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ABSTRACT

Speech-driven 3D facial animation has attracted significant attention due to its
wide range of applications in animation production and virtual reality. Recent
research has explored speech-emotion disentanglement to enhance facial expres-
sions rather than manually assigning emotions. However, this approach face issues
such as feature confusion, emotions weakening and mean-face. To address these
issues, we present EcoFace, a framework that (1) proposes a novel collaboration
objective to provide an explicit signal for emotion representation learning from
the speaker’s expressive movements and produced sounds, constructing an audio-
visual joint and coordinated emotion space that is independent of speech content.
(2) constructs a universal facial motion distribution space determined by speech
features and implement speaker-aware generation. Extensive experiments show
that our method achieves more generalized and emotionally realistic talking face
generation compared to previous methods 1 .

1 INTRODUCTION

Speech-driven 3D facial animation is an important and challenging problem that aims to generate
lip synchronization and facial expressions based on arbitrary speech signals, which has several ap-
plications such as games, movies and virtual reality. Over the past few years, research has advanced
from mapping speech to lip movements Cudeiro et al. (2019) to include details of facial movements
Fan et al. (2022); Xing et al. (2023). However, emotional information is often subtle compared to
speech content information, leading the model to focus excessively on changes in lip movements
but weakly on emotional details. Recently, several studies have attempted to explicitly construct
emotional features of speech, where a separate representation of speech content and emotion allows
the model to focus on learning specific types of features and reduce mutual interference between
them.

Manually assigning emotions is an emotion construction method used in early research, which
constructs an independent expression space by encoding specified emotional features. MeshTalk
(Richard et al., 2021) uses the video of the target emotion as the specified feature and EMOTE
(Daněček et al., 2023) uses emotion labels and intensity labels as the specified feature. These meth-
ods allow for the construction of an emotional space that is independent of the speech content,
making the generation of emotional talking faces directional. However, this is difficult to apply in
automatic generation scenarios due to the need for manual input. More recently, EmoTalk (Peng
et al., 2023b) employs a disentanglement of speech content from emotion, allowing the model to
extract content features and emotion features from speech without manual labeling. Specifically,
it exchanges emotion embeddings of two speech segments with different contents and emotions
during training, separating the emotion space from the content space. However, the lack of clear
supervisory signals of content and emotion is prone to the feature confusion problem, where the
same driving result may occur for different emotional speech with the same content. Furthermore,
due to the varying intensities of emotions and the different ways in which emotions are expressed in
individual faces, the method suffers from emotion weakening and mean-face problems. To sum-
marize, the research of speech emotion-content disentanglement is under-explored and challenged

1Video samples and source code are available at https://ecoface1.github.io/
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with feature confusion due to the interaction of speech content and emotional information, emotion
weakening due to differences in emotion intensity, and mean-face due to differences in the speaker’s
style of emotional expression.

To address the above problems, we propose EcoFace, a framework that distills joint and coordinated
audio-visual emotional features and enables personalized face generation. For the feature confusion
and emotion weakening problem, we aim to provide explicit signals for the representation of emo-
tional motions and emotion differentiation. Specifically, we design an audio-visual loss to supervise
the discrepancy between emotional information captured by the emotional disentanglement encoder
from facial motion and the audio stream, promoting synergy between audio-visual emotion features
while mitigating interference from speech content. Additionally, we construct a contrastive-triplet
loss to provide a discriminatory signal for different types and intensities of emotion features, facil-
itating the construction of a well-differentiated emotion space. As for the mean-face problem, we
construct emotional motion generator (EMG), a module that first maps speech features with different
contents and emotions into a low-dimensional continuous distribution space representing universal
facial movement patterns, and then the speaker-aware decoder generates stylized facial action results
based on stylistic encoding. Using a low-dimensional distribution space as an input to the decoder
not only maintains the fixed regularity of facial action generation, but also amplifies the stylistic
information, enabling the capture and generation of different styles of action details. Moreover, as
well-supervised signal facilitates feature disentanglement (Ding et al., 2020), we pre-trained a lip-
sync discrimination expert and constructed a visual emotion loss using emotional disentanglement
encoder.

In summary, the main contributions of our work are as follows: (1) We propose an audio-visual
emotional co-disentanglement method that uses explicit supervisory signals to construct an audio-
visual joint and coordinated emotion space independent of speech content. (2) We implemented a
mapping of emotional speech to a low-dimensional distribution space of universal facial movement
and designed an emotional motion generator for stylized talking face generation. (3) Experiments
show that our EcoFace outperforms other state-of-the-art baselines from the perspective of expres-
sion quality and lip synchronization metrics.

2 RELATED WORK

Speech-Driven 3D Facial Animation Speech-driven 3D facial animation is a task to generate
realistic facial animations based on speech. Early research in this domain primarily focused on
mapping-based approaches, including capturing the relationship between visual and face action units
(FAUs) (Ekman & Friesen, 1978) and building phoneme-viseme mapping relationships (Taylor et al.,
2012; Xu et al., 2013; Edwards et al., 2016). However, all these methods require a lot of time and
manpower to construct matching relationships and are difficult to generalize to new persons.

In contrast, deep-learning-based approaches have emerged as a more scalable solution, allowing
models to automatically learn motion patterns from data to generate 3D facial animations. VOCA
(Cudeiro et al., 2019) proposes a temporal convolutional neural network that takes speech and a
silent 3D mesh template as input to generate realistic animations. FaceFormer (Fan et al., 2022)
focuses on the long temporal sequences and successfully uses a transformer decoder (Vaswani, 2017)
to obtain content information to generate sequential mesh sequences. CodeTalker (Xing et al., 2023)
introduces VQ-VAE (Van Den Oord et al., 2017) to learn discrete motion priors to capture the
speaker’s movement characteristics and solve the overly smooth facial motions problem. SelfTalk
(Peng et al., 2023a) further enhances generation quality through the introduction of a consistency
loss. All these approaches, however, neglect the interplay between speech-driven emotions and
corresponding facial expressions.

Emotional 3D Face Animation Recent studies have underscored the critical role of emotion in
creating realistic and expressive 3D facial animations by integrating emotional information. Specifi-
cally, MeshTalk (Richard et al., 2021) extracts emotional action potential space from the target video
to synthesize emotionally detailed actions such as eyebrow movements. EMOTE (Daněček et al.,
2023) employs one-hot labels to control emotion, producing emotional facial motions through an
emotion-content disentanglement loss. However, these methods require explicit control, lacking a
direct connection to the emotion conveyed in the actual speech. Addressing this issue, EmoTalk
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(Peng et al., 2023b) disentangles speech emotion from content to generate emotional blend shapes
based solely on audio input. However, EmoTalk’s disentanglement process lacks a clear supervisory
signal, leading to the problem of feature confusion. And it still needs to specify the intensity of the
emotion explicitly to avoid emotion weakening. Unitalker (Fan et al., 2024), through a multi-head
architecture that effectively leverages multiple datasets with different annotations to improve the
model’s generalization over emotion and synchronization. However, its mapping of speech emotion
and content to the same coding space leads to the problem of weak and erroneous emotions.

In this paper, we focus on disentangling the emotion of speech from the content and reducing the
confusion between speech emotion and content through the synergy of audio-visual emotional fea-
tures. We also construct a low-dimensional facial action distribution space and implement style-
guided 3D speaking face generation.

3 METHOD

Our method aims to achieve realistic and emotional 3D talking face generation driven solely by
speech. Our approach employs the parametric FLAME model (Li et al., 2017) as the face represen-
tation and uses the pre-trained speech encoder Hubert (Hsu et al., 2021) to extract speech content
features (Sec. 3.1). As shown in Fig. 1, the overall framework consists of two main modules: (1)
Speech and video emotional disentanglement encoder (EDE), which use audio-visual co-contrastive
learning to achieve the extraction of emotional features in both modalities (Sec. 3.2). (2) Emo-
tional motion generator (EMG), which converts audio content features and emotion features into
speaker-aware FLAME parameter sequences for facial imitation control (Sec. 3.3).

3.1 FORMULATION

As shown in Fig. 1(a), the input of EcoFace consists of the speech sequence A1:t = (a1, ...,at),
where t is the time of audio, each a ∈ RD and D is the sample rate, and a speaking style vector
s ∈ Rn, where n is the number of speaking styles. Our model then disentangles and extracts the
emotion-related latent features E1:2T = (e1, ..., e2T ) and content-related latent features C1:2T =
(c1, ..., c2T ) from the speech sequence A1:t, where T is the number of frames, e ∈ R1024 and
c ∈ R1024, and combines them with the style vector s to generates a FLAME-based 3D facial
animation represented by a sequence of FLAME parameters F1:T = (f1, ...,fT ), where f ∈ R53 is
FLAME expression parameters Ψt ∈ R50 concatenated with jaw parameters θjawt ∈ R3:

ft =
[
Ψt,θ

jaw
t

]
. (1)

3D Face Representation Compared to predicting mesh vertices, we use the low-dimensional
FLAME (Li et al., 2017) parameter as an intermediate bridge for mesh driving, as the low-
dimensional data representation not only has a faster computational speed but also simplifies the
learning process. FLAME defines a mesh with N = 5, 023 vertices and K = 4 joints, whose ge-
ometry can be represented using parameters {β,ψ,θ}, where β ∈ R100 is the shape parameter,
ψ ∈ R50 is the expression parameter, and θ ∈ R3K+3 is the head pose parameter. Given a set of
FLAME parameters, the 3D face mesh can be obtained with:

M(β,θ,ψ) = W (TP (β,θ,ψ),J(β),θ,W) , (2)

where TP outputs vertices by combining blend shapes, the standard skinning function
W ( T,J,θ,W) rotates the vertices of T around joints J , and W performs linear smoothing. For
facial animation, we predict the expression parameters ψ and the jaw components within the pose
parameters θ.

Speech Content Representation Recently, self-supervised pre-trained speech models such as
Wav2Vec2.0 (Baevski et al., 2020) and Hubert (Hsu et al., 2021) have achieved good results in
content representation. Based on this, we utilize Hubert as our chosen speech content encoder for
facial animation generation, as Haque & Yumak (2023) has proven it superior to Wav2Vec2.0.

3
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Figure 1: Overview of the proposed EcoFace. Subfigure (a) depicts the disentanglement of emo-
tional and content features from audio, generating speaker-aware FLAME and rendering expressive
meshes. Subfigure (b) illustrates how features corresponding to different emotions move away from
each other in the feature space (left), while features representing different emotion intensities re-
main distinct within the same emotional space, and speech-video pair features are encouraged to be
as similar as possible. Subfigure (c) shows the structure of the emotional motion generator. Dashed
arrows indicate processes performed only during training, and only the dashed rectangle part is used
during inference.

3.2 AUDIO-VISUAL EMOTIONAL CO-DISENTANGLEMENT

Compared with content information, speech-emotional information is often represented by subtle
audio features, such as the level of intonation, speed of speech and volume. Therefore, encoding all
information into the same specialized space would introduce significant uncertainty into the network,
and the extraction of emotional information is disrupted by the content information. We employ the
audio-visual loss described below to facilitate synergistic representations of emotional motions in
speech and video, while contrastive-triplet loss is applied to provide clear separation signals for
establishing an emotional space independent of content.

Emotional Disentanglement Encoder To match the speech content feature dimensions, we adopt
Hubert’s network structure as our speech emotional disentanglement encoder. For the visual emo-
tional disentanglement encoder, since emotion is a gradual and continuous process, even in cases
where there is an emotion mismatch (such as at the beginning of speech), it should still be encoded
into the same emotion feature space to reduce emotional inconsistency in the generated results.
Therefore, similar to Shi et al. (2022), we use an adapted ResNet-18 to extract visual emotion fea-
tures at the time series level. Denoting visual feature extractor as Evisual, given a series of rendered
3D face images P1:T , this process can be defined as:

Evisual(P1:T ) → (v1, ...,v2T ),v ∈ R1024. (3)

Disentangled feature space construction The overview of the audio-visual emotion co-
disentanglement process is illustrated on the left side of Fig. 1(b) through the use of audio-visual co-
contrastive loss. Firstly, to spatially distance the features of different emotions as much as possible,
inspired by Khosla et al. (2020), we constructed emotion-supervised contrastive loss using ground

4
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truth emotion labels. Specifically, for a set of N randomly sampled audio-emotion-feature/label or
visual-emotion-feature/label pairs, {xk,yk}k=1...N , the corresponding batch used for training con-
sists of 2N pairs, {x̃l, ỹl}l=1...2N , where x̃2k is the same as xk (k = 1...N) and ỹ2k = yk. Let
i ∈ I ≡ {1...2N} be the index of an arbitrary augmented sample, and let j (i) be the index of other
augmented sample originating from the same source sample. The loss takes the following form:

Lcontrastive =
∑
i∈I

−1

|P (i)|
log

exp (zi · zp/τ)∑
a∈A(i)

exp (zi · za/τ)
, zi =

1

2T

2T∑
t=1

x̃t
i, (4)

where zi is the average of xt
i over time, since emotional features at different times under the same

data should belong to the same emotion space. The · symbol denotes the inner dot product, τ ∈ R+

is a scalar temperature parameter, A (i) ≡ I \ {i} and P (i) ≡ {p ∈ A (i) : ỹp = ỹi} is the set of
indices of all positives in the batch distinct from i and |P (i)| is its cardinality. With the supervision
of this loss function, features from the same category are closer together than those from different
categories.

Additionally, we found that speech with different emotions corresponds to different visual repre-
sentations in the periods where speech is not present, which can introduce noise into the emotional
disentanglement of speech. Furthermore, as mentioned earlier, the emotions conveyed in speech
are subtle and can easily be influenced by the content, leading to feature confusion. In contrast,
visual emotional features are quite pronounced (e.g., the downward pressure of the corners of the
mouth, eye-widening, etc.). Inspired by Wang et al. (2023), we construct audio-visual loss as fol-
lows, with ze is the audio emotion feature and zv is the visual emotion feature. This loss aims to
make the emotional features of speech and visual in the same sample as similar as possible, effec-
tively sharing visual information with the speech and reducing the interference of speech content in
the disentanglement process:

Laudio−visual =
1

2T

2T∑
i=1

||zei − zvi ||2. (5)

In summary, the audio-visual co-contrastive loss is as follows:

Lco−contrastive = Lcontrastive + Laudio−visual. (6)

Single emotion space construction As shown on the right side of Fig. 1(b), a distance threshold is
necessary to prevent the issue where Lcontrastive can overly compress the distance between similar
features, resulting in features with the same emotion but different intensities being too close to each
other. Similar to Schroff et al. (2015), we construct the emotional triplet loss that maintains a certain
level of differentiation between features of different emotional levels within the same emotion type
by employing the distance threshold, while also ensuring the clustering effect of features of the same
emotional level. The loss is defined as follows:

Ltriplet =

N∑
i

[
||zai − zpi ||

2
2 − ||zai − zni ||22 + α

]
+
. (7)

Given a batch with N samples, zai is the anchor feature, zpi is the positive feature with the same
emotion level label as the anchor, zni is the negative feature with the different emotion level label as
the anchor and α is a margin that is enforced between positive and negative pairs.

3.3 EXPRESSIVE MOTION GENERATOR

To better capture the low-dimensional distribution space of facial motions corresponding to emo-
tional speech and to achieve expressive and stylized 3D head motion generation, we introduce a
variational autoencoder (VAE) (Kingma, 2013) to perform a generative and expressive audio-to-
FLAME-parameter transformation, namely the expressive motion generator, as shown in Fig. 1(c).

Facial motions distribution space construction We first map the ground truth FLAME sequence
to a low-dimensional distribution space. To better extract features from the input sequences and con-
struct long-term temporal relationships in the output samples, we design the encoder and decoder as

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

a multilayer dilated convolutional network, where the dilation factor of the convolutional layers is
gradually increased, allowing the sensory field to grow exponentially with depth. The encoder com-
presses the sequence of parameters of T frames f1:T into T/q latent distributions (µ1:T/q, σ1:T/q)
using the speech content features zc1:2T and speech emotion features ze1:2T as conditions, where q
is the stride size of the first one-dimensional convolution in the encoder, smoothing the FLAME
parameters to reduce instability between frames:

Enc(f1:T , z
c
1:2T , z

e
1:2T ) → (µ1:T/q, σ1:T/q). (8)

Sampling z∗1:T/q from N (0, 1), we can get the final facial motion latent sequence:

z1:T/q = z∗1:T/q × σ1:T/q + µ1:T/q. (9)

Since the Gaussian prior for vanilla VAE (Kingma, 2013) is sampled independently for each time-
indexed data point, the lack of correlation can introduce instability into the sequence generation
task. For this reason, we follow Ye et al. (2023) and use a flow-based prior. For the encoder output
latent sequence zq , the prior module, which is composed of a 1D-convolution coupling layer, a mul-
tilayer dilated convolutional network and a channel-wise flip operation, outputs the time-associated
latent sequence zp conditioned on the speech content features and the speech emotion features. By
calculating the KL divergence of zq and zp, we ensure that the distributions of both are similar,
allowing us to achieve a mapping through the speech features to the distribution of facial motions.
This approach enables the production of realistic and stable results during the inference phase using
the input speech features.

Speaker-aware motion decoder We introduce identity embedding to guide the decoder in gen-
erating actions that capture the speaker’s speaking style, such as variations in how much different
speakers open their mouths in response to different emotions. The identity embedding takes a per-
sonal ID as input and generates a personalized feature s ∈ R1024 consistent with the audio feature
dimensions. Since for a low-dimensional distribution space, the decoder can easily sense the nuances
of the input features, we simply add the personalized features to the speech features and use them
as conditions, combining them with the motion latent sequences input to the decoder to generate the
FLAME sequences. This process can be described as follows:

Dec(z1:T/q, z
c
1:2T , z

e
1:2T , s) → f̂1:T . (10)

Training Process We use the Monte-Carlo ELBO loss (Ren et al., 2021) to train the EMG model.
Besides, we independently train a sync-expert Dsync that measures the possibility that the input
audio content features and FLAME mouth region landmarks are in-sync. For emotion accuracy, we
use the emotional disentanglement encoder trained in Sec. 3.2 to extract the emotion features of the
rendered ground truth images sequence and predicted images sequence and compute their similarity.
To summarize, the training loss of EMG is as follows:

LEMG(ϕ, θ, ε, ω) = −Eqϕ(z|f,c,e)[log pθ(f̂ |z, c, e)] +DKL(qϕ(z|f, c, e)|pε(z|c, e))

−Ef̂∼pθ(f |z,c,e,s)[logDsync(f̂)]− Eê∼pω(e|v)[log ê],
(11)

where ϕ, θ, ε, ω denote the model parameters of the encoder,decoder, prior and the visual emotion
encoder, respectively. c, e, s denotes the condition features of EMG. D is the discriminator of sync-
net. The ground truth and predicted FLAME parameters are represented by f and f̂ , respectively.
The sequence of images rendered by f denoted by v.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Data Preparation. To train our EDE, we use an emotional talking face video dataset, RAVDESS
(Livingstone & Russo, 2018), which contains 1440 video clips of different actors speaking with 8
emotion categories. Due to RAVDESS’s limited utterances, five hours of videos from the HDTF
(Zhang et al., 2021), a high-fidelity talking face video dataset includes over 300 subjects and 10k

6
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Table 1: Quantitative evaluation results. Best performance in bold, and the second best underlined.
For better visualization, we scale up the LVE of 10−5mm.

RAVDESS HDTF VOCASET MEAD
Methods VE-FID ↓ LVE ↓ LSE-D ↓ LSE-C ↑ LVE ↓ LSE-D ↓ LSE-C ↑ LVE ↓ LSE-D ↓ LSE-C ↑ VE-FID ↓ LVE ↓ LSE-D ↓ LSE-C ↑

FaceFormer 86.75 5.66 9.999 0.926 3.89 11.394 0.727 4.27 10.999 0.662 73.07 8.93 9.726 0.641
CodeTalker 82.71 5.57 9.896 0.942 3.84 11.755 0.752 4.11 10.810 0.667 73.77 8.25 10.078 0.646

Emote 34.01 3.23 10.452 0.884 4.07 11.407 0.736 3.92 11.174 0.651 19.36 4.91 10.049 0.692
EmoTalk 51.98 3.18 10.058 0.908 3.56 11.117 0.802 3.89 10.874 0.693 58.74 7.87 9.875 0.662
UniTalker 59.39 3.42 9.9151 0.928 4.11 10.563 0.815 3.91 10.812 0.713 54.11 7.48 9.584 0.689

GT - - 10.126 1.014 - 11.535 0.824 - 10.964 0.813 - - 10.037 0.715
Ours 21.57 2.19 9.616 1.010 2.61 10.253 0.823 3.86 10.757 0.743 32.44 5.21 9.113 0.709

different sentences, were used along with the RAVDESS dataset to train our EMG. A random se-
lection of 80% of these datasets was used for training, 10% for validation, and 10% for testing.
In addition, to fairly compare the models’ lip-sync accuracy as well as emotion generalization, the
VOCASET (Cudeiro et al., 2019) and MEAD (Wang et al., 2020) datasets will be used for the eval-
uation. We first processed the video in the original datasets by converting the frame rate to 25 fps
and the speech sample rate to 16kHz. Then, EMOCA (Daněček et al., 2022) was used to obtain the
FLAME parameters sequence.

Compared Baselines. We compare our model with five methods: FaceFormer (Fan et al., 2022),
CodeTalker (Xing et al., 2023), Emote (Daněček et al., 2023), EmoTalk (Peng et al., 2023b) and
UniTalker (Fan et al., 2024). For a fair comparison, we retrain FaceFormer and CodeTalker on the
RAVDESS and HDTF datasets, since these models were trained on the unemotional dataset. As
both UniTalker and EmoTalk employed the RAVDESS dataset for training purposes and EMOTE
utilizes the MEAD dataset for emotion capture, we utilize their pre-trained weights. All methods
require conditions on a training speaker identity during inference. Therefore, for unseen subjects in
the test dataset, we obtain their predictions by conditioning on all training identities.

Implementation Details. We employ the Adam Optimizer across all modules. The EDE is trained
for 10,000 iterations, with the batch size set to 30. This training takes about 1 hour, using a learning
rate of 5×10−5. Furthermore, we use 30,000 iterations with a batch size of 50 and a learning rate of
5× 10−5, which took about 20 hours to train our EMG. All experiments are performed on a single
NVIDIA RTX 3090 GPU.

4.2 QUANTITATIVE EVALUATION

Evaluation Metrics. We evaluate our method with baselines across two factors: 1) Facial expres-
sion quality. Previous work used EVE (emotional vertex error) (Peng et al., 2023b), which measures
the maximum ℓ2 error of the vertex coordinate displacement in the forehead and eye region. How-
ever, emotional expression is a coordinated process involving multiple facial muscles, including the
corners of the mouth, the nose, and other facial features. In light of this, we propose the VE-FID
(video emotion FID), an adaptation of FID (Heusel et al., 2017) that uses a video emotion feature
extractor from a frame attention network (Meng et al., 2019), replacing the inception network to
focus on emotion properties. 2) Audio-Lip synchronization. We first compute the LVE (lip vertex
error) that is used in previous work (Richard et al., 2021). This metric computes the maximum ℓ2
error among all lip vertices in the test set and averages ℓ2 error across all frames. We then employed
LSE-D (Lip Synchronization Error Distance) and LSE-C (Lip Synchronization Error Confidence)
from Syncnet (Prajwal et al., 2020) to evaluate the lip movement accuracy and smoothness of the
rendered faces sequence. In all the tables, ↓ indicates “the smaller the better”, and ↑ indicates “the
larger the better”.

Evaluation on Lip sync. As shown in Table 1, our method achieves the highest performance in
LSE-D and ranks first or second in LSE-C across all datasets. This indicates that it has strong gen-
eralization and accurate lip-synchronization capabilities. It is noteworthy that although Faceformer
and Codetalker demonstrated superior lip-synchronization performance when trained on VOCASET,
a decline in lip-synchronization accuracy was observed when emotion data was incorporated into the
training process. This outcome further substantiates the hypothesis that our model is capable of ef-
fectively separating emotion-specific details from the speech content, thereby ensuring the precision
and accuracy of the lip movements.

Evaluation on Emotion. Table 1 shows our method significantly outperforms VE-FID in the
RAVDESS dataset, suggesting that the emotional expressiveness of our method closely resembles
that of real human expressions. Although EMOTE, which utilizes ground truth emotion labels to
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(b) Comparsion of  emotion on RAVDESS

Figure 2: Comparison of generated key frame results. We show the ground truth frames used for
comparison and mark the results with red arrows for out-of-sync and poor emotional quality, while
zooming in on the emotional details of the eyes in the pink box.

Table 2: Results of emotion generation stability.

VE-FID↓ FID↓
Methods HDTF VOCASET Emotional Neutral
FaceFormer 61.12 50.05 40.07 46.08
CodeTalker 59.53 54.96 43.32 53.54
Emote 37.03 35.72 38.11 34.42
EmoTalk 27.17 38.22 38.33 33.73
UniTalker 37.04 27.59 39.4 32.779
Ours 26.43 23.40 28.54 31.81

generate expressions, achieves the best VE-
FID on the MEAD dataset, our method is only
second to EMOTE in this metric by a gap
of 13, while EmoTalk, which uses the same
training data as us, has a larger gap of 39,
which demonstrates our method’s generaliza-
tion ability on emotion generation. Further-
more, we assess the stability of the model’s
emotion generation on the HDTF and VO-
CASET datasets using VE-FID and compute
FID metrics on the emotional and non-emotional datasets to evaluate the realism of the model’s gen-
eration. Table 2 demonstrates that our model attains the optimal results on both VE-FID and FID
metrics, indicating that our model is capable of stable and reliable facial emotional action generation.

4.3 QUALITATIVE EVALUATION

Visual Comparison In Fig. 2, we compare our method with the SOTA method on the RAVDESS
and HDTF test sets. As shown in subfigure (a), while most of the methods are able to generate natu-
ral lip movements without emotional interference, they are sometimes inconsistent with the ground
truth. For example, when pronouncing /kr/ in ’decrease’, the lips should pout. However, all meth-
ods except our method and Unitalker produce the /i:s/ pronunciation. Additionally, EMOTE shows a
crooked mouth when pronouncing /’h/. As depicted in subfigure (b), the addition of emotional infor-
mation results in varying degrees of incorrect lip movements across different models. For example,
the lips should be pursed when pronouncing /b/, but Codetalker appeared to pout, while Emotalk
seems to pronounce /ai/. Furthermore, methods other than EMOTE often yield incorrect or inex-
pressive expressions that do not align with the ground truth. For example, when expressing angry,
Faceformer loses emotional details around the eyes, and both Emotalk and Unitalker exhibit happy
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Figure 3: The effect of emotion embedding. Subfigure (a) shows our audio/video emotion-driven
result. Subfigure (b) shows a t-sne visualization of the distribution of our disentanglement feature
space.

emotional expressions. Although EMOTE uses emotion labels to generate emotional expressions, it
frequently produces unnatural expressions, such as stiff eyebrows, which deviate from the ground
truth. In contrast, our model not only maintains correct lip movements but also enables detail con-
trol for different emotions. For example, in the cases of anger, happiness, and surprise, our model
generates distinct representations of the details around the eyes, highlighting the impact of EDE on
generating emotional expressions.

Effect of Emotion Embedding Fig. 3(b) demonstrates the clustering effect of our speech and
video emotion embeddings, where different colors represent different emotion classes, and the cen-
troids of different intensities within the same emotion are highlighted through stroking and bolding.
It can be seen that our model effectively captures a meaningful emotion space. Additionally, to
evaluate the model’s effectiveness in disentangling and generating emotional expressions, we con-
ducted an experiment: we selected a neutral speech to extract content features, which were then fed
into the EMG module along with the emotional features of speech and video samples containing
different emotions and speech contents. As shown in Fig. 3(a), this exchange effectively mod-
ifies the emotional expression to match the reference speech or video while maintaining precise
lip-synchronization with the original speech. This shows that our EDE effectively constructs an
audio-visual consistent emotionally disentangled feature space, reducing the interference of speech
content with emotional information.

Table 3: User study results.

Methods full-face lip sync emotion expression
FaceFormer 18.12% 13.32% 6.91%
CodeTalker 15.53% 11.67% 5.32%
Emote 10.13% 13.31% 20.89%
EmoTalk 17.17% 12.76% 12.01%
UniTalker 20.14% 19.54% 13.63%
Ours 30.90% 29.40% 41.24%

User study To evaluate the proposed
model more comprehensively, we followed
EmoTalk’s comprehensive user questionnaire
of 120 multiple-choice questions with 20 sen-
tences selected as test cases from RAVDESS
and VOCASET test datasets, and used the
FLAME template to compare and analyze
each of the models in terms of full-face
comparison, lip-synchronization comparison
and emotion expression comparison. As shown in Table 3, our model received the most positive
feedback from participants, scoring the highest on all three metrics by a vote of 30.90%, 29.40%
and 41.24%, respectively, compared to the other five models. It is worth noting that in terms of
emotional expression, our model has an advantage over the other methods. Overall, the majority of
participants considered our method superior to others.

Ablation Studies We conducted an ablation study to assess the contributions of different compo-
nents of our model. As can be seen in Table 4, there was a modest increase in emotion expression
error after removing Ltriplet, with a weakening of the emotion as in Fig. 4(a), indicating its effec-
tiveness in emotion intensity differentiation. Similarly, removing Lemo (the last term of Equation 11)
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(c) Mouth motion instability problem 
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Figure 4: Ablation results while removing relevant modules.

Table 4: Ablation study for our components.

Methods VE-FID↓ LVE↓ LSE-D↓ LSE-C↑
w/o Lva 28.11 3.18 9.812 0.921
w/o Ltriplet 26.69 3.23 9.633 1.008
w/o Lsync 22.01 2.22 10.068 0.946
w/o Lemo 30.88 2.51 9.603 1.021
Ours 21.57 2.19 9.616 1.010

caused a significant increase in emotion expres-
sion error, underscoring the importance of vi-
sual supervision in emotion learning and ex-
pression. Additionally, both emotion accuracy
and lip synchronization declined after removing
Lva, highlighting the EDE effectiveness in re-
ducing the interference of speech content as well
as lip movements on emotional features. We
also observed that without Lva, the generated results exhibited emotion averaging. In Fig. 4(b),
the left side shows generation results at different speech times. Without Lva, the results maintain
a single expression over time, while EcoTalk display variations in mouth corners and eye details.
On the right, the eye movement sequences show that EcoTalk replicates the widening and squinting
movements similar to the ground truth, whereas no change occurs without Lva. This demonstrates
that Lva effectively transfers visual emotion details to speech emotion features. Finally, replacing
Lsync (the second-last term of Equation 11) with Lmesh led to not only decreased lip synchroniza-
tion but also unstable lip movements, as illustrated in Fig. 4(c).

5 DISCUSSION AND CONCLUSION

In this work, we propose an audio-visual emotional co-disentanglement and speaker-aware archi-
tecture for speech-driven emotional 3D facial animation. We construct an audio-visual joint and
coordinated emotion space that is independent of speech content by introducing emotional motion
and emotionally differentiated supervisory signals during training. At the same time, we construct
a low-dimensional distribution space for facial actions to improve the decoder’s sensitivity to style
factors and achieve personalized generation. Extensive experiments show that our method outper-
forms previous methods in terms of emotional quality and lip synchronization. However, a key
challenge in our model is the non-interpretability of the emotion representations, we cannot deter-
mine which disentangled emotion features correspond to specific facial changes, such as the degree
of mouth opening or whether the eyes are wide open or squinting. One of the future works is to
address this problem by exploring how facial muscle movements, such as changes in facial action
units (FAUs), correspond to these emotion representations, to improve the precision and control
of emotional expressions. Additionally, the ability to infer emotions from speech content presents
important research opportunities for enhancing the accuracy of emotion generation.
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Figure 5: Structure of the emotional disentanglement encoder.

A DETAILS OF MODELS

A.1 EMOTIONAL DISENTANGLEMENT ENCODER

The Emotional Disentanglement Encoder (EDE) comprises an audio encoder and a video encoder.
The architecture of the audio encoder, as depicted in Fig. 5(a), consists of a convolutional encoder
followed by a transformer module. For a one-second speech segment, sampled at 16 kHz, the input to
the audio encoder is a matrix of dimensions (16000, 1). This is processed to yield a feature matrix of
size (50, 1024). The video encoder, shown in Fig. 5(b), employs a modified ResNet-18 architecture.
Specifically, the first convolutional layer in the ResNet-18 is replaced with a 3D convolutional layer
with a kernel size of 5 × 7 × 7. The resulting visual feature tensor is subsequently flattened into a
one-dimensional vector via a 2D average pooling layer. For a one-second video sequence, the input
to the video encoder is a matrix of dimensions (25, 1, 128, 128), where 25 represents the frames per
second (fps) and each frame is a grayscale image of resolution 128 by 128 pixels. After processing
by the residual neural network, a feature matrix of size (25, 1024) is produced, containing feature
vectors for each frame. To align the output dimensions with those of the audio encoder, linear
interpolation is applied, resulting in a final feature matrix of size (50, 1024).

A.2 EMOTIONAL MOTION GENERATOR

Our emotional motion generator consists of an encoder, a decoder, and a flow prior model. The
encoder, as shown in Fig. 6(a),is composed of a 1D-convolution followed by ReLU activation
and layer normalization, and a condition-WaveNet. The decoder, as shown in Fig. 6(b), consists
of a condition-WaveNet and a 1D transposed convolution followed by ReLU and layer normal-
ization. The prior model, as shown in Fig. 6(c), is a normalizing flow, which is composed of a
1D-convolution coupling layer and a channel-wise flip operation. Condition-WavNet consists of
multiple layers that composed of a dilated-convolution and a 1D-convolution, in which the condi-
tional features are computed by the 1D-convolution and summed with the input features computed
by the dilated-convolution to achieve conditional control. Audio emotional features and Hubert fea-
tures are utilized as the audio condition of these three modules, while person ID is utilized as the
person condition of the decoder.

A.3 SYNC-EXPERT

Our sync-expert inputs a window of Tl consecutive mesh landmark frames and an audio feature
clip of size Ta × D, where Tl and Ta are the lengths of the video and audio clip respectively,
and D is the dimension of Hubert features. The sync-expert is trained to discriminate whether
the input audio and landmarks are synchronized. It consists of a landmark encoder and an audio
encoder, as shown in Fig. 7, both of which are comprised of a stack of 1D-convolutions followed
by batch normalization and ReLU. We use cosine-similarity with binary cross-entropy loss to train
the sync-expert. Specifically, we compute cosine-similarity for the landmark embedding l and audio
embedding a to represent the probability that the input audio-landmark pair is synchronized. The
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Figure 6: The structure of encoder, decoder, flow prior and condition-wavnet in emotional motion
generator.
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Figure 7: The structure of sync-expert.

training loss of sync-expert can be represented as:

Lsync = CE(
a · l

max(||a||2 · ||l||2, ϵ)
) (12)
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Figure 8: t-sne reault of the emotion space (w/o triplet loss).

Figure 9: t-sne reault of the emotion space.

B VISUALIZATION OF EMOTIONAL INTENSITY DIFFERENTIATION

B.1 THE MOTIVATION FOR COMBINING CONTRASTIVE LOSS AND TRIPLET LOSS TO
DISTINGUISH EMOTIONAL INTENSITY

Figure 10: The Valence-Arousal model.

The Valence-Arousal model (Kensinger, 2004; Kollias &
Zafeiriou, 2021) is a widely utilized framework for emo-
tion classification. As shown in Fig.10, the VA model
suggests that emotions can be represented as combina-
tions of valence and arousal, with arousal being par-
ticularly key in distinguishing between different emo-
tional intensities. This implies that intensity assessment
is inherently tied to the emotional type assessment (via
arousal), where emotions of the same type share a similar
valence but can differ subtly in arousal. Therefore, our
approach first allows the model to learn separate latent
spaces for each emotion, effectively distinguishing the
arousal and valence ranges for different emotions via the
contrastive loss. Afterward, the triplet loss works within
each emotion’s latent space to further differentiate emo-
tions based on their intensity by focusing on the subtle
differences in arousal. This two-step process ensures that our model can effectively discriminate
between both emotional types and their varying intensities.
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B.2 T-SNE VISUALIZATION OF EMOTIONAL INTENSITY

As shown in Fig. 8, we use only contrast loss to construct the emotion space, and since arousal
reflects both emotion category features and emotion intensity features, and emotion intensity fea-
tures are relatively homogeneous, the model ignores intensity features, and there is confusion in the
distribution of emotion intensities within each separate emotion space. As shown in Fig. 9, after
combining the triplet loss, there is a distinction between emotion intensity distributions within the
same emotion space.

C EMOTIONAL EXCHANGE EXAMPLES

C.1 EXCHANGE OF ONE EMOTION

We select a news speech clip (neutral) to extract the speech content features, and select the surprised
(level 2) and happy (level 1) speech of two different characters to extract the speech emotion features,
and then input them into our EMG along with the content features respectively for generation. The
results are shown in Fig. 12. While ensuring consistent lip synchronization, our model can generate
different expression details, such as upturned corners of the mouth and wide eyes.

C.2 EXCHANGE EMOTION IN MORE CHALLENGING EXPERIMENT

In order to verify whether the model will learn emotional features from speech content, we selected
happy and sad emotional speech to extract speech content features, and selected related speech or
video with very different emotions to extract emotional features, respectively. The generated results
are shown in Fig. 13 and Fig. 14. It can be seen that our model better achieves decoupled learning
of speech content and emotion.

C.3 EXCHANGE OF TWO EMOTIONS

We select a news speech segment (neutral) to extract speech content features, and select happy
(level 2) and sad (level 1) speech of two different characters to extract speech emotion features and
concatenate them together, and then input them together with content features into our EMG for
generation. The results are shown in Fig. 15. While ensuring consistent lip synchronization, our
model also implements smooth emotional changes, such as a gradual change in the corners of the
mouth from upward to downward.

D SPEAKER-AWARE EFFECTS
w/o 

speaker 

aware

GT

EcoFace

Figure 11: The Speaker-aware effects.

The motivation behind designing speaker-
aware generation stems from our observation
that different speakers exhibit distinct speech
styles and emotional expression details. If the
model is trained to fit data from all speakers
without considering these differences, it can
lead to issues such as lip-syncing inconsisten-
cies (e.g., pursed lips, twisted lips) and a reduc-
tion in emotional expressiveness. To demon-
strate the impact of this design choice, we first
trained our model without considering speaker-
aware conditions and evaluated it on the test
sets of the RAVDESS and HDTF datasets. The
results, as shown in Table 5, indicate a slight
weakening in emotional performance, but more notably, there is a significant reduction in lip-sync
accuracy. As shown in Fig. 11, the crooked, abnormally pursed lips that occur without consideration
of the particular speaker can be effectively avoided by consideration of the particular speaker’s style.
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Table 5: Quantitative evaluation results on speaker-aware module.

RAVDESS HDTF
Methods VE-FID ↓ LVE ↓ LSE-D ↓ LSE-C ↑ LVE ↓ LSE-D ↓ LSE-C ↑

w/o speaker-aware 25.67 3.53 10.552 0.801 3.47 11.891 0.711
Ours 21.57 2.19 9.616 1.010 2.61 10.253 0.823

covid job compass to at

GT

(neutral)

Surprise

(level2)

Happy

(level1)

Figure 12: Generation results for exchanging whole speech emotional features.

Kids are talking by the door
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Dogs are sitting by the door

Happy

Kids are talking by the door

Sad

Hubert

𝐸𝐷𝐸𝑎𝑢𝑑𝑖𝑜 EMG

EMG

G
T

𝐸𝐷𝐸𝑣𝑖𝑠𝑢𝑎𝑙

Figure 13: Generation results for exchanging emotion from positive to negative.
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Dogs are sitting by the door

Happy

Kids are talking by the door

Sad

Dogs are sitting by the door

Surprised

Hubert
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EMG
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Figure 14: Generation results for exchanging emotion from negative to positive.

thousand this cooperation cup

GT

(neutral)

Happy(level2)
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Figure 15: Generation results for exchanging two speech emotional features.
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