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Abstract

Large Language Models (LLMs) excel in
high-resource languages but struggle with low-
resource languages due to limited training data
and linguistic diversity. This paper presents
TALL (Trainable Architecture for Enhanc-
ing LLM Performance in Low-Resource Lan-
guages), a novel approach designed to bridge
this gap. The key innovation of TALL lies in
its integration of three pre-trained models: a
high-resource LLM and two bilingual transla-
tion models. By transforming inputs from low-
resource languages into high-resource language
representations, TALL leverages the robust rea-
soning capabilities of the LLM. Subsequently,
it refines the output through dimensional align-
ment layers and custom transformers, enabling
accurate decoding into the target low-resource
language.

We validate TALL through experiments on He-
brew, chosen for its rich morphology, com-
plex syntax, and limited annotated datasets. To
ensure a realistic evaluation, the experiments
utilized models with different levels of expo-
sure to Hebrew. Results demonstrate signif-
icant improvements in accuracy, showcasing
the effectiveness of TALL’s modular design and
trainable alignment layers. This architecture
offers a scalable and adaptable framework for
cross-lingual transfer and improved processing
in low-resource language settings, with poten-
tial applicability to a wide range of languages
and NLP tasks. Furthermore, TALL employs
a parameter-efficient training strategy, freez-
ing pre-trained components while training only
lightweight modules, thus balancing computa-
tional efficiency with performance gains.'

1 Introduction

Large Language Models (LLMs) have significantly
advanced the field of natural language processing
(NLP), particularly for high-resource languages
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like English. However, their performance in low-
resource languages, remains limited due to chal-
lenges like sparse data and linguistic complex-
ity. These challenges often result in uncertainty
in model predictions and reduced accuracy.

Low-resource languages, which lack extensive
annotated datasets and robust pre-trained models,
present unique hurdles for LLMs. As illustrated
in Figure 1, there is a significant imbalance be-
tween the number of speakers of a language and
the amount of digital content available, such as
Wikipedia articles. This disparity highlights the
data scarcity problem that limits the effectiveness
of LLMs in low-resource languages.

Existing methods, such as transfer learning and
data augmentation, have attempted to bridge the
gap, but they often fail to fully exploit the full
potential of the LLM.

This paper addresses this gap by introduc-
ing TALL (Trainable Architecture for Enhancing
LLM Performance in Low-Resource Languages),
a novel architecture that systematically harnesses
the strengths of LLMs trained on high-resource
languages. The key idea behind TALL is to lever-
age the strengths of three pre-trained models: the
LLM, which excels in processing high-resource
languages, and two translators, which are already
trained on extensive bilingual data. By integrat-
ing these models, TALL transforms inputs in a
low-resource language into an intermediate high-
resource representation, utilizes the LLM for rea-
soning and prediction, and then refines the output
through the second translator to generate accurate
and fluent text in the low-resource language. By
integrating a sequence of carefully designed trans-
formation steps, TALL ensures that the rich linguis-
tic knowledge of high-resource language models
is leveraged while bridging representational gaps
through trainable alignment components.

TALL employs a modular pipeline consisting of
few stages, including pre-trained translators, di-
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Figure 1: Speakers vs. Wikipedia articles by language. A comparison of the number of speakers and the number
of Wikipedia articles for various languages. This figure highlights the significant disparity between the number of
native speakers and the amount of digital content available in different languages. This imbalance underscores the
challenges faced by low-resource languages in the digital space and emphasizes the need for advanced architectures
like TALL Data represents the total number of first and second language speakers and Wikipedia articles. Source:

(Wikimedia Foundation, 2024).

mension alignment autoencoders, and custom trans-
former components. Notably, these components are
designed to minimize computational overhead by
freezing large pre-trained models and only training
lightweight adapter layers.

We present TALL as a scalable and adaptable
solution for improving LLLM performance in low-
resource languages, validated through experiments
on Hebrew tasks. We chose Hebrew as a represen-
tative low-resource language due to its rich mor-
phology, complex syntax, and limited availability
of annotated datasets. For our experiments, we
utilized models with different levels of exposure
to Hebrew data, ensuring a realistic evaluation of
TALL’s effectiveness in low-resource language set-
tings. We demonstrate the effectiveness of train-
able dimension alignment and custom transformers
in facilitating cross-lingual information flow and
improving task-specific accuracy. The paper is
organized as follows: Section 2 reviews related
work, while Section 3 details the TALL architec-
ture. Section 4 focuses on its implementation and
Hebrew-specific training. Experimental results are
presented in Section 5, followed by the conceptual
foundations in Section 6. Section 7 discusses fu-
ture research directions, and Section 8 concludes
with key findings and implications.

2 Related Work

Improving the performance of Large Language
Models (LLMs) in low-resource languages is a
critical challenge in the field of natural language
processing (NLP). Several approaches have been
explored to address this issue, ranging from fine-
tuning techniques to in-context learning strategies.

One prominent approach is few-shot in-context
learning (ICL) (Cahyawijaya et al., 2024), which
allows LLMs to perform tasks in low-resource lan-
guages by utilizing a few examples provided in
the input context. Recent work has shown that
cross-lingual in-context learning (X-ICL) can lever-
age examples from high-resource languages to im-
prove performance in low-resource languages. This
method demonstrates that while ICL can be effec-
tive, its success is closely tied to the quality of
alignment between the languages involved.

Another approach involves fine-tuning mul-
tilingual models specifically for low-resource
languages, as explored in works like adaptM-
LLM (Lankford et al., 2024). This method tai-
lors the model to the target language pair, offering
a more direct adaptation compared to general in-
context learning strategies.

A recent approach introduced in PolyLM (Wei
et al., 2023) explores the use of curriculum learning
to enhance the multilingual capabilities of LLMs.
This method involves a two-stage training pro-



cess where the model first learns general language
patterns from a large dataset dominated by high-
resource languages, and then fine-tunes on a cu-
rated subset with an increased proportion of low-
resource languages. This strategy facilitates knowl-
edge transfer from high-resource languages to low-
resource ones, resulting in improved performance
across a wide range of multilingual tasks.

A recently introduced approach that tackles mul-
tilingual language modeling at a higher level of
abstraction is the Large Concept Model (LCM)
(LCM-team et al., 2024). Instead of processing
text on a token-by-token basis, LCM operates on
sentence-level “concepts,” leveraging the SONAR
embedding space (Duquenne et al., 2023). SONAR
provides a single vector space covering 200 lan-
guages—including text and limited speech capa-
bilities—where semantically similar sentences are
mapped to nearby points. Building on these embed-
dings, LCM is trained to autoregressively predict
the next sentence embedding, then uses SONAR’s
multilingual decoder to reconstruct the output sen-
tence in a target language. This design effectively
shifts the language modeling problem from token
prediction to concept-level reasoning.

LCMs emphasize broad language coverage and
have demonstrated strong zero-shot generalization
in tasks like abstractive summarization (XLSum),
outperforming comparably sized models on lan-
guages in which LCM received no explicit instruc-
tion. By virtue of SONAR’s multilingual founda-
tion, LCM can also process low-resource languages
without any additional fine-tuning.

LCMs differ from TALL in several ways. First,
the LCM pipeline operates at a sentence-level “con-
cept” space derived from the SONAR encoder-
decoder (Duquenne et al., 2023), while TALL uses
a more traditional token-level flow, relying on two
pre-trained translation models and a central LLM.
Instead of predicting the next token, LCM employs
a diffusion-based generation process where sen-
tence embeddings are gradually denoised from an
initial noisy state. This allows the model to learn
a probabilistic distribution over possible contin-
uations rather than committing to a single token
sequence at each step. In contrast, TALL processes
hidden states through its transformers in a sequen-
tial manner, maintaining the standard way used in
token-based language models. Second, TALL is rel-
atively straightforward in terms of computational
overhead, freezing large pre-trained components
and introducing only lightweight alignment lay-

ers, while LCMs involve more extensive end-to-
end training of the concept space. Overall, both
approaches highlight the promise of multilingual
architectures, but TALL focuses on a parameter-
efficient design suitable for low-resource deploy-
ments, whereas LCMs adopt a richer sentence-level
representation that can naturally generalize to mul-
tiple modalities. Continued research into LCMs’
high-level, concept-based generation holds the po-
tential for further breakthroughs in multilingual
and multimodal modeling.

These studies highlight the diversity of strategies
being developed to enhance LLM performance in
low-resource settings, whether through in-context
learning, fine-tuning, or cross-lingual methods.
The architecture proposed in this paper builds on
these approaches by leveraging high-resource lan-
guage capabilities through a dual translation pro-
cess, aiming to refine the cross-linguistic process-
ing abilities of LLMs and further improve their
performance in low-resource languages.

3 Model Architecture

3.1 Overview

In traditional encoder-decoder translation models, a
sentence is translated from one language to another
through an auto-regressive process. First, the en-
coder processes the input sentence and converts it
into a sequence of hidden states, which serve as an
intermediate representation of the source language.
The decoder then generates the output sequence to-
ken by token in an auto-regressive manner, where
each predicted token is conditioned on the previ-
ously generated tokens. Throughout this process,
the decoder employs cross-attention mechanisms
to attend to the encoder’s hidden states, allowing it
to incorporate relevant contextual information from
the source sentence at each decoding step.

In TALL’s architecture, the first stage processes
the input sentence by tokenizing it in three ways:
(1) using the first translator’s tokenizer for the
source language (during training, the last word
removed), (2) translating the input sentence and
tokenizing it with the LLM’s tokenizer, and (3)
tokenizing the input sentence with the second trans-
lator’s tokenizer as the target language.

The intermediate hidden states from the first
translator (the encoder outputs) are first processed
through an autoencoder to align their dimensions
with the LLM. Next, the custom decoder obtains
the LLM embeddings of the translated sentence to-



kenized by the LLM’s tokenizer and applies cross-
attention with the aligned hidden states from the
autoencoder. While decoders traditionally oper-
ate in an autoregressive manner to generate output
sequences, our custom decoder serves a distinct
purpose: it projects inputs into the LLLM’s embed-
ding space while maintaining cross-attention to
the encoded low-resource language representations.
This repurposing of the decoder architecture en-
ables direct interaction between the LLM’s native
embedding space and the source language encod-
ings. This process aims to provide the LLM with a
high-resource language representation of the sen-
tence while retaining attention to the original low-
resource language input. Once the LLM generates
its predictions, a custom encoder transforms the
output into a format suitable for the high-resource-
to-low-resource translator’s decoder.

During training, teacher forcing is applied by
providing the ground-truth target tokens from the
low-resource language as inputs to the second trans-
lator’s decoder, ensuring semantic alignment and
accurate decoding. Crucially, the model is trained
only to predict the final missing token of the source
sentence. Clearly, this token is never included in
the input, ensuring that the loss function explicitly
optimizes for its correct generation without direct
exposure during training.

3.2 Overall Structure and Trainable
Components

As illustrated in Figure 2, TALL’s architecture con-
sists of seven main stages, designed to leverage ex-
isting pre-trained components while minimally in-
troducing new, lightweight layers that are trainable.
This modular structure enables efficient adaptation
to low-resource language tasks while preserving
the linguistic knowledge embedded in pre-trained
models.

The seven main stages of TALL’s architecture
are as follows:

1. Source Language Encoding: The input sen-
tence in the source low-resource language is
passed through a pre-trained low-resource-to-
high-resource (LR-HR) encoder. This encoder
generates hidden states that represent the inter-
mediate semantic form of the input sentence
in a format interpretable by the following com-
ponents.

2. Dimension Alignment (Source to LLM):
The hidden states produced by the LR-HR
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Figure 2: A conceptual overview of the TALL archi-
tecture, and its training data flow with teacher forcing,
omitting the dimension alignment autoencoders for sim-
plicity.

encoder are passed through a dimension align-
ment autoencoder. This trainable layer adapts
the hidden states to the dimensional require-
ments of the LLM, ensuring seamless integra-
tion with the following custom decoder.

3. First Custom Decoder (LR-HR Decoder):
The custom decoder receives the LLM-
tokenized translated sentence embeddings and
applies cross-attention to the aligned hidden
states from the autoencoder. This ensures that
the LLM receives a high-resource language
representation enriched with information from
the original low-resource input.

4. LLM Integration: The processed sequence
is passed to the frozen LLM, which generates
the next-token prediction.



5. Dimension Alignment (LLM to Target):
The LLM’s hidden states are transformed via
a second autoencoder to align with the dimen-
sion requirements of the second translator’s
encoder.

6. Second Custom Encoder: This encoder pro-
cesses the aligned hidden states from the LLM,
encoding the high-resource language represen-
tation into a structured format suitable for the
second translator’s decoder.

7. Target Language Decoding: The output
from the second custom encoder is passed to
the HR-LR decoder, which generates the final
text in the target low-resource language. This
decoder leverages its pre-trained capabilities
to produce fluent and accurate translations by
applying cross-attention between the encoded
representation and the target low-resource lan-
guage embeddings.

In summary, TALL leverages pre-trained, frozen
models for their rich linguistic knowledge, while
only fine-tuning lightweight trainable adapter lay-
ers. This approach keeps training efficient and
manageable, enabling the model to better capture
the nuanced complexities inherent in low-resource
languages.

4 Implementation and Training Details

To implement TALL for Hebrew, we combined pre-
trained Marian MT models for Hebrew-English and
English-Hebrew translation with a frozen LLM,
integrating the custom trainable components.

Hebrew-English Encoder: We use a pre-trained
Marian MT model (Junczys-Dowmunt et al., 2018),
leveraging its encoder to create a robust intermedi-
ate representation of the Hebrew input. This step
provides a language-agnostic semantic represen-
tation that the subsequent components can more
readily process.

Dimension Alignment Autoencoders: Two dis-
tinct autoencoders (one for the Hebrew-English
to LLM alignment and another for the LLM to
English-Hebrew alignment) ensure a smooth inter-
action between models with different architectural
dimensions. Each autoencoder is composed of an
encoder and a decoder stack of fully-connected
layers, layer normalization, and GELU activations,
enabling projection of input hidden states into the

target dimensionality. These autoencoders can be
pre-trained independently as regular autoencoders
are trained; once trained, only their encoder com-
ponents need to be retained for alignment within
the TALL pipeline. As a result, the representations
remain semantically meaningful after transforma-
tion, while allowing for efficient integration and
fine-tuning within the overall architecture.

Custom Transformers: 7ALL’s architecture in-
tegrates two custom transformer-based modules
derived from Marian configurations:

* Custom Decoder 1: Positioned after the
dimension alignment from Hebrew-English
space to LLM space, this Marian Decoder con-
ditions on English tokens and cross-attends to
the dimension-aligned encoder states.

* Custom Encoder 2: After being processed by
the LLM and aligned into the English-Hebrew
dimension space, this Marian Encoder fur-
ther refines the representations before pass-
ing them into the English-Hebrew Marian de-
coder.

LLM Integration: The central LLM component
is embedded between the two custom transformer
modules. By positioning the LLM after the input
has been converted into English-like representa-
tions, we leverage the LLM’s extensive training in
English, enabling it to perform complex reasoning
and linguistic manipulations. The LLM’s improved
hidden states are then adapted back into a represen-
tation suitable for the English-Hebrew decoder.

Final Decoding and Qutput: The final Hebrew
output is generated by the English-Hebrew Marian
decoder (Junczys-Dowmunt et al., 2018). This en-
sures that the final tokens are produced in fluent,
contextually appropriate Hebrew, benefiting from
the entire chain of transformations and enhance-
ments provided by the preceding components.

A detailed breakdown of the TALL parameters,
including overall statistics and module-wise counts
for both bloomz TALL and Qwen TALL, is pro-
vided in Tables 2, 3, and 4 in the Appendix.

4.1 Training Procedure

The training process for TALL focuses on refining
the model to generate Hebrew output while lever-
aging English intermediate representations. The
training data consisted of 256,000 Hebrew sen-
tences sourced from news articles found online.



The dataset underwent standard preprocessing, in-
cluding the removal of duplicate sentences, extra-
neous symbols, and filtering for sentence lengths
between 5 and 30 words.

Batched data samples are prepared by tokeniz-
ing Hebrew input sentences, their corresponding
English translations, and the Hebrew target out-
puts. The model is trained using teacher forcing,
where the ground-truth target tokens are provided
as decoder inputs. The loss is computed using
cross-entropy, optimizing only for the final missing
token in the sequence.

Training is performed using the AdamW opti-
mizer with a cosine annealing learning rate sched-
uler. The initial learning rate is set to 5 x 10~ for
the main model and 1 x 10~3 for the autoencoders.
Gradient clipping and mixed precision training are
applied to stabilize training. The best model is se-
lected based on evaluation loss, ensuring optimal
performance.

Figure 3 (see the appendix) shows the training
dynamics, illustrating the improvement in accuracy
and reduction in perplexity over time.

5 Comparative Experiment and Results

To test the performance of TALL, we conducted
a comparative experiment against alternative ap-
proaches. The objective was to assess our model’s
ability to accurately predict a missing Hebrew word
at the end of a given sentence.

5.1 Experimental Setup

The evaluation was conducted on two datasets, each
consisting of 50,000 Hebrew sentences: WIKI-
SLVM (from the SVLM Hebrew Wikipedia Cor-
pus (svl)) and NEWS, a test dataset originating
from the same domain and source as the training
data but containing unseen sentences. For each
sentence, the final word was removed, and the
task was to predict the missing Hebrew word. We
compared TALL with Direct Hebrew, Naive, Soft
Prompt, and a Fine-Tuned Baselines using bloomz-
560m (Muennighoff et al., 2023) and QWEN?2.5-
0.5b (Qwen-Team, 2024). These models have dif-
ferent levels of exposure to Hebrew, as reflected
in the Direct Hebrew baseline. Bloomz-560m
has very little prior exposure, making it a strong
benchmark for testing performance in a very low-
resource setting. QWEN?2.5-0.5b has high exposure
to Hebrew, allowing us to evaluate TALL’s effec-
tiveness across varying degrees of low-resource

language proficiency. By evaluating TALL on these
models, we gain insights into its adaptability across
languages with minimal or partial training data
availability.

Direct Hebrew Approach: This baseline ap-
proach attempts to predict the missing Hebrew
word directly using the unadapted LLM. The model
simply receives the truncated Hebrew sentence as
input and generates a continuation. Since Bloomz-
560m has never seen Hebrew, its performance is
minimal, serving as a lower bound for Hebrew to-
ken prediction in a zero-resource setting

Naive Approach: The naive pipeline first trans-
lates the truncated Hebrew sentence (with the final
word removed) into English, then uses the English
LLM to predict the next token, thereby extending
the English sentence. This entire, now-completed
English sentence is then translated back into He-
brew, and the final token of the resulting Hebrew
sequence is taken as the predicted word. While this
approach is straightforward, it overlooks critical
linguistic differences between Hebrew and English.
For instance, Hebrew adjectives typically follow
the nouns they modify, whereas English adjectives
often precede nouns, leading to mismatched word
orders and unnatural predictions. Moreover, other
morphological and syntactic discrepancies between
the two languages further degrade the quality and
relevance of the predicted Hebrew output.

Soft Prompt Approach: In this method, we train
a set of soft (learned) parameters—known as a soft
prompt—to guide the English LLM towards pro-
ducing English words that translate correctly into
Hebrew. (Lester et al., 2021) Unlike a naive zero-
shot pipeline, this approach fine-tunes a minimal
set of parameters so that the LLM can generate
English outputs that are semantically aligned with
the missing Hebrew word. This approach lever-
ages parameter-efficient tuning techniques to better
adapt the model to the final prediction task.

Fine-Tuned Approach: To provide a stronger
baseline, we fine-tuned the models on the same
Hebrew dataset used for TALL, consisting of news
articles formatted for causal language modeling.
Each model was fine-tuned using supervised train-
ing with teacher forcing and cross-entropy loss,
following the standard approach for causal LLMs.

The training was conducted with a learning rate
of 2 x 10~® and a batch size of 6, ensuring stable
optimization while adapting the models to Hebrew



Dataset Approach Bloomz-560m QWEN2.5-0.5b

WIKI-SLVM Direct Hebrew 0.63 3.77
Fine-tuned 0.16 2.75
Naive 2.11 2.85
Soft prompt 2.50 1.96
TALL 5.59 5.15

NEWS (Test Set) Direct Hebrew 0.08 2.83
Fine-tuned 0.42 4.14
Naive 2.27 3.02
Soft prompt 2.80 224
TALL 6.10 4.93

Table 1: Comparison of approaches on predicting the missing Hebrew word across datasets. TALL, soft prompt
tuning, and fine-tuning were trained on the News train dataset. Therefore, fine-tuned models show improved
performance only on the NEWS test set, but, in fact, perform worse on WIKI-SLVM. However, TALL achieves
strong results across both datasets, highlighting its generalization ability.

text. The models were trained using standard effi-
ciency techniques to prevent overfitting.

TALL Approach: This represents our proposed
TALL architecture. By fully integrating a Hebrew-
English encoder, English LLM layers, dimension
alignment components, and an English-Hebrew de-
coder, the custom model is specifically trained to
produce accurate Hebrew completions. The archi-
tecture is designed to leverage the high-resource
English competence of the LLM, while ensuring
that the outputs align with the Hebrew target do-
main through the dual-translation mechanism and
integrated alignment strategies.

5.2 Results and Analysis

The results, summarized in Table 1, highlight key
differences between the evaluated approaches and
demonstrate the effectiveness of TALL. Several im-
portant insights emerge from the comparison:

1. Necessity of Cross-Lingual Strategies: The
Direct Hebrew approach, which relies on
models with varying levels of Hebrew ex-
posure, produces varying results. Bloomz-
560m, which has never seen Hebrew, per-
forms poorly, while QWEN2.5-0.5b, with
some exposure, performs slightly better. This
highlights the effectiveness of TALL’s cross-
lingual approach, demonstrating that well-
structured architectures can enhance perfor-
mance even for models with minimal or mod-
erate exposure to the target language.

2. Incremental Gains with Translation and
Soft Prompts: The Naive and Soft Prompt

approaches show slight but limited improve-
ments. The Naive approach benefits from
leveraging an English LLM’s stronger token
prediction abilities but introduces structural
mismatches due to differences in Hebrew and
English syntax. While we attempted to opti-
mize soft prompts to guide the LLM toward
better Hebrew predictions, we did not achieve
substantial improvements. This suggests that
soft prompts alone may not be an effective
method for adapting models to low-resource
languages without additional fine-tuning or
structural modifications.

3. Fine-Tuning Insights All models improved
on the News test dataset, demonstrating that
fine-tuning effectively helped them adapt to
this specific domain. However, their per-
formance on the Wikipedia dataset declined
slightly, likely due to a domain shift or mild
forgetting. Since these models were probably
pretrained on Wikipedia, fine-tuning on the
News dataset may have interfered with their
ability to generalize back to Wikipedia-based
examples.

6 Conceptual Foundations

The theoretical underpinning of the TALL architec-
ture draws upon established principles in natural
language processing (NLP), transfer learning, and
cross-lingual modeling. Its design leverages the
following key theoretical foundations:

Multilingual and Cross-Lingual Transfer: A
central idea behind TALL is to harness the sub-
stantial linguistic knowledge embedded in Large



Language Models (LLMs) trained predominantly
on high-resource languages (e.g., English). Previ-
ous research in multilingual representations (Con-
neau et al., 2020; Li et al., 2024) has shown that
representations learned for one language can facili-
tate learning in another language, especially if the
languages share underlying semantic structures or
scripts.

Representation Learning and Alignment:
TALL relies on dimension alignment autoencoders
to project encoder hidden states between different
model architectures and representation spaces.
The theoretical motivation for such intermediate
layers comes from the field of representation
learning (Bengio et al., 2013), where learned
vector spaces encode semantic information. By
learning a mapping function (autoencoder) that
aligns these spaces, we ensure that different model
components can interchange information without
loss of semantic fidelity.

Teacher Forcing: Teacher forcing (Williams and
Zipser, 1989) is employed to improve stability
and convergence during training by providing
the ground-truth target tokens. Although origi-
nally developed for traditional language models
and sequence-to-sequence models, the concept is
equally applicable here.

Collectively, these theoretical considerations
guide the design of TALL, informing the decisions
on the model architecture, training objectives, and
evaluation strategies.

7 Future Work

While TALL demonstrates promising results in en-
hancing LLM performance on low-resource lan-
guages like Hebrew, several avenues remain open
for future exploration:

Extending to Other Low-Resource Languages:
Future work can apply TALL to a broader set of lan-
guages, including morphologically rich and aggluti-
native languages. By experimenting with different
language pairs and families, researchers can assess
the generality and scalability of TALL’s approach.

Incorporating Additional Modalities: Beyond
text-only representations, future research could in-
tegrate multimodal inputs (e.g., audio or images) to
enrich the language representations. For instance,
using speech or image annotations could further

ground language understanding and potentially en-
hance performance in low-resource settings, where
textual data may be scarce.

Refining Dimension Alignment Mechanisms:
Although our dimension alignment autoencoders
effectively map between representation spaces, fu-
ture work could explore more advanced alignment
techniques.

8 Conclusion

This work introduced TALL, a strategy for im-
proving the performance of Large Language Mod-
els in low-resource languages by leveraging high-
resource language capabilities. The key innova-
tion lies in the dual-translation pipeline, where in-
put is transformed into a high-resource language
space—capitalizing on the strengths of well-trained
English-centric LLMs—before being re-translated
into the target low-resource language.

Through careful integration of custom trans-
former components, dimension alignment autoen-
coders, and teacher forcing, TALL demonstrates im-
proved performance on Hebrew tasks, as measured
by reduced perplexity, increased accuracy. The pre-
sented results validate the theoretical foundations
of cross-lingual transfer, representation alignment,
and incremental learning, and highlight the impor-
tance of leveraging existing LLM capabilities to
bridge resource gaps.

While challenges remain—particularly in ex-
tending the approach to a wider array of languages
and exploring multimodal enhancements—7ALL
offers a meaningful step towards more inclusive
and accessible NLP technologies. By continuing
to refine this approach, and by engaging in broader
evaluations and more diverse linguistic landscapes,
the field can push closer to a future where high-
quality language models support all languages, re-
gardless of their resource availability.

Limitations

While TALL presents a promising framework for
enhancing LLM performance in low-resource lan-
guages, several limitations warrant consideration:

Limited Support for Key-Value Caching: Typ-
ical LLM-based pipelines leverage key-value
caching to speed up inference during token-by-
token generation, enabling efficient autoregressive
decoding. In the current design, however, the inte-
gration of multiple translation and alignment mod-



ules complicates straightforward caching of inter-
mediate states. This results in less efficient infer-
ence times compared to standard LLLMs. Nonethe-
less, future work could address this concern by
exploring partial caching techniques or optimiz-
ing the custom components to make them more
cache-friendly.

Reduced Per-Token Learning Signal: Conven-
tional LLM training benefits from predicting ev-
ery next token in a sequence, reinforcing language
modeling abilities at all time steps. By contrast,
TALL’s setup focuses on predicting only the final
token of the low-resource sentence after the dual-
translation process. While this design choice effec-
tively zeroes in on specific task objectives, it con-
strains the model’s training signal to a single token
per example. The consequence is a more limited
reinforcement of internal representations. Potential
solutions include curriculum learning strategies or
multi-stage training protocols, where initial train-
ing phases could incorporate additional per-token
predictions.

Adapter Layer Bottleneck: TALL is heavily de-
pendent on dimension alignment layers and other
adapter modules to integrate multiple pretrained
models. Although these adapters are designed to
be lightweight, they could introduce an informa-
tion bottleneck, limiting the free flow of semantic
features through the pipeline. Empirically, this may
reduce maximum achievable performance. Future
refinements may focus on more expressive adapter
architectures, non-linear alignment techniques, or
even joint fine-tuning strategies that partially relax
the strict boundaries between pre-trained compo-
nents.

In summary, while these limitations highlight ar-
eas that may impact efficiency and learning capac-
ity, they also point to clear and tractable research
directions. By addressing caching techniques, en-
hancing the learning signal, and refining adapter
designs, subsequent iterations of TALL could fur-
ther improve speed, adaptability, and accuracy in
low-resource language settings.
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Appendix

Training Performance Analysis

To analyze the training process, we track key perfor-
mance metrics, including accuracy and perplexity,
over multiple training steps. Figure 3 illustrates the
progression of training:

* Accuracy: The accuracy of the final token
prediction steadily improves, indicating that
the model is learning to make more confident
and correct predictions.

* Perplexity: The perplexity decreases over
time, with occasional fluctuations. These fluc-
tuations may correspond to points where the
model updates its internal representations sig-
nificantly, adapting to new patterns in the train-
ing data.

Overall, these results demonstrate that the train-
ing process effectively leverages English intermedi-
ate representations and teacher forcing, leading to
a robust ability to predict missing Hebrew tokens
with increasing accuracy.

Figure 4 presents the accuracy progression dur-
ing the evaluation of 50,000 sentences from the
WIKI-SLVM dataset using the QWEN model.

All evaluation results, along with the full evalua-
tor code, are available in our repository?.

*The repository, including evaluation scripts and full exper-
imental results, is available at https://anonymous.4open.
science/r/TALL-28B2/.
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Metric bloomz TALL Qwen TALL
Total Parameters 883,537,920 799,239,680
LLM Only Parameters 559,214,592 (63.3%) 494,032,768 (61.8%)
Trainable Parameters 126,786,048 (14.35%) 107,669,632 (13.47%)

Table 2: Overall Model Statistics for bloomz TALL and Qwen TALL. The “LLM Only Parameters” row represents
the sum of LLM Embeddings and Main LLM parameters.

Module Total Params Trainable Params Notes
HE-EN Encoder 138,341,376 0 Frozen encoder
LLM Embeddings 256,901,120 0 Frozen embedding layer
Autoencoder 1 4,203,520 4,203,520 Two-layer MLP (1024 — 2048, 2048 — 1024)
Custom Decoder 1 101,828,608 101,828,608 Trainable decoder module
Main LLM 302,313,472 0 Frozen main LLM (BloomModel)
Autoencoder 2 1,577,472 1,577,472 Two-layer MLP (1024 — 1024, 1024 — 512)
Custom Encoder 2 19,176,448 19,176,448 Trainable encoder module
EN-HE Decoder 59,195,904 0 Frozen decoder module
LM Head 33,709,568 0 Final linear mapping

Table 3: Module-wise Breakdown for bloomz TALL.
Module Total Params Trainable Params Notes
HE-EN Encoder 138,341,376 0 Frozen encoder
LLM Embeddings 136,134,656 0 Frozen embedding layer
Autoencoder 1 3,448,704 3,448,704 Two-layer MLP (1024 — 1792, 1792 — 896)
Custom Decoder 1 83,598,080 83,598,080 Trainable decoder module
Main LLM 357,898,112 0 Frozen main LLM (Qwen2Model)
Autoencoder 2 1,446,400 1,446,400 Two-layer MLP (896 — 1024, 1024 — 512)
Custom Encoder 2 19,176,448 19,176,448 Trainable encoder module
EN-HE Decoder 59,195,904 0 Frozen decoder module
LM Head 33,709,568 0 Final linear mapping

Table 4: Module-wise Breakdown for Qwen TALL.
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Figure 3: Training dynamics over time, showing accuracy (top) and perplexity (bottom) as functions of training
steps. Metrics are smoothed using a moving average. The model increasingly improves its predictions of the final
token, demonstrating the effectiveness of the training procedure.
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Figure 4: Accuracy progression during the evaluation of 50,000 sentences from WIKI-SLVM on QWEN. The steady
improvement of predictions across the evaluation set highlights the effectiveness of the evaluation method.
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