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Abstract

Domain adaptive semantic segmentation aims to transfer knowledge learned from
labeled source domain to unlabeled target domain. To narrow down the domain
gap and ease adaptation difficulty, some recent methods translate source images to
target-like images (latent domains), which are used as supplement or substitute to
the original source data. Nevertheless, these methods neglect to explicitly model
the relationship of knowledge transferring across different domains. Alternatively,
in this work we break through the standard “source-target” one pair adaptation
framework and construct multiple adaptation pairs (e.g. “source-latent” and “latent-
target”). The purpose is to use the meta-knowledge (how to adapt) learned from
one pair as guidance to assist the adaptation of another pair under a meta-learning
framework. Furthermore, we extend our method to a more practical setting of open
compound domain adaptation (a.k.a multiple-target domain adaptation), where the
target is a compound of multiple domains without domain labels. In this setting, we
embed an additional pair of “latent-latent” to reduce the domain gap between the
source and different latent domains, allowing the model to adapt well on multiple
target domains simultaneously. When evaluated on standard benchmarks, our
method is superior to the state-of-the-art methods in both the single target and
multiple-target domain adaptation settings.

1 Introduction

Semantic segmentation is a popular task in computer vision, which assigns pixel-wise semantic
labels for given images. It has been widely utilized to facilitate downstream applications such
as video surveillance and autonomous driving. Recent progress on image semantic segmentation
has been driven by deep neural networks trained on a large amount of labeled data, which are yet
expensive to obtain. An alternative way is to generate synthetic images with pixel-level ground
truth readily available in an effortless way [1, 2]. However, the model purely trained on synthetic
datasets usually performs rather poor on real data. To address this issue, domain adaptation methods
are used to reduce the domain shift and learn domain-invariant representations by minimizing
distribution discrepancy between source and target domains [3, 4]. Following the advances of
generative adversarial nets (GANs) [5], adversarial learning has been used to align representations
of different domains in an adversarial manner [6, 7, 8, 9]. Recent studies introduce an additional
intermediate domain, i.e. latent domain, to narrow down the huge domain gap between source and
target domains [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. This is achieved by image-to-image
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(a) (b)

Figure 1: Comparison of different domain adaptation frameworks for semantic segmentation. (a)
Previous frameworks built one domain adaptation pair that directly adapts a model from source
domain and latent domain to target domain. In contrast, (b) we construct two domain adaptation pairs.
The purpose is to use the meta-knowledge learned from one pair as guidance to assist the adaptation
of another pair under a meta-learning framework.

translation technique, which generates augmented images that share the same contents as well as
ground truth labels with the source domain and similar style to the target domain.

Previous works use the latent domain as supplement or substitute to the original source domain to ease
the adaptation difficulty, following the traditional one-pair domain adaptation framework, as shown
in Fig. 1(a). In contrast, in this paper we construct two domain adaptation pairs: “source→latent” and
“latent→target”. The purpose is to use the meta-knowledge learned from one pair of “source→latent”
as guidance to assist the adaptation of another pair of “latent→target”, as shown in Fig. 1(b).
Specifically, we use a meta-learning framework to learn the meta-knowledge, which reveals that a
model starting from which initial condition can adapt well on the adaptation pair of “source→latent”.
Meta-learning (a.k.a. learning to learn) has re-surged recently due to its efficacy for few-shot deep
learning. In our paper, we only borrow the idea of bi-level optimization, to achieve an initialization
that is good for both domain adaptation and segmentation. Please note for latent-target adaptation,
since we do not have segmentation labels on target, we cannot optimize for the segmentation task.
Thus, an initialization that is only good for domain adaptation is not sufficient; it is necessary to
obtain an initialization that is good for both domain adaptation and segmentation. On the other hand,
this initialization can be well transferred from source-latent to latent-target as it does not overfit to
the domain adaptation or segmentation tasks on the latent domain thanks to the property of bi-level
optimization. Recently, a couple of works have also successfully applied meta-learning to domain
adaptation. The most related work to ours is [22], which requires multiple source domains or a
proportion of labeled target data. In contrast, our proposed method makes use of a generated latent
domain, and thus is more flexible in practice.

Most existing domain adaptation methods only aim at adapting a model to a single target domain,
without considering a more practical scenario where the target consists of multiple data distributions.
To investigate a more realistic setting for domain adaptation, we further study the problem of open
compound domain adaptation (a.k.a multiple-target domain adaptation) [23]. In this setting, the target
is a union of multiple domains without domain labels. To address this challenge, we extend our
proposed method from single-target to multi-target domain adaptation. Specifically, we embed an
additional domain pair of “latent→latent” to algin arbitrary two latent domains in the meta-training
phase, which better learn the meta-knowledge of adaptation across different domains. In the meta-
testing phase, the learned meta-parameters are used to initialize model parameters, promoting our
model to adapt well on multiple target domains simultaneously.

In summary, the contribution of our work is three folds. (1) We propose a meta-learning framework
compatible for both single-target and multi-target domain adaptation settings. To the best of our
knowledge, this is the first work that adopts meta-learning framework to handle domain adaptive
semantic segmentation. (2) We first generate additional images as a latent domain via style transfer
from source to target domains. This latent domain is then used to construct domain pairs for meta-
learning, which transfers meta-knowledge of adaptation across different domains. (3) Our approach
achieves state-of-the-art performance on several challenging benchmark datasets. Also, we provide
comprehensive model analyses for the proposed method.
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Figure 2: Training procedure of our meta-learning framework for single-target domain adaptation. In
the meta-training phase, we construct a domain pair of “source→latent” to learn the meta-knowledge
via bi-level optimization. The meta-knowledge reveals a model starting from which initial condition
adapts well from labeled domain to a new unlabeled domain. In the meta-testing phase, we use the
learned meta-knowledge as guidance to assist the adaptation of “latent→target”.

2 Related Work

Since our method incorporates style transfer with meta-learning optimization for domain adaptive
semantic segmentation, we will review related works from the above two aspects, respectively.

2.1 Domain Adaptive Semantic Segmentation Based on Style Transfer

Recent advances in domain adaptive semantic segmentation have highlighted the complementary
role of pixel-level alignment, which is mainly achieved by image translation methods (e.g. style
transfer) to translate images from one domain to another. Some works [10, 11, 12, 16, 17] construct a
unified framework to learn image translation and domain adaptation in a sequential way. In contrast,
BDL [13] proposes a bidirectional learning framework, consisting a closed loop to optimize the
adaptation and image translation networks alternatively. Some other works [15, 18] investigate cross
image translation between source and target domains, enforcing the model to produce consistent
predictions for the original and translated images with the same contents. Instead of using adversarial
learning, TGCF [14] constructs a self-ensembling learning framework, which is composed of a
teacher network and a student network. To preserve the semantic information of translated image,
FDA [19] and PCE [20] introduce Fourier transform to image translation. FDA [19] does not require
any training to perform the domain alignment, just using a simple Fourier transform and its inverse.
PCE [20] uses the phase consistency of Fourier transform to provide more flexibility to align the
source domain and target domain. The DHA method [21] focuses on a more practical setting of
multiple-target domain adaptation. It generates translated images to construct multiple latent domains,
each of which contains the same “style” with a specific target domain. Then a couple of multiple
domain classifiers are used to perform the target-to-source alignment separately. Existing methods
ignore explicitly modeling the relationship of cross-domain knowledge transfer, which is expected to
promote the adaptation performance.

2.2 Meta-Learning for Deep Neural Networks

Meta-learning for neural network has a long history, but have resurged in popularity recently. This has
been largely driven by its efficacy for few-shot deep learning [24, 25], reinforcement learning [26],
hyperparameter optimization [27], and neural architecture search [28]. More recently, meta-learning
has also been successfully applied to domain adaptation [29, 30, 31, 22]. EAML [31] uses a meta-
adaptation framework to learn representations for adapting the model to continually evolving target
domains. Meta-online [22] introduces a new framework to enhance performance by learning the initial
conditions (i.e. model parameter) of existing domain adaptation methods, whereby the proposed
framework is only suitable for multi-source or semi-supervised domain adaption settings. We draw
inspiration from MAML [32], and in particular from the idea of learning initial conditions [22]
of neural network optimization that efficiently adapt the model to the target domain. The major
difference to [22] is that we construct domain pairs using the generated latent domain images, which
share the same contents with the source domain and a similar style with the target domain. Such an
intermediate domain makes the meta-knowledge transfer become easier yet more effective.
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3 Method

3.1 Preliminaries

We define the source domain as DS and the target domain as DT={D0
T , D

1
T , ..., D

K−1
T }, where

K indicates the number of target domains. Assuming K>1, we take it as the multi-target domain
setting; when K=1, it degenerates to a single target domain adaptation problem.

When assuming K>1, we first need to split the whole target data to multiple domains by discovering
different styles. Here, we use the statistics of CNN features (i.e. mean and standard deviations) to
represent the domain-specific style information following [21, 33]. Based on this representation, we
then perform k-means clustering [34] to assign a domain label to each target image.

Algorithm 1 Meta-Knowledge Learning for Single Target Domain Adaptation (STDA)
Input: Labeled data from DS and DL, and unlabelled data from DT .
Initialise: Model parameters Θ0, learning rate α, β, γ, iteration number I at each epoch, iteration

number J and N in the meta-training and meta-testing phases, respectively.
1: for i = 1, 2, ..., I do
2: Θ̃0 = Θi−1;
3: Sample (DS)i, (DL)i and (DT )i uniformly from DS , DL and DT , respectively;
4: for j = 1, 2, ..., J do
5: Sample (DS)j and (DL)j from (DS)i and (DL)i, respectively;
6: Θ̃j = Θ̃j−1 − α5Θ̃j−1

Luda(Θ̃j−1; (DS)j , (DL)j); \\ Inner loop
7: end for
8: Θ0 = Θi−1 − β 5Θi−1 Lseg(Θ̃J ; (DL)i); \\ Outer loop for learning initial condition
9: for n = 1, 2, ..., N do

10: Sample (DL)n and (DT )n from (DL)i and (DT )i, respectively.
11: Θn = Θn−1 − γ 5Θn−1

Luda(Θn−1; (DL)n, (DT )n) \\ Meta-testing
12: end for Θi = ΘN

13: end for
14: return ΘI

Bases on one source domain and K(K≥1) target domains, we use an image translation model G to
generate augmented images, constructing K additional intermediate domains, i.e. latent domains.
For example, the generated image on the k-th latent domain denoted as Xi

Lk shares the same content
with the i-th source image Xi

S and possesses similar style information with z-th image Xz
Tk on the

k-th target domain, and can be formulated as: Xi
Lk = G(Xi

S , X
z
Tk), where z is a random index,

indicating randomly selecting an image from the target domain. Here, we use a recently proposed
image translation method (i.e. PCE [20]) as G to generate augmented images. In order to preserve
the semantic information, PCE introduces the Fourier transform and designs a phase consistency loss
for image translation. Please refer to [20] and [21] for more details.

For the basic pairwise domain adaptation module, we use the adversarial learning strategy. Specifical-
ly, the semantic segmentation network FG and domain classification network FC are optimized via
the following unsupervised domain adaptation (UDA) loss Luda:

Luda = Lseg + λLadv, (1)

where Lseg is the cross-entropy loss using ground truth annotations on the source domain; Ladv is the
adversarial loss that optimizes FG and fools FC by maximizing the probability of misclassifying the
source and target data; and λ is the weight used to balance the two terms. For adversarial learning, we
simply insert a gradient reversal layer (GRL) [40]) between FG and FC , allowing the whole model to
be optimized in an end-to-end manner.

In contrast to the traditional one-pair framework (as shown in Fig. 1(a)), in this work we propose a
meta-learning framework that consists of multiple domain pairs (as shown in Fig. 1(b)), aiming at
learning the meta-knowledge (how to adapt) as guidance for improving the adaption performance. In
the following subsections 3.2 and 3.3, we will describe our meta-learning framework for single-target
and multi-target domain adaptation in detail, respectively.

4



Figure 3: Training procedure of our meta-learning framework for multiple-target domain adaptation.
We randomly select data from two latent domains Lk1 and Lk2 in the meta-training phase, and data
from two target domains Tk1 and Tk2 in the meta-testing phase. In the outer loop, we construct an
additional domain adaption pair of “latent→latent”, and define the supervised domain adaptation
as the optimization goal, allowing to learn the meta-knowledge that reveals a model starting from
which initial condition generalizes on multiple unlabeled domains. In the meta-training phase, we
use the learned meta-knowledge to initialize model parameters, promoting our model to adapt well
on multiple target domains simultaneously.

3.2 Meta-Knowledge Learning for Single-Target Domain Adaptation

In this section, we describe the proposed meta-learning framework for single-target domain adaptation
(STDA). As shown in Fig. 2, the proposed framework consists of two pairs of domain adaptation:
“source→latent” and “latent→target”. In the meta-training phase, we apply the meta-optimization on
the pair of “source→latent” to learn the meta-knowledge (i.e. initial condition in our case), revealing
that a base UDA model starting from which initial parameters can adapt well from labeled data
(i.e. source domain) to unlabeled data (i.e. latent domain). In the meta-testing phase, the learned
meta-knowledge are used to guide the optimization of “latent→target” domain adaptation.

(1) Meta-training phase. The optimization procedure of meta-learning for initial condition can be
considered as a problem of bi-level optimization as follow:

Θ =

Outer loop︷ ︸︸ ︷
arg min

θ
Louter(Linner(Θ;Dsupport)︸ ︷︷ ︸

Inner loop

, Dquery) (2)

whereLinner(Θ, Dsupport) andLouter(Θ∗, Dquery) are the losses computed on support setDsupport

and query set Dquery , respectively, and the outer loop optimization starts from Θ∗= arg minLinner
once inner loop optimization has been completed. The goal of Eq. 2 is thus to learn the initial
condition of base model such that it achieves minimum loss on both support set and query set. When
both losses are differentiable, the meta-gradient in Eq. 2 involves a gradient through a gradient, which
allows gradient update of outer loop to guide the inner loop optimization.

In the setting of unsupervised domain adaptation, the target data cannot be used as Dquery for outer
loop optimization due to lack of annotations. To obtain some additional labeled data serving as
Dquery , we use an image translation model to generate augmented images (i.e. latent domain), which
share the same contents and labels as the source images, as described in Section 3.1. We describe the
training procedure of the proposed meta-learning for single-target domain adaption in Algorithm 1.
In the inner loop, we replace Linner with the UDA loss in Eq. 1 as Linner:=Luda, and assume there
is no labels on the latent domain, making the model to adapt from the labeled source domain to
the unlabelled latent domain. In the outer loop, we use the latent images with ground truth labels
as the query set, which are used to evaluate the adaptation performance via a segmentation loss
Louter:=Lseg. In this way, we aim to learn an initial condition Θ0 that enables our base domain
adaptation model to adapt effectively on the “source→target” domain pair:

Θ0 =

Outer loop︷ ︸︸ ︷
arg min

θ0

∑
DS ,DL,DL

Lseg(Luda(Θ0;DS , DL)︸ ︷︷ ︸
Inner loop

, DL) (3)

where DL and DL are the identical data from latent domain, while the ground truth labels are not
used for DL.
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Algorithm 2 Meta-Knowledge Learning for Multiple Target Domain Adaptation (MTDA)

Input: Labeled dataDS from source domain, labeled dataDL={D0
L, D

1
L, ..., D

K−1
L } fromK latent

domains, and unlabeled data DT={D0
T , D

1
T , ..., D

K−1
T } from K target domains.

Initialise: Model parameters Θ0, iteration number I , J and N , learning rate α, β, γ.
1: for i = 1, 2, ..., I do
2: Θ̃0 = Θi−1;
3: for j = 1, 2, ..., J do
4: Θ̃j = Θ̃j−1 − α5Θ̃j−1

Linner(Θ̃j−1; (DS)j , (D
k1,k2
L )j); \\ Inner loop

5: end for
6: Θ0=Θi−1−β 5Θi−1 (Lseg(Θ̃J ; (Dk1,k2

L )i)+Ladv(Θ̃J ; (Dk1
L )i, (D

k2
L )i)); \\ Outer loop

7: for n = 1, 2, ..., N do
8: Θn = Θn−1−γ 5Θn−1 Luda(Θn−1; (Dk1,k2

L )n, (D
k1,k2
T )n) \\ Meta-testing

9: end for Θi = ΘN

10: end for
11: return ΘI

(2) Meta-testing phase. The parameters Θ0 learned from meta-training is used to initialize the domain
adaptation model for “latent→target”. The optimization can be formulated as follows:

Θ = arg min
θ

Luda(Θ0;DL, DT ). (4)

As shown in Algorithm 1, we obtain the model parameters ΘN after meta-testing optimization at
the i-th iteration; at the following (i+1)-th iteration, we use ΘN to initialize the model such that
Θ̃0=Θi−1=ΘN (Step 2 in Algorithm 1). When the entire training procedure finishes, we obtain
an adapted semantic segmentation network FG (as shown in Fig. 2), which is expected to predict
reasonable segmentation results on the target domain.

3.3 Meta-Knowledge Learning for Multiple-Target Domain Adaptation

We propose a meta-learning framework consisting of multiple domain adaptation pairs (i.e.
“source→latent”, “latent→latent”, and “latent→target”) for multiple-target domain adaptation (MT-
DA), promoting the adapted model to perform well on multiple target domains simultaneously. Fig. 3
shows the training procedure.

Figure 4: A toy example for reduc-
ing the length of AB and AC.

In the setting of MTDA (K > 1), we have labeled da-
ta on the source domain DS and generated latent domains
DL={D0

L, D
1
L, ..., D

K−1
L }, and attempt to adapt the UDA

model to unlabeled target domain DT={D0
T , D

1
T , ..., D

K−1
T }.

In the meta-training phase, we define the optimization goal is
to learn the meta-knowledge that a model starting from which
initial condition can adapt well from a source domain to mul-
tiple latent domains. Expect for applying bi-level optimization
on “source→latent”, we also consider the domain adaptation
pair of “latent→latent” to reduce domain shift between arbi-
trary two latent domains. The motivation of such a design can
be represented by a toy example, as shown in Fig. 4. Let A,
B, and C indicate the center of data distribution on the source domain, and two latent domains,
respectively. Suppose A, B, and C locate at the three vertices of a triangle, our goal can be simplified
to shorten the sides of AB and AC simultaneously. One simple strategy is to directly shorten the
above sides, corresponding to applying domain adaptation on the pair of “source→latent”. Another
strategy (corresponding to domain adaptation on the pair of “latent→latent”) is to shorten the side
of BC, so that AB and AC can be further shortened indirectly. Since both strategies contribute to
reduce d(A,B) and d(A,C) (d for distance), we thus use two domain adaptation pairs consisting of
“source→latent” and “latent→latent” in the meta-training phase to learn the meta-knowledge.

We describe the training procedure of the proposed meta-learning for multiple-target domain adaption
in Algorithm 2, and introduce the optimization detail about the meta-training phase and the meta-
testing phase as following:
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(1) Meta-training phase. At each iteration, we randomly select samples Dk1,k2
L ={Dk1

L , D
k2
L } from

two latent domains, where k1, k2∈(0, 1, ...,K − 1) and k16=k2. In the inner loop, FC is used to
discriminate the representation from FG belonging to source domain DS or latent domain Dk1,k2

L .
The loss function Linner of the inner loop can be formulated as follows:

Linner(Θ0;DS , D
k1,k2
L ) = Lseg(Θ0;DS) + Ladv(Θ0;DS , D

k1,k2
L )), (5)

where Dk1,k2
L indicates latent data which is assumed without labels. In the outer loop, we let

FC discriminate different latent domains. Suppose Θ∗ denotes the initial condition of outer loop
optimization as Θ∗ = arg minLinner, the whole optimization goal of meta-training is defined as:

Θ0 = arg min
θ0

∑
(Lseg(Θ

∗;Dk1,k2
L )+Ladv(Θ

∗;Dk1
L , D

k2
L ))︸ ︷︷ ︸

Louter(Θ∗;Dk1,k2
L )

, (6)

where Θ0 is the initial condition (i.e. model parameters) need to be optimized via meta-training
optimization for the following meta-testing phase. As shown in Eq.6, the outer loop optimization
can be be recognized as solving a problem of supervised domain adaptation between two latent
domains, allowing the model to generalize on different latent domains. Specifically, the loss function
of outer loop Louter in Eq.6 can be divided into two terms: the former term Lseg takes the role of
evaluating the segmentation performance on the query set (i.e. Dk1

L and Dk2
L ), and the latter one Ladv

enforces the model to learn domain-invariant representation for different latent domains by applying
discrimination on the domain pair of ’‘latent→latent”.

(2) Meta-testing phase. The initial condition Θ0 contains the meta-knowledge of from which initial
condition that a UDA model can do well in transferring domain-specific knowledge from a labeled
source domain to multiple unlabeled latent domains simultaneously. As shown in Fig. 3, we initialize
the same UDA model with the learned Θ0 as the initial condition, and let FC discriminate latent from
target domains. Then, the optimization goal of meta-testing on the domain pair of “latent→target” is
defined as follow:

Θ = arg min
θ

(Luda(Θ0;Dk1,k2
L , Dk1,k2

T )) (7)

Where Dk1
L and Dk2

L share the similar style to Dk1
T and Dk2

T , respectively. When the entire training
procedure finishes, we obtain an adapted semantic segmentation network FG (as shown in Fig. 3)
with parameters Θ, which is expected to predict reasonable segmentation results on the multiple
target domains simultaneously.

4 Experiments

4.1 Experimental Settings

Data preparation. In our experiments, we evaluate the proposed method on both single-target and
multiple-target settings of unsupervised domain adaptation. Specifically, we take the GTA5 dataset [1]
as the labeled source domain, while the Cityscapes [35] and C-Driving [21] datasets are adopted
as unlabeled single-target domain and multi-target domains, respectively. For the multiple-target
setting on the C-Driving dataset, we use the compound data containing “cloudy”, “rainy”, and
“snowy” images as target domain for training. During testing, we evaluate the proposed method
on the compound test set and a new unseen open test set containing “overcast” images. For image
preprocessing, we resize the shorter side of images to 720 and randomly crop a patch from one image
at each iteration with size 600×600. Besides, horizontal flip is applied as data augmentation. At each
iteration, we randomly select 4 samples from each domain for training.

Implementation. We implement our proposed methods using the PyTorch v1.2.0 on a single NVIDIA
P40 GPU (24G memory). For fair comparison, we adopt the DeepLabV2 [36] with VGG16 [37]
as the segmentation network FG. For the domain classification network FC , we use an architecture
similar to [6], which consists of 5 conv. layers with kernel 4×4 and stride of 2, and the numbers of
channels are {64, 128, 256, 512, 1}. The hyper-parameter λ in Eq. 1 is set to 0.01. The value of “J”
and “N” (Algorithm 1 and 2) are set to 2 in our experiments. We use the SGD optimizer with 0.9
momentum and 5×10−5 weight decay. The learning rates α, β, γ are empirically set to 1×10−4,
5×10−5, and 1×10−4. For evaluation, images from target test set are resized to 1024×512 as input
and the evaluation metric (i.e. IoU) is calculated on predictions upsampled to the original size.
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Table 1: Comparison with state-of-the-art UDA methods (VGG16) on single-target domain adaptation
(i.e. GTA5 to Cityscapes). The performance is measured by the intersection-over-union (IoU) for
each class and mean IoU (mIoU). “∆” denotes the improvement compared to source only.

Method ro
ad

sid
ew

alk
bu

ild
ing

wall
fen

ce
po

le
lig

ht
sig

n
ve

g.
ter

rai
n

sk
y

pe
rso

n
rid

er ca
r

tru
ck bu
s

tra
in

moto
r.

bik
e mIoU ∆

Source only 61.0 18.5 66.2 18.0 19.6 19.1 22.4 15.5 79.6 28.5 58.0 44.5 1.7 66.6 14.1 1.1 0.0 3.2 0.7 28.3 -/-
CyCADA [11] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4 7.1
LSE [44] 86.0 26.0 76.7 33.1 13.2 21.8 30.1 16.5 78.8 25.8 74.7 50.6 18.7 81.8 22.5 30.5 12.3 16.9 25.4 39.0 10.7
CrCDA [42] 86.8 37.5 80.4 30.7 18.1 26.8 25.3 15.1 81.5 30.9 72.1 52.8 19.0 82.1 25.4 29.2 10.1 15.8 3.7 39.1 10.8
BDL [13] 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3 13.0
PIT [38] 86.2 35.0 82.1 31.1 22.1 23.2 29.4 28.5 79.3 31.8 81.9 52.1 23.2 80.4 29.5 26.9 30.7 20.5 1.2 41.8 13.5
FDA [19] 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2 13.9
LTIR [17] 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3 14.0
DTST [41] 88.1 35.8 83.1 25.8 23.9 29.2 28.8 28.6 83.0 36.7 82.3 53.7 22.8 82.3 26.4 38.6 0.0 19.6 17.1 42.4 14.1
TGCF [14] 90.2 51.5 81.1 15.0 10.7 37.5 35.2 28.9 84.1 32.7 75.9 62.7 19.9 82.6 22.9 28.3 0.0 23.0 25.4 42.5 14.2
LDR [18] 90.1 41.2 82.2 30.3 21.3 18.3 33.5 23.0 84.1 37.5 81.4 54.2 24.3 83.0 27.6 32.0 8.1 29.7 26.9 43.6 14.3
FADA [43] 92.3 51.1 83.7 33.1 29.1 28.5 28.0 21.0 82.6 32.6 85.3 55.2 28.8 83.5 24.4 37.4 0.0 21.1 15.2 43.8 14.5
PCE [20] 90.2 44.7 82.0 28.4 28.4 24.4 33.7 35.6 83.7 40.5 75.1 54.4 28.2 80.3 23.8 39.4 0.0 22.8 30.8 44.6 16.3
Our STDA 93.1 57.8 84.1 31.4 36.1 27.5 21.2 37.5 85.5 44.5 83.8 53.8 16.4 82.2 21.7 44.9 0.0 13.2 30.2 45.5 17.2

Table 2: Comparison with state-of-the-art methods (ResNet101) for single-target domain adaptation.
The performance is measured by the intersection-over-union (IoU) for each class and mean IoU
(mIoU). “∆” denotes the improvement compared to source only.
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Source only 34.8 14.9 53.4 15.7 21.5 29.7 35.5 18.4 81.9 13.1 70.4 62.0 34.4 62.7 21.6 10.7 0.7 34.9 35.7 34.3 -/-
LSE [44] 90.2 40.0 83.5 31.9 26.4 32.6 38.7 37.5 81.0 34.2 84.6 61.6 33.4 82.5 32.8 45.9 6.7 29.1 30.6 47.5 13.2
PLCA [47] 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7 13.4
BDL [13] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5 14.2
CrCDA [42] 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6 14.3
DTST [41] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2 14.9
LDR [18] 90.8 41.4 84.7 35.1 27.5 31.2 38.0 32.8 85.6 42.1 84.9 59.6 34.4 85.0 42.8 52.7 3.4 30.9 38.1 49.5 15.2
CCM [48] 93.5 57.6 84.6 39.3 24.1 25.2 35.0 17.3 85.0 40.6 86.5 58.7 28.7 85.8 49.0 56.4 5.4 31.9 43.2 49.9 15.6
FADA [43] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1 15.8
LTIR [17] 92.0 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2 15.9
CAG [49] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2 15.9
FDA [19] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5 16.2
PCE [20] 91.0 49.2 85.6 37.2 29.7 33.7 38.1 39.2 85.4 35.4 85.1 61.1 32.8 84.1 45.6 46.9 0.0 34.2 44.5 50.5 16.2
PIT [38] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6 16.3
Our STDA 88.4 50.8 82.7 39.4 24.9 34.6 43.7 46.6 84.3 38.6 81.7 61.3 41.9 77.8 50.4 39.0 5.4 40.3 53.2 51.9 17.6

4.2 Comparison with State of the Art

We evaluate our method on two unsupervised domain adaptation settings: single target and multi-
target. The results are presented in Tables 1, 2 and 3, respectively.

For the single target setting, in Table 1 we compare our method with 12 state-of-the-art methods. All
the methods are based on VGG16 [37] backbone. It can be seen that our method for single-target
domain adaptation (STDA) achieves 45.5% on mIoU, and obtains 17.2% improvement compared to
the source only model, both of which perform favorably against previous state-of-the-art methods. In
Table 2, we compare our method with 13 state-of-the-art methods, which all use ResNet101 [39] as
the backbone. It can be seen that our method achieves 51.9% on mIoU, outperforming previous state-
of-the-art methods. These results further demonstrate that our proposed method achieves consistent
top results on different backbones.

For the multi-target setting, we compare our method with two recently proposed multi-target meth-
ods [21, 23] and several state-of-the-art single-target methods [4, 6, 45, 46], following [21, 23]. In
Table 3 we see that the proposed method for multi-target domain adaptation (MTDA) outperforms
previous methods by a large margin w.r.t mIoU (4%), establishing a new state of the art. Besides,
we retrain the PCE [20] model under the setting of MTDA, which achieves 31.1% w.r.t mIoU on
the C-Driving dataset. These results indicate that our method outperforms PCE on both STDA and
MTDA settings.
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Figure 5: Qualitative results of ours and previous top methods. For single-target domain adaptation,
we compare our STDA with PCE [20] on Cityscapes (1st row). For multi-target domain adaptation,
we compare our MTDA with DHA [21] on C-Driving (from 2nd to 5th rows are “rainy”, “snowy”,
“cloudy” and “overcast”, respectively).

Table 3: Comparison with state-of-the-art U-
DA methods on multi-target domain adaptation
(i.e.GTA5 to C-Driving). The performance is
measured by the intersection-over-union (IoU)
for eachclass and mean IoU (mIoU). “∆” de-
notes the improvement compared to source only.

Method Compound (C) Open (O) Average
rainy snowy cloudy overcast C+O ∆

Source only 16.2 18.0 20.9 21.2 19.1 -/-
AdaptSeg [6] 20.2 21.2 23.8 25.1 22.5 3.4
CBST [45] 21.3 20.6 23.9 24.7 22.6 3.5
IBN-Net [46] 20.6 21.9 26.1 25.5 23.5 4.4
PyCDA [4] 21.7 22.3 25.9 25.4 23.8 4.7
OCDA [23] 22.0 22.9 27.0 27.9 25.0 5.9
DHA [21] 27.0 26.3 30.7 32.8 29.2 10.1
Our source only 19.7 20.7 22.4 24.3 22.5 -/-
Our MTDA 31.5 30.2 33.0 35.0 33.2 10.7

Figure 6: The t-SNE visualization of feature
space. For each category (e.g. road/building),
the features are better aligned by our MTDA
than STDA.

We also provide some qualitative semantic segmentation results in Fig. 5, where we observe obvious
improvements against both source only and previous top methods. These quantitative and qualitative
results demonstrate the effectiveness of our method for unsupervised domain adaptation.

4.3 Model Analysis

To verify the effectiveness of our methods, we provide comparisons on different ways of using the
latent domain, as shown in Table 4.

From the results, we have the following observations: (1) The latent domain eases adaptation
via narrowing down the domain gap. Compared to a©, other methods, using the latent domain in
different ways, all perform better. (2) The latent domain can be used to construct multiple pairs,
which performs better than the standard one pair. Compared to c©, d© and e© obtain significant
improvements (∼ 3%) by constructing two DA pairs, which distributes the adaptation difficulty on
two procedures. (3) Meta-knowledge transition between DA pairs helps more than simple finetuning.
In f©, our proposed STDA framework learns meta-knowledge of how to adapt from labeled data to
unlabeled data, which is more effective to assist the adaptation of “latent→target” than the finetuning
strategy used in e©. (4) When the target data distributes sparsely, our multi-target method further
improves the performance. Our MTDA improves over STDA on the C-Driving dataset by modeling
the target data as multiple domains.
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Table 4: Model analysis on framework design. “A→B” indicates adapting a model from A to
B. a© b© c©: standard one pair UDA using Eq. 1; d©: similar to c© but using two independent
domain classifiers for S→T and L→T ; e©: first trained on S→T and then finetuned on L→T at
each iteration; f©: our single-target domain adaptation (STDA) method (Fig.2), which uses the
meta-knowledge learned from S→L to assist the adaptation of L→T ; g©: our multi-target domain
adaptation (MTDA) method (Fig.3).

Method Number of DA pairs Single-target Multi-target (→C-Driving)
GTA5→ (→Cityscapes) rainy cloudy snowy overcast Average

a©. S→T 1 35.7 24.3 21.9 26.4 27.6 25.8
b©. L→T 1 37.2 24.7 23.6 28.3 29.6 27.5
c©. (S,L)→T 1 38.1 25.0 24.8 29.0 30.1 28.2
d©. S→T and L→T 2 40.8 27.9 26.4 29.5 31.6 29.7
e©. (S→L)→(L→T ) 2 41.9 29.4 27.7 29.5 31.9 30.4
f©. Our STDA (Fig.2) 2 45.5 31.3 30.2 32.6 34.4 32.6
g©. Our MTDA (Fig.3) 3 -/- 31.5 30.2 33.0 35.0 33.2

We further analyze the feature space learned with our MTDA and STDA. In Fig. 6, We provide the
t-SNE visualization [50] of extracted features from FG using our STDA and MTDA, respectively. It
appears that our MTDA yields more generalized domain-invariant features. More specifically, the
feature distributions of different domains are better aligned in MTDA than that in STDA.

5 Conclusion

In this paper, we propose a novel meta-learning framework for single-target and multi-target domain
adaptive semantic segmentation. In particular, we generate latent data via an image translation model
and construct multiple domain adaptation pairs. The purpose is to use the meta-knowledge learned
from some pairs as guidance to assist the adaptation of “latent-to-target” under a meta-learning
framework. Experimental results show the effectiveness of our method, which establishes new
state-of-the-art performance on both settings of single-target and multi-target domain adaptation.
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