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ABSTRACT

POI tagging aims to annotate a point of interest (POI) with some
informative tags, which facilitates many services related to POISs,
including search, recommendation, and so on. Most of the existing
solutions neglect the significance of POI images and seldom fuse
the textual and visual features of POlIs, resulting in suboptimal tag-
ging performance. In this paper, we propose a novel Multi-Modal
Model for POI Tagging, namely M3PT, which achieves enhanced
POI tagging through fusing the target POI's textual and visual
features, and the precise matching between the multi-modal rep-
resentations. Specifically, we first devise a domain-adaptive image
encoder (DIE) to obtain the image embeddings aligned to their
gold tags’ semantics. Then, in M3PT’s text-image fusion module
(TTF), the textual and visual representations are fully fused into
the POIs’ content embeddings for the subsequent matching. In ad-
dition, we adopt a contrastive learning strategy to further bridge
the gap between the representations of different modalities. To
evaluate the tagging models’ performance, we have constructed
two high-quality POI tagging datasets from the real-world busi-
ness scenario of Ali Fliggy. Upon the datasets, we conducted the
extensive experiments to demonstrate our model’s advantage over
the baselines of uni-modality and multi-modality, and verify the
effectiveness of important components in M3PT, including DIE, TIF
and the contrastive learning strategy.
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1 INTRODUCTION

A point of interest (POI) is a location that someones may feel helpful
or interesting, including a park, restaurant, shop, museum, and
so on. In the last decades, various services related to POIs have
become very popular on Web. POI tagging, i.e., annotating POIs
with some informative tags (labels), which not only help users better
understand POIs’ characteristics, but also are useful to discover the
relatedness or similarities between different POIs. As a result, POI
tagging can facilitate many downstream applications, such as POI
search [9] and recommendation [18, 41].

Many previous solutions achieve POI tagging based on textual
data but only have limited performance. These solutions generally
extract some features from the textual data relevant to a given POI,
to infer the probability that each tag can be used to annotate the
POL The textual data mainly includes users’ check-in logs [19, 20],
POI taxonomy [39] and descriptions [21]. However, considering
only textual data for POI tagging may suffer from the problems
of false positive (FP) and false negative (FN). FP refers to the fact
that it might annotate the POI with the tags that are semantically
related to the textual data but incorrect in fact. FN refers to the fact
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Textual data
POI name: JHHIRZ Z S BE
Concept Bookstore of Cat’s Sky City (Momi Cafe)
Description: 82 FMEUMEHEANZESZMRE, FRGIFIEEEEZYIAR.

Momi Cafe is not like a cafe but sells coffee, not like a milk tea shop but sells milk tea.

Comment 1: B ERIEEIBYPFE B!

Come to Momi Cafe for drinking milk tea and reading book at night!

Comment 2: ZBIZIHZ FIMMER T, HATREIZ!
1 love Momi Cafe 's coffee pudding, it's really delicious!
A

Images

-1

0
Tags similari dissimilar
dissimilar

X Fi%¢/tea tasting, Z5i8/teahouse, Stk /cat coffee - -1 - - ~issimilar___ H
/' W4T #3388/ Web celebrity photograph, M 4T #T-/Web celebrity check-in

Figure 1: A toy example to demonstrate the effects of incor-
porating images into POI tagging.

that it might overlook the tags that are semantically dissimilar to
the textual data but correct in fact.

We have found that there is sufficient visual data (such as im-
ages) related to POIs on many real-world platforms, which is in
fact an essential supplement of the textual data, to solve the afore-
mentioned problems. For example, Fig. 1 displays not only the
textual data of a specific POI (Momi Cafe) including its name, de-
scription and user comments, but also some images posted in the
comments. As shown in the figure, the FP and FN problems are
alleviated or solved if the images are considered besides the tex-
tual data. Specifically, the POI was wrongly labeled with ‘i %%/tea
tasting’ due to the comment ‘Bf_t &I 2518 §5 55 F 431/Come to
Momi Xafe for drinking milk tea and reading book at night!’. While
the images do not display the scene of tea tasting, hence helping
the model correct such FP problem. Besides, the incorrect tag ‘%%
Y8 /teahouse’, and “JHiMl/cat coffee’ could be filtered out since their
semantics are not related to the images. For FN, the correct tag ‘¥
Z141#8/Web celebrity photograph’ and ‘M £1.3T-K/Web celebrity
check-in” would be inferred as they have similar semantics to the
images, although they are less semantically similar to the texts. The
significance of POI images on discovering correct tags inspires us
to leverage the textual and visual data simultaneously to achieve
effective POI tagging.

A straightforward approach of leveraging images is to transfer an
existing multi-modal model (e.g., CLIP [32] and BLIP [23]). However,
this approach’s effect is limited for the following reasons, especially
given that the tagging task we focus on in this paper is specific to
a real-world tour scenario of Ali Fliggy'. 1) There is a gap between
the textual and visual representations in general, which would
likely lead to the mismatching between the POI and the gold tags.
2) Leveraging the existing image pre-trained models (such as ViT
[7]) might result in unsatisfactory representations of POI images,
since our task is a domain-specific tagging task.

To address these problems, in this paper we propose a novel
Multi-Modal Model for POI Tagging, namely M3PT, which is built
based on a matching framework. Our model achieves enhanced
tagging performance through the full fusion of the given POI's
textual and visual features, and the precise matching between the
POI’s multi-modal representation and the candidate tag’s represen-
tation. Specifically, in M3PT’s feature encoding module, we devise
a Domain-adaptive Image Encoder, namely DIE, to obtain the em-
beddings of POI images aligned to their gold tags’ semantics. Then,
we design a Text-Image Fusion module, namely TIF, to fuse the

!t is a famous Chinese tour platform and its URL is https://www.fliggy.com.
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textual and visual features of the POL In TIF, we construct a clus-
tering layer followed by an attention layer to distill the significant
features for generating the POI’s content embedding. Furthermore,
we adopt a contrastive learning strategy to refine the embeddings
of different modalities, and thus the cross-modality gap is bridged.
In addition, the matching-based framework enables our M3PT to
conveniently achieve the precise matching for a new tag, which is
beyond the premise in traditional multi-label classification, i.e., the
classification towards the close set of predefined labels.

Our contributions in this paper are summarized as follows.

1. To the best of our knowledge, this is the first work to exploit a
multi-modal model incorporating the textual and visual semantics
to achieve the POI tagging on a real-world business platform. To
this end, we propose a novel POI tagging model M3PT based on a
multi-modal matching framework, to achieve the precise matching
between POIs and tags.

2. We specially devise a domain-adaptive image encoder DIE in
our model to obtain the optimal embedding for each input image,
which is aligned to the semantics of the image’s gold tags. The
image embeddings generated by DIE are better adaptive to the
requirements of the real-world scenario, resulting in enhanced
tagging performance.

3. We have constructed two high-quality POI tagging datasets
from the real-world tour scenario of Ali Fliggy, upon which we
evaluate the models’s tagging performance. Our extensive exper-
iment results not only demonstrate our M3PT’s advantage over
the previous models of uni-modality and multi-modality, but also
justify the effectiveness of the important components in M3PT.

2 RELATED WORK

2.1 POI Tagging Model

Existing POI tagging solutions can be divided into three groups.
The first group uses users’ check-in data of POIs as inputs, and
extracts discriminative features to predict location labels. Krumm
et al. [19, 20] presented a set of manually designed features that
are extracted from the public place logs and individual visits. Some
other methods [14] leverage the features of user check-in activities
and other behavior data to train the generative probabilistic models
to infer POI tags. The authors in [39, 42, 45, 52] discussed more
comprehensive check-in data including POI unique identifiers, user
unique identifiers, the number, time and duration of check-ins, the
latitude/longitude of user positions, as well as user demographic
information. Label annotation for POIs was first studied in [45],
which introduces a collective classification method for feature ex-
traction.The authors in [52] studied how to select the most relevant
features for POI tagging. Yang et al. [42] proposed an updatable
sketching technique to learn compact sketches from user activity
streams and then used a KNN classifier to infer POI tags. Wang et al.
[39] proposed a graph embedding method to learn POI embeddings
from POI temporal bipartite graphs, which are then used by an
SVM classifier of POIs labels.

The second group includes the methods proposed in [13, 21, 51],
which also use more fine-grained information of POIs besides user
check-in data. For example, [13] includes general tags that may be
related to categories and other information, e.g., "godzilla". [51] is
the first to use POI name and address tokens, that are obtained by
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Figure 2: Our proposed M3PT consists of three modules. In the feature encoding module with a domain-adaptive image en-
coder (DIE), the textual and visual data of the given POI, and the candidate tag are encoded into the feature embeddings,
respectively. Then, in the text-image fusion module (TIF), the text and image feature embeddings are fused into the POI’s
content embedding. At last, the final probability is computed in the multi-modal matching module based on the matching

between the content embedding and tag embedding.

the pre-training on a domain and language-specific corpus. Lagos et
al. [21] found that POIs have several distinctive properties, includ-
ing notably multiscript names, geospatial identities, and temporally
defined context. Thus they proposed an approach to complete POI
semantic tags in a crowdsourced database automatically.

Similar to our work, the third group leverages image tagging, of
which many solutions use ViT [7] as the backbone to accomplish
multiple image classification. Although many algorithms have been
proposed for automatic image annotation [1, 4, 11], image tag re-
finement is treated as an independent problem, and has become an
exciting issue [8, 26, 29, 46].

2.2 Vision-language Pre-trained Model

Vision-language pre-training (VLP) aims to improve the perfor-
mance of downstream vision and language tasks by pre-training
models on large-scale image-text pairs. The pre-training tasks of
VLP models mainly include image-text contrastive learning and
language modeling (LM) based tasks. VirTex [5], ICMLM [36], and
ConVIRT [48] have demonstrated the potential of Transformer-
based LM, masked LM, and contrastive LM on learning image repre-
sentations from the text. CLIP[32], BLIP [23], FILIP [44], ALIGNm
[17] and UNIMO [25] mainly make use of cross-modal contrastive
learning which aligns the textual and visual information into a
unified semantic space. VisualBERT [24], UNITER [3], and M6 [27]
employ LM-like objectives, including both masked LM (e.g., Masked
Language/Region Modeling) and auto-regressive LM (e.g., image
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captioning, text-grounded image generation). In addition, some
methods (such as BriVL [16]) rely on a pre-trained object detection
model, such as Faster-RCNN [34], to extract regional image fea-
tures offline. It requires extra labeled bounding-box data and makes
the approach less scalable. Recent efforts such as SOHO [15] and
SimVLM [40] try to alleviate this burden via visual dictionary or
PrefixLM [33].

3 OVERVIEW

3.1 Problem Formalization

Given a POI p, the task objective of our model is to filter out some ap-
propriate tags from all candidate tags, to characterize p. Expressly, in
our scenario of Ali Fliggy, some textual contexts and images related
to p are also provided to the model to achieve the tagging task better.
The textual contexts include the name, category, description, and
user comments of p. The images include p’s main picture displayed
on the platform and the pictures posted in user comments. For-
mally, we denote all textual contexts of p as Xp = {x1,%2,...,xN},
and all related images as Vp = {v1,v2,...,0p}. The model should
compute the following matching score (probability) between p and
a candidate tag t,

dp,t = M3PT(X,, Vp, 1),

where M3PT() represents all operations in our model. With g, ;
and a well-chosen threshold 7, the model predicts whether t should
be used to annotate p.
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3.2 Solution Framework

As shown in Fig. 2, our proposed M3PT achieving POI tagging
pipeline can be divided into the following three phases.

1. Feature Encoding. The candidate tag t, the textual contexts, and
images of the given POI p are encoded into the feature embeddings
in this first phase. The relevant operations are conducted in the
feature encoding module of our model, which consists of a text
encoder and an image encoder. Specifically, we take BERT} e [6]
as the text encoder to encode ¢t into a tag embedding and encode
X into a set of text feature embeddings of p simultaneously. For
the image feature encoding of p, we adopt a new image encoder
DIE, which is specific to our tagging task in Fliggy’s domain, as we
mentioned in Section . We will introduce the details of the feature
encoding module, including DIE, in Section 4.1.

2. Text-image Fusion. The operations in the second phase are
conducted in the TIF module of our model. The TIF mainly consists
of two layers. The first layer is a clustering layer, through which
p’s text embeddings and image embeddings obtained from the first
phase are aggregated into a single textual representation and a
single visual representation of p, respectively. Then, these two
representations are concatenated and fed into the attention layer of
TIF to generate p’s content embedding for the POI-tag matching in
the subsequent phase. As we emphasized in Section , the clustering
and attention operations in TIF are proposed to distill the significant
features to represent p’s content, whose details will be introduced
in Section 4.2.

3. Multi-modal Matching. To conduct the operations in the third
phase, we build a multi-modal matching module fed with p’s content
embedding and t’s tag embedding generated in the previous phases
to output the final score g, ;. The main body of this module is also
a BERT},,¢. encoder, whose details will be introduced in Section 4.3.

4 METHODOLOGY
4.1 Multi-modal Feature Encoding

In the feature encoding module of our model, the multi-modal
features of p (including textual and visual features) and ¢’s textual
features are first encoded into embeddings, respectively.

Specifically, p’s textual inputs {x1, x2, . .., xn } are fed into a text
encoder constructed based on BERT, 4, to generate a set of p’s text
embeddings. The text encoder is initialized with the first 6 layers
of BERT} 4. Formally, for an input text x;(1 < i < N), we get its
feature embedding as

x; = ENp(x;) € RP, (1)

where ENT() denotes the encoding operations in the text encoder,
and D is the embedding’s dimension.

Simultaneously, ¢ is also fed into the same text encoder to obtain
its tag embedding as

t = ENgp(t) € RP. %)

4.1.1  Domain-adaptive Image Encoder. Given that our tagging
task is specific to the real-world scenario of Fliggy, we propose
a new image encoder DIE to encode the input images of p, i.e.,
{v1,v2,...,up}, into a set of image feature embeddings, instead
of using an existing image pre-trained model [7, 24]. To adapt to
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the particular goal of our POI tagging task, the embedding of an
image in our model should be learned concerning the tags with the
same semantics as it, i.e., its gold tags. It indicates that the learned
embedding of an image should help the model recognize its gold
tags. To this end, unlike the traditional image encoders such as ViT
[7], which only receive images as input, our DIE takes an image and
the text having the same semantics to constitute an input sample.
Since DIE is also a pre-trained encoder, we propose a pretraining
mask task.

Mask Learning. Specifically, given an image v, we first compose
a sentence to indicate v’s semantics, denoted as x;,, which includes
a gold tag of v, denoted as t,,. Then, we convert x, into X, by
replacing one token in t,, with a special token [MASK]. For example,
if an image v and its annotated tag t,,=‘cup’ are obtained, we have

xp = “Thisisacup”, X, = “This is a [MASK]".

Accordingly, we take (v, X,) as the input of the mask learning
task. As displayed in Fig. 2, i and %, are fed into a ViT encoder
and a BERT}, 4, in DIE, to generate v’s embedding v € RP and
%,’s embedding %, € RP, respectively. Then, based on these two
embeddings, DIE computes the following probability distribution
indicating which token is on the position of [MASK] as,

©)

where Pre() represents all calculations in the prediction layer of
DIE. Specifically, ¥, %, is a vector of U dimensions and U is the size
of token vocabulary. Each entry of §;, z_ is the probability that the
corresponding token is on the position of [MASK]. To compute this
probability distribution more precisely, v is first refined in terms of
X, through the cross-attention operations as [37]. Then §, z_ is
computed based on the refined v through a fully-connected layer
and softmax operation. At last, a token with the largest probability
iny, g, is predicted as on the position of [MASK].
To pretrain DIE, we formulate the mask learning’s loss as

2,

(v, u)eNmsk

Vo, %0 = Pre(v,Xy),

Lyvsk = CE(Yo, 2, Vo, 70)s 4)

where CE() is the cross-entropy function and Njssk is the training

set. yo.%, € RY is the indicator vector, in which the entries of the
real tokens are 0 and the rest entries are 0.

Contrastive Learning. In addition, to better align v’s embedding
to its gold tags’ embeddings, we further consider a contrastive
learning loss. We first define v’s similarity score to each paired tag
t as
exp (v't/7)

Y exp(vTt/7)’
t'eTy,

s(v,t) =

©)

where t” is any one tag in ©’s paired tag set 75, including its gold
tag ty,and t € RP is t’s embedding obtained from the BERT}, ;.
encoder. In addition, 7 is the temperature used to maintain the
balance between the alignment and consistency of the contrasted
samples [38]. To train the model better in contrastive learning, we
tend to select the incorrect tags but semantically similar (having
close embeddings) to the image as hard negative samples. Accord-
ingly, a small tau makes the model focus on discriminating the hard
negative samples, resulting in better performance.
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Similarly, a tag t’s similarity score to each paired image v is
exp (tTv/7)

S eqtvi)
v’ eV,

s(t,v) = 6)

where v’ is any one image in t’s paired image set V; including the
gold images with the same semantics as t. Then, the contrastive

learning loss is
2, 2,

(v,t)eNTTC (t,v)eNITC

1
Lirc = 5{ CE (yo,1,5(v, £))+
(7)
where y,, ; and y,, are both the real label indicating the matching
between v and t.

Image-tag Matching Learning. Furthermore, to better achieve
the matching between images and tags, we append an image-tag
matching loss for DIE’s pretraining. We use gy, ; to denote the
matching probability between v and t. As the operations in Equation
3, v is first refined in terms of t through cross-attention and then
used to compute 7, ;. Then, the matching loss is

Litm= ), CE@Wo,t.0,0)- ®
(v, t)eNITM
After all, the overall loss of DIE’s pre-training is
Lpie = Lysk + Litc + LiTm- )

With the pre-trained DIE, the feature embedding of an image
v;i(1 £ i £ M) is obtained by

v; = DIE(v;) € RP, (10)

where DIE() denotes the encoding operations in DIE.

4.2 Text-image Fusion

The operations in this phase are conducted in the TIF module,
where the textual and visual embeddings of p are fused into a
condensed representation, namely content embedding, to achieve
the subsequent matching conveniently.

4.2.1 Clustering Layer. The first step in TIF is to aggregate the
multiple embeddings from either modality into a single embedding.
To this end, we first build a clustering layer in TIF to perform the
following operations.

For an image v’s feature embedding v = [v1,v2,...,vp] ob-
tained by Equation 10, each v;(1 < i < D) can be regarded as a
frame-level descriptor of v. We used a clustering algorithm the same
as NeXtVLAD [28] to cluster the d frame-level descriptors of v into
K groups. Suppose the k-th cluster’s centroid is ¢ (1 < k < K), we
refine v; in terms of ¢x as

k
v = Qg ) (v —cr), (11)
where a;(v) is a function measuring v’s proximity to the k-th
cluster. We adopt a fully-connected layer with softmax activation
to obtain ay(v) as

T
ewkv+bk

K
k'=1

ar(v) = . (12)

ewk’v+bk’ ’

2The same coefficient for each sub-loss is the best choice based on our tuning studies.

CE (ym,, s(t, v))},
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where w € RP and b are both trainable parameters. Furthermore,
there are K groups of w, b in total.

Then, to aggregate the refined frame-level descriptors of all M
image embeddings, we get the i-th aggregated descriptor in terms
of the k-th cluster through the following sum pooling,

of =sM oPF1<i<D1s<k<K, (13)

where Ul(’k is the i-th refined frame-level descriptor of the j-th
image embedding obtained by Equation 11. Accordingly, we have
D X K aggregated descriptors in total, which are then reduced into
a single visual representation of H dimensions, denoted as ¥ € R,
through a fully-connected layer.

To aggregate the N text embeddings generated in the previous
phase into a single textual representation, denoted as X € RH, we
adopt the same operations introduced above for generating the
single visual representation.

4.2.2 Attention Layer. Next, we input the concatenation of X and
V into the attention layer in TIF. This layer reassigns the feature
weights in the input through the attention and reshape operations
and outputs an embedding of D dimensions. Thus, the more sig-
nificant features are highlighted in the output, which is just p’s
content embedding, denoted as ¢ € RP. Overall, ¢ condenses the
significant multi-modal features of p.

4.3 Mutil-modal Matching

The objective of the multi-model matching module in the third
phase is to achieve the precise matching between p and t, based on
p’s content embedding ¢ and t’s tag embedding t.

In fact, the architecture of this module is similar to the predic-
tion layer in DIE since both of their objectives are to achieve the
matching between two objects. Specifically, the candidate tag’s em-
bedding t is refined in terms of p’s content embedding c through the
cross-attention operations and then used to compute g, ; through
a fully-connected layer and softmax operations. As last, M3PT pre-
dicts that ¢ is a correct tag of p if g, s > 7.

4.4 Model Training

Similar to Equation 8, the main loss of our model training is the
following POI-tag matching loss,

2,

(p.t)eNpPTM

where NpT )y is the training set consisting of POI-tag pairs.

To improve the alignment of p’s content embedding and t’s tag
embedding, we also append a contrastive learning loss the same as
Equation 5~7 for our model training, except that v is replaced with
¢ when computing s(p, t) and s(t, p). Thus, this contrastive learning
loss is

Lprm = CE(yp,t. Up,1)s (14)

1
'EPTC = 5{ Z CE (yp,t,S(Ps t))+ Z CE (yt,pss(t,P))}.
(p.t)eNprc (p.t)eNpTC
(15)
And the overall loss of M3PT’s training is
L=Lprm +aLprc, (16)

where « is a controlling parameter.
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Table 1: Statistics of our datasets.

Dataset POI# tag# POl-tag# tag# image # avg. text #
name per POI  per POI  per POI
MPTD1 63,415 354 197,254 3 64 126
MPTD2 6,415 286 27,486 4 8 16

5 EXPERIMENTS

5.1 Dataset Construction

We have constructed the following two datasets for our evaluation
experiments, of which the detailed statistics are listed in Table 1.
MPTD1: The first dataset, named MPTD1 (Multi-modal POI Tag-
ging Dataset), was constructed directly from the real-world tour
scenario of Ali Fliggy, including more than 60,000 POIs, 354 unique
tags, and more than 190,000 POI-tag pairs. For each POI in this
dataset, its related textual contexts (texts in short) include its full
name, introduction, categories, and user comments collected from
Fliggy’s website. Each POI’s related images include the main picture
shown on the top of its introduction page, as well as the pictures
posted in its user comments. We first collected the original tags for
each POI in some ways, including basic rules, manual selections,
semantic-based algorithms, etc. When sufficient original tags had
been collected, the experts verified and refined them based on their
actual effects on Fliggy’s tour platform. At last, the reserved tags
were identified as the gold (gound-truth) tags for these POIs. All
POIs were divided into the training set, validation set, and test set
according to 8:1:1. In each set, besides the POIs, their gold tags,
texts, and images were also included.

MPTD2: Although the texts and images of each POI in MPTD1 are
sufficient, the model training is time-consuming if we feed all of
them into the model. In addition, most of them are not semantically
related to the POI’s tags. Thus, to compare all models’ capabilities of
leveraging a POI’s textual and visual features that are semantically
related to its gold tags more efficiently, we further constructed a
more concise dataset MPTD2. We randomly selected about one-
tenth of the POIs in MPTD1, together with their tags, texts, and
images. For each selected POI, we recruited some volunteers to
check its texts and images and only retain those with similar se-
mantics to its tags. For example, only the comments that directly
mention the tags or are highly semantically related to the tags were
retained. Similarly, only the images verified as semantically related
to the POI’s tags were retained. As a result, the texts and images
retained in MPTD2 can be directly leveraged as pieces of evidence
to judge the POI's matching to its tags. The ratio of the training set,
validation set, and test set in MPTD?2 is also 8:1:1.

5.2 Experimental Setup

5.2.1 Baselines. We compared our M3PT with the following mod-
els in our experiments, which can be categorized into two groups
of uni-modal models and one group of multi-modal models.

The baselines in the first group only leverage the textual features
of POIs to achieve POI tagging. In these models, a given POI’s texts
are fed into their encoders to generate the textual embedding of
the POI, which is used as the POI’s content embedding. This group
includes BERT [6], ALBERT [22] and ERNIE [49]. The first two
are both classic pre-trained language models. ERNIE incorporates
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knowledge maps into the pretraining task to improve its repre-
sentation capability, which has been successfully employed in the
previous multi-label classification task.

The baselines in the second group are also uni-modal models,
which only leverage the POIs’ images to achieve POl tagging. Specif-
ically, only the images of a given POI are input into the models
to generate the visual feature embedding used as its content em-
bedding. This group includes the ResNet-based models including
ResNet-101 [12], ResNet101(ASL) [2] and TResNet [35]. All of
them have been widely used to encode images in the computer vi-
sion (CV) community. In addition, we also considered ViT [7] and
ViT-Q2L [30]. Inspired by the success of Transformer [37] in natu-
ral language processing (NLP), these two models were built based
on the architecture of self-attention and cross-attention, showing
their advantages over the image encoders based on convolutional
neural networks (CNNs).

As M3PT, the baselines in the third group are both multi-modal
models, including M3TR [50] and TAILOR [47]. M3TR employs
the vision Transformer and builds a cross-modal attention module
and a label-guided augmentation module to achieve multi-modal
multi-label classification better. TAILOR first encodes the uni-modal
features of texts and images and then fuses them into the cross-
modal features as the encoder inputs to model the relationship
between the modality and each label.

5.2.2  Evaluation Metrics. Our POI tagging task is just a multi-label
classification if we regard the set of all tags as the label set of the POI
classification. So we used the following metrics to evaluate all com-
pared models’ performance in our experiments. We first considered
the label-based classification metric M-P (Macro Precision), M-R
(Macro Recall) and M-F1 (Macro F1) [43]. When computing their
scores, we first took a tag along with all POIs annotated by it as one
sample, and reported the average score of all samples. Second, we
also considered the object-based classification metrics, including
P-e (Precision-exam), R-e (Recall-exam), and F1-e (F1-exam) [10].
When computing three metrics’ scores, we took a POI along with
all of its tags as one sample, and reported the average score of all
samples. In addition, we also considered HLS (Hamming Loss) [10],
which is used to measure the misclassification samples on a single
label (tag). Thus, a more miniature HLS score indicates the model’s
better performance.

5.2.3 Hyperparameter Settings. We adopted AdamW [31] as the
optimizer Moreover, we set the initial learning rate to le-4 for
pre-training. With steps increasing, we decreased the learning rate
linearly to 1e-5. The settings of some crucial hyperparameters in

Table 2: Hyperparameter settings of M3PT.

Notation Value Description

71 0.12  temperature in Lprc

(7) 0.08  temperature in Lyc

7 0.5  threshold of prediction probability

D 768  embedding dimension

K 64 cluster number in TIF

H 414  textual/visual representation dimension in TIF
a 0.5  controlling parameter in loss £ (Equation 16)
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Table 3: Performance comparison results show M3PT’s advantage over the baselines on the two datasets, where the best and

second-best scores in each group are in bold and underlined, respectively.

Model MPTD2 MPTD1

MF MR MFI Pe Re Fle HLS | MF MR MFI Pe Re Fle HLS
BERT 7467 2665 39.26 7572 29.51 4240 00835 | 4525 12.18 1946 5433 2034 29.59 0.1285
ALBERT 8331 2953 44.16 8514 3426 4885 0.0627 | 5423 1339 2135 6455 23.90 3402 0.0610
ERNIE 8416 2942 4556 86.63 3606 50.93 0.0683 | 54.87 13.29 2193 6526 23.97 3506 0.0857
M3PT(text) 86.34 32.57 47.11 88.38 38.63 53.72 0.0413 | 56.42 15.37 23.65 67.04 25.51 36.95 0.0512
Improv.% 259 1029 340 202 713 548 3413 | 282 1479 7.84 273 642 539  16.07
ResNet101 1424 940 1132 1815 10.68 1344 0.1141 | 1021 7.87 881 13.60 948 1117 0.1364
ResNet101(ASL) | 1437 936 1136 1897 1007 1312 0.1163 | 1004 807 894 1351 922 1096 0.1328
TResNet 1473 891 1107 1716 1050 13.02 0.0915 | 1080 819 931 13.60 10.13 1161 0.1243
ViT 1514 927 1174 1874 1126 1406 0.1149 | 10.14 827 911 13.06 9.61 11.07 0.1470
ViT(Q2L) 1526 939 1206 17.63 11.89 13.69 00952 | 1128 8.14 945 1440 10.63 1223 0.1315
M3PT(image) | 15.85 10.95 12.93 19.3¢ 1147 14.21 00924 | 1232 794 9.63 1522 1042 12.37 0.1293
Improv.% 387 1661 721 195 -353 107  -098 | 9.22 -3.99 190 569 -1.98 114  -478
M3TR 86.49 31.64 4652 8342 39.03 5415 00620 | 57.41 1534 2429 7092 2657 3865 0.0784
TAILOR 87.72 3216 46.83 8734 37.80 5276 0.0427 | 57.92 1626 2539 69.45 27.66 39.56 0.0512
M3PT 89.72 3541 5045 9245 43.25 5893 0.0242 | 59.51 17.56 27.11 72.15 28.50 40.85 0.0307
Improv.% 228 1011 773 456 1081 883 4333 | 275 800 677 173 304 326  40.04

our model are shown in Table 2, which were decided based on our
parameter tuning studies. Specifically, we will display the results
of tuning 7 and 7 afterward.

To reproduce our experiment results conveniently, we have pub-
lished our model’s source code on https://github.com/DeqingYang/
M3PT.

5.3 Main Results

The following performance scores of all compared models are re-
ported as the average results of three runnings to alleviate the bias
of single running. Table 3 lists the overall tagging performance of
all models on MPTD1 and MPTD2 datasets, where the best and
second-best scores in each group are in bold and underlined, respec-
tively. In particular, to verify our M3PT’s capability of leveraging
uni-modal features, we further proposed two ablated variants of
M3PT. Wherein M3PT(text) only leverages the textual features, i.e.,
it only inputs the text embeddings into the cluster layer of TIF
and directly uses the single textual representation x as the POI’s
content embedding c. Similarly, M3PT(image) only inputs image
embeddings into TIF to generate the content embedding. M3PT’s
performance improvement ratio relative to the best baseline (un-
derlined) is also listed in each group. The results demonstrate that
M3PT performs the best on most metrics. Moreover, we also have
the following observations and analyses.

1. Compared with the first group of textual modality and the
third group of multi-modality, M3PT is not the best on some metrics.
Through the investigation of the two datasets, we found that the
images of a POI are semantically related to only about one-fifth
of the POI’s tags on average. It implies that M3PT can not exert
its advantage sufficiently when only leveraging these images to
discover the correct tags.

2. Compared with MPTD1, M3PT’s performance improvement
over the baselines on MPTD2 is more apparent. It is because the
POIs’ texts and images in MPTD2 are more related to the tags,
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helping M3PT discover the matching across different modalities.
Consequently, our model can achieve more precise POI tagging
on MPTD2. It implies that our model is better at exploiting the
high-quality dataset.

5.4 Detailed Analysis

5.4.1 Ablation Studies. We have conducted some ablation stud-
ies to justify the effects of the essential modules and strategy we
designed in M3PT, including incorporating POI images, TIF, and
the contrastive learning of POI-tag (PTC). Table 4 lists the results
of different ablated variants of M3PT on MPTD2 and MPTDI1, re-
spectively, where the variant without image is just M3PT(text) in
Table 3. In addition, in the variant without TIF, the single textual
representation X is just the sum of N text embeddings. Similarly,
the single visual representation V is just the sum of M image em-
beddings. Then, these two representations are concatenated and
reshaped into p’s content embedding c.

Besides the metric scores, the performance drop ratios of all
variants relative to M3PT are also listed in Table 4. The results
show that incorporating either one component of PTC, TIF, and
image is helpful to M3PT’s performance improvement. Compared
with TIF and image, PTC is more helpful for M3PT to achieve precise
POI tagging since the performance drop of the variant without PTC
is the most obvious.

5.4.2  Impact of Domain-adaptive Image Encoder. As mentioned
before, the DIE specially designed in M3PT is an image encoder
more adaptive to the requirements of the real-world scenario of
Fliggy, resulting in M3PT’s enhanced performance. To verify it, we
further propose some variants of M3PT by replacing the DIE with
some previous image encoders, including ViT [7], CLIP [32] and
BLIP [23].

Due to space limitation, we only report the compared models’
scores of mAP, M-F1, and F1-e in Table 5 since they are the most rep-
resentative metric of the ranking metrics, label-based classification
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Table 4: Ablation study results on the two datasets.

Jingsong Yang et al.

MPTD2
PTC TIF Image | M-P Drop% | M-R Drop% | M-F1 Drop% | P-e Drop% | R-e Drop% | Fl-e Drop% | HLS Drop%
X X X 80.71 10.04 26.03 26.49 39.36 21.98 81.1 12.28 36.06 16.62 49.92 15.29 0.0641 164.88
X X Vv 83.28 7.18 28.39 19.82 42.43 15.90 83.05 10.17 36.9 14.68 51.19 13.13 0.0630  160.33
X v 7/ 85.91 4.25 30.9 12.74 45.45 9.91 86.55 6.38 37.04 14.36 51.87 11.98 0.0547  126.03
v v X 86.34 3.77 32.57 8.02 47.11 6.62 88.38 4.40 38.63 10.68 53.72 8.84 0.0413 70.66
o X /7 87.81 213 | 3236 861 | 4725 634 | 8916 356 | 3805 1202 | 5337 943 | 00432 7851
\/ v v 89.72 - 35.41 - 50.45 - 92.45 - 43.25 - 58.93 - 0.0242 -
MPTD1
PTC TIF Image | M-P Drop% | M-R Drop% | M-F1 Drop% | P-e Drop% | R-e Drop% | Fl-e Drop% | HLS Drop%
X X X 49.67 16.54 13.81 21.36 21.61 20.29 56.13  22.20 20.7 27.37 30.07 26.39 0.0809  163.52
X X Vv 52.42 11.91 1337  23.86 21.93 19.11 62.15 13.86 22.91 19.61 32.2 21.18 0.0753  145.28
X v 7/ 54.62 8.22 14.41 17.94 22.8 15.90 65.26 9.55 24.05 15.61 35.67 12.68 0.0773  151.79
v v X 56.42 5.19 15.37 12.47 23.65 12.76 67.04 7.08 25.51 10.49 36.95 9.55 0.0542 76.55
o xX v 5779 289 | 1634 695 | 2558 564 | 69.55 360 | 259 912 | 37.02 938 | 0.0504 64.17
\/ v v 59.51 - 17.56 - 27.11 - 72.15 - 28.5 - 40.85 - 0.0307 -
Table 5: Performance comparisons of adopting different im- Image
age encoder in M3PT. POI encoder Tag1 Tag2 Tag3
ViT i i BE ﬂ-_\ii%_
Image MPTD2 MPTD1 lake ski penguin
encoder mAP M-F1  Fl-e mAP M-F1 Fl-e s CLIP d(;)?p%in ;ff]f déﬁﬁfiﬁw
ViT 81.60 47.16 56.93 66.20 26.07 35.62 iggfﬁﬁﬁ BLIP B xR idi7S li=3
CLIP 8136  46.93 5540 66.94 2570 36.15 Oce azn\%vyoarl d beluga whale dolphin seascape
BLIP 8241 4731 5503 67.78 25.62 37.49 DIE 28 AR RRiE
DIE 8432 5045 5893 69.14 27.11 40.85 dolphin occanarium | tunnel
ViT BT é’h‘_ INIZ
bar countryside snack
B Topd B Tops salfh /, = BT
80 = 2 . CLIP 1R E% enjoy plum
= =2 HE teahouse  |botanical garden| =~ C
<60 oLde O Qingzhiwu 2
§ 4519, 4 Ancient Town | BLIP f Ek%. AR éﬁ.
240 ormer residence tea tasting countryside
E 2 DIE K18 éﬁl RE
20 family hotel countryside tea house
0~NiT CLIP BLIP _ DIE Figure 4: Top-3 ta}gs pre'dicted by the models for two POIs on
encoder.png Image encoder MPTD2 (better viewed in color).

Figure 3: The precision of top-3/5 tags for the POIs on on
MPTD2 predicted by the M3PTs with different image en-
coders.

metrics, and object-based classification metrics. The results show
that, with DIE, our M3PT performs better on both classification and
ranking the correct tags. In addition, to concretely exhibit DIE’s
advantage in ranking the gold (correct) tags, in Fig. 3, we display
the precision of top-3/5 tags predicted for the POIs on MPTD2. Ob-
viously, all models’ precision of top-5 is higher than that of top-3.
Nevertheless, DIE’s precision gap between top-3 and top-5 is much
narrower than the other image encoders. Furthermore, in the table
of Fig. 4, we list the top-3 tags predicted by the models for two
POIs from MPTD2, where the incorrect tags are marked red. It also
justifies that the M3PT with DIE can predict a bigger probability
for the correct tags than the baselines.
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5.4.3 Performance on Ranking Correct Tags. We also evaluated
M3PT’s performance on the three ranking metrics. However, due to
space limitation, we only compared it with the baseline performing
the best in each group according to Table 3. The comparison results
are listed in Table 6, showing that our model still has an advantage
in ranking the correct tags on higher positions.

5.4.4 Hyperparameter Tuning. For the important hyperparameters
in M3PT, we have studied their impacts on the performance of POI
tagging. Due to space limitation, we only display the results of 71
and 7.

We first focus on the impact of the temperature in s(p, t) in Equa-
tion 15, i.e., ;. As we mentioned before, the temperature in the
scoring function of contrastive learning is used to maintain the bal-
ance between the alignment and consistency of contrasted samples.
The results depicted in Fig. 5 show that M3PT performs better when
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Table 6: Tag ranking performance comparisons between POF's texts Top-5 predicted tags
N . POI name: 7233 LI h #R AR B
M3PT and the best baseline in each group. Longquan Mountain Urban Forest Park ERNIE ViT | TAILOR | M3PT
Comment 1: fTIEMERE, —XEXMASIIKIRNIRT
Saw a pair of huge fire balloons when close to observation deck. s Fraes \JJ%‘ W sL:l‘_
MPTD2 MPTD1 Comment 2: 537, BES T, hiking S | mountain |observatio
Model Good scenery, a good place for hiking. scenery n deck
mAP  1-Error RL mAP  1-Error RL ?;"Je"fjgt\iufnfii‘fzﬁﬁiﬁfmiﬁi o o . bim%é_ W
POI’'s images dolphin 20 [ s;::i“o" m:‘\l:;am
ERNIE 60.05 0.3315 0.1620  78.21 0.2403 0.1461 :> seenery
M3PT(text) 64.15 0.2251 0.1390 80.41 0.1528 0.1230 AR SR mRER | B
N fire ball river fire balls limbi:
ViT(Q2L) 1390 0.6701 0.3902 18.90 0.2271 0.3610 e R R
M3PT(image) 16.73 0.6278 0.3894 20.05 0.2315 0.3521 BB ke | zm | wa
R water view | tea garden | forest
TAILOR 6328 03025 0.1242 8150 0.2362  0.0936 =
M3PT 69.14 0.2143 0.0827 84.32 0.1264 0.0541 B IR I
100— T — 80 —o— mAP  —6— MFI  —i— Flocx Figure 7: The top-5 tags predicted by the models for a POI

5 & T EE & 13 8§ & & & & &
o o S o = N n =) > o o = [} n
2 B S 8¢ 2 B8 285
lg(t1) l9(zy)
(a) MPTD2 (b) MPTD1

Figure 5: The tuning results of temperature 71 in Lp7c on
the two datasets.

T
+‘ M-F1 —— M-FI

gp —* mAP —— Fle g0 T mAP ! —— Fle
80 i R ;
o ! B H
En i oo i
o 60 250 !
S 8 40 ]
3 5 3
40 i 30 i
30 i 20 //f\‘\’_‘
1 |
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T T
(a) MPTD2 (b) MPTD1

Figure 6: The tuning results of prediction threshold 7 on the
two datasets.

71 = 0.08 ~ 0.12. It indicates that a suitable temperature should
not be too big. Otherwise, it would make the model less focused
on discriminating the hard negative samples and thus fail to obtain
satisfactory performance.

We also display the tuning results of the prediction threshold
() in Fig. 6. It shows that 7 = 0.5 is the best setting, which just
equals the default threshold in generic binary classifications.

5.5 Case Study

We further display the tagging results of M3PT and the best baseline
in each group for a specific POI ‘7. % L3 77T # AR A [l /Longquan
Mountain Urban Forest Park’ from MPTD2. The top-5 tags predicted
by the compared models are listed in Fig. 7, where the incorrect
tags are marked red, and the green tags were assessed as correct but
not in this POI’s gold tag set. Moreover, the rest black tags are gold
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from MPTD2. The incorrect tags are marked red, the green
tags were assessed as correct but not in the POI’s gold tag set.
And the rest tags are its gold tags (better viewed in color). It
shows that M3PT predicts more gold tags.

tags. At the same time, we display some texts and images of this
POI on the left, which were fed into the models for tag prediction.
Obviously, the incorrect tag ‘#*<Bk/fire balloon’ and ‘i #H/ancient
town’ were predicted by ERNIR and TAILOR, due to the misleading
of Comments 1 and 3. While the incorrect tag ‘FT7K/dabble’ and
‘7% [l/tea garden’ were predicted by ViT and TAILOR, due to the
misleading of some images. In fact, these incorrect tags only have
the similar semantics to uni-modal (either textual or visual) data.
They can be filtered out through the alignment (matching) of cross-
modality. Compared with the baselines, our M3PT achieves the
full fusion and precise matching between the textual and visual
features, and are less disturbed by the noise of each modal data.
Consequently, all of the 5 tags predicted by M3PT are correct.

6 CONCLUSION

Towards the POI tagging in the real-world tour scenario of Ali
Fliggy, in this paper we propose a novel multi-modal model, namely
M3PT, which incorporates the textual and visual features of POIs
simultaneously to achieve the tagging task. In M3PT, we specially
devise a domain-adaptive image encoder (DIE) to generate the
image embeddings to better adapt to the requirements of the real-
world scenario. In addition, we build the text-image fusion module
(TTF) in our model, to achieve the full fusion and precise matching
between textual and visual features. We further adopt a contrastive
learning strategy to bridge the gap among the corss-modal rep-
resentations in the model. Our extensive experiments with two
datasets that were constructed from the Fliggy platform, not only
demonstrate M3PT’s advantage, but also justify the rationalities
and effectiveness of its important components.
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