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Abstract001

Large Language Models (LLMs) excel in002
high-resource languages but struggle with low-003
resource languages due to limited training data004
and linguistic diversity. This paper presents005
TALL (Trainable Architecture for Enhanc-006
ing LLM Performance in Low-Resource Lan-007
guages), a novel approach designed to bridge008
this gap. The key innovation of TALL lies in009
its integration of three pre-trained models: a010
high-resource LLM and two bilingual transla-011
tion models. By transforming inputs from low-012
resource languages into high-resource language013
representations, TALL leverages the robust rea-014
soning capabilities of the LLM. Subsequently,015
it refines the output through dimensional align-016
ment layers and custom transformers, enabling017
accurate decoding into the target low-resource018
language.019

We validate TALL through experiments on He-020
brew, chosen for its rich morphology, com-021
plex syntax, and limited annotated datasets. To022
ensure a realistic evaluation, the experiments023
utilized models with different levels of expo-024
sure to Hebrew. Results demonstrate signif-025
icant improvements in accuracy, showcasing026
the effectiveness of TALL’s modular design and027
trainable alignment layers. This architecture028
offers a scalable and adaptable framework for029
cross-lingual transfer and improved processing030
in low-resource language settings, with poten-031
tial applicability to a wide range of languages032
and NLP tasks. Furthermore, TALL employs033
a parameter-efficient training strategy, freez-034
ing pre-trained components while training only035
lightweight modules, thus balancing computa-036
tional efficiency with performance gains.1037

1 Introduction038

Large Language Models (LLMs) have significantly039

advanced the field of natural language processing040

(NLP), particularly for high-resource languages041

1Code is available in an anonymous repository: https:
//anonymous.4open.science/r/TALL-28B2/.

like English. However, their performance in low- 042

resource languages, remains limited due to chal- 043

lenges like sparse data and linguistic complex- 044

ity. These challenges often result in uncertainty 045

in model predictions and reduced accuracy. 046

Low-resource languages, which lack extensive 047

annotated datasets and robust pre-trained models, 048

present unique hurdles for LLMs. As illustrated 049

in Figure 1, there is a significant imbalance be- 050

tween the number of speakers of a language and 051

the amount of digital content available, such as 052

Wikipedia articles. This disparity highlights the 053

data scarcity problem that limits the effectiveness 054

of LLMs in low-resource languages. 055

Existing methods, such as transfer learning and 056

data augmentation, have attempted to bridge the 057

gap, but they often fail to fully exploit the full 058

potential of the LLM. 059

This paper addresses this gap by introduc- 060

ing TALL (Trainable Architecture for Enhancing 061

LLM Performance in Low-Resource Languages), 062

a novel architecture that systematically harnesses 063

the strengths of LLMs trained on high-resource 064

languages. The key idea behind TALL is to lever- 065

age the strengths of three pre-trained models: the 066

LLM, which excels in processing high-resource 067

languages, and two translators, which are already 068

trained on extensive bilingual data. By integrat- 069

ing these models, TALL transforms inputs in a 070

low-resource language into an intermediate high- 071

resource representation, utilizes the LLM for rea- 072

soning and prediction, and then refines the output 073

through the second translator to generate accurate 074

and fluent text in the low-resource language. By 075

integrating a sequence of carefully designed trans- 076

formation steps, TALL ensures that the rich linguis- 077

tic knowledge of high-resource language models 078

is leveraged while bridging representational gaps 079

through trainable alignment components. 080

TALL employs a modular pipeline consisting of 081

few stages, including pre-trained translators, di- 082
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Figure 1: Speakers vs. Wikipedia articles by language. A comparison of the number of speakers and the number
of Wikipedia articles for various languages. This figure highlights the significant disparity between the number of
native speakers and the amount of digital content available in different languages. This imbalance underscores the
challenges faced by low-resource languages in the digital space and emphasizes the need for advanced architectures
like TALL Data represents the total number of first and second language speakers and Wikipedia articles. Source:
(Wikimedia Foundation, 2024).

mension alignment autoencoders, and custom trans-083

former components. Notably, these components are084

designed to minimize computational overhead by085

freezing large pre-trained models and only training086

lightweight adapter layers.087

We present TALL as a scalable and adaptable088

solution for improving LLM performance in low-089

resource languages, validated through experiments090

on Hebrew tasks. We chose Hebrew as a represen-091

tative low-resource language due to its rich mor-092

phology, complex syntax, and limited availability093

of annotated datasets. For our experiments, we094

utilized models with different levels of exposure095

to Hebrew data, ensuring a realistic evaluation of096

TALL’s effectiveness in low-resource language set-097

tings. We demonstrate the effectiveness of train-098

able dimension alignment and custom transformers099

in facilitating cross-lingual information flow and100

improving task-specific accuracy. The paper is101

organized as follows: Section 2 reviews related102

work, while Section 3 details the TALL architec-103

ture. Section 4 focuses on its implementation and104

Hebrew-specific training. Experimental results are105

presented in Section 5, followed by the conceptual106

foundations in Section 6. Section 7 discusses fu-107

ture research directions, and Section 8 concludes108

with key findings and implications.109

2 Related Work 110

Improving the performance of Large Language 111

Models (LLMs) in low-resource languages is a 112

critical challenge in the field of natural language 113

processing (NLP). Several approaches have been 114

explored to address this issue, ranging from fine- 115

tuning techniques to in-context learning strategies. 116

One prominent approach is few-shot in-context 117

learning (ICL) (Cahyawijaya et al., 2024), which 118

allows LLMs to perform tasks in low-resource lan- 119

guages by utilizing a few examples provided in 120

the input context. Recent work has shown that 121

cross-lingual in-context learning (X-ICL) can lever- 122

age examples from high-resource languages to im- 123

prove performance in low-resource languages. This 124

method demonstrates that while ICL can be effec- 125

tive, its success is closely tied to the quality of 126

alignment between the languages involved. 127

Another approach involves fine-tuning mul- 128

tilingual models specifically for low-resource 129

languages, as explored in works like adaptM- 130

LLM (Lankford et al., 2024). This method tai- 131

lors the model to the target language pair, offering 132

a more direct adaptation compared to general in- 133

context learning strategies. 134

A recent approach introduced in PolyLM (Wei 135

et al., 2023) explores the use of curriculum learning 136

to enhance the multilingual capabilities of LLMs. 137

This method involves a two-stage training pro- 138
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cess where the model first learns general language139

patterns from a large dataset dominated by high-140

resource languages, and then fine-tunes on a cu-141

rated subset with an increased proportion of low-142

resource languages. This strategy facilitates knowl-143

edge transfer from high-resource languages to low-144

resource ones, resulting in improved performance145

across a wide range of multilingual tasks.146

A recently introduced approach that tackles mul-147

tilingual language modeling at a higher level of148

abstraction is the Large Concept Model (LCM)149

(LCM-team et al., 2024). Instead of processing150

text on a token-by-token basis, LCM operates on151

sentence-level “concepts,” leveraging the SONAR152

embedding space (Duquenne et al., 2023). SONAR153

provides a single vector space covering 200 lan-154

guages—including text and limited speech capa-155

bilities—where semantically similar sentences are156

mapped to nearby points. Building on these embed-157

dings, LCM is trained to autoregressively predict158

the next sentence embedding, then uses SONAR’s159

multilingual decoder to reconstruct the output sen-160

tence in a target language. This design effectively161

shifts the language modeling problem from token162

prediction to concept-level reasoning.163

LCMs emphasize broad language coverage and164

have demonstrated strong zero-shot generalization165

in tasks like abstractive summarization (XLSum),166

outperforming comparably sized models on lan-167

guages in which LCM received no explicit instruc-168

tion. By virtue of SONAR’s multilingual founda-169

tion, LCM can also process low-resource languages170

without any additional fine-tuning.171

LCMs differ from TALL in several ways. First,172

the LCM pipeline operates at a sentence-level “con-173

cept” space derived from the SONAR encoder-174

decoder (Duquenne et al., 2023), while TALL uses175

a more traditional token-level flow, relying on two176

pre-trained translation models and a central LLM.177

Instead of predicting the next token, LCM employs178

a diffusion-based generation process where sen-179

tence embeddings are gradually denoised from an180

initial noisy state. This allows the model to learn181

a probabilistic distribution over possible contin-182

uations rather than committing to a single token183

sequence at each step. In contrast, TALL processes184

hidden states through its transformers in a sequen-185

tial manner, maintaining the standard way used in186

token-based language models. Second, TALL is rel-187

atively straightforward in terms of computational188

overhead, freezing large pre-trained components189

and introducing only lightweight alignment lay-190

ers, while LCMs involve more extensive end-to- 191

end training of the concept space. Overall, both 192

approaches highlight the promise of multilingual 193

architectures, but TALL focuses on a parameter- 194

efficient design suitable for low-resource deploy- 195

ments, whereas LCMs adopt a richer sentence-level 196

representation that can naturally generalize to mul- 197

tiple modalities. Continued research into LCMs’ 198

high-level, concept-based generation holds the po- 199

tential for further breakthroughs in multilingual 200

and multimodal modeling. 201

These studies highlight the diversity of strategies 202

being developed to enhance LLM performance in 203

low-resource settings, whether through in-context 204

learning, fine-tuning, or cross-lingual methods. 205

The architecture proposed in this paper builds on 206

these approaches by leveraging high-resource lan- 207

guage capabilities through a dual translation pro- 208

cess, aiming to refine the cross-linguistic process- 209

ing abilities of LLMs and further improve their 210

performance in low-resource languages. 211

3 Model Architecture 212

3.1 Overview 213

In traditional encoder-decoder translation models, a 214

sentence is translated from one language to another 215

through an auto-regressive process. First, the en- 216

coder processes the input sentence and converts it 217

into a sequence of hidden states, which serve as an 218

intermediate representation of the source language. 219

The decoder then generates the output sequence to- 220

ken by token in an auto-regressive manner, where 221

each predicted token is conditioned on the previ- 222

ously generated tokens. Throughout this process, 223

the decoder employs cross-attention mechanisms 224

to attend to the encoder’s hidden states, allowing it 225

to incorporate relevant contextual information from 226

the source sentence at each decoding step. 227

In TALL’s architecture, the first stage processes 228

the input sentence by tokenizing it in three ways: 229

(1) using the first translator’s tokenizer for the 230

source language (during training, the last word 231

removed), (2) translating the input sentence and 232

tokenizing it with the LLM’s tokenizer, and (3) 233

tokenizing the input sentence with the second trans- 234

lator’s tokenizer as the target language. 235

The intermediate hidden states from the first 236

translator (the encoder outputs) are first processed 237

through an autoencoder to align their dimensions 238

with the LLM. Next, the custom decoder obtains 239

the LLM embeddings of the translated sentence to- 240

3



kenized by the LLM’s tokenizer and applies cross-241

attention with the aligned hidden states from the242

autoencoder. While decoders traditionally oper-243

ate in an autoregressive manner to generate output244

sequences, our custom decoder serves a distinct245

purpose: it projects inputs into the LLM’s embed-246

ding space while maintaining cross-attention to247

the encoded low-resource language representations.248

This repurposing of the decoder architecture en-249

ables direct interaction between the LLM’s native250

embedding space and the source language encod-251

ings. This process aims to provide the LLM with a252

high-resource language representation of the sen-253

tence while retaining attention to the original low-254

resource language input. Once the LLM generates255

its predictions, a custom encoder transforms the256

output into a format suitable for the high-resource-257

to-low-resource translator’s decoder.258

During training, teacher forcing is applied by259

providing the ground-truth target tokens from the260

low-resource language as inputs to the second trans-261

lator’s decoder, ensuring semantic alignment and262

accurate decoding. Crucially, the model is trained263

only to predict the final missing token of the source264

sentence. Clearly, this token is never included in265

the input, ensuring that the loss function explicitly266

optimizes for its correct generation without direct267

exposure during training.268

3.2 Overall Structure and Trainable269

Components270

As illustrated in Figure 2, TALL’s architecture con-271

sists of seven main stages, designed to leverage ex-272

isting pre-trained components while minimally in-273

troducing new, lightweight layers that are trainable.274

This modular structure enables efficient adaptation275

to low-resource language tasks while preserving276

the linguistic knowledge embedded in pre-trained277

models.278

The seven main stages of TALL’s architecture279

are as follows:280

1. Source Language Encoding: The input sen-281

tence in the source low-resource language is282

passed through a pre-trained low-resource-to-283

high-resource (LR-HR) encoder. This encoder284

generates hidden states that represent the inter-285

mediate semantic form of the input sentence286

in a format interpretable by the following com-287

ponents.288

2. Dimension Alignment (Source to LLM):289

The hidden states produced by the LR-HR290

Figure 2: A conceptual overview of the TALL archi-
tecture, and its training data flow with teacher forcing,
omitting the dimension alignment autoencoders for sim-
plicity.

encoder are passed through a dimension align- 291

ment autoencoder. This trainable layer adapts 292

the hidden states to the dimensional require- 293

ments of the LLM, ensuring seamless integra- 294

tion with the following custom decoder. 295

3. First Custom Decoder (LR-HR Decoder): 296

The custom decoder receives the LLM- 297

tokenized translated sentence embeddings and 298

applies cross-attention to the aligned hidden 299

states from the autoencoder. This ensures that 300

the LLM receives a high-resource language 301

representation enriched with information from 302

the original low-resource input. 303

4. LLM Integration: The processed sequence 304

is passed to the frozen LLM, which generates 305

the next-token prediction. 306
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5. Dimension Alignment (LLM to Target):307

The LLM’s hidden states are transformed via308

a second autoencoder to align with the dimen-309

sion requirements of the second translator’s310

encoder.311

6. Second Custom Encoder: This encoder pro-312

cesses the aligned hidden states from the LLM,313

encoding the high-resource language represen-314

tation into a structured format suitable for the315

second translator’s decoder.316

7. Target Language Decoding: The output317

from the second custom encoder is passed to318

the HR-LR decoder, which generates the final319

text in the target low-resource language. This320

decoder leverages its pre-trained capabilities321

to produce fluent and accurate translations by322

applying cross-attention between the encoded323

representation and the target low-resource lan-324

guage embeddings.325

In summary, TALL leverages pre-trained, frozen326

models for their rich linguistic knowledge, while327

only fine-tuning lightweight trainable adapter lay-328

ers. This approach keeps training efficient and329

manageable, enabling the model to better capture330

the nuanced complexities inherent in low-resource331

languages.332

4 Implementation and Training Details333

To implement TALL for Hebrew, we combined pre-334

trained Marian MT models for Hebrew-English and335

English-Hebrew translation with a frozen LLM,336

integrating the custom trainable components.337

Hebrew-English Encoder: We use a pre-trained338

Marian MT model (Junczys-Dowmunt et al., 2018),339

leveraging its encoder to create a robust intermedi-340

ate representation of the Hebrew input. This step341

provides a language-agnostic semantic represen-342

tation that the subsequent components can more343

readily process.344

Dimension Alignment Autoencoders: Two dis-345

tinct autoencoders (one for the Hebrew-English346

to LLM alignment and another for the LLM to347

English-Hebrew alignment) ensure a smooth inter-348

action between models with different architectural349

dimensions. Each autoencoder is composed of an350

encoder and a decoder stack of fully-connected351

layers, layer normalization, and GELU activations,352

enabling projection of input hidden states into the353

target dimensionality. These autoencoders can be 354

pre-trained independently as regular autoencoders 355

are trained; once trained, only their encoder com- 356

ponents need to be retained for alignment within 357

the TALL pipeline. As a result, the representations 358

remain semantically meaningful after transforma- 359

tion, while allowing for efficient integration and 360

fine-tuning within the overall architecture. 361

Custom Transformers: TALL’s architecture in- 362

tegrates two custom transformer-based modules 363

derived from Marian configurations: 364

• Custom Decoder 1: Positioned after the 365

dimension alignment from Hebrew-English 366

space to LLM space, this Marian Decoder con- 367

ditions on English tokens and cross-attends to 368

the dimension-aligned encoder states. 369

• Custom Encoder 2: After being processed by 370

the LLM and aligned into the English-Hebrew 371

dimension space, this Marian Encoder fur- 372

ther refines the representations before pass- 373

ing them into the English-Hebrew Marian de- 374

coder. 375

LLM Integration: The central LLM component 376

is embedded between the two custom transformer 377

modules. By positioning the LLM after the input 378

has been converted into English-like representa- 379

tions, we leverage the LLM’s extensive training in 380

English, enabling it to perform complex reasoning 381

and linguistic manipulations. The LLM’s improved 382

hidden states are then adapted back into a represen- 383

tation suitable for the English-Hebrew decoder. 384

Final Decoding and Output: The final Hebrew 385

output is generated by the English-Hebrew Marian 386

decoder (Junczys-Dowmunt et al., 2018). This en- 387

sures that the final tokens are produced in fluent, 388

contextually appropriate Hebrew, benefiting from 389

the entire chain of transformations and enhance- 390

ments provided by the preceding components. 391

A detailed breakdown of the TALL parameters, 392

including overall statistics and module-wise counts 393

for both bloomz TALL and Qwen TALL, is pro- 394

vided in Tables 2, 3, and 4 in the Appendix. 395

4.1 Training Procedure 396

The training process for TALL focuses on refining 397

the model to generate Hebrew output while lever- 398

aging English intermediate representations. The 399

training data consisted of 256,000 Hebrew sen- 400

tences sourced from news articles found online. 401
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The dataset underwent standard preprocessing, in-402

cluding the removal of duplicate sentences, extra-403

neous symbols, and filtering for sentence lengths404

between 5 and 30 words.405

Batched data samples are prepared by tokeniz-406

ing Hebrew input sentences, their corresponding407

English translations, and the Hebrew target out-408

puts. The model is trained using teacher forcing,409

where the ground-truth target tokens are provided410

as decoder inputs. The loss is computed using411

cross-entropy, optimizing only for the final missing412

token in the sequence.413

Training is performed using the AdamW opti-414

mizer with a cosine annealing learning rate sched-415

uler. The initial learning rate is set to 5× 10−5 for416

the main model and 1× 10−3 for the autoencoders.417

Gradient clipping and mixed precision training are418

applied to stabilize training. The best model is se-419

lected based on evaluation loss, ensuring optimal420

performance.421

Figure 3 (see the appendix) shows the training422

dynamics, illustrating the improvement in accuracy423

and reduction in perplexity over time.424

5 Comparative Experiment and Results425

To test the performance of TALL, we conducted426

a comparative experiment against alternative ap-427

proaches. The objective was to assess our model’s428

ability to accurately predict a missing Hebrew word429

at the end of a given sentence.430

5.1 Experimental Setup431

The evaluation was conducted on two datasets, each432

consisting of 50,000 Hebrew sentences: WIKI-433

SLVM (from the SVLM Hebrew Wikipedia Cor-434

pus (svl)) and NEWS, a test dataset originating435

from the same domain and source as the training436

data but containing unseen sentences. For each437

sentence, the final word was removed, and the438

task was to predict the missing Hebrew word. We439

compared TALL with Direct Hebrew, Naive, Soft440

Prompt, and a Fine-Tuned Baselines using bloomz-441

560m (Muennighoff et al., 2023) and QWEN2.5-442

0.5b (Qwen-Team, 2024). These models have dif-443

ferent levels of exposure to Hebrew, as reflected444

in the Direct Hebrew baseline. Bloomz-560m445

has very little prior exposure, making it a strong446

benchmark for testing performance in a very low-447

resource setting. QWEN2.5-0.5b has high exposure448

to Hebrew, allowing us to evaluate TALL’s effec-449

tiveness across varying degrees of low-resource450

language proficiency. By evaluating TALL on these 451

models, we gain insights into its adaptability across 452

languages with minimal or partial training data 453

availability. 454

Direct Hebrew Approach: This baseline ap- 455

proach attempts to predict the missing Hebrew 456

word directly using the unadapted LLM. The model 457

simply receives the truncated Hebrew sentence as 458

input and generates a continuation. Since Bloomz- 459

560m has never seen Hebrew, its performance is 460

minimal, serving as a lower bound for Hebrew to- 461

ken prediction in a zero-resource setting 462

Naive Approach: The naive pipeline first trans- 463

lates the truncated Hebrew sentence (with the final 464

word removed) into English, then uses the English 465

LLM to predict the next token, thereby extending 466

the English sentence. This entire, now-completed 467

English sentence is then translated back into He- 468

brew, and the final token of the resulting Hebrew 469

sequence is taken as the predicted word. While this 470

approach is straightforward, it overlooks critical 471

linguistic differences between Hebrew and English. 472

For instance, Hebrew adjectives typically follow 473

the nouns they modify, whereas English adjectives 474

often precede nouns, leading to mismatched word 475

orders and unnatural predictions. Moreover, other 476

morphological and syntactic discrepancies between 477

the two languages further degrade the quality and 478

relevance of the predicted Hebrew output. 479

Soft Prompt Approach: In this method, we train 480

a set of soft (learned) parameters—known as a soft 481

prompt—to guide the English LLM towards pro- 482

ducing English words that translate correctly into 483

Hebrew. (Lester et al., 2021) Unlike a naive zero- 484

shot pipeline, this approach fine-tunes a minimal 485

set of parameters so that the LLM can generate 486

English outputs that are semantically aligned with 487

the missing Hebrew word. This approach lever- 488

ages parameter-efficient tuning techniques to better 489

adapt the model to the final prediction task. 490

Fine-Tuned Approach: To provide a stronger 491

baseline, we fine-tuned the models on the same 492

Hebrew dataset used for TALL, consisting of news 493

articles formatted for causal language modeling. 494

Each model was fine-tuned using supervised train- 495

ing with teacher forcing and cross-entropy loss, 496

following the standard approach for causal LLMs. 497

The training was conducted with a learning rate 498

of 2× 10−8 and a batch size of 6, ensuring stable 499

optimization while adapting the models to Hebrew 500
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Dataset Approach Bloomz-560m QWEN2.5-0.5b
WIKI-SLVM Direct Hebrew 0.63 3.77

Fine-tuned 0.16 2.75
Naive 2.11 2.85
Soft prompt 2.50 1.96
TALL 5.59 5.15

NEWS (Test Set) Direct Hebrew 0.08 2.83
Fine-tuned 0.42 4.14
Naive 2.27 3.02
Soft prompt 2.80 2.24
TALL 6.10 4.93

Table 1: Comparison of approaches on predicting the missing Hebrew word across datasets. TALL, soft prompt
tuning, and fine-tuning were trained on the News train dataset. Therefore, fine-tuned models show improved
performance only on the NEWS test set, but, in fact, perform worse on WIKI-SLVM. However, TALL achieves
strong results across both datasets, highlighting its generalization ability.

text. The models were trained using standard effi-501

ciency techniques to prevent overfitting.502

TALL Approach: This represents our proposed503

TALL architecture. By fully integrating a Hebrew-504

English encoder, English LLM layers, dimension505

alignment components, and an English-Hebrew de-506

coder, the custom model is specifically trained to507

produce accurate Hebrew completions. The archi-508

tecture is designed to leverage the high-resource509

English competence of the LLM, while ensuring510

that the outputs align with the Hebrew target do-511

main through the dual-translation mechanism and512

integrated alignment strategies.513

5.2 Results and Analysis514

The results, summarized in Table 1, highlight key515

differences between the evaluated approaches and516

demonstrate the effectiveness of TALL. Several im-517

portant insights emerge from the comparison:518

1. Necessity of Cross-Lingual Strategies: The519

Direct Hebrew approach, which relies on520

models with varying levels of Hebrew ex-521

posure, produces varying results. Bloomz-522

560m, which has never seen Hebrew, per-523

forms poorly, while QWEN2.5-0.5b, with524

some exposure, performs slightly better. This525

highlights the effectiveness of TALL’s cross-526

lingual approach, demonstrating that well-527

structured architectures can enhance perfor-528

mance even for models with minimal or mod-529

erate exposure to the target language.530

2. Incremental Gains with Translation and531

Soft Prompts: The Naive and Soft Prompt532

approaches show slight but limited improve- 533

ments. The Naive approach benefits from 534

leveraging an English LLM’s stronger token 535

prediction abilities but introduces structural 536

mismatches due to differences in Hebrew and 537

English syntax. While we attempted to opti- 538

mize soft prompts to guide the LLM toward 539

better Hebrew predictions, we did not achieve 540

substantial improvements. This suggests that 541

soft prompts alone may not be an effective 542

method for adapting models to low-resource 543

languages without additional fine-tuning or 544

structural modifications. 545

3. Fine-Tuning Insights All models improved 546

on the News test dataset, demonstrating that 547

fine-tuning effectively helped them adapt to 548

this specific domain. However, their per- 549

formance on the Wikipedia dataset declined 550

slightly, likely due to a domain shift or mild 551

forgetting. Since these models were probably 552

pretrained on Wikipedia, fine-tuning on the 553

News dataset may have interfered with their 554

ability to generalize back to Wikipedia-based 555

examples. 556

6 Conceptual Foundations 557

The theoretical underpinning of the TALL architec- 558

ture draws upon established principles in natural 559

language processing (NLP), transfer learning, and 560

cross-lingual modeling. Its design leverages the 561

following key theoretical foundations: 562

Multilingual and Cross-Lingual Transfer: A 563

central idea behind TALL is to harness the sub- 564

stantial linguistic knowledge embedded in Large 565
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Language Models (LLMs) trained predominantly566

on high-resource languages (e.g., English). Previ-567

ous research in multilingual representations (Con-568

neau et al., 2020; Li et al., 2024) has shown that569

representations learned for one language can facili-570

tate learning in another language, especially if the571

languages share underlying semantic structures or572

scripts.573

Representation Learning and Alignment:574

TALL relies on dimension alignment autoencoders575

to project encoder hidden states between different576

model architectures and representation spaces.577

The theoretical motivation for such intermediate578

layers comes from the field of representation579

learning (Bengio et al., 2013), where learned580

vector spaces encode semantic information. By581

learning a mapping function (autoencoder) that582

aligns these spaces, we ensure that different model583

components can interchange information without584

loss of semantic fidelity.585

Teacher Forcing: Teacher forcing (Williams and586

Zipser, 1989) is employed to improve stability587

and convergence during training by providing588

the ground-truth target tokens. Although origi-589

nally developed for traditional language models590

and sequence-to-sequence models, the concept is591

equally applicable here.592

Collectively, these theoretical considerations593

guide the design of TALL, informing the decisions594

on the model architecture, training objectives, and595

evaluation strategies.596

7 Future Work597

While TALL demonstrates promising results in en-598

hancing LLM performance on low-resource lan-599

guages like Hebrew, several avenues remain open600

for future exploration:601

Extending to Other Low-Resource Languages:602

Future work can apply TALL to a broader set of lan-603

guages, including morphologically rich and aggluti-604

native languages. By experimenting with different605

language pairs and families, researchers can assess606

the generality and scalability of TALL’s approach.607

Incorporating Additional Modalities: Beyond608

text-only representations, future research could in-609

tegrate multimodal inputs (e.g., audio or images) to610

enrich the language representations. For instance,611

using speech or image annotations could further612

ground language understanding and potentially en- 613

hance performance in low-resource settings, where 614

textual data may be scarce. 615

Refining Dimension Alignment Mechanisms: 616

Although our dimension alignment autoencoders 617

effectively map between representation spaces, fu- 618

ture work could explore more advanced alignment 619

techniques. 620

8 Conclusion 621

This work introduced TALL, a strategy for im- 622

proving the performance of Large Language Mod- 623

els in low-resource languages by leveraging high- 624

resource language capabilities. The key innova- 625

tion lies in the dual-translation pipeline, where in- 626

put is transformed into a high-resource language 627

space—capitalizing on the strengths of well-trained 628

English-centric LLMs—before being re-translated 629

into the target low-resource language. 630

Through careful integration of custom trans- 631

former components, dimension alignment autoen- 632

coders, and teacher forcing, TALL demonstrates im- 633

proved performance on Hebrew tasks, as measured 634

by reduced perplexity, increased accuracy. The pre- 635

sented results validate the theoretical foundations 636

of cross-lingual transfer, representation alignment, 637

and incremental learning, and highlight the impor- 638

tance of leveraging existing LLM capabilities to 639

bridge resource gaps. 640

While challenges remain—particularly in ex- 641

tending the approach to a wider array of languages 642

and exploring multimodal enhancements—TALL 643

offers a meaningful step towards more inclusive 644

and accessible NLP technologies. By continuing 645

to refine this approach, and by engaging in broader 646

evaluations and more diverse linguistic landscapes, 647

the field can push closer to a future where high- 648

quality language models support all languages, re- 649

gardless of their resource availability. 650

Limitations 651

While TALL presents a promising framework for 652

enhancing LLM performance in low-resource lan- 653

guages, several limitations warrant consideration: 654

Limited Support for Key-Value Caching: Typ- 655

ical LLM-based pipelines leverage key-value 656

caching to speed up inference during token-by- 657

token generation, enabling efficient autoregressive 658

decoding. In the current design, however, the inte- 659

gration of multiple translation and alignment mod- 660
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ules complicates straightforward caching of inter-661

mediate states. This results in less efficient infer-662

ence times compared to standard LLMs. Nonethe-663

less, future work could address this concern by664

exploring partial caching techniques or optimiz-665

ing the custom components to make them more666

cache-friendly.667

Reduced Per-Token Learning Signal: Conven-668

tional LLM training benefits from predicting ev-669

ery next token in a sequence, reinforcing language670

modeling abilities at all time steps. By contrast,671

TALL’s setup focuses on predicting only the final672

token of the low-resource sentence after the dual-673

translation process. While this design choice effec-674

tively zeroes in on specific task objectives, it con-675

strains the model’s training signal to a single token676

per example. The consequence is a more limited677

reinforcement of internal representations. Potential678

solutions include curriculum learning strategies or679

multi-stage training protocols, where initial train-680

ing phases could incorporate additional per-token681

predictions.682

Adapter Layer Bottleneck: TALL is heavily de-683

pendent on dimension alignment layers and other684

adapter modules to integrate multiple pretrained685

models. Although these adapters are designed to686

be lightweight, they could introduce an informa-687

tion bottleneck, limiting the free flow of semantic688

features through the pipeline. Empirically, this may689

reduce maximum achievable performance. Future690

refinements may focus on more expressive adapter691

architectures, non-linear alignment techniques, or692

even joint fine-tuning strategies that partially relax693

the strict boundaries between pre-trained compo-694

nents.695

In summary, while these limitations highlight ar-696

eas that may impact efficiency and learning capac-697

ity, they also point to clear and tractable research698

directions. By addressing caching techniques, en-699

hancing the learning signal, and refining adapter700

designs, subsequent iterations of TALL could fur-701

ther improve speed, adaptability, and accuracy in702

low-resource language settings.703
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Appendix778

Training Performance Analysis779

To analyze the training process, we track key perfor-780

mance metrics, including accuracy and perplexity,781

over multiple training steps. Figure 3 illustrates the782

progression of training:783

• Accuracy: The accuracy of the final token784

prediction steadily improves, indicating that785

the model is learning to make more confident786

and correct predictions.787

• Perplexity: The perplexity decreases over788

time, with occasional fluctuations. These fluc-789

tuations may correspond to points where the790

model updates its internal representations sig-791

nificantly, adapting to new patterns in the train-792

ing data.793

Overall, these results demonstrate that the train-794

ing process effectively leverages English intermedi-795

ate representations and teacher forcing, leading to796

a robust ability to predict missing Hebrew tokens797

with increasing accuracy.798

Figure 4 presents the accuracy progression dur-799

ing the evaluation of 50,000 sentences from the800

WIKI-SLVM dataset using the QWEN model.801

All evaluation results, along with the full evalua-802

tor code, are available in our repository2.803

2The repository, including evaluation scripts and full exper-
imental results, is available at https://anonymous.4open.
science/r/TALL-28B2/.
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Metric bloomz TALL Qwen TALL
Total Parameters 883,537,920 799,239,680
LLM Only Parameters 559,214,592 (63.3%) 494,032,768 (61.8%)
Trainable Parameters 126,786,048 (14.35%) 107,669,632 (13.47%)

Table 2: Overall Model Statistics for bloomz TALL and Qwen TALL. The “LLM Only Parameters” row represents
the sum of LLM Embeddings and Main LLM parameters.

Module Total Params Trainable Params Notes
HE-EN Encoder 138,341,376 0 Frozen encoder
LLM Embeddings 256,901,120 0 Frozen embedding layer
Autoencoder 1 4,203,520 4,203,520 Two-layer MLP (1024 → 2048, 2048 → 1024)
Custom Decoder 1 101,828,608 101,828,608 Trainable decoder module
Main LLM 302,313,472 0 Frozen main LLM (BloomModel)
Autoencoder 2 1,577,472 1,577,472 Two-layer MLP (1024 → 1024, 1024 → 512)
Custom Encoder 2 19,176,448 19,176,448 Trainable encoder module
EN-HE Decoder 59,195,904 0 Frozen decoder module
LM Head 33,709,568 0 Final linear mapping

Table 3: Module-wise Breakdown for bloomz TALL.

Module Total Params Trainable Params Notes
HE-EN Encoder 138,341,376 0 Frozen encoder
LLM Embeddings 136,134,656 0 Frozen embedding layer
Autoencoder 1 3,448,704 3,448,704 Two-layer MLP (1024 → 1792, 1792 → 896)
Custom Decoder 1 83,598,080 83,598,080 Trainable decoder module
Main LLM 357,898,112 0 Frozen main LLM (Qwen2Model)
Autoencoder 2 1,446,400 1,446,400 Two-layer MLP (896 → 1024, 1024 → 512)
Custom Encoder 2 19,176,448 19,176,448 Trainable encoder module
EN-HE Decoder 59,195,904 0 Frozen decoder module
LM Head 33,709,568 0 Final linear mapping

Table 4: Module-wise Breakdown for Qwen TALL.
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Figure 3: Training dynamics over time, showing accuracy (top) and perplexity (bottom) as functions of training
steps. Metrics are smoothed using a moving average. The model increasingly improves its predictions of the final
token, demonstrating the effectiveness of the training procedure.

Figure 4: Accuracy progression during the evaluation of 50,000 sentences from WIKI-SLVM on QWEN. The steady
improvement of predictions across the evaluation set highlights the effectiveness of the evaluation method.
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