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ABSTRACT

Recent advancements have progressively incorporated frequency-based techniques
into deep learning models, leading to notable improvements in accuracy and
efficiency for time series analysis tasks. However, the Mid-Frequency Spec-
trum Gap in the real-world time series, where the energy is concentrated at
the low-frequency region while the middle-frequency band is negligible, hin-
ders the ability of existing deep learning models to extract the crucial frequency
information. Additionally, the shared Key-Frequency in multivariate time se-
ries, where different time series share indistinguishable frequency patterns, is
rarely exploited by existing literature. This work bridges these two gaps by:
(i) introducing a novel module, ‘Adaptive Mid-Frequency Energy Optimizer’,
based on convolution and residual learning, to emphasize the significance of mid-
frequency bands; (ii) proposing an ‘Energy-based Key-Frequency Picking Block’
to capture shared Key-Frequency, which achieves superior inter-series modeling
performance with fewer parameters; (iii) employing ‘Key-Frequency Enhanced
Training’ strategy to further enhance Key-Frequency modeling, where spectral
information from other channels is randomly introduced into each channel. Our
approach advanced multivariate time series forecasting on the challenging Traffic,
ECL, and Solar benchmarks, reducing MSE by 4%, 6%, and 5% compared to
the previous SOTA iTransformer. Code is available at this Anonymous Repo:
https://anonymous.4open.science/r/ReFocus—2889l

1 INTRODUCTION

Accurate forecasting of time series offers reference for decision-making across various domains (Lim
& Zohren, [2021}; [Torres et al., 2021), including weather (Du et al., [2023), economics (Oreshkin et al.|
2020), and energy (Dong et al., [2023} [Liu et al.| 2022b). Especially, long-term multivariate time
series forecasting (LMTSF) emerges as a prominent area of interest in academic research (Wang et al.|
2024d; Wen et al.| 2022) and industrial applications (Cirstea et al., [2022)), offering the advantage of
capturing complex interdependencies and trends across multiple variables.

Recently, the powerful representation capabilities of neural networks, such as Multi-Layer perception
(MLPs) (Yi et al.l 2023c; Han et al., [2024), Transformers (Zhou et al., |2022c}; Nie et al., 2023), and
Temporal Convolution Network (TCNs) (Eldele et al., [2024} [Liu et al.| [2022a), have significantly
advanced deep learning-based LMTSFE. These approaches can be broadly categorized into two/three
folds: time-domain-based (Han et al., | 2024; |Nie et al., 2023} |Liu et al.,|2022a) and frequency-domain-
based (Yi et al.l 2023c; Zhou et al.| 2022c; Eldele et al.||2024) methods, or mixed time & frequency.
Time-domain methods are intuitive, handling nonlinearity and non-periodic signals directly from the
raw sequence (Li et al.l 2023)) using Transformers (Zhou et al.,2022a), TCN (Donghao & Xue, 2024)),
or MLP (Wang et al.|[2024a)). The latest study|Yi et al.| (2024) highlights that time-domain forecasters
face challenges such as vulnerability to high-frequency noise, and computational inefficiencies. While
frequency-domain-based methods usually transform the time-domain data to the frequency spectrum
by Fast Fourier transform (FFT) (Yi et al.,|2023a)). Then other operations (Self-attention (Zhou et al.}
2022c]), Linear mapping (Xu et al., |2024bj Y1 et al., [2023c), etc.) are employed to extract frequency
information. These methods benefit from advantages such as computational efficiency (Fan et al.,
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2024; Xu et al. [2024b)), periodic patterns extracting (Wu et al., 2023} |Dai et al.| 2024), and energy
compaction (Y1 et al., [ 2023c}b).
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Figure 1: The Mid-Frequency Spectrum Gap and the shared Key-Frequency (high similarity in frequency
spectra across variables) on Weather dataset. VPmax means ‘Maximum Vapor Pressure’ and VPact means
‘Actual Vapor Pressure’.

However, existing frequency-domain-based forecasters usually face TWO significant challenges
when dealing with real-world long-term time series: the Mid-Frequency Spectrum Gap and the
shared Key-Frequency modeling.

* Mid-Frequency Spectrum Gap (Figure[T|Red box) refers to a condition where the energy
of the spectrum is concentrated in the low-frequency regions, resulting in the mid-frequency
band being negligible. Low-frequency components capture long-term trends, often con-
tributing to mean shifts when overly concentrated (Stock & Watson, 2002} |Granger &
Newbold, [1974; |Chatfield & Xing, 2019). So this Mid-Frequency Spectrum Gap will
introduce Nonstationarity (Cheng et al. 2015} [Liu et al.l 2022c)), where the mean and
variance of time series change over time, and make time series less predictable. Furthermore,
such uneven energy distribution challenges existing deep-learning models to extract critical
patterns (Tishby & Zaslavskyl 2015} |Xu et al.|2024a; [Rahaman et al.,2019). So, addressing
this Mid-Frequency Spectrum Gap is crucial for enhancing the feature extraction capabilities
of deep learning-based forecasters (Park et al., 2019; Bai et al., 2018; (Guo et al., 2019).
Currently, widely used methods for processing spectra, such as Filters (Asselin, [1972), and
RevIN (Kim et al., 2022} [Liu et al., 2022c)—a technique previously applied to address
nonstationarity—are not effective in resolving this issue. Conversely, convolution with
residual connections has effectively handled spectral information (Can & Timofte, [2018};
Chakraborty & Trehan, 2021)), providing a potential solution.

* Meanwhile, the second challenge: the shared Key-Frequency Modeling (Figure
box) has the disadvantage that distinct time series can exhibit indistinguishable frequency
patterns, potentially leading to challenges in accurately differentiating and analyzing in-
dividual series within a multivariate context (Yu et al., [2023; |Piao et al., 2024)). However,
existing approaches have largely overlooked this critical characteristic. Meanwhile, energy,
which is the square of the amplitude of the spectrum, is proven as an effective tool for
identifying certain frequency patterns in the multivariate case (Bogalo et al.| 2024} Chekroun
& Kondrashovl, 2017} [Sundararajan & Brucel [2023).

Based on the above observations, this work mainly addresses two critical questions: (1) How can the
Mid-Frequency Spectrum Gap be resolved to achieve a more evenly dispersed spectrum? (2) How can
inter-series dependencies be efficiently modeled by leveraging the shared Key-Frequency? To tackle
challenge 1, we propose the ‘Adaptive Mid-Frequency Energy Optimizer’ (AMEO), a convolution-
and residual learning-based solution. It adaptively scales the frequency spectrum by assigning higher
scaling factors to lower frequencies, thereby dispersing the spectrum. To address challenge 2, for the
second challenge, we introduce the ‘Energy-based Key-Frequency Picking Block (EKPB)’, which
features fewer parameters and faster inference speeds compared to the Transformer Encoder (Liu
et al., |2024b) and MLP-Mixer (Chen et al., 2023)). EKPB extracts shared frequency information
across channels effectively. We also propose a ‘Key-Frequency Enhanced Training’ strategy (KET)
which incorporates spectral information from other channels during training to enhance extraction
of shared Key-Frequency that may not be included in the training set. We name our full framework
ReFocus, (Residual Frequency Optimization and Cross-channel Unified Spectrum modeling), as it
refocuses model capacity on underutilized yet critical spectral regions and inter-series frequency.
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Our contributions are summarized as follows:

» We theoretically and empirically demonstrate that existing RevIN and high/low-pass filters
fail to address the Mid-Frequency Spectrum Gap. We propose AMEOQ, a novel approach
based on convolution and residual learning that significantly enhances mid-frequency feature

extraction.
* We propose EKPB to capture shared Key-Frequency across channels, which achieves

superior inter-series modeling capacity with lower parameters.
* We propose KET, where spectral information from other channels is randomly introduced

into each channel, to enhance the extraction of the shared Key-Frequency.
* Our approach outperforms the previous SOTA iTransformer by reducing MSE by 4%, 6%,

and 5% on the challenging Traffic, ECL, and Solar datasets, respectively, establishing new
benchmarks in multivariate time series forecasting.

2 RELATED WORK

Advancement in Recent Deep Learning-based Time Series Forecasting  Recent advancements
in deep learning-based time series forecasting can be broadly categorized into three key areas: (1) the
application of sequential models to time series data, (2) the tokenization of time series, and (3) the
exploration of intrinsic patterns within time series. Efforts in the first area have focused on deploying
various architectures for time series forecasting, including Transformer (Wu et al.| [2021; |Wang et al.}
2024b), Mamba (Ahamed & Chengl 2024} Wang et al., 2024¢), MLPs (Wang et al., |2024a}; |Das
et al., [2023; | Yu et al., 2024a), RNNs (Lin et al., [2023), Graph Neural Networks (Shang et al., 2024),
TCNs (Wang et al.| 2023)), and even Large Language Models (LLMs) (Jin et al., |2024} [Liu et al.,
2024djc). The second direction has witnessed groundbreaking developments, particularly in Patch
Embedding (Nie et al., 2023)) and Variate Embedding (Liu et al., 2024b). The final area explores
modeling complex relationships, including the inter-series dependencies (Ng et al.,[2022} |Chen et al.|
2024)), the dynamic evolution within a sequence (Du et al., 2023} |[Zhang et al.,|[2022), or both (Yu
et al., [2024b; |Liu et al., [2024a).

Time Series Modeling with Frequency  Frequency as a key feature of time series data, has
inspired numerous works (Y1 et al.| 2023a). FITS (Xu et al., [2024b)) employs a simple frequency-
domain linear, getting results comparable to SOTA models with 10K parameters. Autoformer (Wu
et al.,|2021) introduces the auto-correlation mechanism, leveraging FFT to improve self-attention.
FEDformer (Zhou et al.,[2022c)) further calculates attention weights from the spectrum of queries and
keys. FiLM (Zhou et al., [2022b) applies Fourier analysis to preserve historical information while
filtering out noise. FreTS (Yi et al., |2023c) incorporates frequency-domain MLP to model both
channel and temporal dependencies. TimesNet (Wu et al., [2023)) utilizes FFT to extract periodic
patterns. FilterNet (Y1 et al., [2024)) proposes a filter-based method from the perspective of signal
processing.

However, they do not address the Mid-Frequency Spectrum Gap and shared Key-Frequency modeling.
In contrast, our method employs ‘Adaptive Mid-Frequency Energy Optimizer’ to improve mid-
frequency feature extraction and introduces ‘Energy-based Key-Frequency Picking Block™ with
‘Key-Frequency Enhanced Training’ strategy to capture shared Key-Frequency across channels.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a multivariate time series input X € R“*7, multivariate time series forecasting tasks are
designed to predict its future F' time steps Y € RC > using past 7" steps. C'is the number of variates
or channels.

3.2 PRELIMINARY ANALYSIS

This section presents why RevIN (Kim et al.| [2022} [Liu et al.| 2022c), High-pass, and Low-pass filters
fail to address the Mid-Frequency Spectrum Gap. Let the input univariate time series be z(t) with
length T" and target y(¢) with length F.
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Definition 3.1 (Frequency Spectral Energy). The Fourier transform of x(¢), X (f), and its spectral
energy Fx (f) is given by:

X(f) =Y a@)e /T f—0,1,...,T—1

Ex(f)=1X()* (1)

Impact of RevIN on Frequency Spectrum
Definition 3.2 (Reversible Instance Normalization). Given a forecast model 7 : R” — R¥ that
generates a forecast §(¢) from a given input z(¢), RevIN is defined as:

t_
(t):M, t=0,1,...,T—1

g(t) = f(‘%(t)) g(t)rev = g(t) co+p,

T—

p= g Sl o= | > () w2, @)

t= t=0

[u

Theorem 3.3 (Frequency Spectrum after RevIN). The spectral energy of (t) (transformed using
RevIN):

2
EX(f)<1) X(NHP f=12....T 1 3)

g

The proof is in Appendix[A.T] Theorem [3.3|suggests that RevIN scales the absolute spectral energy by
o2 but does not affect its relative distribution except E4(0) = 0. Thus, RevIN preserves the relative
spectral energy distribution and leaves the Mid-Frequency Spectrum Gap unresolved. However, our
experiments still employ RevIN to ensure a fair comparison with other baselines.

Impact of High- and Low-pass filter =~ We still define Z(¢) to be the filtered (processed) signal,
obtained by applying a filter H(f) (High/Low-pass filter). The filter H(f) is 1 in the passband
(High/Low frequency) and 0 in the stopband (Middle frequency). So E¢(f) =0, Eg < Ex(f)
for middle frequencies, which creates even larger gap.

3.3 OVERALL STRUCTURE OF THE PROPOSED REFoOCUS

In this section, we elucidate the overall architecture of ReFocus, depicted in Figure 2| We define
frequency domain projection as D1 — D2 representing a projection from dimension D1 to D2 in the
frequency domain (Xu et al., 2024b). Initially, we apply AMEO to the input X € RE*T yielding
the processed spectrum X, € R“*7, Next, we use a projection T — D to transform X, into the
Variate Embedding X.,, € RE*P (Liu et al}[2024b)). Then, X, go through N EKPB to generate

representation H 41, which is projected to obtain final prediction Y.
Adaptive Mid-Frequency Energy Optimizer = Building upon the Preliminary Analysis, we

propose a convolution- and residual learning-based solution to address the Mid-Frequency Spectrum
Gap, which we denoted as AMEO.

Definition 3.4 (Adaptive Mid-Frequency Energy Optimizer). AMEO is defined as:

BK_l
i(t):m(t)—?ZE:(t—i—K—l—k),

k=0

F(t) =

{m(t—(§+1))7 fE+1<t<T+% 41,
0

4
, ifo<t<E41oT+E5+1<t<T+K. @

Itis equivalent to z = x — 8- Conv(z). Conwv is a 1D convolution (Zero-padding at both ends, stride
s = 1, kernel size K, with values initialized as %). B € R! is a hyperparameter.
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Figure 2: General structure of ReFocus. ‘Adaptive Mid-Frequency Energy Optimizer (AMEOQO)’
enhances mid-frequency components modeling, and ‘Energy-based Key-Frequency Picking Block’
(EKPB) effectively captures shared Key-Frequency across channels

Theorem 3.5 (Frequency Spectrum after AMEO). The spectral energy of &:(t) obtained using AMEO:
2

=

-1

Ex(f)=1X(H)P 1—,8.% pi2nf (5 —k—2)/T—1 )
0

>
Il

G(f)

The proof is in Appendix We have E ¢ (f) = | X(f)]*(1 — 8- G(f))?. Generally, G(f) behaves
as a decay function, gradually reducing its value from One to Zero. Such decay behavior makes
AMEQO relatively enhances mid-frequency components, thus addressing the Mid-Frequency Spectrum
Gap.

Energy-based Key-Frequency Picking Block  In each EKPB, the input H; € RE*P(H, =
Xem) is first processed through an MLP to generate HY € RY*Q. Then, FFT is applied to
get Hf e RO*(Q/2+1) For H/, we calculate its energy, denoted as Hf € RE*(@/2+1) A
cross-channel softmax is then applied to H{ per frequency to obtain a probability distribution
HTt e ROX(Q/2HD) Using HI'*, we select values from H; across channels for each frequency,
resulting in K lf € RY(Q/2+1)  which represents the Shared Key-Frequency across all channels.
Then iFFT is performed on K, f to get K; € R'*@, followed by projection Q — D and repeating
(C times) to get K; € RE*P. This K; is point-wisely added to H; € RE*P | which is the
projection of H; using projection D — D. Then, an MLP and Add& N orm is applied to the result
HEK € RE*D {0 fuse inter-series dependencies information, and another MLP and Add& N orm is
used to capture intra-series variations (Liu et al., |2024b). The output of each EKPB is Oi € RExD,
where H; = OZ

3.4 KEY-FREQUENCY ENHANCED TRAINING STRATEGY

In real-world time series, certain channels often exhibit spectral dependencies, which may not
be fully captured in the training set, and the specific channels with such dependencies are also
unknown (Geweke, |1984}Zhao & Shenl|2024)). So this work borrows insight from recent advancement
of mix-up in time series (Zhou et al., [2023; |Ansari et al., |2024), randomly introducing spectral



Under review as a conference paper at ICLR 2026

‘ Weight‘ lRe§1} uffled ‘Input‘ ‘ Fo 0recaster‘ Prediction Target ) Rf shuffled, ‘ J We. ig{' 1
'(j ) . < ‘ [}

N\ ‘ N\
[J = <G \[}

\0;:6 ']]Ecn Xoe RCT,F/ X e ROXT ¥ € ROXF Y € ROXF! Y€ ROXF o ¢ RO¥Y
A —— it il

. if epoch_count mod 2 ::j

Figure 3: General process of the Key-Frequency Enhanced Training strategy (KET), where
spectral information from other channels is randomly introduced into each channel, to enhance the
extraction of the shared Key-Frequency.

information from other channels into each channel, to enhance the extraction of the shared Key-
Frequency, as in Figure Given a multivariate time series input X € R*7 and its ground-truth
Y € RO*F | we generate a pseudo sample pair:

X' =iFFT(FFT(X)+ «- FFT(X[perm,:])),
Y' =iFFT(FFT(Y)+ a- FFT(Y [perm,:])). (6)

a € RE*! is a weight vector sampled from a normal distribution, perm is a reshuffled channel index.
Since F'F'T and ¢« F'F'T are linear operations, this mix-up process can be equivalently simplified in
the Time Domain:

X' =X + a- X[perm,:],
Y' =Y + - Y[perm,:] 7

We alternate training between real and synthetic data to preserve the spectral dependencies in real
samples. This combines the advantages of data augmentation, such as improved generalization,
while mitigating potential drawbacks like over-smoothing and training instability (Ryu et al., [2024;
Alkhalifah et al.] [2022).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

This section first introduces the whole experiment settings under a fair comparison. Secondly, we
illustrate the experiment results by comparing ReFocus with the TEN well-acknowledged baselines.
Further, we conducted an ablation study to comprehensively investigate the effectiveness of the
‘Adaptive Mid-Frequency Energy Optimizer’ (AMEQ), ‘Energy-based Key-Frequency Picking Block’
(EKPB), and ‘Key-Frequency Enhanced Training strategy’ (KET).

Datasets  We conduct extensive experiments on selected Eight widely-used real-world multivariate
time series forecasting datasets, including Electricity Transformer Temperature (ETTh1, ETTh2,
ETTml, and ETTm2) (Zhou et al,[2022a)), Electricity, Traffic, Weather used by Autoformer (Wu
et al., 2021)), and Solar_Energy datasets proposed in LSTNet (Lai et al.,2018]). For a fair comparison,
we follow the same standard protocol (Liu et al.|[2024b) and split all forecasting datasets into training,
validation, and test sets by the ratio of 6:2:2 for the ETT dataset and 7:1:2 for the other datasets. More
can be found in the Appendix.

Evaluation protocol  Following TimesNet (Wu et al.| 2023)), we use Mean Squared Error (MSE)
and Mean Absolute Error (MAE) for the evaluation. We follow the same evaluation protocol, where
the input length is set as 7' = 96 and the forecasting lengths F' € {96,192, 336,720}. All the
experiments are conducted on a single NVIDIA GeForce RTX 4090 with 24G VRAM. The MSE loss
function is utilized for model optimization. To foster reproducibility, we make our code, and training
scripts available in this Anonymous Rep(ﬂ Full implementation details are in Appendix

'https://anonymous.4open.science/r/ReFocus-2889
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Baseline setting ~ We carefully choose TEN well-acknowledged forecasting models as our baselines,
including 1) Transformer-based methods: iTransformer (Liu et al.| 2024b), Crossformer (Zhang &
'Yan, |2023)), PatchTST (Nie et al., [2023)); 2) Linear-based methods: TSMixer (Chen et al.,[2023), DLin-
ear (Zeng et al.,|2023)); 3) TCN-based methods: TimesNet (Wu et al.| [2023)), ModernTCN (Donghao
& Xue, [2024); 4)Recent cutting-edge frequency-based methods that discussed earlier: FilterNet (Yi
et al., [2024), FITS (Xu et al., 2024b), FreTS (Yi et al., 2023c)). These models represent the latest
advancements in multivariate time series forecasting and encompass all mainstream prediction model
types. The results of ModernTCN, FilterNet, FITS, and FreTS are taken from FilterNet (Y1 et al.,
2024) and other results are taken from iTransformer (Liu et al., 2024b]).

4.2 EXPERIMENT RESULTS

Table 1: Multivariate forecasting results with prediction lengths F' € {96,192, 336, 720} and fixed lookback
length T = 96. Results are averaged from all prediction lengths. The best is Red and the second is Blue. The
Lower MSE/MAE indicates the better prediction result. Full results are in Appendix @

Models ReFocus FilterNet iTransformer ModernTCN FITS PatchTST Crossformer TimesNet TSMixer  DLinear FreTS

(Ours) (2024] (2024b) (2024] (2024 (2023) (2023] (2023] (2023) (2023) (023
Metric  |[MSE MAE|MSE MAE|MSE MAE |MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE
ETTml  [0.387 0.394]0.392 0.401]0.407 0.410]0.389 0.402]0.415 0.408|0.387 0.4000.513 0.496]0.400 0.406|0.398 0.407|0.403 0.407]0.408 0.416
ETTm2  |0.275 0.320]0.285 0.328[0.288 0.3320.279 0.322 [0.286 0.328]0.281 0.326]0.757 0.610[0.291 0.333]0.289 0.333|0.350 0.401]0.321 0.368
ETThl  ]0.434 0.433]0.441 0.439|0.454 0.447 [0.446 0.433 [0.451 0.440|0.469 0.454]0.529 0.522]0.458 0.450|0.463 0.452]0.456 0.452|0.475 0.463
ETTh2  |0.371 0.396]0.383 0.4070.383 0.407 [0.382 0.404 [0.383 0.408|0.387 0.407]0.942 0.684 |0.414 0.427]0.401 0.417]0.559 0.515|0.472 0.465
ECL  ]0.168 0.262[0.173 0.268]0.178 0.270 [0.197 0.282 [0.217 0.295]0.205 0.290]0.244 0.334|0.192 0.295]0.186 0.287[0.212 0.300|0.189 0.278
Traffic 0412 0.265]0.463 0.310/0.428 0.282 [0.546 0.348 [0.627 0.376/0.481 0.304]0.550 0.304 ]0.620 0.336]0.522 0.357]0.625 0.383|0.618 0.390
Weather  0.245 0.271[0.245 0.272|0.258 0.279 [0.247 0.272 |0.249 0.276]0.259 0.281|0.259 0.315]0.259 0.287|0.256 0.2790.265 0.317]0.250 0.270

Solar_Energy|0.222 0.252|0.243 0.281]0.233

0.262 0.244 0.286 |0.395 0.407|0.270 0.307]0.641 0.639 [0.301 0.319]0.260 0.297|0.330 0.401]0.248 0.296

Quantitative comparison = Comprehensive forecasting results are listed in Table I} We leave full
forecasting results in APPENDIX to save place. It is quite evident that ReFocus has demonstrated
superior predictive performance across all datasets, significantly outperforming the second-best
method. Especially, Compared to the previous SOTA iTransformer, we have reduced the MSE by
4%, 6%, and 5% on the three most challenging benchmarks: Traffic, ECL, and Solar, respectively,
indicating a significant breakthrough. These significant improvements indicate that the ReFocus
model possesses robust performance and broad applicability in multivariate time series forecasting
tasks, especially in tasks with a large number of channels, such as the Solar_Energy dataset (137
channels), ECL dataset (321 channels), and Traffic dataset (862 channels).

4.3 MODEL ANALYSIS

Table 2: Ablation of ‘Adaptive Mid-Frequency Energy Optimizer (AMEQ)’ and ‘Key-Frequency Enhanced
Training strategy (KET)’. We list the average results. Full results are in Appendix

ETTml ETTm2 ETTh1 Traffic Weather  Solar_Energy

AmEoKET! - ETTh2 ECL g
|  |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE

0.401 0.403]0.283 0.325]0.440 0.437(0.376 0.400(0.178 0.2700.449 0.289]0.252 0.278{0.232
0.394 0.396{0.279 0.322]0.437 0.435(0.373 0.398|0.171 0.263|0.414 0.268|0.250 0.275{0.228
0.393 0.402{0.282 0.326{0.443 0.440(0.372 0.397(0.174 0.267|0.452 0.289|0.248 0.275|0.231
0.387 0.394|0.275 0.320|0.434 0.433(0.371 0.396|0.168 0.262|0.412 0.265|0.245 0.271|0.222

MAE

0.264
0.258
0.261
0.252

SN
EETEN

Ablation study of AMEO and KET  To evaluate the contributions of each module in ReFocus,
we performed ablation studies on the ‘Adaptive Mid-Frequency Energy Optimizer (AMEO)’ and
the ‘Key-Frequency Enhanced Training (KET)” strategy. The results are summarized in Table [2]
Notably, integrating both modules achieves the best performance, highlighting the effectiveness of
their synergy. Additionally, each module delivers substantial improvements over baseline models in
most cases.

Further study of KET We conducted further ablation studies on the KET to demonstrate
the importance of alternate training between real and synthetic data. The experimental results in
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Table 3: Further ablation of ‘Key-Frequency Enhanced Training strategy (KET)’. ‘Real’ means KET is not
performed, i.e. trained on original data. ‘Pseudo’ means trained on Pseudo samples. If both are used (Bottom
Line), this means the model is trained on Real and Pseudo samples alternatively, i.e. KET. We list the average
results. Full results are in Appendix [K-3}

RedlIPse doI ETTml ETTm2 ETThl ETTh2 ECL Traffic Weather  Solar_Energy
al | Pseu =1 im]

| | MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

v - |0.401 0.403]0.283 0.325(0.440 0.437{0.376 0.400{0.178 0.270{0.449 0.289|0.252 0.278]0.232 0.264
- V' 10.396 0.398(0.280 0.323]0.436 0.434(0.372 0.397|0.175 0.266|0.417 0.271|0.252 0.276|0.277 0.294
v V' 0.394 0.396|0.279 0.322{0.437 0.435]0.373 0.398|0.171 0.263|0.414 0.268|0.250 0.275|0.228 0.258

Table [3|reveal that while training on pseudo samples can partially enhance the model’s generalization
performance on the test set, it also tends to cause over-smoothing and training instability on more
complex datasets, such as Solar_Energy. In contrast, training on real and synthetic data alternatively
(KET) improves generalization and mitigates over-smoothing and training instability by preserving
the spectral dependencies of real samples. More Analyses are in Appendix [C]
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Figure 4: The time-frequency domain visualization of the original sequence (ETTml, the last variate), the
sequence processed by high-pass and low-pass filters, by RevIN, and by AMEO. We selected the input — 96 —
forecast — 96 task.

Superiority of AMEO over RevIN and Filters  We investigated the roles of AMEO, RevIN, and
Filters in addressing the Mid-Frequency Spectrum Gap through time-frequency domain visualization
analysis. The results presented in Figure ] align perfectly with our previous theoretical analysis.
High-pass and low-pass filters fail to address the Mid-Frequency Spectrum Gap and exacerbate this
issue. RevIN, on the other hand, merely eliminates the energy of the zero-frequency component while
scaling other components using the variance o, which also does not effectively resolve the problem.
In contrast, our AMEO successfully amplifies the mid-frequency energy. Furthermore, compared to
the original sequence and the sequence processed by RevIN, we observe that the sequence processed
by AMEO exhibits significantly higher stationarity with much more stable means and variance. More
Analyses are in Appendix [F]

Outstanding inter-series modeling ability of the EKPB  In the multivariate correlation analysis
in Figure |5| (LEFT), the early encoder layer produces correlation maps similar to the input series
X. In deeper layers, these maps gradually resemble the correlation patterns of the target series Y,
suggesting that ReFocus effectively models inter-series dependencies in a hierarchical and progressive
manner. Furthermore, Figure |5/ (RIGHT) indicates that ReFocus effectively captures Key-Frequency
shared across channels. To illustrate EKPB’s functionality, we visualize the series embeddings with
and without its adjustment in Figure[6| (LEFT). The T-SNE visualization of the series embeddings
shows that without EKPB, using only the channel-independent strategy (Nie et al.2023), the MSE is
0.171. After applying EKPB, channels sharing Key-Frequency (variates 2&3) are clustered, while
others (variates 1&3) are separated. This adjustment improves the MSE from 0.171 to 0.145, a 15%
reduction.

Efficiency Analysis of ReFocus

ReFocus delivers higher performance with minimal memory and time consumption. We left the
detailed complexity analysis and more information in Appendix [H| which shows that our ReFcous
with only Linear complexity. It achieves better performance with significantly lower resource
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Figure 5: Analysis of multivariate correlation (Left) and Shared Key-Frequency (Right) on ECL, with input-
96-forecast-720. Left: Visualization of multivariate correlations of raw time series (X, Y) and the learned
embedding (O1, Og). O is the output embedding of the first encoder block, and Os the last block. Frobenius

norm || A — Bllr = /3, ;(Ai; — Bi;)? is used to quantify the similarity (shown in Figure center). The lower,
the higher. More examples and details are in Appendix [G} Right: We visualize the average spectral energy
across all channels for both the ground truth samples Y and the predictions Y.
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Figure 6: Left: T-SNE visualization of the series embeddings with and without ‘Energy-based Key-Frequency
Picking Block’ (EKPB) on ECL. We choose the input — 96 — forecast — 96 task. Three example variates are
highlighted: variates 2&3 shared a common Key-Frequency, while variate 1 does not. Right: Memory and time
consumption of different models. Coln-based models demonstrate efficient performance with minimal memory
and computational overhead.

consumption, as in Figure 6] (RIGHT). ReFocus remains competitive even against other Linear-based
or MLP-based approaches, such as DLinear and TSMixer.

5 CONCLUSION

This work addresses two critical challenges in multivariate time series forecasting: the Mid-Frequency
Spectrum Gap and the efficient modeling of the shared Key-Frequency. We propose the ‘Adaptive Mid-
Frequency Energy Optimizer’, which effectively enhances mid-frequency extraction, and the ‘Energy-
based Key-Frequency Picking Block” with the ‘Key-Frequency Enhanced Training’ strategy, which
efficiently captures shared frequency patterns. Extensive experiments demonstrate the superiority of
our approach, achieving up to 6% MSE reduction on challenging benchmarks, thus advancing the
SOTA in frequency-domain forecasting.
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A PROOF
This section is dedicated to proving Theorem [3.3]and Theorem [3.5]

A.1 IMPACT OF REVIN ON FREQUENCY SPECTRUM

RevIN (Kim et al., 2022; Liu et al.,2022c) normalizes inputs using sample-wise mean and variance,
then reverts scaling post-prediction to ensure consistent distributions, mitigating non-stationary effects
in time series.

Let the original time series be x(¢) with length T". The series & (¢) that processed by RevIN is given
by:

e 7T717
1T 1 T—
p=g 2 o), o= fZ ®)
t=0 t=0

The Fourier transform of x(t) nd Z(t) are:
—1

Zx 7i27rft/T717 f=0,1,....,T—1,

t=0
O
X(f) — Z ( . >€127rft/T1
t=0
= T-1
_ x(t)e—i%rft/T—l K Z p—i2mft/T—1 9)
g g
t=0 =0

The spectral energy is computed as the squared magnitude of the Fourier transform. For z(t) and
Z(t), we have:

Ex(f)=IX(NHP, Ex(f)=I1X(f) (10)
When f = 0, the exponential term e ~*27/t/T=1 = 1 so:
T-1
N 1 T
X0)=-S a0 - £
o ag
t=0
T T
o o
=0 (11)
Since % is a constant, we have:
T-1
BN emomium=1_0, f=12...,T-1,
7 10
_ T-1
l Z 7i27rft/T71 M p—i2mft/T—1
o o
t=0 =
1
1\2
Ben = () X (12)

This suggests that RevIN scales the spectral energy by o2 but does not affect its relative

distribution except X (0) = 0. Thus, RevIN preserves the relative spectral energy distribution and
leaves the Mid-Frequency Spectrum Gap unresolved.
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A.2 IMPACT OF AMEO ON FREQUENCY SPECTRUM

Referring back to Definition[3.4] AMEO is defined as:

K £
— 5 if£+1<t<T 1
5(t) = x(t — (5 )) if & + t<T+5%+ (13)
0, f0<t< 5 +1orT+ —|—1<t<T—|—K
The Fourier transform of Z(t) is
T-1 3 K—1
X(H=> lx(t) — 2 D+ K —1-k) e 2Tt/ T=1
=0 k=0
T—1 ‘ ﬁ K-1T-1 ]
_ l(t) —i2nft/T—1 7? i’(t 4 K—1-— k)eleﬂ'ft/Tfl . (14)
t=0 k=0 t=0
X(f) T (f)

For T (f), given FFT{z(t — a)} = X (f)e~*?7f*/T=1 we have:

T-1
Tw(f) = T(t+ K —1-— k)e—iQ-rrft/T_l
t=0
T-1
K .
= .’L‘(t + 5 — k- 2)3_’27"ft/T—1
t=0

= FFT{x(t + % — k- 2)}
_ X(f)eiwa(%—k—Q)/T—l (15)

So, we have the Fourier transform of #(¢) and its spectral energy:

ﬂ K-—1
X(f) = ZONT x(f)eizn (5 -k=2)/T=1
K k=0
1 K-—1 )
=X(f)|1-8-= Y 2/ (5-k=2)/T—1
K pors
G(f)
2
1 K—1
EX'(f) |X(f)| e2271'f k*?)/T—l
k=0
G(f)
= |X(NHIPA-8-G(/)> (16)

In this paper, we set K = 25 (i.e.,7/4 + 1, T = 96), and the function graph of G(f) is shown in
Figure[7]

It is evident that G(f) is a gradually decay function, with its values decreasing from 1 to 0. This

ensures that E¢ (f) = | X (f)[*(1—8-G(f))? where, relative to E'x, the low-frequency components
are attenuated, and the mid-frequency components are enhanced.
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Figure 7: The function G(f) is plotted for ' = 96 and K = 25. Due to the symmetry of the F'F'T', we only
need to plot the values for f = 0,1,...,48.

B EXPERIMENTAL DETAILS

B.1 DATASET STATISTICS

We elaborate on the datasets employed in this study with the following details.

* ETT Dataset (Zhou et al.;,2022a)) comprises two sub-datasets: ETTh and ETTm, which
were collected from electricity transformers. Data were recorded at 15-minute and 1-hour
intervals for ETTm and ETTh, respectively, spanning from July 2016 to July 2018.

* Solar_Energy (Lai et al., |2018) records the solar power production of 137 PV plants in
2006, which are sampled every 10 minutes.

* Electricity Dataselﬂ encompasses the electricity consumption data of 321 customers,
recorded on an hourly basis, covering the period from 2012 to 2014.

* Traffic Dataselﬂ consists of hourly data from the California Department of Transportation.
It describes road occupancy rates measured by various sensors on San Francisco Bay area
freeways.

* Weather Dataseﬂ contains records of 21 meteorological indicators, updated every 10
minutes throughout the entire year of 2020.

We follow the same data processing and train-validation-test set split protocol used in iTrans-
former (Liu et al., [2024b)), where the train, validation, and test datasets are strictly divided according
to chronological order to make sure there are no data leakage issues. We fix the input length as
T = 96 for all datasets, and the forecasting length F' € {96,192, 336, 720}. The characteristics of
these datasets are shown in Table ]

Table 4: The Statistics of the eight datasets used in our experiments.
Datasets ‘ ETTh1&2 ETTml&2 Traffic Electricity Solar_Energy Weather

Variates 7 7 862 321 137 21
Timesteps 17,420 69,680 17,544 26,304 52,560 52,696
Granularity 1 hour 5 min 1 hour 1 hour 10 min 10 min

B.2 IMPLEMENTATION DETAILS AND MODEL PARAMETERS

We trained our ReFocus model using the MSE loss function and employed the ADAM optimizer. For
evaluation purposes, we used two key performance metrics: the mean square error (MSE) and the
mean absolute error (MAE). We initialized the random seed as s = 2024 and set the hyperparameter
K = 25-kernel size of the convolution kernel in AMEQO. The dimension of the Layer is set to
D = 512 and Q = 128. The batch size bs = 32 for the Traffic dataset due to its large channel
will cause out of memory when employed with large batch size, and bs = 128 for others. The
learning rate is searched from Ir € {le — 5, 1e — 4} except for the Traffic dataset (Ir = 5e — 4).
The number of EKPB is searched from N € {1,2, 3,4}, and hyperparameter 3. which controls the
scale magnitude, from 38 € {0.01,0.1,0.5, 1.0}. Our implementation was carried out in PyTorch and

Zhttps://archive.ics.uci.edu/ml/datasets/ElectricitylLoadDiagrams20112014
*https://pems.dot.ca.gov/
*nttps://www.bgc-jena.mpg.de/wetter/
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executed on a single NVIDIA GeForce RTX 4090 with 24G VRAM. To foster reproducibility, we
make our code, and training scripts available in this Anonymous Rep

All the compared multivariate forecasting baseline models that we reproduced are implemented based
on the benchmark of Time series Lab (Wang et al.|[2024d) Repository [f] which is fairly built on
the configurations provided by each model’s original paper or official code. Those that have not yet
been included in Time series Lab are directly reproduced from their official code repositories. It is
worth noting that both the baselines used in this paper and our ReFocus have fixed a long-standing
bug. This bug was originally identified in Informer (Zhou et al.| 20224) (AAAI 2021 Best Paper)
and subsequently addressed by FITS (Xu et al., 2024b). For specific details about the bug and its
resolution, please refer to GitHub Repository|’

C FURTHER ANALYSIS OF THE PROPOSED KEY-FREQUENCY ENHANCED
TRAINING STRATEGY

‘ I Entropy: 3.79  Eigenvalue Sum: 13.1 Entropy: 3.98  Eigenvalue Sum: 15.7
0.42 Raw
KET I |0.7
~-0.6
I -0.5
-0.4
I -03
~-0.2
I 0.1
‘ 0.35 IO_D
‘ o2 40 60 g0 100 I

Validation Loss

Figure 8: We select the input — 96 — forecast — 96 task on Traffic and visualize the validation loss and weight
of our ReFocus model. LEFT: Visualization of the Validation Loss during 100 training epochs with (KET) and
without KET (Raw). RIGHT: Visualization about the Weight (Obtained using the approach outlined in Analysis
of linear model (Toner & Darlow] [2024))) of the trained model. Two significant metrics for assessing the
information richness of the weight matrix-the information Entropy and the Sum of Eigenvalues-are calculated.
Both indicate higher quality with greater values.

To further investigate the impact of the proposed ‘Key-Frequency Enhanced Training (KET)
strategy’ on model training and forecasting ability, we visualize its training process regarding
Validation Loss and the model weights obtained after training in Figure[8] We also compute the
Entropy and the Sum of Eigenvalues of the weight matrix.

The results show that, in the absence of KET, the model quickly overfits around the 24th epoch,
exhibiting poor generalization. In contrast, with the aid of KET, the model consistently performs
better on the validation set, converging smoothly without overfitting, and the training process becomes
more stable. Additionally, weight visualization results indicate that the model trained with KET has
higher information Entropy and a greater Sum of Eigenvalues, suggesting that the trained model
possesses a stronger capacity for feature representation extraction. The predictive results further
validate this, as our KET improves the MSE from 0.414 to 0.380, achieving an 8.2% reduction.

D ABLATION STUDY OF DIFFERENT KEY-FREQUENCY PICKING STRATEGY

We conducted an ablation study on various key-frequency selection strategies. The evaluated methods
include Maximum-based, Minimum-based, and Softmax-based random sampling strategies. Our
experimental results in Table[5|reveal that purely relying on Maximum or Minimum-based strategies
may overlook certain critical Key-Frequency. In contrast, the random sampling strategy based on a
Softmax probabilistic distribution consistently achieved the best overall performance, particularly on

Shttps://anonymous.4open.science/r/ReFocus—-2889/
Snttps://github.com/thuml/Time-Series-Library
"https://github.com/VEWOXIC/FITS
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Table 5: Ablation study of different Key-Frequency Picking strategies. ‘Softmax’ means using softmax function
to generate a probability distribution and picking shared Key-Frequency using this distribution. ‘Max’ means
always choosing the biggest energy. ‘Min’ means always choosing the smallest energy. We list the average
results. Full results are in Appendix [K-4}

L ‘ ETTml ETTm2 ETThl ETTh2 ECL Traffic Weather ~ Solar_Energy
Picking Strategy

| MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

Min 0.388 0.3920.280 0.323/0.432 0.432]0.371 0.396]0.194 0.281]0.517 0.344|0.378 0.363(0.240 0.270

Max 0.392 0.395|0.279 0.322(0.437 0.435]0.374 0.398|0.172 0.265|0.422 0.273|0.351 0.343(0.230 0.260

Softmax 0.387 0.394]0.275 0.320|0.434 0.433(0.371 0.396|0.168 0.262|0.412 0.265|0.346 0.339(0.222 0.252

datasets with a larger number of channels and higher complexity—key challenges in multivariate
time series forecasting.

E COMPARISON OF EKPB AND OTHER INTER-SERIES DEPENDENCIES
MODELING BACKBONE

Table 6: Multivariate forecasting result of ‘Energy-based Key-Frequency Picking Block” (EKPB) and other
inter-series dependencies modeling backbones. We use prediction lengths F' € {96,192, 336, 720}, and input
length T' = 96. The best results are in bold.

Model EKPB iTransformer TSMixer Crossformer FECAM

Metric MSE MAE|MSE MAE |MSE MAE|MSE MAE |MSE MAE

96 (0.179 0.260|0.180 0.264 |0.182 0.266|0.287 0.366 |0.188 0.275
192 (0.244 0.301(0.250 0.309 |0.249 0.309(0.414 0.492 |0.265 0.336
336 10.303 0.339]0.311 0.348 |0.309 0.347]0.597 0.5420.318 0.362
720 (0.401 0.395(0.412 0.407 [0.416 0.408(1.730 1.042 |0.416 0.417

ETTm2

‘ Avg ‘0.282 0.324/0.288 0.332 |0.289 0.333|0.757 0.610 |0.297 0.348

96 10.288 0.338]0.297 0.349 |0.319 0.361]0.745 0.58410.298 0.345
192 (0.374 0.391(0.380 0.400 [0.402 0.410(0.877 0.656 |0.377 0.397
336 (0.414 0.426(0.428 0.432 (0.444 0.446(1.043 0.731 |0.425 0.434
720 10.421 0.440(0.427 0.445|0.441 0.450(1.104 0.7630.432 0.450

ETTh2
(=] S}

‘ Avg ‘0.374 0.399]0.383 0.407 [0.401 0.417|0.942 0.684 |0.383 0.407

96 10.166 0.209|0.174 0.214 |0.166 0.210]0.158 0.230{0.182 0.242
192 10.216 0.256|0.221 0.254 {0.215 0.256(0.206 0.277{0.223 0.281
336 (0.274 0.296(0.278 0.296 (0.287 0.300(0.272 0.335 |0.270 0.320
720 (0.351 0.346(0.358 0.349 (0.355 0.348(0.398 0.418 |0.338 0.374

Weather
(=)}

‘ Avg ‘0.252 0.277|0.258 0.279 |0.256 0.279(0.259 0.315|0.253 0.304

96 [0.146 0.240|0.148 0.240 |0.157 0.260(0.219 0.314]0.178 0.267
) 192 (0.161 0.254(0.162 0.253 |0.173 0.274(0.231 0.322|0.185 0.273
8 336 10.178 0.273]0.178 0.269 |0.192 0.295]0.246 0.3370.199 0.290
720 (0.220 0.306(0.225 0.317 [0.223 0.318(0.280 0.363 |0.235 0.323

| Avg [0.176 0.268]0.178 0.270 [0.186 0.287]0.244 0.334]0.199 0.288

Table [6] presents the full results of ‘Energy-based Key-Frequency Picking Block (EKPB)’ and other
inter-series dependency modeling backbones on multivariate time series forecasting tasks. We com-
pared ‘Energy-based Key-Frequency Picking Block’ (EKPB) with several well-established backbones,
including iTransformer (Liu et al., 2024b)), TSMixer (Chen et al.| 2023)), and Crossformer (Zhang &
'Yan, 2023)), which have demonstrated exceptional performance in modeling inter-series dependen-
cies. Additionally, we included FECAM (Jiang et al., 2023)), a method also designed for modeling
cross-channel frequency-domain dependencies. The results presented in Table[6|demonstrate that our
EKPB outperforms in modeling inter-series dependencies across multiple datasets.

F ABLATION STUDY OF DIFFERENT FREQUENCY PROCESSING STRATEGY

In Table [/} the performance of AMEO on two prediction tasks across two datasets consistently
surpasses the results achieved by methods based on RevIN and Filters. Furthermore, while Filters and
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Table 7: Experiment result of high-pass filter, low-pass filter, RevIN, and AMEO using a simple linear
projection as the forecaster on Weather and ETTm1 dataset. We set the input length 7' = 96 and forecasting
length F' € {720, 96}.

Dataset \Length\ AMEO RevIN Low High None

| |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

ey | 96 [0-331 0.365/0.354 0.375[0.345 0371|1097 0.792/0.348 0375
ME 720 [0.466 0.440]0.486 0.448(0.478 0.458(1.106 0.7960.479 0.456
Weather] 96 0-164 0.236]0.194 0.23410.198 0.258[0.636 0.608[0.198 0.258
catier] 770 10.331 0.370/0.365 0.353[0.353 0.387[0.638 0.611]0.352 0.386

RevIN occasionally lead to degraded performance on certain datasets, AMEO consistently delivers
results that outperform the original methods. These findings further highlight the superiority of
AMEDO over alternative approaches.

G VISUALIZATION OF MULTIVARIATE CORRELATIONS

In addition to the main results, we further provide visualizations of multivariate correlations on the
Traffic datasets, as shown in Figure[9](LEFT). We calculate the value of the correlation map by:

1 I
T, =7 E Tit, Tit = Tit— Ti,
t=1

_— Yo Fit
P =
\/Zt=1 x5y \/Zt:l Tt €
exp (Pij)
—
> k=1 €D (Pik)

These results demonstrate that ReFocus effectively captures inter-series dependencies. Moreover,
the encoder layer built based on the ‘Energy-based Frequency Picking Block’ (EKPB) exhibits
highly interpretable feature maps. Notably, in the shallow layers, the correlation maps of the learned
representation closely resemble the input sequence X, while in deeper layers, the representations pro-
gressively align with the target outputs Y. This suggests that ReFocus progressively transforms input
features toward task-relevant representations, enabling both effective modeling and interpretability.

, e=1x1078,

COTG5 =

)

X Y |
0.0030 P
I 60000/ — iTransformer /
00025 1 5000.0  —*— ReFocus /
00020 1§ 4000.0 /’
[ O Os} 1 £3000.0
X 0.056 0.081 0.0015 % ’ /
Y 0.114 0.098 I§2000 01 !
0.0010 | ’
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I | . 1000 2000 3000 4000 5000
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Figure 9: Left: Visualization of multivariate correlations of raw time series (X, Y') and the learned embedding.
O; is the output embedding of the first encoder block, and O the last. We use the Frobenius norm ||A — Bl|r =

>~ ;(Aij — Bij)? to quantify the similarity. The lower, the higher. Right: Memory Usage comparison of
ReFocus and iTransformer. We compare the memory consumption under varying numbers of channels (with
B =4,T =96, F = 720).
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H COMPLEXITY ANALYSIS OF REFOCUS

We analyze the complexity of the ReFocus Encoder concerning the Dimension of model D, number
of channels N, dimension of ‘Energy-based Frequency Picking Block’ (EKPB) @). The complexity
of input MLP is O(N - D?) + O(N - D - Q). Since Q < D (Q = 128, D = 512 in this work),
the dominant cost is O(N - D?). During EKPB, the complexity of FFT is O(N - Q - log @), and
so is the IFFT. Complexity of Energy computing, Softmax and Component Picking, each part is
O(N - Q). Map the representation back to the original space: O(N - D - Q). So the overall complexity
is O(N - D - Q), which is negligible compared to O(N - D?). Each later FFN has O(N - D?)
complexity. So, the overall complexity of ReFocus Encoder is dominated by O(N - D?), which is
Linear to input token number N.

On the other hand, a standard Transformer encoder has complexity O(N? - D) + O(N - D?) (Self-
Attention + FFN). For large N, the Quadradic O(N 2) term becomes the bottleneck, whereas our
ReFocus Block avoids this quadratic cost.

As shown in Figure[9](RIGHT), we compare the memory consumption of ReFocus and iTransformer
under varying numbers of channels. ReFocus exhibits high efficiency, achieving SOTA performance
with significantly reduced memory usage and computational cost.

Table 8: Model efficiency analysis. We evaluated the parameter count, and the inference time (average of
5 runs on a single NVIDIA 4090 24GB GPU) with batch_size = 1 on ECL dataset. We set the dimension
of layer dim € {256,512}, and the number of network layers N = 2. The task is input-96-forecast-720. *
means ‘former.” Para means ‘Parameter count(M).” Time means ‘inference time(ms).’

Dim‘ EKPB Cross* iTrans* TSMixer FECAM
|Param Time |Para Time |Para Time | Para Time |Para Time

256 0.29 68.91|0.93 98.37 |1.27 192.12|13.66 432.40|1.39 205.66
5121 0.97 84.54|1.78 118.29|4.63 249.60(43.04 507.54|5.14 277.43

Additionally, when comparing the number of parameters and inference time during prediction under
identical configurations on the ECL dataset, our EKPB method still outperforms other inter-series
dependencies modeling baselines by a significant margin, as in Table

I SENSITIVITY OF HYPERPARAMETERS

Table 9: Sensitivity to mixing coefficient in KET («). Since we don’t know in advance which two
channels share the same frequency information and their correlation intensity, in our work, we choose
to use o sampled from a Normal Distribution to simulate such correlation. Here, we design three
ablation methods: w/o means o = 0, Normal is our default design, and Constant denotes o = 1.

Dataset w/o Normal Constant

ETTm2 0.402/0.396 0.395/0.392 0.399/0.394
Weather 0.350/0.346  0.344/0.343  0.349/0.346

Table 10: Sensitivity to augmentation intensity (3) in AMEO.

Dataset 0.0 0.2 04 0.6 0.8 1.0

ETTm2 0.398 0.397 0.397 0397 0.397 0.396
Weather 0.349 0348 0.346 0.346 0.347 0.348

We studied the sensitivity of ReFocus to four major hyperparameters: the mixing coefficient in KET
(cr, Table @ the augmentation intensity parameter (3, Table , the kernel size (K, Table in
AMEQO, and the number of encoder layers (/V, Table . Results of MSE on ETTm?2 and Weather
datasets are reported.
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Table 11: Sensitivity to kernel size (K) in AMEO.

Dataset 7 15 25 51 75

ETTm2 0398 0399 0.396 0.397 0.397
Weather 0.346 0.346 0.346 0.349 0.349

Table 12: Sensitivity to the number of encoder layers (V).

Dataset 1 2 3 4 5

ETTm2 0396 0.397 0.397 0.398 0.398
Weather 0.347 0.346 0.348 0.344 0.348

J  EXTENDED DISCUSSION AND EVALUATION

J.1 BROADER DISCUSSION ON THE MID-FREQUENCY GAP

Although we only demonstrated the mid-frequency gap on energy, traffic, and weather benchmarks,
this phenomenon is well-documented in many other domains. In econometrics, financial time series
exhibit spectra dominated by very low frequencies with a mid-band ““valley” that simple filters
cannot remedy (Stock & Watson, |2002; (Granger & Newbold, [1974). In biomedical signals such as
EEG, negligible mid-frequency energy in resting-state recordings is commonly reported (Chatfield
& Xing, [2019; Niedermeyer & da Silva, [2005)). Similar patterns were also observed in human
activity recognition (HAR) signals, where energy is concentrated in low-frequency bands while the
mid-frequency region remains nearly empty (Anguita et al.} 2013} |Lara & Labrador} 2012).

To validate the broader applicability of ReFocus, we extended experiments to classification tasks in
Medical time series and HAR. Following Medformer (Wang et al.l 2024c)), we evaluate on APAVA
(EEG dataset) and UCI-HAR benchmarks, both known to exhibit mid-frequency gaps. Baselines
include Medformer (Wang et al., [2024c)), iTransformer (Liu et al., 2024bj)), and PatchTST (Nie et al.,
2023)), using Accuracy and F1-score as metrics. Results in Table @] confirm the effectiveness of
ReFocus across these tasks.

Table 13: Classification results on APAVA and UCI-HAR datasets.

Dataset Metric ReFocus (Ours) Medformer iTransformer PatchTST

APAVA Accuracy 82.61 78.74 74.55 67.03
F1-score 81.88 76.31 72.30 55.97
UCI-HAR  Accuracy 93.17 91.65 92.41 87.67
F1-score 93.27 91.61 92.39 88.02

J.2  SHORT-TERM TIME SERIES FORECASTING

We conducted experiments on the M4 benchmark to test the generalizability of ReFocus on short-
term time series forecasting. Following the protocol of TimesNet (Wu et al., [2023)), we compare
against TimesNet (Wu et al.,|2023), PatchTST (Nie et al.| 2023)), DLinear (Zeng et al.,|2023), and
Autoformer (Wu et al., 2021). Performance is reported with SMAPE, MASE, and OWA (lower
is better). As shown in Table [T4 ReFocus consistently achieves the best overall results across
yearly, quarterly, and monthly tasks, further affirming its robustness in modeling complex temporal
variations.

These extended evaluations demonstrate the broad applicability and robustness of our approach
beyond the original long-term time series forecasting tasks.
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Table 14: Forecasting results on the M4 dataset. Lower SMAPE/MASE/OWA is better.

Category  Metric ReFocus (Ours) TimesNet PatchTST DLinear Autoformer

SMAPE 13.201 13.387 16.463 16.965 13.974
Yearly MASE 2.912 2.996 3.967 4.283 3.134
OWA 0.778 0.786 1.003 1.058 0.822
SMAPE 9.964 10.100 10.644 12.145 11.338
Quarterly MASE 1.162 1.182 1.278 1.520 1.365
OWA 0.873 0.890 0.949 1.106 1.012
SMAPE 12.541 12.670 13.399 13.514 13.958
Monthly  MASE 0.914 0.933 1.031 1.037 1.103
OWA 0.862 0.878 0.949 0.956 1.002

K FULL RESULTS

The full experiment results are provided in the following section due to the space limitation of the
main text.

K.1 FULL MULTIVARIATE FORECASTING RESULTS

Table T3] contains the detailed results of Ten baselines and our ReFocus on eight well-acknowledged
forecasting benchmarks. ReFocus consistently achieves the best overall performance across all
datasets, especially in tasks with a large number of channels, such as the Solar_Energy dataset
(137 channels), ECL dataset (321 channels), and Traffic dataset (862 channels). It obtains the best
performance in terms of MSE: 34 out of 40 tasks, and MAE: 36 out of 40 tasks. These results
demonstrate the outstanding performance of ReFocus in multivariate time series forecasting tasks.

K.2 FULL RESULTS OF ABLATION ON AMEO AND KET

Table [I6] presents the full results of the ablation study on ‘Adaptive Mid-Frequency Energy Optimizer
(AMEO)’ and ‘Key-Frequency Enhanced Training (KET)’. KET and AMEO contribute significantly
to the model’s performance, each providing substantial improvements. Moreover, their combination
further enhances the model, achieving peak performance. These results provide strong evidence of
the effectiveness of both AMEO and KET.

K.3 FULL RESULTS OF FURTHER ABLATION STUDY ON KET

Table[T7]exhibits the full results of a further ablation study on the ‘Key-Frequency Enhanced Training
(KET)’ strategy. Introducing Pseudo samples—obtained by randomly incorporating spectral infor-
mation from other channels into the current channel—generally leads to performance improvement.
However, on more complex datasets, it results in performance degradation. In contrast, alternating
training between Real and Pseudo samples (Our KET) overcomes this issue, yielding a further and
consistent enhancement in performance.

K.4 FULL RESULTS OF ABLATION STUDY OF DIFFERENT KEY-FREQUENCY PICKING
STRATEGIES

Table |18]illustrates the complete results of the ablation study on various Key-Frequency Picking

strategies. Notably, our Softmax-based random sampling strategy consistently achieves the best
overall performance, particularly on more complex datasets.
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Table 15: Multivariate long-term forecasting result comparison.
{96,192, 336, 720}, and input length 7" = 96. The best results are in bold, and the second best are underlined.

We use prediction lengths F' €

Model ReFocus  FilterNet iTransformer ModernTCN FITS PatchTST Crossformer TimesNet TSMixer  DLinear FreTS
(Ours)  (2024) (2024b) (2024} @0246)  (2023) @023} @023) @023) ©023) (@023
Metric MSE MAE|MSE MAE|MSE MAE |MSE MAE |MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE
96 [0.3210.360(0.321 0.361]0.334 0.368 [0.317 0.362 [0.355 0.375]0.329 0.367]0.404 0.426]0.338 0.375(0.323 0.363]0.345 0.372[0.335 0.372
2| 192 [03650379/0.367 0.387(0.377 0.391 [0.366 0.389 [0.392 0.393|0.367 0.385(0.450 0.451 |0.374 0.387|0.376 0.392|0.380 0.389|0.388 0.401
E| 336 |0.3980.400{0.401 0.409/0426 0420 [0.407 0.412 |0.424 0.414]0.399 0.410|0.532 0515|0410 0.411{0.407 0.413|0.413 0.413|0.421 0426
@ 720 [0.463 0.437(0.477 0.448(0.491 0.459 |0.466 0.443 [0.487 0.449|0.454 0.439(0.666 0.589(0.478 0.450{0.485 0.459]0.474 0.453|0.486 0.465
| Avg [0.3870.394]0.392 0.401]0.407 0.410]0.389 0.402 [0.415 0.408]0.387 0.400|0.513 0.496 |0.400 0.406/0.398 0.407|0.403 0.407|0.408 0.416
96 [0.173 0.255(0.175 0.258]0.180 0.264 [0.173 0.255 [0.183 0.266]0.175 0.259]0.287 0.366]0.187 0.267|0.182 0.266[0.193 0.292[0.189 0.277
Gl 192 {0237 0.297/0.240 0.301/0.250 0309 0.235 0.296 [0.247 0.305(0.241 0.302(0.414 0.492 |0.249 0.309|0.249 0.309(0.284 0.362(0.258 0.326
£| 336 [0.2950334/0.3110347/0.311 0348 [0.308 0.344 |0.307 0.34210.305 0.343|0.597 0.542|0.321 0.351{0.309 0.347|0.369 0.427|0.343 0.390
@ 720 [0.3950.392(0.414 0.405(0.412 0.407 |0.398 0.394 [0.407 0.399|0.402 0.400|1.730 1.042 |0.408 0.403|0.416 0.408|0.554 0.522(0.495 0.480
| Ave ]0.2750.320/0.285 0.328]0.288 0.3320.279 0.322 |0.286 0.328/0.281 0.326]0.757 0.610[0.291 0.3330.289 0.333]0.350 0.401|0.321 0.368
96 [0.376 0.394(0.382 0.402(0.386 0.405 0.386 0.394 [0.386 0.396]0.414 0.419]0.423 0.448]0.384 0.402[0.401 0.412[0.386 0.400[0.395 0.407
=| 192 [0.4280.422(0.430 0.429]0.441 0.436 [0.436 0.423 [0.436 0.423|0.460 0.4450.471 0.474 [0.436 0.429(0.452 0.442(0.437 0.432|0.448 0.440
E| 336 [0.4620.442(0.472 0.451/0.487 0.458 0.479 0.445 [0.478 0.444]0.501 0.466|0.570 0.546|0.491 0.469(0.492 0.4630.481 0.459(0.499 0.472
M 720 [0.470 0.474(0.481 0.473/0.503 0.491 [0.481 0.469 [0.502 0.495]0.500 0.488(0.653 0.621{0.521 0.500{0.507 0.490(0.519 0.516]0.558 0.532
| Ave [0.4340.433)0441 0.439]0.454 0.447 [0.446 0.433 [0.451 0.440[0.469 0.4540.529 0.522 [0.458 0.450]0.463 0.452|0.456 0.452(0.475 0.463
96 [0.288 0.337/0.293 0.343]0.297 0.349 [0.292 0.340 [0.295 0.350]0.302 0.348]0.745 0.584]0.340 0.374]0.319 0.361]0.333 0.387]0.309 0.364
Q| 192 [0.3710.390(0.374 0.396/0.380 0.400 [0.377 0.395 0.381 0.396|0.388 0.400/0.877 0.656 |0.402 0.414/0.402 0.410(0.477 0.476/0.395 0.425
E| 336 [0.4090.421/0.417 0.430|0.428 0.432 |0.424 0.434 |0.426 0.438|0.426 0.433|1.043 0.731|0.452 0.452|0.444 0.446|0.594 0.541|0.462 0.467
M 720 [0.417 0.436(0.449 0.460[0.427 0.445 |0.433 0.448 [0.431 0.446]0.431 0.446|1.104 0.763(0.462 0.468(0.441 0.450(0.831 0.657|0.721 0.604
| Avg [0.3710.396]0.383 0.407]0.383 0407 [0.382 0.404 |0.383 0.408|0.387 0.407|0.942 0.684]0.414 0.427]0.401 0.417]0.559 0.515]0.472 0.465
96 [0.143 0.2380.147 0.245[0.148 0.240 [0.173 0.260 [0.200 0.278]0.181 0.270[0.219 0.314]0.168 0.272[0.157 0.260[0.197 0.282[0.176 0.258
| 192 |0.1580.252(0.160 0.250(0.162 0.253 |0.181 0.267 0.200 0.280(0.188 0.2740.231 0.322|0.184 0.289|0.173 0.274|0.196 0.285(0.175 0.262
Q| 336 [0.1720.267/0.173 0.267(0.178 0.269 [0.196 0.283 |0.214 0.295|0.204 0.293(0.246 0.337|0.198 0.3000.192 0.295(0.209 0.301|0.185 0.278
720 0.198 0.290(0.210 0.309]0.225 0.317 [0.238 0.316 |0.255 0.327]0.246 0.324(0.280 0.363[0.220 0.320[0.223 0.318]0.245 0.333]0.220 0.315
| Avg [0.1680.262[0.173 0.268]0.178 0.270 [0.197 0.282 |0.217 0.295/0.205 0.290]0.244 0.334 [0.192 0.295(0.186 0.287|0.212 0.300(0.189 0.278
96 [0.380 0.248(0.430 0.294]0.395 0.268 [0.550 0.355 [0.651 0.391]0.462 0.295[0.522 0.290{0.593 0.321]0.493 0.336]0.650 0.396]0.593 0.378
2| 192 |0.4030.259/0.452 0.307|0.417 0.276 0.527 0.337 |0.602 0.363|0.466 0.296/0.530 0.293|0.617 0.336|0.497 0.351|0.598 0.370(0.595 0.377
F| 336 [0.4190.267(0.470 0.316]0.433 0.283 [0.537 0.342 [0.609 0.366|0.482 0.304|0.558 0.305 |0.629 0.336/0.528 0.361(0.605 0.373|0.609 0.385
Bl 720 [0.446 0.287(0.498 0.3230.467 0.302 [0.570 0.359 [0.647 0.385]0.514 0.322(0.589 0.328{0.640 0.350{0.569 0.380(0.645 0.394(0.673 0.418
| Ave [0.4120.265/0.463 0.310]0.428 0.282 |0.546 0.348 [0.627 0.376]0.481 0.304]0.550 0.304 |0.620 0.336/0.522 0.357|0.625 0.383]0.618 0.390
96 [0.160 0.202(0.162 0.207]0.174 0.214 0.165 0.203 [0.166 0.213]0.177 0.218]0.158 0.230{0.172 0.220[0.166 0.210[0.196 0.255[0.174 0.208
5| 192 [0.2110.248(0.210 0.250[0.221 0.254 [0.212 0.247 [0.213 0.2540.225 0.2590.206 0.277 |0.219 0.261(0.215 0.256/0.237 0.296(0.219 0.250
S| 336 0.266 0.290(0.265 0.290/0.278 0.296 [0.266 0.293 [0.269 0.294(0.278 0.297|0.272 0.335 |0.280 0.306|0.287 0.300{0.283 0.3350.273 0.290
2| 720 (0344 0.343(0.342 0.340[0.358 0.349 [0.344 0.343 [0.346 0.343]0.354 0.348(0.398 0.418{0.365 0.359(0.355 0.348/0.345 0.381]0.334 0.332
| Ave [0.2450.271]0.245 0.272]0.258 0.279 |0.247 0.272 [0.249 0.276]0.259 0.281]0.259 0.315|0.259 0.2870.256 0.279[0.265 0.317]0.250 0.270
g 9 [0.1820.219]0206 0.251{0.203 0.237 [0.206 0.264 [0.371 0.417]0.234 0.286[0.310 0.331]0.250 0.2920.221 0.275(0.290 0.378(0.217 0.278
S| 192 [0.2220.249]0.242 0.279]0.233 0.261 [0.246 0.285 |0.377 0.398(0.267 0.310]0.734 0.7250.296 0.3180.268 0.3060.320 0.398(0.256 0.302
HI 336 [0.240 0.268]0.255 0.291]0.248 0.273 [0.260 0.296 |0.416 0.412{0.290 0.315(0.750 0.735|0.319 0.330(0.272 0.294(0.353 0.415(0.263 0.307
e
S| 720 024202710267 03010249 0.275 [0.264 0.298 [0.414 0.400]0.289 0.317[0.769 0.765|0.338 0.337/0.281 0.313|0.356 0.413[0.256 0.297
w
| Avg [0.2220.252[0.243 0.283]0.233 0.262 |0.244 0.286 |0.395 0.407]0.270 0.307]0.641 0.639 |0.301 0.319/0.260 0.297|0.330 0.401]0.248 0.296
1“Count| 34 36 |2 2]o0o o |1 2]o0o of1 of]2 oo ofo ofo o]o o
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Table 16: Full result of ablation study on the ‘Adaptive Mid-Frequency Energy Optimizer (AMEO)’ and the
‘Key-Frequency Enhanced Training (KET)’ strategy. We use prediction lengths F' € {96,192, 336, 720}, and
input length 7" = 96. The best results are in bold.

Model Both (ReFocus) + AMEO  + KET None

Metric MSE  MAE \MSE MAE|MSE MAE|MSE MAE

96 10.321 0.360 |0.3310.368|0.331 0.363]0.339 0.367
19210.365  0.379 |0.377 0.390{0.373 0.382]0.381 0.391
3360.398  0.400 (0.403 0.407|0.403 0.402(0.414 0.413
720 10.463  0.437 |0.462 0.441]0.467 0.438(0.468 0.442

ETTml

Avg ‘0.387 0.394 0.393 0.402|0.394 0.396/0.401 0.403

96 [0.173  0.255 |0.179 0.262(0.178 0.260{0.180 0.262
19210.237  0.297 |0.244 0.304]0.241 0.299|0.245 0.302
3360.295 0.334 (0.304 0.340{0.300 0.3370.304 0.340
72010.395  0.392 (0.402 0.396|0.398 0.393|0.404 0.396

ETTm2

Avg ‘0.275 0.320 |0.282 0.326/0.279 0.322{0.283 0.325

96 10.376  0.394 ]0.382 0.398|0.378 0.395]0.383 0.395
19210.428 0.422 |0.433 0.425]0.432 0.423]0.432 0.425
336 (0.462 0.442 |0.468 0.450(0.469 0.447(0.469 0.449
720 10.470  0.474 |0.489 0.486|0.470 0.474(0.474 0.480

ETThl

Avg ‘0.434 0.433 |0.443 0.440(0.437 0.435]0.440 0.437

96 10.288 0.337 |0.2850.336/0.289 0.339]0.288 0.338
19210.371  0.390 |0.375 0.391]0.374 0.390|0.374 0.391
0.409  0.421 |0.405 0.420(0.412 0.425]0.419 0.428
720 10.417  0.436 |0.424 0.441]0.418 0.438]0.423 0.441

ETTh2
g

z
g

‘0.371 0.396 {0.372 0.397|0.373 0.398]0.376 0.400

96 (0.143  0.238 [0.146 0.241|0.145 0.239|0.147 0.242
19210.158  0.252 |0.165 0.259]0.161 0.253(0.162 0.256
0.172  0.267 ]0.177 0.272]0.176 0.269(0.180 0.274
72010.198  0.290 |0.206 0.297/0.203 0.292{0.221 0.307

ECL
w
@
>N

Avg ‘0.168 0.262 {0.174 0.267(0.171 0.263(0.178 0.270

96 0.380 0.248 |0.414 0.274/0.380 0.250{0.414 0.278
19210.403  0.259 |0.439 0.287[0.404 0.262|0.437 0.284
336 |0.419  0.267 (0.449 0.288|0.421 0.270(0.449 0.288
720 |0.446  0.287 (0.506 0.307|0.450 0.290(0.495 0.307

Traffic

Avg ‘0.412 0.265 |0.452 0.289(0.414 0.268]0.449 0.289

96 (0.160  0.202 [0.165 0.209(0.164 0.207|0.164 0.209
19210.211  0.248 {0.210 0.252{0.215 0.252{0.216 0.256
336 10.266  0.290 |0.267 0.291]0.273 0.295[0.275 0.299
72010.344  0.343 |0.350 0.346|0.349 0.345(0.353 0.349

Weather

Avg ‘0.245 0.271 |0.248 0.275]0.250 0.275(0.252 0.278

96 10.182  0.219 [0.197 0.226|0.192 0.230{0.192 0.234
19210.222  0.249 |0.236 0.269[0.231 0.255|0.235 0.265
336 0.240  0.268 (0.246 0.276|0.244 0.2710.249 0.279
72010.242  0.271 |0.245 0.274|0.245 0.274(0.250 0.278

2y

olar_Ener;

wn
|Avg[0.222 0252 [0.2310.261]0.228 0.258]0.232 0.264
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Table 17: Full result of further ablation study on the ‘Key-Frequency Enhanced Training (KET)’ strategy. We
use prediction lengths F' € {96, 192, 336, 720}, and input length 7" = 96. The best results are in bold.

Model Both (KET) Pseudo Real

Metric MSE MAE |MSE MAE|MSE MAE

96 (0.331 0.363 [0.331 0.362{0.339 0.367
192 10.373 0.382)0.375 0.384/0.381 0.391
336 {0.403 0.402|0.406 0.405|0.414 0.413
720 0.467 0.438 |0.471 0.440(0.468 0.442

ETTml

Avg ‘0.394 0.396 {0.396 0.398|0.401 0.403

96 (0.178 0.260 [0.178 0.260(0.180 0.262
192 10.241 0.299]0.242 0.299{0.245 0.302
336 {0.300 0.337(0.301 0.339|0.304 0.340
720 {0.398 0.393(0.399 0.393|0.404 0.396

ETTm2

Avg ‘0.279 0.322|0.280 0.323]0.283 0.325

96 (0.378 0.395 0.382 0.394/0.383 0.395
192 10.432 0.4230.429 0.423[0.432 0.425
336 [0.469 0.447|0.467 0.445|0.469 0.449
720 [0.470 0.474|0.467 0.472|0.474 0.480

ETThl

Avg ‘0.437 0.435 (0.436 0.434|0.440 0.437

96 (0.289 0.339 [0.288 0.338]0.288 0.338
192 10.374 0.39010.370 0.390{0.374 0.391
336 (0.412 0.425(0.412 0.423|0.419 0.428
720 |0.418 0.4380.418 0.437(0.423 0.441

ETTh2

Avg ‘0.373 0.398 (0.372 0.397(0.376 0.400

96 (0.145 0.239 [0.147 0.241]0.147 0.242
192 |0.161 0.253]0.165 0.257{0.162 0.256
336 (0.176 0.269|0.179 0.271|0.180 0.274
720 10.203 0.292]0.209 0.296{0.221 0.307

ECL

Avg ‘0.171 0.263 |0.175 0.266{0.178 0.270

96 (0.380 0.250 [0.383 0.254]0.414 0.278
192 10.404 0.262|0.406 0.265[0.437 0.284
336 0.421 0.270|0.424 0.272|0.449 0.288
720 10.450 0.290|0.454 0.293(0.495 0.307

Traffic

Avg ‘0.414 0.268 (0.417 0.271]0.449 0.289

96 10.164 0.207 [0.166 0.207|0.164 0.209
192 10.215 0.252]0.216 0.255{0.216 0.256
336 (0.273 0.295]0.275 0.297|0.275 0.299
720 |0.349 0.345)0.352 0.346{0.353 0.347

Weather

Avg ‘0.250 0.275|0.253 0.276{0.252 0.278

96 10.192 0.230 |0.235 0.263|0.192 0.234
192 10.231 0.255(0.290 0.303{0.235 0.265
336 (0.244 0.271]0.287 0.301|0.249 0.279
720 |0.245 0.2740.296 0.308{0.250 0.278

2y

olar_Ener;

wn
| Avg[0.228 0.2580.277 0.294]0.232 0.264
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Table 18: Full result about ablation study of different Key-Frequency Picking strategies. We use prediction
lengths F' € {96,192, 336, 720}, and input length 7" = 96. The best results are in bold.

Model Softmax Max Min

Metric MSE MAE|MSE MAE|MSE MAE

96 [0.321 0.360(0.331 0.360(0.321 0.357
192 10.365 0.379/0.370 0.380{0.366 0.377
336 (0.398 0.400(0.401 0.402{0.400 0.399
720 10.463 0.437]0.467 0.438/0.464 0.436

ETTml

Avg ‘0.387 0.3940.392 0.395|0.388 0.392

96 [0.173 0.255(0.175 0.258|0.177 0.259
192 10.237 0.297/0.240 0.300{0.242 0.300
336 (0.295 0.334/0.303 0.338]0.302 0.338
720 10.395 0.392{0.396 0.392{0.398 0.394

ETTm2

Avg ‘0.275 0.320(0.279 0.322|0.280 0.323

96 10.376 0.394/0.380 0.396/0.372 0.391
192 10.428 0.422{0.430 0.423]0.426 0.423
336 (0.462 0.44210.464 0.444/0.464 0.443
720 10.470 0.474]0.473 0.478]0.467 0.472

ETThl

Avg ‘0.434 0.433|0.437 0.435|0.432 0.432

96 [0.288 0.337(0.289 0.340(0.287 0.337
19210.371 0.390(0.373 0.391{0.366 0.388
336 (0.409 0.421]0.414 0.425]0.410 0.423
720 {0.417 0.436/0.418 0.437(0.419 0.437

ETTh2

Avg ‘0.371 0.396|0.374 0.398)0.371 0.396

96 [0.143 0.238(0.145 0.241(0.165 0.256
192 {0.158 0.252(0.162 0.256(0.176 0.267
336 (0.172 0.267]0.175 0.269{0.192 0.283
720 {0.198 0.290/0.204 0.293]0.242 0.318

ECL

| Avg[0.168 0.262(0.172 0.265(0.194 0.281

96 [0.380 0.248(0.389 0.253(0.504 0.341
192 {0.403 0.259(0.413 0.268|0.505 0.338
336 (0.419 0.267]0.427 0.276{0.521 0.351
720 {0.446 0.287]0.457 0.296{0.536 0.347

Traffic

| Avg[0.412 0.265(0.422 0.273[0.517 0.344

96 [0.160 0.202(0.166 0.207(0.164 0.205
192 {0.211 0.248(0.212 0.248|0.212 0.249
336 (0.266 0.290{0.268 0.291{0.269 0.290
720 10.344 0.343]0.348 0.344/0.349 0.344

Weather

| Avg[0.245 0.271]0.249 0.273]0.249 0.272

96 [0.182 0.219(0.189 0.228/0.208 0.247
192 {0.222 0.249(0.236 0.262(0.242 0.270
336 (0.240 0.268]0.245 0.273]0.256 0.283
720 10.242 0.271]0.248 0.276{0.253 0.280

gy

olar_Ener

w
| Avg[0.222 0.252[0.230 0.260[0.240 0.270
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L LIMITATIONS AND FUTURE WORKS

Limitations  Despite ReFocus demonstrating significant improvements in multivariate time series
forecasting by addressing the mid-frequency spectrum gap and exploiting shared key-frequency
information, several limitations remain. First, our experiments primarily rely on benchmark datasets
(Traffic, ECL, Solar), which may not capture the full variability of more diverse, high-frequency, or
non-stationary applications. Additionally, further analysis is needed to understand the robustness of
our approach under abrupt distribution shifts or extreme noise conditions.

Future Works  Future work should extend the ReFocus framework to a broader range of application
domains, such as financial, medical, and human activity time series, to verify its generalizability.
We plan to explore adaptive mechanisms to dynamically tune module parameters and mitigate
sensitivity issues. Moreover, investigating lightweight or hybrid architectures could improve real-time
forecasting efficiency. Incorporating external contextual information may further enrich inter-channel
dependency modeling. All these will help refine the overall design and improve resilience against
challenging, non-stationary environments.

M SOCIETAL IMPACTS

The development of the ReFocus forecaster has the potential to significantly benefit various fields,
such as finance and traffic, by improving the accuracy and efficiency of time series forecasting,
thereby enhancing decision-making processes. However, there are potential negative societal impacts
to consider. Privacy concerns may arise from the use of personal data, especially in healthcare
and finance, leading to possible violations. Additionally, biases in the data could result in unfair
outcomes, perpetuating existing disparities. Over-reliance on automated forecasting models might
lead to the neglect of important context, causing adverse outcomes. To mitigate these risks, robust
data protection protocols should be implemented, and continuous monitoring for bias is necessary to
ensure fairness. Developing ethical use policies and maintaining human oversight in decision-making
can further ensure that the deployment of ReFocus maximizes its positive societal impact while
minimizing potential negative consequences.
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