ Rdllm×∆d̂:

x̂ = (x|xWc) , x̂ ∈ Rn×d̂llm (4)

By concatenating the augmented dimensions with the original embedding themselves, we hope to
keep intact the spatial information encoded in pre-trained LLM embeddings (also see illustration in
Figure 3b).

We can now optimize the negative log likelihood Lθ̂ of the augmented LLM, with respect to θ̂. Ele-
ment xi at any position i below can be either image or text, their order determined by the interleaved
sequence:

Lθ̂ = − 1

B

B∑
j=0

n∑
i=1

log
(
hθ,θ̂(xi|x0, · · · , xi−1)

)
(5)

with j indexing the dataset of size B.

4 EXPERIMENT SET UP

We experiment on an image selection (Wanigasekara et al., 2022; 2023) and a specially curated im-
age retrieval dataset adapted from (Saha et al., 2018). We measure performance for image selection
using accuracy while we use classification metrics (accuracy, precision, recall, F1) for the image
retrieval task. For both datasets, we fine-tuned the models for only 1 epoch.

4.1 DATASETS

Table 3 shows the statistics of the curated MMDA dataset. The average number of tokens after
prompting is 717.5(±413.6), 713.7(±416.9) and 707.9(±409.2) for the train, validation and test
sets respectively. The average number of images per dialogue is approximately 32(±20) for all data
splits. The average number of utterances per dialogue is approximately 13(±7) for all data splits.
The ratio of positive to negatively (P:N) annotated images at the final utterance is 1 : 6 for all data
splits. A image is considered positive if it is relevant to the user’s query that involves co-reference
resolution.

The Multi-Modal Context Carryover (MMCC) dataset (Wanigasekara et al., 2022; 2023) is similar
to datasets used in VQA and Image Captioning i.e. images can be logically separated from text.
The Multi-Modal Domain Aware (MMDA) (Saha et al., 2018) contains an average of 32 images per
dialogue, logically separating the images from text can impede performance. Also, in the MMDA
dataset multiple images can be correct while in the MMCC dataset, there is only one correct image.
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Train Valid Test
# Dialogues 38,843 8,373 8,478
Avg # Tokens 717.5 713.7 707.9
Avg # Images 32.2 32.2 31.9
Avg # Utterances 13.3 13.1 13.1
Ratio P:N 1:6 1:6 1:6

Table 1: Dataset Statistics for the curated MMDA dataset. The ratio P:N is the ratio of the positively
annotated images against negatively annotated images at the terminal utterance. A label is consid-
ered positive if it is relevant to the user’s query that involves co-reference resolution.

The Image Selection task is performed on the Multi-Modal Context Carryover (MMCC) dataset
(Wanigasekara et al., 2022; 2023). This dataset has 33k entries containing 3 product images, their
descriptions and a selection criteria. Given the list of products images, product descriptions and
selection criteria, the task is to select the product which has the highest probability to match the
criteria. We model this as a generation rather than a classification task, where the LLM generates
the index of the product image. We prompt this as shown below for both OpenFlamingo (Awadalla
et al., 2023) and the Parameter Augmented LLM approach:

Image <position><image><im><image>
<description>
Action: Given the list of images,
determine the position of the image
that satisfies the criteria
Criteria: <criteria>
Position: <MASK>

The Image Retrieval task is performed on the Multi-Modal Domain-Aware (MMDA) (Saha et al.,
2018) dataset. We require that contexts have at least 1 multi-modal utterance and that the last
utterance (where inference happens) have both positive and negative labelled data. We discard all
dialogues that do not meet this criteria. During inference, we shuffle the list of positive and negative
images and predict whether each one belongs to the last utterance or not.

User: ...
System: ...
Question: Is <image><im></image>
a good match?
Answer: <MASK>
...

4.2 PRETRAINED VISION ENCODERS AND MULTI-MODAL LLMS

Pretrained vision encoders: We are able to directly use pretrained vision encoders like CLIP and
BLIP as simple baselines for the image selection task in a zero-shot manner. We extract product
image and product description text embeddings separately. The image with the highest cosine sim-
ilarity with the textual referring utterance is chosen as the selected image. For the image retrieval
task in a dialogue setting, the dialogue contexts are too long for the direct use of CLIP and BLIP
encoders (717± 410 tokens) so we use OpenFlamingo as our baseline.

Pretrained multi-modal LLMs: OpenFlamingo (Awadalla et al., 2023) is the publicly available
version of the Flamingo (Alayrac et al., 2022) LLM. The 9B variant of OpenFlamingo is made up
of a 7B MPT LLM (Team, 2023) with CLIP as the image encoder. It is pretrained on the LAION
multi-modal dataset and so has some zero-shot capabilities. In the image selection task, we prompt
the model to generate the index of the relevant image. In the image retrieval task, we prompt the
model to generate Y es/No for each image in the candidate solution pool.
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Figure 4: Ablation results of Parameter-Augmented LLM on image selection task, showing accuracy
as a function of ∆d̂.

4.3 AUGMENTED LLM

The parameter augmentation technique we propose is LLM-agnostic. In our experiments, we use
the Open LLaMA (Touvron et al., 2023a) 7B version 1 from huggingface repository and make the
parameter augmentation changes. This model has a hidden dimension size of 4096, we explore
augmentations ranging from ∆d̂ = 0 to ∆d̂ = 256.

We prompt our Parameter Augmented LLaMA in a similar fashion as OpenFlamingo and perform
ablation experiments for both image selection and retrieval tasks, treating ∆d̂ as a hyperparameter.
Our Parameter Augmented LLaMA model is at a disadvantage when compared to the OpenFlamingo
model because the OpenFlamingo model has been further fine-tuned on multi-modal tasks using 2B
image-text pairs from the LAION (Schuhmann et al., 2022) dataset. Thus, our Parameter Augmented
LLaMA model does not have as good zero-shot or in-context learning capabilities as OpenFlamingo.

5 RESULTS

The multi-modal multi-turn setting adds complexity to the co-referencing problem since each user
utterance can reference any system utterance in the previous turns as seen in appendix Figures 5 and
6. The dialogues are also long for the MMDA dataset, i.e. average of 717 tokens compared to an
average of 82 tokens for the MMCC dataset. In this paper, we use image retrieval metrics as a proxy
to measure multi-modal co-referencing.

5.1 IMAGE SELECTION RESULTS

Figure 4 shows ablation experiment results on the image selection dataset (Wanigasekara et al., 2022;
2023). The “linear layer” only includes the linear module shown in Figure 2 and the “linear layer &
norm” has the linear module and the cross RMS norm module. We sweep the hyperparameter ∆d̂
from 0 to 256 where 0 indicates no augmentation. We observe parameter augmentation range 8−64
to be the best setting for both “linear layer” and “linear layer & norm”.

Table 2 shows the results using different family of models on an image selection dataset. We ob-
tained the LSTM results from previous SOTA (Wanigasekara et al., 2022) for the image selection
task. For the image encoders, we observe that CLIP (Radford et al., 2021) has better performance
compared to BLIP (Li et al., 2022). Prompting and fine-tuning OpenFlamingo resulted in the best
performance overall. Parameter Augmented LLaMA with ∆d̂ = 32 performed better than Open-
Flamingo in zero-shot but was outperformed in in-context and fine-tuned settings. OpenFlamingo
(Awadalla et al., 2023) was pretrained on 2B image-text pairs from LAION (Schuhmann et al.,
2022) so the comparison is not fair but this still illustrates how a uni-modal LLM such as LLaMA
can transfer its capabilities to the multi-modal setting through parameters augmentation.
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Model Set Up Accuracy
BLIP zero-shot 44.17%
CLIP zero-shot 77.40%
LSTM + CLIP Fine-Tuning 84.84%
LSTM + ALBEF Fine-Tuning 86.17%

OpenFlamingo
zero-shot 32.40%
In Context 38.48%
Fine-Tuning 90.12%

Parameter
Augmented
LLaMA ∆d̂ = 32

zero-shot 34.51%
In Context 34.92%
Fine-Tuning 85.95%

Table 2: Showing results of image-text models, ensemble, OpenFlamingo and Parameter-
Augmented LLM on image selection task. LSTM results are from previous state of the art (Wani-
gasekara et al., 2022)

.

Model Experiment Set Up Accuracy Precision Recall F1

OpenFlamingo
zero-shot 35.67% 0.3472 0.9635 0.4621
In-Context 36.14% 0.3486 0.9651 0.4648
Fine-Tuning 76.70% 0.6953 0.8235 0.7240

Parameter Augmented
LLaMA Fine-Tuning

∆d̂ = 0 66.77% 0.5583 0.8334 0.5995
Norm & ∆d̂ = 0 46.40% 0.3950 0.9279 0.4915
∆d̂ = 64 77.89% 0.7118 0.9334 0.7727
Norm & ∆d̂ = 64 70.93% 0.6519 0.9096 0.7135
∆d̂ = 128 77.84% 0.6702 0.6510 0.6228
Norm & ∆d̂ = 128 70.64% 0.4846 0.3058 0.3438
∆d̂ = 256 78.73% 0.6373 0.5090 0.5323
Norm & ∆d̂ = 256 79.05% 0.6595 0.8437 0.7122

Table 3: Showing results of a OpenFlamingo and our Parameter-Augmented LLM for image re-
trieval task applied on the MMDA dataset.

5.2 IMAGE RETRIEVAL RESULTS

In Table 3, we show the performance of multi-modal LLMs on the image retrieval dataset. We
observe poor zero-shot and in-context performance for both datasets (Tables 2, 3) using Open
Flamingo, highlighting the difference between our datasets and image-text datasets which are used
in pretraining. After fine-tuning, the Parameter Augmented LLaMA (∆d̂ = 64) outperforms fine-
tuned OpenFlamingo for precision (+0.016), recall (+0.1099) and F1 (+0.0487) while ∆d̂ = 256
with Cross Normalization has +2.35% better accuracy (Table 3).

6 CONCLUSION

By crossing both dialog turns and modalities, multi-modal co-reference resolution presents notorious
challenges. In this paper, we explore the possibility to leverage existing pre-trained LLM capabilities
and offer a simple and robust parameter augmentation technique that does not require additional
multi-modal pre-training tasks. We demonstrate competitive results in image selection and best
results in the image retrieval dataset compared to a baseline pre-trained on billions of multi-modal
examples. This opens up the possibility to leverage the flurry of recently released open-source
models, both by the NLP and vision communities, to improve upon multi-modal setups.
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A APPENDIX

Figure 5 and 6 show sample result of Parameter Augmented LLaMA on the image retrieval MMDA
dataset with F1 score of 1.0 and 0.8 respectively. A red box around an image refers to a negatively
labelled image while a green box refers to a positively labelled image. The yellow box refers to the
image the user is currently using as an example. The models then predict Y es/No given a list of
images.

Our approach is able to differentiate between styles of similar images as we show in the appendix
Figure 5 where the candidate products are both sandles but different styles, this is more granular
than differentiating unrelated objects e.g., sandles vs chair. In Figure 6, we see similar capabilities
over more utterances. We attribute the false negative result (prediction No but the box is green) in
Figure 6 as a mis-annotation because the shoe is not similar to co-referenced shoe (shoe with yellow
border) and is not made of strap material nor a high top as specified by user utterance.

In the OpenFlamingo architecture, 1.3B of the 9B parameters are optimized, this accounts for 18.6%
with respect to its uni-modal LLM (7B). In the parameter augmented setting with ∆d̂ = 64, we
optimize 370M parameters (5.3% of uni-modal LLM) which is a more resource efficient setup.
Thus, our model optimizes 13.3% fewer parameters with respect to the uni-modal LLM (in both
cases, the uni-modal LLM is 7B).

With only one epoch of fine-tuning, our Parameter Augmented LLM approach, which was not ini-
tially pre-trained on a multi-modal dataset, was able to achieve competitive results compared to
OpenFlamingo. This shows the possibility of transferring benefits of uni-modality to multi-modality
using parameter augmentation.

In the image selection results in Figure 4, we see a significant drop in performance for ∆d̂ =

128 and ∆d̂ = 256. This is because it introduces more than 1.5× more parameters compared
to the other augmentations. The image selection dataset is comparatively smaller and has a total
of approximately 3M tokens, and training on one epoch is insufficient for the higher number of
parameters. For image retrieval, the dataset is comparatively larger and has approximately 30M
tokens, and so we see steady performance improvements with higher augmentations.

The augmented LLM variant also resulted in the best performance for the image retrieval dataset,
exceeding that of a 1.2× model, trained on 20k× more data while optimizing 3.5× fewer parame-
ters. This is in line with our hypothesis - we reap more benefits from using parameter augmentation
when the co-reference task is difficult: we see more gains for the MMDA dataset than the MMCC
dataset where the co-reference is simpler.

For the image selection task based on Figure 4, for augmentation 128 and 256, the Cross Normaliza-
tion is vastly outperformed by the normalization ablation. Overall, variants with cross normalization
are outperformed by the variants without normalization. We observe a different trend for image re-
trieval in that the ∆d̂ = 256 augmented LLaMA, with normalization performing better than without
normalization, setting the best accuracy result (see Table 3). We conclude that the Cross Normaliza-
tion is more beneficial in high augmentation settings and in more complex task of image retrieval
(where co-referencing happens between multiple dialogue turns and multiple images).
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Figure 5: Sample Image Retrieval result for Parameter Augmented LLaMA on a dialogue with 5
utterances and 5 images before the final utterance. In this case, F1=1.0. The green box indicates that
the image is relevant, and the red box indicates that the image is not relevant to the user query.
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Figure 6: Sample Image Retrieval result for Parameter Augmented LLaMA on a dialogue with 16
utterances and 6 images before the final utterance. In this case, F1=0.8. The green box indicates that
the image is relevant, and the red box indicates that the image is not relevant to the user query. The
orange dotted box refers to the image the user is currently using as an example.
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