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ABSTRACT
Supervised learning models are one of the most fundamental classes of models. Viewing supervised
learning from a probabilistic perspective, the set of training data to which the model is fitted is usually
assumed to follow a stationary distribution. However, this stationarity assumption is often violated in a
phenomenon called concept drift, which refers to changes over time in the predictive relationship between
covariates X and a response variable Y and can render trained models suboptimal or obsolete. We develop a
comprehensive and computationally efficient framework for detecting, monitoring, and diagnosing concept
drift. Specifically, we monitor the Fisher score vector, defined as the gradient of the log-likelihood for
the fitted model, using a form of multivariate exponentially weighted moving average, which monitors
for general changes in the mean of a random vector. In spite of the substantial performance advantages
that we demonstrate over popular error-based methods, a score-based approach has not been previously
considered for concept drift monitoring. Advantages of the proposed score-based framework include
applicability to broad classes of parametric models, more powerful detection of changes as shown in theory
and experiments, and inherent diagnostic capabilities for helping to identify the nature of the changes.
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1. Introduction

In supervised learning, models are trained to predict a response
variable Y , given an observed set of covariates X ∈ R

p. The
desire is usually to make test prediction accuracy metrics (i.e.,
R2, classification accuracy, F1-score, etc.) as high as possible.
From a probabilistic perspective, a training sample of obser-
vations, {xi, yi}n

i=1, is usually assumed to be drawn from some
joint distribution, P(X, Y), such that the conditional distribu-
tion, P(Y|X; θ), is stationary across the n observations (Hulten,
Spencer, and Domingos 2001). Here, xi ∈ R

p and yi ∈ R

are the covariates and response variable in the ith observa-
tion, respectively (the case with scalar response can easily be
extended to a vector response), and we have parameterized
the conditional distribution via the vector θ . However, the
stationarity assumption is often violated in real applications,
a phenomenon known as concept drift (Moreno-Torres et al.
2012; Žliobaitė, Pechenizkiy, and Gama 2016). For example,
models used to predict customers’ probabilities of defaulting
by credit-scoring agencies are usually fitted to training data
collected over a three to five years period, so that changing
financial environments may result in a partially outdated pre-
dictive relationship by the time the trained model is used to
score new customers (Crook et al. 1992; Žliobaitė, Pechenizkiy,
and Gama 2016). In this work, we follow what appears to be
the most common terminology according to (Moreno-Torres
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et al. 2012) and (Žliobaitė, Pechenizkiy, and Gama 2016). In
general, any temporal drift in the joint distribution P(X, Y)

is called “dataset drift.” Decomposing the joint distribution as
P(X, Y) = P(Y|X)P(X), the term “concept drift” refers to
temporal drift in P(Y|X) (which is what the fitted supervised
learning model approximates), while “covariate drift” refers to
temporal drift in P(X). Our approach is intended to detect
drift in the predictive relationship P(Y|X) and not in P(X) (see
Section 4 for elaboration). For detecting changes in P(X) or in
P(X) and P(Y|X) together, we refer readers to (Raza, Prasad,
and Li 2015) and (Mejri, Limam, and Weihs 2018; Mejri et al.
2021).

Concept drift poses many challenges in constructing trust-
worthy supervised learning models. Concept drift during both
training (for historical data) and model usage (for future data)
can degrade performance of supervised learning models: during
training, concept drift results in there being no single predictive
model P(Y|X; θ), since the model is changing over time; while
concept drift during usage degrades the accuracy of the predic-
tive model, relative to what it could be with an updated model for
P(Y|X; θ). In order to obtain and maintain the highest possible
predictive performance of supervised learning models, retro-
spective concept drift analysis of the training data and prospective
concept drift monitoring of the future data to which the model
is applied are important and should be a standard component of
the predictive modeling process.

© 2022 American Statistical Association and the American Society for Quality
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Concept drift is common in practice and often originates
from changes of some hidden effects in generating the response
outcomes of interest (Widmer and Kubat 1996; Kukar 2003;
Donoho 2004; Tsymbal et al. 2008; Carmona-Cejudo et al. 2010;
Žliobaitė, Bakker, and Pechenizkiy 2012; Harel et al. 2014; Fong,
Di, and Permar 2015; Žliobaitė, Pechenizkiy, and Gama 2016).
For example, in the problem of antibiotic resistance in nosoco-
mial infections, supervised learning models are trained and val-
idated using a dataset, with response labels indicating whether
the level of sensitivity of a pathogen to an antibiotic is sensitive,
resistant, or intermediate, and the covariates being patients’
demographical data and conditions of hospitalization (Pech-
enizkiy et al. 2005). After properly training and validating such
a model, it can with high accuracy determine whether or not a
pathogen is sensitive to an antibiotic or not. However, according
to medical experts (Kukar 2003), hidden effects due to fail-
ures and/or replacements of some medical equipment, changes
in personnel, and seasonal bacterial outbreaks could result in
unexpected changes over time in resistance of new pathogen
strains to antibiotics. In other words, there is likely a significant
level of concept drift in nosocomial infections. Consequently,
bacteria that are predicted to be sensitive to a particular antibi-
otic may now be resistant, and the errors of the predictive model
become unacceptable.

The problem of concept drift is gaining increasing attention,
because increasingly data are organized in the form of data
streams, and it is often unrealistic to expect that data distribu-
tions remain stable for a long period of time. Most state-of-the-
art concept drift detection and adaptation methods, like ensem-
ble methods (Wang et al. 2003), neural networks (Calandra et al.
2012), and other nonparametric methods (Bifet and Gavalda
2007; Frías-Blanco et al. 2015), are based on monitoring the
classification error or some metrics derived from it (Ross et al.
2012; Gonçalves Jr et al. 2014; Barros and Santos 2018).

The main purpose of this article is to introduce a new and
comprehensive concept drift framework that is based on mon-
itoring the Fisher scores of the individual observations over
time, as opposed to metrics derived from their prediction errors.
Existing concept drift methods that are based on monitoring
the error rate may fail to detect concept drift, because a change
in P(Y|X; θ) does not necessarily result in an increase (or a
decrease) in the error rate (see Section 3.1). Note that a change
in P(Y|X; θ) that does not change the error rate still means that,
if the model is updated accordingly after concept drift detection,
the predictive accuracy of the model can be improved (see
Section B.1, supplementary materials). Thus, it is still desirable
to detect such changes. The Fisher score, which we will refer to
as simply the score, of an observation (X, Y) is defined as the
gradient of the log-likelihood, log P(Y|X; θ), with respect to the
parameters, θ . As shown in the following sections, comparisons
between the score-based and error-based methods from both
theoretical and empirical perspectives provide strong justifica-
tion for a score-based approach. The score-based framework
that we develop and demonstrate is intended to detect, monitor,
and diagnose concept drift with the following major advantages
and attractive properties.

• The approach is based on monitoring for changes in the mean
of the score vector, which has strong theoretical justification

since theory dictates that the mean of the score vector changes
if and only if P(Y|X; θ) changes, under fairly general condi-
tions (Section 3.1).

• The score-based approach can detect concept drift even when
the error rate doesn’t change. Upon the detection of the concept
drift, the predictive model can be updated giving a lower
prediction error rate.

• The score-based approach is more sensitive to changes in
P(Y|X; θ) and thus more quickly detects concept drift than
error-based methods, as demonstrated empirically with a num-
ber of examples (Section 5 and Sections B.2 and B.4, supple-
mentary materials).

• The score-based approach is applicable to broad classes of
parametric classification or regression models that can be inter-
preted probabilistically in terms of P(Y|X; θ), parameterized
by a vector of parameters θ .

• The score-based approach also naturally provides a convenient
means of diagnosing the nature of the concept drift (e.g., which
parameters have changed) as derived in Section 4 and demon-
strated in Section 5 and Sections B.4 and C, supplementary
materials.

• The same score-based concepts can be used in a consistent
manner either retrospectively (e.g., after fitting a supervised
learning model to a set of training data, to validate that
the training data were stable and, if not, provide diagnostic
information as to why) or prospectively (e.g., when using a
fitted supervised learning model to predict new cases, to quickly
signal when the predictive model has changed, indicating that
it is time to update the model).

We elaborate on these properties in Sections 3 and 4 and
provide an illustrative example with real data (credit risk scor-
ing during the subprime mortgage crisis) in Section 5. The
supplementary materials sections provide additional real and
simulation comparison examples and derivations of various
results.

2. Relation to Prior Work

In this section, we briefly review relevant existing literature on
monitoring different types of drift in data distributions, in terms
of goals and methodologies.

In general, the methods in the concept drift literature can be
categorized into two classes (Tsymbal 2004; Harel et al. 2014):
(a) model adaptation (or online learning) methods and (b)
concept drift detection methods. Model adaptation methods
mainly focus on maintaining the performance of machine learn-
ing models in the presence of concept drift, without formally
detecting or diagnosing the drift (Wang et al. 2003; Tsymbal
et al. 2008; Gonçalves Jr et al. 2014; Barros and Santos 2018).
To maintain a good prediction metric related to classification
or regression error, models are automatically updated (i.e.,
adapted) online continuously as new observations are collected,
which is sometimes called online or incremental learning. This
class of methods is not particularly relevant to our work, since
our goal is concept drift detection and diagnosis, and not model
adaptation. In fact, we view our approach as something that
can be used in conjunction with model adaptation methods to
make them more efficient and interpretable. In particular, the
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model adaptation could be turned on only when the concept
drift detection component has indicated that P(Y|X; θ) has
changed.

The concept drift detection methods are more relevant to
our work. Although most of these methods were originally
proposed in a continuous model adaptation setting, we focus
on their use and performance in our setting, in which one
has a single fixed model fitted to one set of training data
and applies it to usage data without updating it, so that small
and gradual concept drift can be more easily detected. The
drift detection method (DDM) (Gama et al. 2004) monitors
the accumulated classification error rate as it evolves over
time. The early drift detection method (EDDM) (Baena-Garcıa
et al. 2006) instead monitors the intervals between consecutive
errors. The exponentially weighted moving average (EWMA)
for concept drift detection (ECDD) (Ross et al. 2012) method
monitors the misclassification rate using a univariate EWMA
control chart. In the Linear-4-rate method (Wang and Abra-
ham 2015), four statistics are monitored simultaneously to
detect concept drift in binary classification problems. Most
of the methods are designed specifically for binary classifi-
cation and based on simple error-based quantities, like clas-
sification error, precision, recall, and residuals of the classi-
fication model (Wang and Abraham 2015; Barros and San-
tos 2018). As we demonstrate throughout the article, our
score-based approach is far more powerful than error-based
approaches.

Although the concept drift community seems to be unaware
of the potential of score-based approaches for concept drift (e.g.,
it is not mentioned in the recent surveys in Barros and San-
tos (2018) and Lu et al. (2018)), there have been some works
in the econometrics literature that have used the score vec-
tor to test for changes in the parameters of regression mod-
els (Kuan and Hornik 1995; Zeileis 2005; Zeileis and Hornik
2007; Xia, Guo, and Zhao 2009). Our work differs from this
prior work in that we develop a comprehensive framework
for, and investigate issues more relevant in, the typical situa-
tions to which the so-called concept drift paradigm refers. The
econometrics work is developed mainly around the change-
point paradigm in which it is assumed there is a single point
in time at which θ changes from some before-value to some
after-value, and the goal is to identify the change point with for-
mal hypotheses testing. In contrast, our approach is developed
around the much more general and flexible situation in which
θ can continuously drift and/or change abruptly at multiple
change-points, which is far more common in typical concept
drift applications. Ours is more of an exploratory approach to
inform the predictive modeling process, as opposed to formal
hypothesis testing of well-defined but restrictive hypotheses.
Our approach is also more general in the sense that it applies
to broad classes of parametric supervised learning models in
which log P(Y|X; θ) is differentiable in θ (e.g., generalized lin-
ear models, neural networks, Gaussian process models, etc.).
Moreover, we develop and study a number of other aspects
that are highly relevant to the concept drift setting, including
a diagnostic framework for understanding the nature of the
concept drift.

3. Monitoring the Score Vector for Concept Drift

To monitor supervised learning models for concept drifts, we
propose a systematic framework based on the sample score
vectors derived from parametric models. In Section 3.1, we
present theoretical arguments for using the score vector as the
basis for concept drift monitoring. In Section 3.2, we explain
empirical counterparts to the theoretical arguments, including
interpretations when the parametric model structure is only an
approximation to the true P(Y|X), and connections to stochastic
gradient descent (SGD) algorithms. In Section 3.3, we develop
the multivariate EWMA (MEWMA) procedure for monitor-
ing the mean of the score vector, and in Section 3.4 we dis-
cuss various implementation issues and how to handle high-
dimensional θ and regularized models. Algorithm 1 provides
high-level pseudocode for the entire procedure, details of which
are explained in the subsequent sections.

Algorithm 1 Score-Based Concept Drift Monitoring and Diag-
nostics

1: Step 1: Retrospective Analysis
2: Set Stable = False
3: while Stable = False do
4: Fit a supervised learning model to training data

{(xi, yi)}n
i=1.

5: Calculate score vectors (Equation (1)) for {(xi, yi)}n
i=1

and apply the MEWMA (Section 3.3).
6: if the MEWMA indicates the training data are stable

then
7: Set Stable = True
8: else
9: Discard the portion of training data over which the

drift occurred and denote the remaining subset of training
data as {(xi, yi)}n

i=1 with n reduced.
10: end if
11: end while
12: Step 2: Concept Drift Monitoring
13: Partition the stable dataset from Step 1, {(xi, yi)}n

i=1, into
D1 := {xi, yi}n1

i=1 and D2 := {xi, yi}n
i=n1+1.

14: Fit a new parametric supervised learning model M to D1.
15: Calculate the score vectors (Equation (1)) for D2 using M.
16: Compute MEWMA statistics {zt}n

t=n1+1 and {T2
t }n

t=n1+1
(Equation (8)) for D2 using M.

17: For a desired false alarm rate α, set UCL as the 1−α sample
quantile of {T2

t }n
t=n1+1.

18: For Phase-II “on-line” data D̃ := {x̃i, ỹi}ñ
i=1, calculate the

score vectors and apply the MEWMA with the UCL from
Line 17 to monitor and detect concept drift.

19: Step 3: Concept Drift Diagnosis After Concept Drift
Detection

20: Plot the T2
t statistics over time for the data over which

concept drift was detected.
21: Decouple the concept drift in the score vectors by calculat-

ing the Fisher-decoupled score vectors s̃t := Î
−1(θ (0))st (see

line following Equation (12)).
22: Plot the univariate EWMA charts for each component of

Fisher-decoupled score vectors s̃t .
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3.1. The Score Vector as a Basis for Concept Drift
Monitoring

Supervised learning is used to approximate an underlying con-
ditional response distribution, which, if parametric, can be
denoted as P(Y|X; θ). For example, for a regression neural net-
work, the conditional mean E[Y|X; θ ] is modeled as a neural
network, and Y is assumed to be its conditional mean plus (typ-
ically) a Gaussian error; or for a classification neural network,
Y is multinomial with class probabilities that are modeled as a
neural network. Fitting the model then entails estimating the
parameters θ by maximizing the log-likelihood, which can be
viewed as an empirical approximation to Eθ (0)[log P(Y|X; θ)],
where θ (0) denotes the true parameters and the subscript θ (0)

on the expectation operator indicates that it is with respect to
Y|X following the distribution P(Y|X; θ (0)). This is generally
valid because of Shannon’s Lemma (Shannon 1948), which states
that if the model is correct and identifiable, the true parame-
ter vector θ (0) uniquely maximizes the expected log-likelihood,
Eθ (0)[log P(Y|X; θ)]. For ease of exposition, we develop the
approach for the setting in which maximum likelihood esti-
mation (MLE) is used to fit the model. However, for complex
models some form of regularization is virtually always used
as a modification of the log-likelihood function. With minor
modifications discussed in Section 3.4, the approach still applies
to regularized MLE.

Given a parametric distribution or marginal likelihood func-
tion P(Y|X; θ) for an individual observation (X, Y), and assum-
ing we have an iid training dataset {(xi, yi)}n

i=1 drawn from this
distribution, the score vector for (xi, yi) is defined as

s(θ ; (xi, yi)) = ∇θ log P(yi|xi; θ) (1)

where ∇θ is the derivative operator with respect to the vector
of parameters, θ . From fundamental theory (Proposition 3.4.4
from Bickel and Doksum 2015), under certain regularity condi-
tions, if the model is correct and we have a true parameter vector
θ (0), the expected score vector evaluated at θ (0) is zero:

Eθ (0)[s(θ (0); (X, Y))|X] (2)

=
∫

s(θ (0); (X, Y = y))P(Y = y|X; θ (0))dy = 0.

In other words, the conditional expectation of the score vector
evaluated at θ (0) is identically zero.

Concept drift is defined as a change in P(Y|X), and in
our parametric model setting it equates to a change in the
parameters of the conditional distribution P(Y|X; θ). This and
Equation (2) suggest that a general approach for monitoring
for concept drift is to monitor for changes in the mean of the
sample score vector (1). In particular, with no concept drift, we
have θ = θ (0), so that the sample score vector s(θ (0); (X, Y))

is zero-mean from the above discussion. In contrast, if there
is concept drift, this means θ has changed from θ (0) to some
other value θ (1) �= θ (0), in which case the new mean of the
score vector Eθ (1)[s(θ (0); (X, Y))|X] �= 0 is no longer zero (for
small changes in θ and under certain identifiability assump-
tions). As a preview to how we will apply the above concepts in
practice (see Section 3.2 for details), a set of estimated param-
eters from a training dataset will take the place of θ (0), and to

whatever the current values of θ have drifted will take the place
of θ (1).

To illustrate the above arguments more concretely, consider
the generalized linear model (GLM) (Nelder and Wedderburn
1972), which encompasses many models commonly used in
applications. The canonical form of the GLM model and score
vector are

P(Y|X; θ , φ) = exp
{Yψ(X; θ) − b(ψ(X; θ))

a(φ)
+ c(Y ; φ)

}
, and

s(θ ; (X, Y)) = 1
a(φ)

(Y − b′(ψ(X; θ)))∇θψ(X; θ), (3)

for functions b(·), ψ(·), a(·), and c(·) and dispersion parameter
φ. The conditional mean is E[Y|X] = b′(ψ(X; θ)), where the
derivative is with respect to ψ , and the canonical link function
g(·) is defined such that g(E[Y|X]) = ψ(X; θ)(= XTθ for the
traditional GLM). Using a Taylor expansion, the expected score
vector for ψ(X; θ) = XTθ with a small parameter change �θ =
θ (1) − θ (0) is

Eθ (1)[s(θ (0); (X, Y))|X] ≈ 1
a(φ)

b′′(ψ(X; θ (0)))∇θψ(X; θ (0))

∇T
θ ψ(X; θ (0))�θ

= 1
a(φ)

b′′(ψ(X; θ (0)))XXT�θ . (4)

It is known that var[Y|X] = a(φ)b′′(ψ(X; θ)), so that
b′′(ψ(X; θ)) > 0 always holds if Y is not a deterministic
function of X. If we further take the expectation of Equation (4)
with respect to the distribution of X, then the resulting matrix
that premultiplies �θ in (4) is always positive definite if the
distribution of X is not degenerate. In other words, whenever
concept drift happens (i.e., �θ �= 0), the mean of the score
vector is nonzero.

Notice that this approximation (4) does not require ψ(X; θ)

to be a linear function of θ , if certain identifiability conditions on
θ are satisfied. For example, ψ(X; θ) can be a neural network, in
which case θ is the vector of weights and bias parameters for the
neural net. In later studies with real and simulated datasets in
Section 5 and Section C, supplementary materials, we empir-
ically show that our score-based approach is also effective for
neural networks.

In summary, for GLM-type response models with linear or
nonlinear ψ(·) that satisfy certain identifiability conditions on
θ , the mean of the score vector changes if and only if P(Y|X; θ)

changes, at least for sufficiently small changes in θ (for large
changes in θ in most practical settings, the mean of the score
vector is likely to change substantially, although it is not clear
if any mathematical theory exists to guarantee this). This is
an important property that provides the theoretical basis for
our score-based concept drift monitoring and diagnosis. Note
that error-based methods do not enjoy this property, that is,
P(Y|X; θ) can change in ways that do not change the error
rate (see Section B.1, supplementary materials for a detailed
discussion and a concrete example).

3.2. Interpretations with Empirical Data and Incorrect
Models

The zero-mean property Eθ (0)[log P(Y|X; θ (0))] = 0 of the score
vector and the uniqueness of the parameters θ that maximize the
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expected log-likelihood Eθ (0)[log P(Y|X; θ)] are guaranteed to
hold only when the model is correct; that is, when the supervised
learning model P(Y|X; θ) is of the same structure as the true
predictive relationship P(Y|X). Recalling the adage that “All
models are wrong, but some are useful” (Box 1976), one might
wonder to what extent the results in the previous section are
applicable when the structure of the model P(Y|X; θ) differs
from the true P(Y|X). A related question is what should we take
to be the empirical counterpart to Eθ [s(θ (0); (X, Y))] when θ (0)

is replaced by its estimate from a sample of training data, and
the expectation is replaced by a sample average over a set of new
data or over the same training data. We address both of these
issues in this section and also relate the empirical counterpart
to SGD for computational reasons.

Regardless of whether the model structure is correct, in
analogy with Equation (2) we always have

Ê(0)[s(θ̂ (0)
; (X, Y))] := 1

n

n∑
i=1

s(θ̂
(0)

; (xi, yi)) = 0, where

θ̂
(0) := argmax

θ

Ê(0)[log P(Y|X; θ)]

:= argmax
θ

1
n

n∑
i=1

log P(yi|xi; θ), (5)

the operator Ê(0) denotes a sample average over the
training data {(xi, yi)}n

i=1, and θ̂
(0)

is the MLE of θ (0)

for the training data. That is, when we fit a model
using MLE, the gradient of the training log-likelihood
is identically zero, that is, ∇θ Ê(0)[log P(Y|X; θ)]|

θ=θ̂
(0) :=

∇θ
1
n

∑n
i=1 log P(yi|xi; θ)|

θ=θ̂
(0) = 1

n
∑n

i=1 s(θ̂
(0)

; (xi, yi)) =
Ê(0)[s(θ̂ (0)

; (X, Y))] = 0, even if the model is not the correct
structure. Thus, (5) is the empirical counterpart of (2) with the
estimated θ̂

(0)
taking the place of the true θ (0).

Now suppose the true predictive relationship P̃(Ỹ|X̃)

changes from P(Y|X) over some new set of data {(x̃i, ỹi)}ñ
i=1. In

this case a different set of parameters θ̂
(1) �= θ̂

(0)
for the same

supervised learning model structure P(Y|X; θ) will generally
provide a better fit to the new data than did θ̂

(0)
, where

θ̂
(1) := argmax

θ

Ê(1)[log P(Ỹ|X̃; θ)]

:= argmax
θ

1
ñ

ñ∑
i=1

log P(ỹi|x̃i; θ), (6)

and the operator Ê(1) denotes the sample average over the
new data. Thus, the gradient ∇θ Ê(1)[log P(Ỹ|X̃; θ)]|

θ=θ̂
(0) :=

∇θ
1
ñ

∑ñ
i=1 log P(ỹi|x̃i; θ)|

θ=θ̂
(0) = 1

ñ
∑ñ

i=1 s(θ̂
(0)

; (x̃i, ỹi)) =
Ê(1)[s(θ̂ (0)

; (X̃, Ỹ))] of the log-likelihood for the new data (but
with the gradient evaluated at the original estimate θ̂

(0)
) will

generally differ from zero. The more P̃(Ỹ|X̃) changes from
P(Y|X), the more we expect θ̂

(1)
to differ from θ̂

(0)
, and the more

we expect the new average score vector Ê(1)[s(θ̂ (0)
; (X̃, Ỹ))] to

differ from 0. This provides the justification for our score-based

concept drift monitoring approach, which tracks the mean of
the score vector s(θ̂

(0)
; (Xi, Yi)) = ∇θ log P(Yi|Xi; θ)|

θ=θ̂
(0) to

detect and analyze changes in it. In Section B.3, supplemen-
tary materials, we provide an example investigating the effect
of fitting an incorrect model structure on the performance of
our score-based approach and demonstrate that it still per-
forms substantially better than the residual-based EWMA in
this case.

If the supervised learning model P(Y|X; θ) is of the
same structure as the true predictive relationship P(Y|X),
both P(Y|X) and P(X) are constant across the training data
{(xi, yi)}n

i=1, and n → ∞, then under some regularity con-
ditions the MLE θ̂

(0)
is consistent and Ê(0)[s(θ̂ (0)

; (X, Y))] →
Eθ (0)[s(θ̂ (0)

; (X, Y))] → Eθ (0)[s(θ (0); (X, Y))] = 0. In this case,
there is no distinction between the theoretical version of the
score-based monitoring arguments and their empirical version
discussed above. With large n, SGD is often used to fit models to
the training data, which involves approximating the gradient of
the log-likelihood function using individual training observa-
tions or mini-batches of training observations at each iteration
of the optimization algorithm. The SGD estimator of θ (0) con-
verges to the batch MLE under certain conditions involving step
size and other considerations (see, e.g., Theorem 4.7 of Bottou
et al. 2018). In this case, under the same asymptotic conditions
stated above, the SGD estimator θ̂SGD is also consistent and
Ê(0)[s(θ̂SGD; (X, Y))] → 0 as n → ∞.

The score-based approach does not add much extra cost
to the current framework of training and using models. For
retrospective analysis, the sample score vectors are a byprod-
uct of the SGD (or related optimizers, e.g., ADAM (Kingma
and Ba 2014)), since the mini-batch gradients are of the form
∇θ

∑m
i=1 log P(yi|xi; θ) = ∑m

i=1 s(θ ; (xi, yi)), where m is the
batch size. Even for prospective analysis, prediction of new
data usually partially calculates the score vectors. For example,
prediction for neural networks requires forward-propagation,
and another backward-propagation in memory would generate
the score vector. Thus, we do not need much extra computation
to apply the score-based approach.

With finite training data size n and finite new sample sizes ñ
for monitoring (including ñ = 1), noise in s(θ ; (xi, yi)) and its
sample averages must be considered. In particular, we need to
distinguish by how much s(θ̂

(0)
; (xi, yi)) (or its sample average

over some moving time window) should differ from 0 before
we conclude that P(Y|X) has changed. The MEWMA moni-
toring strategy in the next section is designed to distinguish
this type of noise from legitimate changes in P(Y|X). Moreover,
for models fitted with regularization, the gradient of the log-
likelihood itself is not zero over the training data, because the
regularization penalty is included in the optimization objective
function. Regardless, the score-based monitoring method can
still be applied with the minor modification to the score vectors
discussed in Section 3.4.

3.3. An MEWMA Approach for Monitoring the Score Vector

As discussed in the previous sections, monitoring for concept
drift reduces to monitoring for changes over time in the mean
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of the score vector. Among other challenges, this requires distin-
guishing between noise in the score vectors for individual obser-
vations versus an actual mean change. The MEWMA (Lowry
et al. 1992) has emerged as one of the most effective techniques
for detecting changes in the mean vectors in general, and in
this section we develop it for monitoring the mean of the score
vector.

The MEWMA at time t, denoted by zt , is defined recur-
sively (for t = 1, 2, . . .) via:

zt = λst + (1 − λ)zt−1, (7)

where st is the to-be-monitored random vector at time t, which
in our case is the score vector st := s(θ̂

(0)
; (xt , yt)); λ is a

weighting parameter; and z0 can be initialized as the sample
mean of st over some small initial batch of observations. An
equivalent expression for the recursive relationship (7) is zt =
λ

∑t
τ=1(1 − λ)t−τ sτ + (1 − λ)tz0, which gives exponentially

decaying weights to the historic observations up to st .
Since st and zt are vectors, and we desire to detect changes

in the mean of st in any direction, our MEWMA approach
monitors the Hotelling T2 (Hotelling 1947) statistic

T2
t = (zt − s̄)T�̂

−1
(zt − s̄), (8)

where �̂ and s̄ are the covariance matrix and sample mean
vector of st , respectively, estimated from the training and Phase-
I data, as described in later parts of this section. In the statistical
process control (SPC) literature, Phase-I refers to a retrospective
analysis of previously collected data, with the goals of statisti-
cally characterizing the process behavior and establishing con-
trol limits to be used in Phase-II. Phase-II refers to a prospec-
tive analysis in which one monitors (usually in real-time) new
observations as they arrive with the goal of detecting any change
in the process behavior as quickly as possible after it occurs.
If T2

t at some t exceeds a specified upper control limit (UCL)
determined as described later, this is taken to be an indication
that P(Y|X) in the time-vicinity of observation t has changed
from what it was when θ̂

(0)
was estimated. The convention that

we recommend and that we have used in all of our later examples
in the article is to estimate s̄ from only the Phase-I data and �̂

from only the training data. The reason we do not use any Phase-
I data to estimate �̂ is that the control limits are determined
from the Phase-I data, and estimating �̂ from the same Phase-
I data can result in a form of overfitting and a UCL that is too
small, which results in too many false alarms. The reason we
do not use any training data to estimate s̄ is that if there is
concept drift between the training and Phase-I data and we use
the training data to estimate s̄, then zt − s̄ will not be zero-mean
over the Phase-I data, which can result in a UCL that is too
large, which reduces the sensitivity to concept drift in Phase-
II. Note that if there is concept drift between the training and
Phase-I data, this can be detected via our retrospective analysis,
as illustrated in the later examples.

The score-based concept drift monitoring framework is
divided into three steps, which will be illustrated in more detail
in the later examples. In Step 1, we collect a batch of data in time
order, {xi, yi}m

i=1, where m denotes the sample size of this batch.
Then, after fitting a preliminary supervised learning model to
these data, a retrospective analysis is conducted by applying the

MEWMA to these same data. If the MEWMA indicates these
data are stable and no significant concept drift is detected, we
proceed to Step 2. On the other hand, if the MEWMA detects
significant concept drift in these data then one can discard a
portion of the data prior to the concept drift in an attempt to
ensure that the remaining data are stable. For other kinds of
concept drift, like gradual drifting or seasonality as in the bike-
sharing example in Section B.4, supplementary materials, we
can try to modify the model by incorporating other covariates
to reduce the concept drift. This retrospective analysis would
then be repeated (perhaps multiple times) on the remaining data
to verify whether it was stable versus experienced concept drift.
When the remaining data are deemed stable, then we proceed
to Step 2.

Let n ≤ m denote the size of the stable data from Step 1
and denote these data by D := {xi, yi}n

i=1. The purpose of Step
2 is to establish the UCL and then to prospectively monitor
new data for concept drift, as the new data are collected. To
establish the UCL, we divide D into two parts: D1 := {xi, yi}n1

i=1
and D2 := {xi, yi}n

i=n1+1. The first part, D1, is used to retrain
the parametric supervised learning model of interest, and the
second part, D2, is used to establish the UCL in Phase-I. In the
Phase-I analysis, the score vectors for the D2 data are computed
based on the model fitted to theD1 data. The MEWMA statistics
{zt}n

t=n1+1 and T2 statistics {T2
t }n

t=n1+1 are then computed for
the D2 data. The user specifies a desired false alarm probability
α (e.g., α = 0.0001, α = 0.001, etc.), and the UCL is set as the
1 − α sample quantile of {T2

t }n
t=n1+1. After computing the UCL

in Phase-I, in Phase-II the MEWMA with this UCL is applied
prospectively to the sample score vectors for a new set of “on-
line” data D̃ := {x̃i, ỹi}ñ

i=1 (i.e., new data for which the fitted
supervised learning model is to be used to predict the response,
e.g., new credit card applicants who are being scored for credit
risk by the fitted model). The purpose of the Phase-II analysis
is to detect as quickly as possible if concept drift occurs in the
new data, so that the supervised learning model can be updated
accordingly.

The purpose of Step 3 is to conduct a diagnostic analysis
to help determine the nature of the concept drift, if any drift
is detected in Phase-II. This involves plotting the T2

t statistic
versus t over the dataset of interest. Note that the T2 statistic
aggregates changes in any of the components of the score vector
into a single scalar statistic. To provide richer diagnostic infor-
mation and help understand which parameters have changed,
analogous univariate EWMA control charts for (transformed)
individual components of the score vector should also be con-
structed. We describe these univariate control charts in Sec-
tion 4.

The Step 3 diagnostic procedure can also be used in a purely
retrospective analysis following Step 1, if it is desired to under-
stand the nature of the nonstationarity in P(Y|X; θ) over any
set of training data to which a supervised learning model is
fitted.

For the other methods based on scalar metrics (e.g., error
rates) to which we compare our approach and for the trans-
formed components of the score vector that we describe in Sec-
tion 4, we use univariate EWMA (Roberts 1959) control charts
because the EWMA in Equation (7) is a scalar in this case. One
main difference between a univariate EWMA and an MEWMA
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is that the MEWMA T2 statistic aggregates the changes in the
mean vector into a single scalar statistic, and only larger values
of T2 indicate a change in the mean from s̄. Thus, only an UCL
is needed in the MEWMA. In contrast, the univariate version
of the EWMA in Equation (7) to detect changes in the mean
of a scalar random variable are two-sided in nature and have a
lower control limit (LCL) as well as a UCL. Changes in the mean
are indicated by the univariate EWMA statistic falling either
below the LCL or above the UCL. After concept drift is detected,
users can also attempt to validate whether the alarm was truly
due to concept drift or to some other phenomenon such as
covariate drift using methods discussed in (Raza, Prasad, and
Li 2015) and (Mejri, Limam, and Weihs 2018; Mejri et al. 2021),
for example.

3.4. Handling High-Dimensional and Regularized Models

Many machine learning models are becoming increasingly com-
plex, and some state-of-the-art models can have millions of
parameters, for example, deep neural networks. With such high-
dimensional parameters, the sample covariance matrix �̂ in
Equation (8), which must be inverted, is very likely to be singular
or close to it. For example, when the sample size of our training
data (denoted by n1 as in Section 3.3) is smaller than the number
of parameters, the sample covariance is always singular.

With very high-dimensional θ like in convolutional neu-
ral networks (CNNs), one simple solution is to monitor the
elements of the score vector corresponding to only a specific
subset of the parameters, which we further discuss in the next
section. An alternative solution is to modify the covariance
matrix to circumvent the problem of inverting a singular or
poorly-conditioned matrix. One way to accomplish this is to
add a nugget parameter (borrowing terminology from Gaussian
process modeling) to all diagonal entries of �̂. Specifically, for
some δ > 0, we substitute �̃ := �̂ + δI for �̂ in Equation (8).
To understand the effect of this nugget parameter, denote the
eigen-decomposition of the sample covariance matrix as �̂ =
Q�QT , where Q is an orthogonal matrix of eigenvectors and
� = diag{λ1, λ2, . . . , λq}, (where q = dim(θ)), is a diagonal
matrix of eigenvalues, and suppose the eigenvalues are arranged
in nonincreasing order. Then, we can write the approximated
sample covariance matrix as �̃ = Q�̃QT , where �̃ := � + δI.
Using �̃ in place of �̂ in Equation (8) suppresses unimpor-
tant directions of variation. The resulting MEWMA with this
modified covariance matrix would not have the issue of ill-
conditioning.

Another way to accomplish this is to use a pseudo-inverse
of �̂ in Equation (8) instead of its actual inverse, after drop-
ping any eigenvalues λi with λ1/λi > γ for some specified
maximum condition number γ . Define the diagonal matrix
�− = diag{λ−1

1 , λ−1
2 , . . . , λ−1

k , 0, . . . , 0} where λk is the smallest
eigenvalue with λ1/λk no greater than γ . Then, the pseudo-
inverse is defined as �̂

− = Q�−QT . This is equivalent to
applying principal component analysis to st and retraining only
the principal component directions in which the variation in st
is not negligible. In our approach we used the nugget parame-
ter instead of the pseudo-inverse, so as to enable detection in
changes in the mean of the score vector in all directions. For all

of our examples, we chose the nugget parameter as the smallest
value of δ for which the condition number of �̂ + δI was no
larger than 104.

Another related issue is regularization of complex models,
which is almost always required to combat overfitting. A reg-
ularization term J(θ) is used to penalize complex models and
large parameters by fitting the model to minimize the regu-
larized loss function l(θ) = −∑n

i=1 log P(yi|xi; θ) + J(θ) =
−∑n

i=1
{

log P(yi|xi; θ)− J(θ)
n

}
, instead of the MLE loss function

−∑n
i=1 log P(yi|xi; θ). For example, for L2 regularization, we

use J(θ) = c
2 ||θ ||22, where c > 0 is the regularization parameter.

The gradient of the regularized loss function becomes ∇θ l(θ) =
−∑n

i=1
{

s(θ ; (xi, yi)) − ∇θ J(θ)
n

}
. Suppose we redefine the score

vector as s(θ ; (xi, yi)) ← s(θ ; (xi, yi)) − ∇θ J(θ)
n and view this

as the regularized score vector. Using the same arguments as
in the unregularized situation, it follows that the regularized
score vector is zero-mean when there is no concept drift, and
so it still makes sense to monitor for changes in the mean of the
regularized score vector. The MEWMA and Hotelling T2 com-
putations in the concept drift monitoring procedure are exactly
the same but with the score vector replaced by the regularized
score vector. For L2 regularization, this amounts to replacing
s(θ ; (xi, yi)) ← s(θ ; (xi, yi)) − c

nθ . Since the score vector and
the regularized score vector only differ by the constant vector
∇θ J(θ)

n , the monitoring statistic remains unchanged when regu-
larization is used, because the centered MEWMA zt − s̄ and the
covariance matrix �̂ in Equation (8) are translation-invariant.
Another way to view the above is that we are replacing the
likelihood with its Bayesian counterpart P(Y|X; θ) exp

{− J(θ)
n

}
,

which incorporates a prior distribution (a Gaussian prior for L2
regularization) on the parameters.

Note that for L1 regularization, which is commonly used for
linear and logistic regression modeling (i.e., LASSO regression),
J(θ) is not differentiable with respect to the parameters that
have been regularized to zero. Similar to what was described
above for the case of high-dimensional θ , one could take the
score vector for only the subset of parameters that are nonzero.
In this case, it is not clear whether changes in the parameters
that were regularized to zero would be reflected in a change
in the mean of the partial score vector. This warrants future
study. In the Section D, supplementary materials, we discuss
additional extensions of the approach to supervised learning
models with extremely high-dimensional parameters (e.g., deep
learning networks) and to nondifferentiable models (e.g., tree-
based models).

4. Diagnostics and Enhanced Monitoring of
Individual Components

The Hotelling T2 statistic aggregates mean shifts in the com-
ponents of the score vector into a single scalar statistic. In
order to provide diagnostic insight into the nature of the
change in P(Y|X, θ) (e.g., which parameters have changed)
and/or to enhance the ability of the procedure to detect some
changes, it is helpful to monitor individual components of the
score vector s(θ (0); (X, Y)) or the transformed version described
below. To construct a univariate EWMA chart for the jth
component (j = 1, 2, . . . , q) of the score vector, denoted by
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sj,t := [s(θ̂ (0)
; (xt , yt))]j, the univariate counterpart of Equation

(7) is

zj,t = λsj,t + (1 − λ)zj,t−1. (9)

In this case, zj,t is plotted directly on the univariate EWMA
chart with both a LCL and UCL. The chart signals a change
in the mean of the jth component at observation t if zj,t falls
either below the LCL or above the UCL. If λ is small, zj,t is
approximately normal by the central limit theorem, and one can
set {LCLj, UCLj} = z̄j ± zα/2SD[zj], where SD[zj] and z̄j denote
the standard deviation and sample average over the training
data, {zj,t}n1

t=1, and Phase-I data, of {zj,t}n
t=n1+1, zα/2 is the upper

α/2 quantile of the standard normal distribution, and α is the
desired false alarm rate. Alternatively, if the Phase-I sample size
n − n1 is sufficiently large, one can choose LCLj and UCLj
directly as the lower and upper α/2 quantiles of the empirical
distribution of {zj,t}n

t=n1+1.
If the goal is to diagnose and isolate which parameter(s)

have changed, then it is preferable to replace the score com-
ponents in the univariate EWMA by the components of a
transformed version of the score vector discussed below, to
effectively decouple the changes in the individual parameters.
To illustrate this coupling, consider a linear Gaussian regression
model Y = XTθ + ε with ε following a zero-mean Gaussian
distribution with variance σ 2, the score vector for which is
s(θ ; (X, Y)) = (Y−XTθ)X

σ 2 . With no concept drift (i.e., θ =
θ (0)), the mean of the score vector is Eθ (0)[s(θ (0); (X, Y))] =
E[Eθ (0)[ (Y−XTθ (0))X

σ 2 |X]] = E[0] = 0. After concept drift, sup-
pose the parameters change to θ (1), and denote this change by
�θ = θ (1)−θ (0). The mean of the score vector after the concept
drift is Eθ (1)[s(θ (0); (X, Y))] = E[Eθ (1)[ (Y−XTθ (1)+XT�θ)X

σ 2 |X]] =
E[Eθ (1)[XXT�θ

σ 2 |X]] = E[XXT ]�θ
σ 2 . Thus, we can decouple the

changes in the parameters by premultiplying the score vec-
tor mean by the inverse of the expected Fisher informa-
tion matrix E[XXT ]

σ 2 , that is, via the transformation �θ =
σ 2(E[XXT])−1Eθ (1)[s(θ (0); (X, Y))].

For more general models and P(Y|X; θ) we consider two
different forms of decoupling, depending on whether one is
interested in decoupling the components of θ or (for regularized
models) the components of the regularized version θ̃ of the true
parameters, where θ̃ denotes the minimizer of the regularized
version of the population loss function Eθ [− log P(Y|X; θ) +
J(θ)/n]. The appropriate decoupling equations are (see Sec-
tion A, supplementary materials for derivations):

�θ = I
−1(θ (0))Eθ (1)[s(θ̃ (0); (X, Y))], (10)

and

�θ̃ = Ĩ
−1(θ (0))Eθ (1)[s(θ̃ (0); (X, Y))], (11)

where I(θ (0)) := Eθ (0)

[
s(θ̃ (0); (X, Y))sT(θ̃

(0); (X, Y))
]

is the
expected Fisher information matrix (which can be esti-
mated as the sample covariance matrix of s(θ̃ (0); (X, Y))

over the training data prior to concept drift), Ĩ(θ (0)) :=
−Eθ (0)

[∇θ∇T
θ

{
log P(Y|X; θ) − J(θ)

n
}|

θ=θ̃
(0)

]
is an alternative

expression for the expected Fisher information matrix with reg-
ularization which can be estimated as the sample average of the
Hessian matrix −∇θ∇T

θ

{
log P(Y|X; θ) − J(θ)

n
}|

θ=θ̃
(0) over the

training data prior to concept drift. Here, Eθ (1)[s(θ̃ (0); (X, Y))]
can be estimated as the sample mean of s(θ̃ (0); (X, Y)) over
some relevant window of data following the concept drift.
Alternatively, expressions for the population expectations of the
Hessian matrices are available for some models like traditional
GLMs (e.g., linear and logistic regression), in which case these
expressions can be used instead of their sample versions. Notice
that the two decoupling expressions (10) and (11) are different
in general. However, if there is no regularization (i.e., if J(θ) = 0
as discussed in Section 3.4), then θ̃

(0) = θ (0), and it is well
known that I and Ĩ are equivalent expressions for the expected
Fisher information matrix, in which case, (10) and (11) are the
same. We will refer to either the transformation (10) or (11) as
“Fisher decoupling.”

In light of the above Fisher decoupling results, as an alter-
native to the univariate EWMAs (9) on the score components,
we can construct univariate EWMAs on the decoupled score
components

zj,t = λs̃j,t + (1 − λ)zj,t−1, (12)

where s̃j,t is the jth component of the decoupled score vector
s̃t := Î

−1(θ (0))st , where Î(θ (0)) is an estimate of either I(θ (0))

or Ĩ(θ (0)). The LCL and UCL for (12) are determined analo-
gously to those for (9), based on the empirical distribution of
{zj,t}n

t=n1+1.
In addition to providing diagnostic information on which

parameter(s) have changed, and how they have changed, the
decoupled univariate EWMAs (12) have the following, addi-
tional benefit over just using the MEWMA. As discussed ear-
lier, under fairly general conditions, the mean of s(θ (0); (X, Y))

changes if and only if P(Y|X; θ) changes. Thus, a change in P(X)

alone with no change in P(Y|X; θ) will not cause the mean of
s(θ (0); (X, Y)), or the mean of zt in (7), to change. However,
a change in P(X) alone can cause the mean of the Hotelling
T2 statistic in (8) to increase (by changing the covariance of
s(θ (0); (X, Y))), thus, potentially leading to more frequent false
alarms if the goal is to signal only when P(Y|X; θ) changes. This
is easy to see for the case of the linear Gaussian regression model
Y = XTθ + ε with score vector s(θ (0); (X, Y)) = (Y−XTθ (0))X

σ 2 .
If P(Y|X; θ) does not change (i.e., θ remains unchanged at
θ (0)), then we still have that s(θ (0); (X, Y)) = εX

σ 2 is zero mean
regardless of whether P(X) changes, but the covariance of εX
can obviously change.

The univariate EWMAs are more robust to false alarms that
are caused by a change in P(X) and a resulting covariance
change in s(θ (0); (X, Y)), because they chart the individual zj,t
components directly and not some quadratic form like the T2

statistic, and the mean of zj,t changes if and only if P(Y|X; θ)

changes. A variance change in zj,t typically would not increase
the false alarm rate as much as if its mean changes. Moreover,
by visual inspection of the univariate EWMA charts, it is easier
to determine if an alarm was due to a mean change or to a
variance change in zj,t than with the aggregated T2 statistic in
the MEWMA chart. Because a single aggregated monitoring
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statistic has other advantages, in practice we recommend using
both the MEWMA and the decoupled univariate EWMAs,
which we illustrate with the examples in the subsequent
sections.

For classification problems (categorical Y), the fitted super-
vised learning model represents P(Y|X; θ) directly, and changes
in θ equate to changes in P(Y|X; θ) if the parametric model
structure is appropriate. However, for regression problems, the
fitted supervised learning model typically (with squared error
loss) represents only the conditional mean E(Y|X; θ), and so
changes in θ equate to changes in E(Y|X; θ). If (for example)
Var(Y|X; θ) changes but E(Y|X; θ) does not, then the mean of
the score vector remains zero (since the same θ still provides
optimal prediction of the response). However, similar to the
situation described above in which P(X) changes, changes in
var(Y|X; θ) may result in changes in the covariance of the score
vector and affect the false alarm rate of the multivariate EWMA.
Developing diagnostic methods that can distinguish this is a
topic that warrants future study.

5. An Illustrative Example: Credit Risk Modeling

In order to demonstrate the performance of our score-based
concept drift approach and illustrate its usage, we now present
a real data example, which involves credit risk modeling with
data collected over the period 2003–2008 from a major finan-
cial company, during which time the subprime mortgage crisis
happened. In Section B.1, supplementary materials we provide
a simulation example where concept drift results in no change
in expected error rate (and thus, error-based methods cannot
detect it), but our score-based approach is able to effectively
detect it. In Section B.2, supplementary materials, we provide
more comprehensive simulation results comparing the drift
detection performances of our score-based approach and alter-
native existing methods. The main conclusion is that our score-
based approach achieves better performance across every exam-
ple that we considered, often substantially so. In Section B.4,
supplementary materials, we also provide another real data
example, the Capital Bikeshare rental data from 2010 to 2020
during which time the “sharing economy” steadily expanded,
to demonstrate retrospective and prospective analysis for a
regression problem. In Section C, supplementary materials, we
use simulation examples to investigate the performance of the
Fisher decoupling approach in diagnosing which parameters
have changed and how they have changed.

In the credit risk dataset, each row corresponds to a unique
credit card customer of a major financial company, and we have
196,587 rows of data in total. The covariates for row/customer i
include various customer information (xi) available at the time
the customer applies for the credit account, and the binary
response (yi) indicates whether the customer defaults within
the first 9 months after opening the account. For the purposes
of plotting various quantities over time, we associate each row
i with a time stamp that is taken to be the day on which the
response yi first becomes available. Specifically, the set of all
customers associated with a particular day, which we refer to
as their “entry day” into the dataset, are those who opened their
account within nine months of that day and defaulted on that
day (in which case they are assigned yi = 1), together with

those who opened their account exactly nine months prior to
that day and did not default (in which case they are assigned
yi = 0). The data are imbalanced in the sense that there are
3536 observations with yi = 1, which accounts for around 1.8%
of the data. Consequently, when fitting the model to the training
data, we assign a weight of 7.5 to the minority class (which
corresponds to upsampling the minority class by a factor of 7.5)
so that the weighted percentage of the minority class in training
data is around 10%. For the training, validation, Phase-I, and
Phase-II datasets, the classification errors and score vectors
in Equation (1) and any quantities related to them are also
using the same weighting scheme. That is, for each minority-
class observation, its score vector in the MEWMA equation in
Equation (7) is multiplied by 7.5, its Hessian and score vector
are multiplied by 7.5 when computing the average Hessian (for
Fisher decoupling) and average score vector (for use in the
Hotelling T2 statistic (8)), etc.

These data were originally considered in (Im et al. 2012),
who focused on the same 10 covariates that we consider in
this study: x1 (credit risk score from an earlier model used by
the company), x2 (credit bureau risk score), x3 (highest credit
limit for open revolving credit accounts), x4 (total balance on
all open revolving credit accounts), x5 (balance on the highest-
utilization open revolving credit account), x6 (credit limit on
the highest-utilization open revolving credit account), x7 (num-
ber of inquiries in the last 24 months), x8 (balance on open
mortgages), x9 (categorical variable involving status of savings
accounts), and x10 (number of inquiries in the last 24 months,
excluding the last two weeks).

We applied concept drift detection to two supervised learn-
ing models: A logistic regression model and a neural net-
work (with one hidden layer having 50 activation nodes). The
main reason the company fits models of this nature was to score
credit card applicants for risk (via their predicted probability of
defaulting) at the time they apply. For the purpose of evaluating
the concept drift detection, we trained and validated both mod-
els on the data from January 2003 to December 2005. The data
from January 2006 to December 2006 are used as the Phase-I
data to calculate control limits. The remainder of the data, from
January 2007 to August 2008 are used as the Phase-II data to test
the capability of detecting the concept drift due to the subprime
mortgage crisis. Recall that the S&P 500 declined by more than
50% over a 15-month period between the end of December 2007
and the end of March 2009 (from 1478 to 683). The prevailing
view is that the major root cause of the stock market decline was
the subprime crisis, which had been gradually developing prior
to that.

We applied our score-based MEWMA with the goal of
detecting concept drift as far in advance of the beginning of
the crash (December 2007) as possible. For comparison, we also
applied an EWMA on the (weighted) binary classification error,
which requires that the predicted probability P[Y = 1|X] for
each observation be converted to a classified label (Y = 0 or
Y = 1). For this, we used the standard approach of classifying
Y = 1 if the predicted probability exceeds some threshold,
and Y = 0 otherwise. We chose this classification probability
threshold to be 0.1057 to match the true positive rate and the
true negative rate as closely as possible (alternatively, if costs of
false positives and false negatives were known in advance, we
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Figure 1. For the credit risk example, comparison of concept drift monitoring performance for our score-based MEWMA (the top plots) versus an EWMA on the classification
error (the bottom plots). The left and right plots are for the logistic regression and neural network models, respectively. The horizontal dashed lines are the control limits.
The blue vertical line is the boundary between the Phase-I and Phase-II data. The tilted numbers along the horizontal axes below each plot are the year-month indices (e.g.,
6–1 stands for January 2006). The score-based MEWMA consistently signals beginning March 2007, which is nine months prior to the beginning of the stock market crash
in December 2007. In contrast, the EWMA on the classification error does not consistently signal until around January 2008.

could have chosen the threshold to minimize the total misclas-
sification cost). For both methods, we selected λ = 0.001, so that
the effective window is 1

λ
= 1000 customers, which corresponds

roughly to one week. Figure 1 shows the results of both concept
drift monitoring methods for both models (logistic regression
and neural network) over the Phase-I and Phase-II data.

As seen in Figure 1, for the logistic regression model, the
score-based MEWMA consistently signals (i.e., the T2 statis-
tic consistently falls above the UCL) beginning around March
2007, which is about 9 months prior to the beginning of the
economic crash in December 2007. In this sense, the score-
based approach provides advanced warning that something has
changed substantially in the predictive relationship between Y
and X, which could have been indicative that serious economic
changes were evolving. At the very least, it would have been an
indication that the fitted credit risk scoring model was becoming
obsolete and that more effective scoring could be achieved by
updating the model. In contrast, the EWMA on the error rate
does not consistently signal until much later, around January
2008, which is 10 months after the score-based MEWMA began
to consistently signal and 1 month after the economic crash
began. The results for the neural network model, which are
shown in the right panels of Figure 1, are very similar.

Figure 2 shows several representative univariate component
EWMA control charts (for θ1, θ2, θ3, θ8, and the intercept θ0) for
the logistic regression model over the Phase-I and Phase-II data.
The MEWMA is also shown in the top row as a reference. The
component EWMA control charts in the left column are for the
original (coupled) score components (9), and those in the right
column are for the Fisher-decoupled score components (12)
using the Hessian matrix version of Ĩ(θ (0)) for decoupling �θ̃

via (11). Rather than estimating the Fisher information matrix
as the sample covariance matrix as in Equation (10), we used
its theoretical Fisher information matrix expression for logistic
regression.

Decoupling the score components reveals different patterns
of concept drift than are seen in the original score components.
In particular, the decoupled component EWMA for the inter-
cept parameter (the bottom right plot) shows a clear upwards
drift over the entire range of data, whereas this drift is not

apparent in the corresponding original component EWMA (the
bottom left plot). The correlation between the intercept term
and some of the other covariates has evidently conflated the drift
in their corresponding parameters in the left column plots. The
upwards drift in the decoupled intercept parameter is telling, as
the intercept can be viewed as a regression-adjusted indicator
of the overall default rate. Since the drift was upwards, this
means that the intercept parameter increased over time, which
means that the regression-adjusted likelihood of default (i.e.,
the default for applicants having the same covariate values)
increased substantially over time. In fact, the concept drift may
even be evident earlier in the decoupled component EWMA for
θ0 than in the MEWMA. For example, the decoupled compo-
nent EWMA for θ0 falls consistently above the center line (0)
beginning back in the Phase-I data, around June 2006. Even
though it is not above the UCL at this point, the fact that it is
consistently above the center line is an indication that θ0 has
increased. In SPC control charting in general, users typically
look for these types of patterns in the charts to signal changes
in the mean of what is being charted (Montgomery 2007).

The decoupled component EWMA chart for θ1 (the right
column, the second from top) also shows a clear downwards
drift in θ1, which means that x1 (credit risk score from an earlier
model) should be given less weight in predicting credit risk
as time evolves. This makes sense, because the earlier model
had been fitted to even earlier data. The decoupled component
EWMA chart for θ2 (the right column, the third from top)
has a different trend that is also less extreme than for θ1. It
is interesting that the component EWMA charts for θ1 and θ2
prior to decoupling (second and third plots in the left column)
are far more similar than their decoupled counterparts. This is
likely because x1 and x2 have a correlation coefficient of 0.45,
and correlation between covariates conflates the concept drift
in their coefficients, whereas the Fisher decoupling is intended
to distinguish the concept drift in the coefficients.

6. Conclusions

Predictive models are trained on historical datasets, but due to
potential changes in the conditional distribution P(Y|X) (aka,
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Figure 2. MEWMA (the top row) and various univariate component EWMA (the other rows, for θ1, θ2, θ3, θ8, and the intercept θ0) control charts for the logistic regression
model in the credit risk example over the Phase-I and Phase-II data. The left column are the original score component EWMA control charts (9), and the right column are
the decoupled component EWMA control charts (12). The horizontal lines are the control limits and also a line indicating the zero value for the EWMAs. The blue vertical
line is the boundary between the Phase-I and Phase-II data. The decoupled component EWMA control charts show clear drift in a number of parameters, especially the
intercept (the bottom right) and θ1 (the second from the top, the right column).

concept drift) the performance of the models may degrade. We
have developed a comprehensive, general, and powerful score-
based framework for monitoring and diagnosing concept drift.
The framework is general in that it applies to broad classes
of parametric models, either regression or classification. It can
be used retrospectively (to analyze whether P(Y|X) was stable
over a past dataset and aid in the model building procedure)
and prospectively (to quickly detect changes in P(Y|X) so that
predictive models currently in use can be updated accordingly).
We have provided theoretical arguments that, under reasonably
general conditions, concept drift occurs if and only if the mean
of the score vector changes. Consequently, our score-based
procedure is based on monitoring and analyzing changes in
the mean of the score vector. For this, we have adopted proce-
dures (MEWMA and univariate EWMA) that were developed
in the SPC literature for monitoring for changes in the mean
of multivariate vectors in general. As part of the framework,

we have also developed a diagnostic approach that involves
decoupling changes in the parameters from the change in the
mean of the score vector.

In simulation and real data examples, we have demonstrated
that our score-based monitoring procedure provides much
more powerful detection of changes in P(Y|X) than the state-of-
the-art existing approach (error-based EWMA). In particular,
there are examples (e.g., Figure B1 in the supplementary mate-
rials) in which the score-based approach quickly detects the
change in P(Y|X), but the error-based approach is completely
unable to detect the change because they do not result in a
change in the error rate.

We note that although multivariate EWMA monitoring
charts (e.g., Figure 1 and the top row of Figure 2) can be
used with complex models, the univariate EWMA diagnostic
plots (e.g., the remaining rows of Figure 2) are intended more
for models in which the parameters are meaningful, such as
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for linear and logistic regression models. However, for com-
plex models like neural networks with many layers, one could
construct diagnostic plots for only the parameters in the last
layer as described in Section D, supplementary materials, which
represent the effects of features extracted in the previous layers.

One of the assumptions when fitting a supervised learning
model of the type considered in this article is that the training
data are stationary over time, in the sense that there is no drift
in the predictive relationship between the response variable and
the predictor variables. Our concept drift detection approach
can be viewed as a way of determining whether this stationarity
assumption is violated and, if not, at which point(s) in time
the relationship drifted. Moreover, if the univariate diagnostic
plots are used, the approach can help indicate which model
parameters have drifted.

Supplementary Materials

In the online supplementary materials of this article, we provide a file con-
taining derivations of Fisher Decoupling Equations (10) and (11), examples
demonstrating effectiveness of our methods, simulation study results, and
a discussion on potential extensions of our methods. Additionally, the zip
file contains python code and data necessary to reproduce some results
presented in this article.
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