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ABSTRACT

Recent advancements have progressively incorporated frequency-based techniques
into deep learning models, leading to notable improvements in accuracy and
efficiency for time series analysis tasks. However, the Mid-Frequency Spec-
trum Gap in the real-world time series, where the energy is concentrated at
the low-frequency region while the middle-frequency band is negligible, hin-
ders the ability of existing deep learning models to extract the crucial frequency
information. Additionally, the shared Key-Frequency in multivariate time se-
ries, where different time series share indistinguishable frequency patterns, is
rarely exploited by existing literature. This work bridges these two gaps by:
(i) introducing a novel module, ‘Adaptive Mid-Frequency Energy Optimizer’,
based on convolution and residual learning, to emphasize the significance of mid-
frequency bands; (ii) proposing an ‘Energy-based Key-Frequency Picking Block’
to capture shared Key-Frequency, which achieves superior inter-series modeling
performance with fewer parameters; (iii) employing ‘Key-Frequency Enhanced
Training’ strategy to further enhance Key-Frequency modeling, where spectral
information from other channels is randomly introduced into each channel. Our
approach advanced multivariate time series forecasting on the challenging Traffic,
ECL, and Solar benchmarks, reducing MSE by 4%, 6%, and 5% compared to
the previous SOTA iTransformer. Code is available at this Anonymous Repo:
https://anonymous.4open.science/r/ReFocus-2889.

1 INTRODUCTION

Accurate forecasting of time series offers reference for decision-making across various domains (Lim
& Zohren, 2021; Torres et al., 2021), including weather (Du et al., 2023), economics (Oreshkin et al.,
2020), and energy (Dong et al., 2023; Liu et al., 2022b). Especially, long-term multivariate time
series forecasting (LMTSF) emerges as a prominent area of interest in academic research (Wang et al.,
2024d; Wen et al., 2022) and industrial applications (Cirstea et al., 2022), offering the advantage of
capturing complex interdependencies and trends across multiple variables.

Recently, the powerful representation capabilities of neural networks, such as Multi-Layer perception
(MLPs) (Yi et al., 2023c; Han et al., 2024), Transformers (Zhou et al., 2022c; Nie et al., 2023), and
Temporal Convolution Network (TCNs) (Eldele et al., 2024; Liu et al., 2022a), have significantly
advanced deep learning-based LMTSF. These approaches can be broadly categorized into two/three
folds: time-domain-based (Han et al., 2024; Nie et al., 2023; Liu et al., 2022a) and frequency-domain-
based (Yi et al., 2023c; Zhou et al., 2022c; Eldele et al., 2024) methods, or mixed time & frequency.
Time-domain methods are intuitive, handling nonlinearity and non-periodic signals directly from the
raw sequence (Li et al., 2023) using Transformers (Zhou et al., 2022a), TCN (Donghao & Xue, 2024),
or MLP (Wang et al., 2024a). The latest study Yi et al. (2024) highlights that time-domain forecasters
face challenges such as vulnerability to high-frequency noise, and computational inefficiencies. While
frequency-domain-based methods usually transform the time-domain data to the frequency spectrum
by Fast Fourier transform (FFT) (Yi et al., 2023a). Then other operations (Self-attention (Zhou et al.,
2022c), Linear mapping (Xu et al., 2024b; Yi et al., 2023c), etc.) are employed to extract frequency
information. These methods benefit from advantages such as computational efficiency (Fan et al.,
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2024; Xu et al., 2024b), periodic patterns extracting (Wu et al., 2023; Dai et al., 2024), and energy
compaction (Yi et al., 2023c;b).

Figure 1: The Mid-Frequency Spectrum Gap and the shared Key-Frequency (high similarity in frequency
spectra across variables) on Weather dataset. VPmax means ‘Maximum Vapor Pressure’ and VPact means
‘Actual Vapor Pressure’.

However, existing frequency-domain-based forecasters usually face TWO significant challenges
when dealing with real-world long-term time series: the Mid-Frequency Spectrum Gap and the
shared Key-Frequency modeling.

• Mid-Frequency Spectrum Gap (Figure 1 Red box) refers to a condition where the energy
of the spectrum is concentrated in the low-frequency regions, resulting in the mid-frequency
band being negligible. Low-frequency components capture long-term trends, often con-
tributing to mean shifts when overly concentrated (Stock & Watson, 2002; Granger &
Newbold, 1974; Chatfield & Xing, 2019). So this Mid-Frequency Spectrum Gap will
introduce Nonstationarity (Cheng et al., 2015; Liu et al., 2022c), where the mean and
variance of time series change over time, and make time series less predictable. Furthermore,
such uneven energy distribution challenges existing deep-learning models to extract critical
patterns (Tishby & Zaslavsky, 2015; Xu et al., 2024a; Rahaman et al., 2019). So, addressing
this Mid-Frequency Spectrum Gap is crucial for enhancing the feature extraction capabilities
of deep learning-based forecasters (Park et al., 2019; Bai et al., 2018; Guo et al., 2019).
Currently, widely used methods for processing spectra, such as Filters (Asselin, 1972), and
RevIN (Kim et al., 2022; Liu et al., 2022c)—a technique previously applied to address
nonstationarity—are not effective in resolving this issue. Conversely, convolution with
residual connections has effectively handled spectral information (Can & Timofte, 2018;
Chakraborty & Trehan, 2021), providing a potential solution.

• Meanwhile, the second challenge: the shared Key-Frequency Modeling (Figure 1 Pink
box) has the disadvantage that distinct time series can exhibit indistinguishable frequency
patterns, potentially leading to challenges in accurately differentiating and analyzing in-
dividual series within a multivariate context (Yu et al., 2023; Piao et al., 2024). However,
existing approaches have largely overlooked this critical characteristic. Meanwhile, energy,
which is the square of the amplitude of the spectrum, is proven as an effective tool for
identifying certain frequency patterns in the multivariate case (Bógalo et al., 2024; Chekroun
& Kondrashov, 2017; Sundararajan & Bruce, 2023).

Based on the above observations, this work mainly addresses two critical questions: (1) How can the
Mid-Frequency Spectrum Gap be resolved to achieve a more evenly dispersed spectrum? (2) How can
inter-series dependencies be efficiently modeled by leveraging the shared Key-Frequency? To tackle
challenge 1, we propose the ‘Adaptive Mid-Frequency Energy Optimizer’ (AMEO), a convolution-
and residual learning-based solution. It adaptively scales the frequency spectrum by assigning higher
scaling factors to lower frequencies, thereby dispersing the spectrum. To address challenge 2, for the
second challenge, we introduce the ‘Energy-based Key-Frequency Picking Block (EKPB)’, which
features fewer parameters and faster inference speeds compared to the Transformer Encoder (Liu
et al., 2024b) and MLP-Mixer (Chen et al., 2023). EKPB extracts shared frequency information
across channels effectively. We also propose a ‘Key-Frequency Enhanced Training’ strategy (KET)
which incorporates spectral information from other channels during training to enhance extraction
of shared Key-Frequency that may not be included in the training set. We name our full framework
ReFocus, (Residual Frequency Optimization and Cross-channel Unified Spectrum modeling), as it
refocuses model capacity on underutilized yet critical spectral regions and inter-series frequency.
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Our contributions are summarized as follows:

• We theoretically and empirically demonstrate that existing RevIN and high/low-pass filters
fail to address the Mid-Frequency Spectrum Gap. We propose AMEO, a novel approach
based on convolution and residual learning that significantly enhances mid-frequency feature
extraction.

• We propose EKPB to capture shared Key-Frequency across channels, which achieves
superior inter-series modeling capacity with lower parameters.

• We propose KET, where spectral information from other channels is randomly introduced
into each channel, to enhance the extraction of the shared Key-Frequency.

• Our approach outperforms the previous SOTA iTransformer by reducing MSE by 4%, 6%,
and 5% on the challenging Traffic, ECL, and Solar datasets, respectively, establishing new
benchmarks in multivariate time series forecasting.

2 RELATED WORK

Advancement in Recent Deep Learning-based Time Series Forecasting Recent advancements
in deep learning-based time series forecasting can be broadly categorized into three key areas: (1) the
application of sequential models to time series data, (2) the tokenization of time series, and (3) the
exploration of intrinsic patterns within time series. Efforts in the first area have focused on deploying
various architectures for time series forecasting, including Transformer (Wu et al., 2021; Wang et al.,
2024b), Mamba (Ahamed & Cheng, 2024; Wang et al., 2024e), MLPs (Wang et al., 2024a; Das
et al., 2023; Yu et al., 2024a), RNNs (Lin et al., 2023), Graph Neural Networks (Shang et al., 2024),
TCNs (Wang et al., 2023), and even Large Language Models (LLMs) (Jin et al., 2024; Liu et al.,
2024d;c). The second direction has witnessed groundbreaking developments, particularly in Patch
Embedding (Nie et al., 2023) and Variate Embedding (Liu et al., 2024b). The final area explores
modeling complex relationships, including the inter-series dependencies (Ng et al., 2022; Chen et al.,
2024), the dynamic evolution within a sequence (Du et al., 2023; Zhang et al., 2022), or both (Yu
et al., 2024b; Liu et al., 2024a).

Time Series Modeling with Frequency Frequency as a key feature of time series data, has
inspired numerous works (Yi et al., 2023a). FITS (Xu et al., 2024b) employs a simple frequency-
domain linear, getting results comparable to SOTA models with 10K parameters. Autoformer (Wu
et al., 2021) introduces the auto-correlation mechanism, leveraging FFT to improve self-attention.
FEDformer (Zhou et al., 2022c) further calculates attention weights from the spectrum of queries and
keys. FiLM (Zhou et al., 2022b) applies Fourier analysis to preserve historical information while
filtering out noise. FreTS (Yi et al., 2023c) incorporates frequency-domain MLP to model both
channel and temporal dependencies. TimesNet (Wu et al., 2023) utilizes FFT to extract periodic
patterns. FilterNet (Yi et al., 2024) proposes a filter-based method from the perspective of signal
processing.

However, they do not address the Mid-Frequency Spectrum Gap and shared Key-Frequency modeling.
In contrast, our method employs ‘Adaptive Mid-Frequency Energy Optimizer’ to improve mid-
frequency feature extraction and introduces ‘Energy-based Key-Frequency Picking Block’ with
‘Key-Frequency Enhanced Training’ strategy to capture shared Key-Frequency across channels.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a multivariate time series input X ∈ RC×T , multivariate time series forecasting tasks are
designed to predict its future F time steps Y ∈ RC×F using past T steps. C is the number of variates
or channels.

3.2 PRELIMINARY ANALYSIS

This section presents why RevIN (Kim et al., 2022; Liu et al., 2022c), High-pass, and Low-pass filters
fail to address the Mid-Frequency Spectrum Gap. Let the input univariate time series be x(t) with
length T and target y(t) with length F .
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Definition 3.1 (Frequency Spectral Energy). The Fourier transform of x(t), X(f), and its spectral
energy EX(f) is given by:

X(f) =

T−1∑
t=0

x(t)e−i2πft/T−1, f = 0, 1, . . . , T − 1

EX(f) = |X(f)|2. (1)

Impact of RevIN on Frequency Spectrum
Definition 3.2 (Reversible Instance Normalization). Given a forecast model f : RT → RF that
generates a forecast ŷ(t) from a given input x(t), RevIN is defined as:

x̂(t) =
x(t)− µ

σ
, t = 0, 1, . . . , T − 1

ŷ(t) = f(x̂(t)), ŷ(t)rev = ŷ(t) · σ + µ,

µ =
1

T

T−1∑
t=0

x(t), σ =

√√√√ 1

T

T−1∑
t=0

(x(t)− µ)2. (2)

Theorem 3.3 (Frequency Spectrum after RevIN). The spectral energy of x̂(t) (transformed using
RevIN):

EX̂(0) = 0, f = 0,

EX̂(f) =

(
1

σ

)2

|X(f)|2, f = 1, 2, . . . , T − 1. (3)

The proof is in Appendix A.1. Theorem 3.3 suggests that RevIN scales the absolute spectral energy by
σ2 but does not affect its relative distribution except EX̂(0) = 0. Thus, RevIN preserves the relative
spectral energy distribution and leaves the Mid-Frequency Spectrum Gap unresolved. However, our
experiments still employ RevIN to ensure a fair comparison with other baselines.

Impact of High- and Low-pass filter We still define x̂(t) to be the filtered (processed) signal,
obtained by applying a filter H(f) (High/Low-pass filter). The filter H(f) is 1 in the passband
(High/Low frequency) and 0 in the stopband (Middle frequency). So EX̂(f) = 0, EX̂ ≤ EX(f)
for middle frequencies, which creates even larger gap.

3.3 OVERALL STRUCTURE OF THE PROPOSED REFOCUS

In this section, we elucidate the overall architecture of ReFocus, depicted in Figure 2. We define
frequency domain projection as D1 → D2 representing a projection from dimension D1 to D2 in the
frequency domain (Xu et al., 2024b). Initially, we apply AMEO to the input X ∈ RC×T , yielding
the processed spectrum Xam ∈ RC×T . Next, we use a projection T → D to transform Xam into the
Variate Embedding Xem ∈ RC×D (Liu et al., 2024b). Then, Xem go through N EKPB to generate
representation HN+1, which is projected to obtain final prediction Ŷ .

Adaptive Mid-Frequency Energy Optimizer Building upon the Preliminary Analysis, we
propose a convolution- and residual learning-based solution to address the Mid-Frequency Spectrum
Gap, which we denoted as AMEO.
Definition 3.4 (Adaptive Mid-Frequency Energy Optimizer). AMEO is defined as:

x̂(t) = x(t)− β

K

K−1∑
k=0

x̃(t+K − 1− k),

x̃(t) ={
x(t− (K2 + 1)), if K

2 + 1 ≤ t < T + K
2 + 1,

0, if 0 ≤ t < K
2 + 1 or T + K

2 + 1 ≤ t < T +K.
(4)

It is equivalent to x = x−β ·Conv(x). Conv is a 1D convolution (Zero-padding at both ends, stride
s = 1, kernel size K, with values initialized as 1

K ). β ∈ R1 is a hyperparameter.
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Figure 2: General structure of ReFocus. ‘Adaptive Mid-Frequency Energy Optimizer (AMEO)’
enhances mid-frequency components modeling, and ‘Energy-based Key-Frequency Picking Block’
(EKPB) effectively captures shared Key-Frequency across channels

Theorem 3.5 (Frequency Spectrum after AMEO). The spectral energy of x̂(t) obtained using AMEO:

EX̂(f) = |X(f)|2

1− β · 1

K

K−1∑
k=0

ei2πf(
K
2 −k−2)/T−1

︸ ︷︷ ︸
G(f)



2

(5)

The proof is in Appendix A.2. We have EX̂(f) = |X(f)|2(1− β ·G(f))2. Generally, G(f) behaves
as a decay function, gradually reducing its value from One to Zero. Such decay behavior makes
AMEO relatively enhances mid-frequency components, thus addressing the Mid-Frequency Spectrum
Gap.

Energy-based Key-Frequency Picking Block In each EKPB, the input Hi ∈ RC×D(H1 =
Xem) is first processed through an MLP to generate Hk

i ∈ RC×Q. Then, FFT is applied to
get Hf

i ∈ RC×(Q/2+1). For Hf
i , we calculate its energy, denoted as He

i ∈ RC×(Q/2+1). A
cross-channel softmax is then applied to He

i per frequency to obtain a probability distribution
Hsoft

i ∈ RC×(Q/2+1). Using Hsoft
i , we select values from Hf

i across channels for each frequency,
resulting in Kf

i ∈ R1×(Q/2+1), which represents the Shared Key-Frequency across all channels.
Then iFFT is performed on Kf

i to get Ki ∈ R1×Q, followed by projection Q → D and repeating
(C times) to get K̂i ∈ RC×D. This K̂i is point-wisely added to Ĥi ∈ RC×D , which is the
projection of Hi using projection D → D. Then, an MLP and Add&Norm is applied to the result
HK ∈ RC×D to fuse inter-series dependencies information, and another MLP and Add&Norm is
used to capture intra-series variations (Liu et al., 2024b). The output of each EKPB is Ôi ∈ RC×D,
where Hi+1 = Ôi.

3.4 KEY-FREQUENCY ENHANCED TRAINING STRATEGY

In real-world time series, certain channels often exhibit spectral dependencies, which may not
be fully captured in the training set, and the specific channels with such dependencies are also
unknown (Geweke, 1984; Zhao & Shen, 2024). So this work borrows insight from recent advancement
of mix-up in time series (Zhou et al., 2023; Ansari et al., 2024), randomly introducing spectral

5
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Figure 3: General process of the Key-Frequency Enhanced Training strategy (KET), where
spectral information from other channels is randomly introduced into each channel, to enhance the
extraction of the shared Key-Frequency.

information from other channels into each channel, to enhance the extraction of the shared Key-
Frequency, as in Figure 3. Given a multivariate time series input X ∈ RC×T and its ground-truth
Y ∈ RC×F , we generate a pseudo sample pair:

X ′ = iFFT (FFT (X) + α · FFT (X[perm, :])),

Y ′ = iFFT (FFT (Y ) + α · FFT (Y [perm, :])). (6)

α ∈ RC×1 is a weight vector sampled from a normal distribution, perm is a reshuffled channel index.
Since FFT and iFFT are linear operations, this mix-up process can be equivalently simplified in
the Time Domain:

X ′ = X + α ·X[perm, :],

Y ′ = Y + α · Y [perm, :] (7)

We alternate training between real and synthetic data to preserve the spectral dependencies in real
samples. This combines the advantages of data augmentation, such as improved generalization,
while mitigating potential drawbacks like over-smoothing and training instability (Ryu et al., 2024;
Alkhalifah et al., 2022).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

This section first introduces the whole experiment settings under a fair comparison. Secondly, we
illustrate the experiment results by comparing ReFocus with the TEN well-acknowledged baselines.
Further, we conducted an ablation study to comprehensively investigate the effectiveness of the
‘Adaptive Mid-Frequency Energy Optimizer’ (AMEO), ‘Energy-based Key-Frequency Picking Block’
(EKPB), and ‘Key-Frequency Enhanced Training strategy’ (KET).

Datasets We conduct extensive experiments on selected Eight widely-used real-world multivariate
time series forecasting datasets, including Electricity Transformer Temperature (ETTh1, ETTh2,
ETTm1, and ETTm2) (Zhou et al., 2022a), Electricity, Traffic, Weather used by Autoformer (Wu
et al., 2021), and Solar_Energy datasets proposed in LSTNet (Lai et al., 2018). For a fair comparison,
we follow the same standard protocol (Liu et al., 2024b) and split all forecasting datasets into training,
validation, and test sets by the ratio of 6:2:2 for the ETT dataset and 7:1:2 for the other datasets. More
can be found in the Appendix.

Evaluation protocol Following TimesNet (Wu et al., 2023), we use Mean Squared Error (MSE)
and Mean Absolute Error (MAE) for the evaluation. We follow the same evaluation protocol, where
the input length is set as T = 96 and the forecasting lengths F ∈ {96, 192, 336, 720}. All the
experiments are conducted on a single NVIDIA GeForce RTX 4090 with 24G VRAM. The MSE loss
function is utilized for model optimization. To foster reproducibility, we make our code, and training
scripts available in this Anonymous Repo1. Full implementation details are in Appendix B.

1https://anonymous.4open.science/r/ReFocus-2889
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Baseline setting We carefully choose TEN well-acknowledged forecasting models as our baselines,
including 1) Transformer-based methods: iTransformer (Liu et al., 2024b), Crossformer (Zhang &
Yan, 2023), PatchTST (Nie et al., 2023); 2) Linear-based methods: TSMixer (Chen et al., 2023), DLin-
ear (Zeng et al., 2023); 3) TCN-based methods: TimesNet (Wu et al., 2023), ModernTCN (Donghao
& Xue, 2024); 4)Recent cutting-edge frequency-based methods that discussed earlier: FilterNet (Yi
et al., 2024), FITS (Xu et al., 2024b), FreTS (Yi et al., 2023c). These models represent the latest
advancements in multivariate time series forecasting and encompass all mainstream prediction model
types. The results of ModernTCN, FilterNet, FITS, and FreTS are taken from FilterNet (Yi et al.,
2024) and other results are taken from iTransformer (Liu et al., 2024b).

4.2 EXPERIMENT RESULTS

Table 1: Multivariate forecasting results with prediction lengths F ∈ {96, 192, 336, 720} and fixed lookback
length T = 96. Results are averaged from all prediction lengths. The best is Red and the second is Blue. The
Lower MSE/MAE indicates the better prediction result. Full results are in Appendix K.1.

Models ReFocus FilterNet iTransformer ModernTCN FITS PatchTST Crossformer TimesNet TSMixer DLinear FreTS
(Ours) (2024) (2024b) (2024) (2024b) (2023) (2023) (2023) (2023) (2023) (2023c)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.387 0.394 0.392 0.401 0.407 0.410 0.389 0.402 0.415 0.408 0.387 0.400 0.513 0.496 0.400 0.406 0.398 0.407 0.403 0.407 0.408 0.416

ETTm2 0.275 0.320 0.285 0.328 0.288 0.332 0.279 0.322 0.286 0.328 0.281 0.326 0.757 0.610 0.291 0.333 0.289 0.333 0.350 0.401 0.321 0.368

ETTh1 0.434 0.433 0.441 0.439 0.454 0.447 0.446 0.433 0.451 0.440 0.469 0.454 0.529 0.522 0.458 0.450 0.463 0.452 0.456 0.452 0.475 0.463

ETTh2 0.371 0.396 0.383 0.407 0.383 0.407 0.382 0.404 0.383 0.408 0.387 0.407 0.942 0.684 0.414 0.427 0.401 0.417 0.559 0.515 0.472 0.465

ECL 0.168 0.262 0.173 0.268 0.178 0.270 0.197 0.282 0.217 0.295 0.205 0.290 0.244 0.334 0.192 0.295 0.186 0.287 0.212 0.300 0.189 0.278

Traffic 0.412 0.265 0.463 0.310 0.428 0.282 0.546 0.348 0.627 0.376 0.481 0.304 0.550 0.304 0.620 0.336 0.522 0.357 0.625 0.383 0.618 0.390

Weather 0.245 0.271 0.245 0.272 0.258 0.279 0.247 0.272 0.249 0.276 0.259 0.281 0.259 0.315 0.259 0.287 0.256 0.279 0.265 0.317 0.250 0.270

Solar_Energy 0.222 0.252 0.243 0.281 0.233 0.262 0.244 0.286 0.395 0.407 0.270 0.307 0.641 0.639 0.301 0.319 0.260 0.297 0.330 0.401 0.248 0.296

Quantitative comparison Comprehensive forecasting results are listed in Table 1. We leave full
forecasting results in APPENDIX to save place. It is quite evident that ReFocus has demonstrated
superior predictive performance across all datasets, significantly outperforming the second-best
method. Especially, Compared to the previous SOTA iTransformer, we have reduced the MSE by
4%, 6%, and 5% on the three most challenging benchmarks: Traffic, ECL, and Solar, respectively,
indicating a significant breakthrough. These significant improvements indicate that the ReFocus
model possesses robust performance and broad applicability in multivariate time series forecasting
tasks, especially in tasks with a large number of channels, such as the Solar_Energy dataset (137
channels), ECL dataset (321 channels), and Traffic dataset (862 channels).

4.3 MODEL ANALYSIS

Table 2: Ablation of ‘Adaptive Mid-Frequency Energy Optimizer (AMEO)’ and ‘Key-Frequency Enhanced
Training strategy (KET)’. We list the average results. Full results are in Appendix K.2.

AMEO KET
ETTm1 ETTm2 ETTh1 ETTh2 ECL Traffic Weather Solar_Energy

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

- - 0.401 0.403 0.283 0.325 0.440 0.437 0.376 0.400 0.178 0.270 0.449 0.289 0.252 0.278 0.232 0.264
- ✓ 0.394 0.396 0.279 0.322 0.437 0.435 0.373 0.398 0.171 0.263 0.414 0.268 0.250 0.275 0.228 0.258
✓ - 0.393 0.402 0.282 0.326 0.443 0.440 0.372 0.397 0.174 0.267 0.452 0.289 0.248 0.275 0.231 0.261
✓ ✓ 0.387 0.394 0.275 0.320 0.434 0.433 0.371 0.396 0.168 0.262 0.412 0.265 0.245 0.271 0.222 0.252

Ablation study of AMEO and KET To evaluate the contributions of each module in ReFocus,
we performed ablation studies on the ‘Adaptive Mid-Frequency Energy Optimizer (AMEO)’ and
the ‘Key-Frequency Enhanced Training (KET)’ strategy. The results are summarized in Table 2.
Notably, integrating both modules achieves the best performance, highlighting the effectiveness of
their synergy. Additionally, each module delivers substantial improvements over baseline models in
most cases.

Further study of KET We conducted further ablation studies on the KET to demonstrate
the importance of alternate training between real and synthetic data. The experimental results in

7
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Table 3: Further ablation of ‘Key-Frequency Enhanced Training strategy (KET)’. ‘Real’ means KET is not
performed, i.e. trained on original data. ‘Pseudo’ means trained on Pseudo samples. If both are used (Bottom
Line), this means the model is trained on Real and Pseudo samples alternatively, i.e. KET. We list the average
results. Full results are in Appendix K.3.

Real Pseudo
ETTm1 ETTm2 ETTh1 ETTh2 ECL Traffic Weather Solar_Energy

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

✓ - 0.401 0.403 0.283 0.325 0.440 0.437 0.376 0.400 0.178 0.270 0.449 0.289 0.252 0.278 0.232 0.264
- ✓ 0.396 0.398 0.280 0.323 0.436 0.434 0.372 0.397 0.175 0.266 0.417 0.271 0.252 0.276 0.277 0.294
✓ ✓ 0.394 0.396 0.279 0.322 0.437 0.435 0.373 0.398 0.171 0.263 0.414 0.268 0.250 0.275 0.228 0.258

Table 3 reveal that while training on pseudo samples can partially enhance the model’s generalization
performance on the test set, it also tends to cause over-smoothing and training instability on more
complex datasets, such as Solar_Energy. In contrast, training on real and synthetic data alternatively
(KET) improves generalization and mitigates over-smoothing and training instability by preserving
the spectral dependencies of real samples. More Analyses are in Appendix C.

Figure 4: The time-frequency domain visualization of the original sequence (ETTm1, the last variate), the
sequence processed by high-pass and low-pass filters, by RevIN, and by AMEO. We selected the input− 96−
forecast− 96 task.

Superiority of AMEO over RevIN and Filters We investigated the roles of AMEO, RevIN, and
Filters in addressing the Mid-Frequency Spectrum Gap through time-frequency domain visualization
analysis. The results presented in Figure 4 align perfectly with our previous theoretical analysis.
High-pass and low-pass filters fail to address the Mid-Frequency Spectrum Gap and exacerbate this
issue. RevIN, on the other hand, merely eliminates the energy of the zero-frequency component while
scaling other components using the variance σ2, which also does not effectively resolve the problem.
In contrast, our AMEO successfully amplifies the mid-frequency energy. Furthermore, compared to
the original sequence and the sequence processed by RevIN, we observe that the sequence processed
by AMEO exhibits significantly higher stationarity with much more stable means and variance. More
Analyses are in Appendix F.

Outstanding inter-series modeling ability of the EKPB In the multivariate correlation analysis
in Figure 5 (LEFT), the early encoder layer produces correlation maps similar to the input series
X . In deeper layers, these maps gradually resemble the correlation patterns of the target series Y ,
suggesting that ReFocus effectively models inter-series dependencies in a hierarchical and progressive
manner. Furthermore, Figure 5 (RIGHT) indicates that ReFocus effectively captures Key-Frequency
shared across channels. To illustrate EKPB’s functionality, we visualize the series embeddings with
and without its adjustment in Figure 6 (LEFT). The T-SNE visualization of the series embeddings
shows that without EKPB, using only the channel-independent strategy (Nie et al., 2023), the MSE is
0.171. After applying EKPB, channels sharing Key-Frequency (variates 2&3) are clustered, while
others (variates 1&3) are separated. This adjustment improves the MSE from 0.171 to 0.145, a 15%
reduction.

Efficiency Analysis of ReFocus

ReFocus delivers higher performance with minimal memory and time consumption. We left the
detailed complexity analysis and more information in Appendix H, which shows that our ReFcous
with only Linear complexity. It achieves better performance with significantly lower resource
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Figure 5: Analysis of multivariate correlation (Left) and Shared Key-Frequency (Right) on ECL, with input-
96-forecast-720. Left: Visualization of multivariate correlations of raw time series (X , Y ) and the learned
embedding (O1, OS). O1 is the output embedding of the first encoder block, and OS the last block. Frobenius
norm ∥A−B∥F =

√∑
i,j(Aij −Bij)2 is used to quantify the similarity (shown in Figure center). The lower,

the higher. More examples and details are in Appendix G. Right: We visualize the average spectral energy
across all channels for both the ground truth samples Y and the predictions Ŷ .

Figure 6: Left: T-SNE visualization of the series embeddings with and without ‘Energy-based Key-Frequency
Picking Block’ (EKPB) on ECL. We choose the input− 96− forecast− 96 task. Three example variates are
highlighted: variates 2&3 shared a common Key-Frequency, while variate 1 does not. Right: Memory and time
consumption of different models. CoIn-based models demonstrate efficient performance with minimal memory
and computational overhead.

consumption, as in Figure 6 (RIGHT). ReFocus remains competitive even against other Linear-based
or MLP-based approaches, such as DLinear and TSMixer.

5 CONCLUSION

This work addresses two critical challenges in multivariate time series forecasting: the Mid-Frequency
Spectrum Gap and the efficient modeling of the shared Key-Frequency. We propose the ‘Adaptive Mid-
Frequency Energy Optimizer’, which effectively enhances mid-frequency extraction, and the ‘Energy-
based Key-Frequency Picking Block’ with the ‘Key-Frequency Enhanced Training’ strategy, which
efficiently captures shared frequency patterns. Extensive experiments demonstrate the superiority of
our approach, achieving up to 6% MSE reduction on challenging benchmarks, thus advancing the
SOTA in frequency-domain forecasting.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for long-term
forecasting. arXiv preprint arXiv:2403.09898, 2024. URL https://arxiv.org/abs/2403.
09898.

Tariq Alkhalifah, Hui Wang, and Oleg Ovcharenko. Mlreal: Bridging the gap between training on
synthetic data and real data applications in machine learning. Artificial Intelligence in Geosciences,
3:101–114, 2022.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
domain dataset for human activity recognition using smartphones. In Esann, volume 3, pp. 3–4,
2013.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Richard Asselin. Frequency filter for time integrations. Monthly Weather Review, 100(6):487–490,
1972.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Juan Bógalo, Pilar Poncela, and Eva Senra. Understanding fluctuations through multivariate circulant
singular spectrum analysis. Expert Systems with Applications, 251:123827, 2024.

Yigit Baran Can and Radu Timofte. An efficient cnn for spectral reconstruction from rgb images.
arXiv preprint arXiv:1804.04647, 2018.

Tanmay Chakraborty and Utkarsh Trehan. Spectralnet: Exploring spatial-spectral waveletcnn for
hyperspectral image classification. arXiv preprint arXiv:2104.00341, 2021.

Chris Chatfield and Haipeng Xing. The analysis of time series: an introduction with R. Chapman and
hall/CRC, 2019.

Mickaël D Chekroun and Dmitri Kondrashov. Data-adaptive harmonic spectra and multilayer
stuart-landau models. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(9), 2017.

Jialin Chen, Jan Eric Lenssen, Aosong Feng, Weihua Hu, Matthias Fey, Leandros Tassiulas, Jure
Leskovec, and Rex Ying. From similarity to superiority: Channel clustering for time series
forecasting. arXiv preprint arXiv:2404.01340, 2024. URL https://arxiv.org/abs/
2404.01340.

Si-An Chen, Chun-Liang Li, Sercan O Arik, Nathanael Christian Yoder, and Tomas Pfister. Tsmixer:
An all-mlp architecture for time series forecasting. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=wbpxTuXgm0.

Changqing Cheng, Akkarapol Sa-Ngasoongsong, Omer Beyca, Trung Le, Hui Yang, Zhenyu Kong,
and Satish TS Bukkapatnam. Time series forecasting for nonlinear and non-stationary processes: a
review and comparative study. Iie Transactions, 47(10):1053–1071, 2015.

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan.
Triformer: Triangular, variable-specific attentions for long sequence multivariate time series
forecasting–full version. arXiv preprint arXiv:2204.13767, 2022.

Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
decoupling framework for long-term series forecasting. In The Twelfth International Conference
on Learning Representations, 2024.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=pCbC3aQB5W.

10

https://arxiv.org/abs/2403.09898
https://arxiv.org/abs/2403.09898
https://arxiv.org/abs/2404.01340
https://arxiv.org/abs/2404.01340
https://openreview.net/forum?id=wbpxTuXgm0
https://openreview.net/forum?id=pCbC3aQB5W


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked time-series modeling. In Proceed-
ings of the Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=ginTcBUnL8.

Luo Donghao and Wang Xue. Moderntcn: A modern pure convolution structure for general time series
analysis. In Proceedings of the Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=vpJMJerXHU.

Dazhao Du, Bing Su, and Zhewei Wei. Preformer: Predictive transformer with multi-scale segment-
wise correlations for long-term time series forecasting. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: Rethinking
transformers for time series representation learning. In International Conference on Machine
Learning, 2024.

Wei Fan, Kun Yi, Hangting Ye, Zhiyuan Ning, Qi Zhang, and Ning An. Deep frequency derivative
learning for non-stationary time series forecasting. arXiv preprint arXiv:2407.00502, 2024.

John F Geweke. Measures of conditional linear dependence and feedback between time series.
Journal of the American Statistical Association, 79(388):907–915, 1984.

Clive WJ Granger and Paul Newbold. Spurious regressions in econometrics. Journal of econometrics,
2(2):111–120, 1974.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as locally linear out-of-manifold regulariza-
tion. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3714–3722,
2019.

Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. Softs: Efficient multivariate time series
forecasting with series-core fusion. arXiv preprint arXiv:2404.14197, 2024. URL https:
//arxiv.org/abs/2404.14197.

Maowei Jiang, Pengyu Zeng, Kai Wang, Huan Liu, Wenbo Chen, and Haoran Liu. Fecam: Fre-
quency enhanced channel attention mechanism for time series forecasting. Advanced Engineering
Informatics, 58:102158, 2023.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting
by reprogramming large language models. In Proceedings of the Twelfth International Conference
on Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
Unb5CVPtae.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=cGDAkQo1C0p.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In Proceedings of the 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, pp. 95–104, 2018.

Oscar D Lara and Miguel A Labrador. A survey on human activity recognition using wearable
sensors. IEEE communications surveys & tutorials, 15(3):1192–1209, 2012.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. arXiv preprint arXiv:2305.10721, 2023.

Bryan Lim and Stefan Zohren. Time series forecasting with deep learning: A survey. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, pp.
20200209, 2021. doi: 10.1098/rsta.2020.0209. URL http://dx.doi.org/10.1098/
rsta.2020.0209.

11

https://openreview.net/forum?id=ginTcBUnL8
https://openreview.net/forum?id=vpJMJerXHU
https://arxiv.org/abs/2404.14197
https://arxiv.org/abs/2404.14197
https://openreview.net/forum?id=Unb5CVPtae
https://openreview.net/forum?id=Unb5CVPtae
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
http://dx.doi.org/10.1098/rsta.2020.0209
http://dx.doi.org/10.1098/rsta.2020.0209


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
rnn: Segment recurrent neural network for long-term time series forecasting. arXiv preprint
arXiv:2308.11200, 2023. URL https://arxiv.org/abs/2308.11200.

Juncheng Liu, Chenghao Liu, Gerald Woo, Yiwei Wang, Bryan Hooi, Caiming Xiong, and Doyen
Sahoo. Unitst: Effectively modeling inter-series and intra-series dependencies for multivariate
time series forecasting. arXiv preprint arXiv:2406.04975, 2024a. URL https://arxiv.org/
abs/2406.04975.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural In-
formation Processing Systems, 2022a. URL https://openreview.net/forum?id=
AyajSjTAzmg.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling
and forecasting. In International Conference on Learning Representations, 2022b. URL
https://openreview.net/forum?id=0EXmFzUn5I.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. In Advances in Neural Information Processing Systems,
2022c. URL https://openreview.net/forum?id=ucNDIDRNjjv.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, and Mingsheng Long. itransformer:
Inverted transformers are effective for time series forecasting. In Proceedings of the Twelfth
International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=JePfAI8fah.

Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes: Autore-
gressive time series forecasters via large language models. arXiv preprint arXiv:2402.02370,
2024c.

Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes: Autore-
gressive time series forecasters via large language models. arXiv preprint arXiv:2402.02370,
2024d.

William T Ng, K Siu, Albert C Cheung, and Michael K Ng. Expressing multivariate time series
as graphs with time series attention transformer. arXiv preprint arXiv:2208.09300, 2022. URL
https://arxiv.org/abs/2208.09300.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In Proceedings of the Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=Jbdc0vTOcol.

Ernst Niedermeyer and FH Lopes da Silva. Electroencephalography: basic principles, clinical
applications, and related fields. Lippincott Williams & Wilkins, 2005.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis ex-
pansion analysis for interpretable time series forecasting. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=r1ecqn4YwB.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
Quoc V Le. Specaugment: A simple data augmentation method for automatic speech recognition.
arXiv preprint arXiv:1904.08779, 2019.

Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
Frequency debiased transformer for time series forecasting. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24, 2024.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

12

https://arxiv.org/abs/2308.11200
https://arxiv.org/abs/2406.04975
https://arxiv.org/abs/2406.04975
https://openreview.net/forum?id=AyajSjTAzmg
https://openreview.net/forum?id=AyajSjTAzmg
https://openreview.net/forum?id=0EXmFzUn5I
https://openreview.net/forum?id=ucNDIDRNjjv
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah
https://arxiv.org/abs/2208.09300
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=r1ecqn4YwB


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hyun Ryu, Sunjae Yoon, Hee Suk Yoon, Eunseop Yoon, and Chang D Yoo. Simpsi: A simple strategy
to preserve spectral information in time series data augmentation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 14857–14865, 2024.

Zongjiang Shang, Ling Chen, Binqing Wu, and Dongliang Cui. Ada-mshyper: Adaptive multi-scale
hypergraph transformer for time series forecasting. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

James H Stock and Mark W Watson. Forecasting using principal components from a large number of
predictors. Journal of the American statistical association, 97(460):1167–1179, 2002.

Raanju R Sundararajan and Scott A Bruce. Frequency band analysis of nonstationary multivariate
time series. arXiv preprint arXiv:2301.03664, 2023.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 IEEE Information Theory Workshop (ITW), Apr 2015. doi: 10.1109/itw.2015.7133169. URL
http://dx.doi.org/10.1109/itw.2015.7133169.

William Toner and Luke Nicholas Darlow. An analysis of linear time series forecasting models. In
Proceedings of the Forty-first International Conference on Machine Learning (ICML), 2024. URL
https://openreview.net/forum?id=xl82CcbYaT.

José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martínez-Álvarez, and Alicia Troncoso.
Deep learning for time series forecasting: a survey. Big Data, 9(1):3–21, 2021.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN:
Multi-scale local and global context modeling for long-term series forecasting. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=zt53IDUR1U.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations (ICLR), 2024a.

Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. CARD: Channel
aligned robust blend transformer for time series forecasting. In The Twelfth International Confer-
ence on Learning Representations, 2024b. URL https://openreview.net/forum?id=
MJksrOhurE.

Yihe Wang, Nan Huang, Taida Li, Yujun Yan, and Xiang Zhang. Medformer: A multi-granularity
patching transformer for medical time-series classification. Advances in Neural Information
Processing Systems, 37:36314–36341, 2024c.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. arXiv preprint arXiv:2407.13278,
2024d. URL https://arxiv.org/abs/2407.13278.

Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Han Zhao, Daling Wang, and Yifei Zhang. Is
mamba effective for time series forecasting? arXiv preprint arXiv:2403.11144, 2024e.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposi-
tion transformers with auto-correlation for long-term series forecasting. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 22419–22430. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=ju_Uqw384Oq.

13

http://dx.doi.org/10.1109/itw.2015.7133169
https://openreview.net/forum?id=xl82CcbYaT
https://openreview.net/forum?id=zt53IDUR1U
https://openreview.net/forum?id=zt53IDUR1U
https://openreview.net/forum?id=MJksrOhurE
https://openreview.net/forum?id=MJksrOhurE
https://arxiv.org/abs/2407.13278
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://openreview.net/forum?id=ju_Uqw384Oq
https://openreview.net/forum?id=ju_Uqw384Oq


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview frequency principle/spectral bias in deep
learning. Communications on Applied Mathematics and Computation, pp. 1–38, 2024a.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. In
Proceedings of the Twelfth International Conference on Learning Representations, 2024b. URL
https://openreview.net/forum?id=bWcnvZ3qMb.

Kun Yi, Qi Zhang, Longbing Cao, Shoujin Wang, Guodong Long, Liang Hu, Hui He, Zhendong Niu,
Wei Fan, and Hui Xiong. A survey on deep learning based time series analysis with frequency
transformation. arXiv preprint arXiv:2302.02173, 2023a.

Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
Zhendong Niu. FourierGNN: Rethinking multivariate time series forecasting from a pure graph
perspective. In Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL
https://openreview.net/forum?id=bGs1qWQ1Fx.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing
Cao, and Zhendong Niu. Frequency-domain MLPs are more effective learners in time series
forecasting. In Thirty-seventh Conference on Neural Information Processing Systems, 2023c. URL
https://openreview.net/forum?id=iif9mGCTfy.

Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
frequency filters for time series forecasting. arXiv preprint arXiv:2411.01623, 2024.

Chengqing Yu, Fei Wang, Zezhi Shao, Tao Sun, Lin Wu, and Yongjun Xu. Dsformer: A double
sampling transformer for multivariate time series long-term prediction. In Proceedings of the 32nd
ACM international conference on information and knowledge management, pp. 3062–3072, 2023.

Guoqi Yu, Yaoming Li, Xiaoyu Guo, Dayu Wang, Zirui Liu, Shujun Wang, and Tong Yang. Lino:
Advancing recursive residual decomposition of linear and nonlinear patterns for robust time series
forecasting. arXiv preprint arXiv:2410.17159, 2024a.

Guoqi Yu, Jing Zou, Xiaowei Hu, Angelica I Aviles-Rivero, Jing Qin, and Shujun Wang. Revitalizing
multivariate time series forecasting: Learnable decomposition with inter-series dependencies
and intra-series variations modeling. In Proceedings of the Forty-first International Confer-
ence on Machine Learning (ICML), 2024b. URL https://openreview.net/forum?id=
87CYNyCGOo.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 11121–11128, 2023. URL https://ojs.aaai.org/index.php/AAAI/article/
view/26317/26089.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022. URL https://arxiv.org/abs/2207.01186.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=vSVLM2j9eie.

Lifan Zhao and Yanyan Shen. Rethinking channel dependence for multivariate time series fore-
casting: Learning from leading indicators. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=JiTVtCUOpS.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings of
the AAAI Conference on Artificial Intelligence, 35:11106–11115, 2022a. doi: 10.1609/aaai.v35i12.
17325. URL http://dx.doi.org/10.1609/aaai.v35i12.17325.

Tian Zhou, Ziqing MA, xue wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, and Rong Jin.
Film: Frequency improved legendre memory model for long-term time series forecasting. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 12677–12690. Curran Associates, Inc., 2022b.

14

https://openreview.net/forum?id=bWcnvZ3qMb
https://openreview.net/forum?id=bGs1qWQ1Fx
https://openreview.net/forum?id=iif9mGCTfy
https://openreview.net/forum?id=87CYNyCGOo
https://openreview.net/forum?id=87CYNyCGOo
https://ojs.aaai.org/index.php/AAAI/article/view/26317/26089
https://ojs.aaai.org/index.php/AAAI/article/view/26317/26089
https://arxiv.org/abs/2207.01186
https://openreview.net/forum?id=vSVLM2j9eie
https://openreview.net/forum?id=JiTVtCUOpS
http://dx.doi.org/10.1609/aaai.v35i12.17325


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proceedings of the 39th
International Conference on Machine Learning (ICML 2022), 2022c.

Yun Zhou, Liwen You, Wenzhen Zhu, and Panpan Xu. Improving time series forecasting with mixup
data augmentation. 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PROOF

This section is dedicated to proving Theorem 3.3 and Theorem 3.5.

A.1 IMPACT OF REVIN ON FREQUENCY SPECTRUM

RevIN (Kim et al., 2022; Liu et al., 2022c) normalizes inputs using sample-wise mean and variance,
then reverts scaling post-prediction to ensure consistent distributions, mitigating non-stationary effects
in time series.

Let the original time series be x(t) with length T . The series x̂(t) that processed by RevIN is given
by:

x̂(t) =
x(t)− µ

σ
, t = 0, 1, . . . , T − 1,

µ =
1

T

T−1∑
t=0

x(t), σ =

√√√√ 1

T

T−1∑
t=0

(x(t)− µ)2. (8)

The Fourier transform of x(t) and x̂(t) are:

X(f) =

T−1∑
t=0

x(t)e−i2πft/T−1, f = 0, 1, . . . , T − 1,

X̂(f) =

T−1∑
t=0

(
x(t)− µ

σ

)
e−i2πft/T−1

=
1

σ

T−1∑
t=0

x(t)e−i2πft/T−1 − µ

σ

T−1∑
t=0

e−i2πft/T−1. (9)

The spectral energy is computed as the squared magnitude of the Fourier transform. For x(t) and
x̂(t), we have:

EX(f) = |X(f)|2, EX̂(f) = |X̂(f)|2. (10)

When f = 0, the exponential term e−i2πft/T−1 = 1, so:

X̂(0) =
1

σ

T−1∑
t=0

x(t)− µT

σ

=
µT

σ
− µT

σ
= 0 (11)

Since µ
σ is a constant, we have:

µ

σ
·
T−1∑
t=0

e−i2πft/T−1 = 0, f = 1, 2 . . . , T − 1,

X̂(f) =
1

σ

T−1∑
t=0

x(t)e−i2πft/T−1 − µ

σ

T−1∑
t=0

e−i2πft/T−1

=
1

σ
X(f),

EX̂(f) =

(
1

σ

)2

|X(f)|2. (12)

This suggests that RevIN scales the spectral energy by σ2 but does not affect its relative
distribution except X̂(0) = 0. Thus, RevIN preserves the relative spectral energy distribution and
leaves the Mid-Frequency Spectrum Gap unresolved.
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A.2 IMPACT OF AMEO ON FREQUENCY SPECTRUM

Referring back to Definition 3.4, AMEO is defined as:

x̂(t) = x(t)− β

K

K−1∑
k=0

x̃(t+K − 1− k),

x̃(t) =

{
x(t− (K2 + 1)), if K

2 + 1 ≤ t < T + K
2 + 1

0, if 0 ≤ t < K
2 + 1 or T + K

2 + 1 ≤ t < T +K
(13)

The Fourier transform of x̂(t) is:

X̂(f) =

T−1∑
t=0

[
x(t)− β

K

K−1∑
k=0

x̃(t+K − 1− k)

]
e−i2πft/T−1

=

T−1∑
t=0

x(t)e−i2πft/T−1

︸ ︷︷ ︸
X(f)

− β

K

K−1∑
k=0

T−1∑
t=0

x̃(t+K − 1− k)e−i2πft/T−1

︸ ︷︷ ︸
Tk(f)

. (14)

For Tk(f), given FFT{x(t− a)} = X(f)e−i2πfa/T−1, we have:

Tk(f) =

T−1∑
t=0

x̃(t+K − 1− k)e−i2πft/T−1

=

T−1∑
t=0

x(t+
K

2
− k − 2)e−i2πft/T−1

= FFT{x(t+ K

2
− k − 2)}

= X(f)ei2πf(
K
2 −k−2)/T−1 (15)

So, we have the Fourier transform of x̂(t) and its spectral energy:

X̂(f) = X(f)− β

K

K−1∑
k=0

X(f)ei2πf(
K
2 −k−2)/T−1

= X(f)

1− β · 1

K

K−1∑
k=0

ei2πf(
K
2 −k−2)/T−1

︸ ︷︷ ︸
G(f)

 ,

EX̂(f) = |X(f)|2

1− β · 1

K

K−1∑
k=0

ei2πf(
K
2 −k−2)/T−1

︸ ︷︷ ︸
G(f)



2

= |X(f)|2(1− β ·G(f))2. (16)

In this paper, we set K = 25 (i.e.,T/4 + 1, T = 96), and the function graph of G(f) is shown in
Figure 7.

It is evident that G(f) is a gradually decay function, with its values decreasing from 1 to 0. This
ensures that EX̂(f) = |X(f)|2(1−β ·G(f))2, where, relative to EX , the low-frequency components
are attenuated, and the mid-frequency components are enhanced.
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Figure 7: The function G(f) is plotted for T = 96 and K = 25. Due to the symmetry of the FFT , we only
need to plot the values for f = 0, 1, . . . , 48.

B EXPERIMENTAL DETAILS

B.1 DATASET STATISTICS

We elaborate on the datasets employed in this study with the following details.

• ETT Dataset (Zhou et al., 2022a) comprises two sub-datasets: ETTh and ETTm, which
were collected from electricity transformers. Data were recorded at 15-minute and 1-hour
intervals for ETTm and ETTh, respectively, spanning from July 2016 to July 2018.

• Solar_Energy (Lai et al., 2018) records the solar power production of 137 PV plants in
2006, which are sampled every 10 minutes.

• Electricity Dataset2 encompasses the electricity consumption data of 321 customers,
recorded on an hourly basis, covering the period from 2012 to 2014.

• Traffic Dataset3 consists of hourly data from the California Department of Transportation.
It describes road occupancy rates measured by various sensors on San Francisco Bay area
freeways.

• Weather Dataset4 contains records of 21 meteorological indicators, updated every 10
minutes throughout the entire year of 2020.

We follow the same data processing and train-validation-test set split protocol used in iTrans-
former (Liu et al., 2024b), where the train, validation, and test datasets are strictly divided according
to chronological order to make sure there are no data leakage issues. We fix the input length as
T = 96 for all datasets, and the forecasting length F ∈ {96, 192, 336, 720}. The characteristics of
these datasets are shown in Table 4

Table 4: The Statistics of the eight datasets used in our experiments.
Datasets ETTh1&2 ETTm1&2 Traffic Electricity Solar_Energy Weather
Variates 7 7 862 321 137 21

Timesteps 17,420 69,680 17,544 26,304 52,560 52,696
Granularity 1 hour 5 min 1 hour 1 hour 10 min 10 min

B.2 IMPLEMENTATION DETAILS AND MODEL PARAMETERS

We trained our ReFocus model using the MSE loss function and employed the ADAM optimizer. For
evaluation purposes, we used two key performance metrics: the mean square error (MSE) and the
mean absolute error (MAE). We initialized the random seed as rs = 2024 and set the hyperparameter
K = 25-kernel size of the convolution kernel in AMEO. The dimension of the Layer is set to
D = 512 and Q = 128. The batch size bs = 32 for the Traffic dataset due to its large channel
will cause out of memory when employed with large batch size, and bs = 128 for others. The
learning rate is searched from lr ∈ {1e − 5, 1e − 4} except for the Traffic dataset (lr = 5e − 4).
The number of EKPB is searched from N ∈ {1, 2, 3, 4}, and hyperparameter β. which controls the
scale magnitude, from β ∈ {0.01, 0.1, 0.5, 1.0}. Our implementation was carried out in PyTorch and

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://pems.dot.ca.gov/
4https://www.bgc-jena.mpg.de/wetter/
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executed on a single NVIDIA GeForce RTX 4090 with 24G VRAM. To foster reproducibility, we
make our code, and training scripts available in this Anonymous Repo5.

All the compared multivariate forecasting baseline models that we reproduced are implemented based
on the benchmark of Time series Lab (Wang et al., 2024d) Repository 6, which is fairly built on
the configurations provided by each model’s original paper or official code. Those that have not yet
been included in Time series Lab are directly reproduced from their official code repositories. It is
worth noting that both the baselines used in this paper and our ReFocus have fixed a long-standing
bug. This bug was originally identified in Informer (Zhou et al., 2022a) (AAAI 2021 Best Paper)
and subsequently addressed by FITS (Xu et al., 2024b). For specific details about the bug and its
resolution, please refer to GitHub Repository7.

C FURTHER ANALYSIS OF THE PROPOSED KEY-FREQUENCY ENHANCED
TRAINING STRATEGY

Figure 8: We select the input−96−forecast−96 task on Traffic and visualize the validation loss and weight
of our ReFocus model. LEFT: Visualization of the Validation Loss during 100 training epochs with (KET) and
without KET (Raw). RIGHT: Visualization about the Weight (Obtained using the approach outlined in Analysis
of linear model (Toner & Darlow, 2024)) of the trained model. Two significant metrics for assessing the
information richness of the weight matrix-the information Entropy and the Sum of Eigenvalues-are calculated.
Both indicate higher quality with greater values.

To further investigate the impact of the proposed ‘Key-Frequency Enhanced Training (KET)
strategy’ on model training and forecasting ability, we visualize its training process regarding
Validation Loss and the model weights obtained after training in Figure 8. We also compute the
Entropy and the Sum of Eigenvalues of the weight matrix.

The results show that, in the absence of KET, the model quickly overfits around the 24th epoch,
exhibiting poor generalization. In contrast, with the aid of KET, the model consistently performs
better on the validation set, converging smoothly without overfitting, and the training process becomes
more stable. Additionally, weight visualization results indicate that the model trained with KET has
higher information Entropy and a greater Sum of Eigenvalues, suggesting that the trained model
possesses a stronger capacity for feature representation extraction. The predictive results further
validate this, as our KET improves the MSE from 0.414 to 0.380, achieving an 8.2% reduction.

D ABLATION STUDY OF DIFFERENT KEY-FREQUENCY PICKING STRATEGY

We conducted an ablation study on various key-frequency selection strategies. The evaluated methods
include Maximum-based, Minimum-based, and Softmax-based random sampling strategies. Our
experimental results in Table 5 reveal that purely relying on Maximum or Minimum-based strategies
may overlook certain critical Key-Frequency. In contrast, the random sampling strategy based on a
Softmax probabilistic distribution consistently achieved the best overall performance, particularly on

5https://anonymous.4open.science/r/ReFocus-2889/
6https://github.com/thuml/Time-Series-Library
7https://github.com/VEWOXIC/FITS
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Table 5: Ablation study of different Key-Frequency Picking strategies. ‘Softmax’ means using softmax function
to generate a probability distribution and picking shared Key-Frequency using this distribution. ‘Max’ means
always choosing the biggest energy. ‘Min’ means always choosing the smallest energy. We list the average
results. Full results are in Appendix K.4.

Picking Strategy
ETTm1 ETTm2 ETTh1 ETTh2 ECL Traffic Weather Solar_Energy

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Min 0.388 0.392 0.280 0.323 0.432 0.432 0.371 0.396 0.194 0.281 0.517 0.344 0.378 0.363 0.240 0.270
Max 0.392 0.395 0.279 0.322 0.437 0.435 0.374 0.398 0.172 0.265 0.422 0.273 0.351 0.343 0.230 0.260

Softmax 0.387 0.394 0.275 0.320 0.434 0.433 0.371 0.396 0.168 0.262 0.412 0.265 0.346 0.339 0.222 0.252

datasets with a larger number of channels and higher complexity—key challenges in multivariate
time series forecasting.

E COMPARISON OF EKPB AND OTHER INTER-SERIES DEPENDENCIES
MODELING BACKBONE

Table 6: Multivariate forecasting result of ‘Energy-based Key-Frequency Picking Block’ (EKPB) and other
inter-series dependencies modeling backbones. We use prediction lengths F ∈ {96, 192, 336, 720}, and input
length T = 96. The best results are in bold.

Model EKPB iTransformer TSMixer Crossformer FECAM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2

96 0.179 0.260 0.180 0.264 0.182 0.266 0.287 0.366 0.188 0.275
192 0.244 0.301 0.250 0.309 0.249 0.309 0.414 0.492 0.265 0.336
336 0.303 0.339 0.311 0.348 0.309 0.347 0.597 0.542 0.318 0.362
720 0.401 0.395 0.412 0.407 0.416 0.408 1.730 1.042 0.416 0.417

Avg 0.282 0.324 0.288 0.332 0.289 0.333 0.757 0.610 0.297 0.348

E
T

T
h2

96 0.288 0.338 0.297 0.349 0.319 0.361 0.745 0.584 0.298 0.345
192 0.374 0.391 0.380 0.400 0.402 0.410 0.877 0.656 0.377 0.397
336 0.414 0.426 0.428 0.432 0.444 0.446 1.043 0.731 0.425 0.434
720 0.421 0.440 0.427 0.445 0.441 0.450 1.104 0.763 0.432 0.450

Avg 0.374 0.399 0.383 0.407 0.401 0.417 0.942 0.684 0.383 0.407

W
ea

th
er

96 0.166 0.209 0.174 0.214 0.166 0.210 0.158 0.230 0.182 0.242
192 0.216 0.256 0.221 0.254 0.215 0.256 0.206 0.277 0.223 0.281
336 0.274 0.296 0.278 0.296 0.287 0.300 0.272 0.335 0.270 0.320
720 0.351 0.346 0.358 0.349 0.355 0.348 0.398 0.418 0.338 0.374

Avg 0.252 0.277 0.258 0.279 0.256 0.279 0.259 0.315 0.253 0.304

E
C

L

96 0.146 0.240 0.148 0.240 0.157 0.260 0.219 0.314 0.178 0.267
192 0.161 0.254 0.162 0.253 0.173 0.274 0.231 0.322 0.185 0.273
336 0.178 0.273 0.178 0.269 0.192 0.295 0.246 0.337 0.199 0.290
720 0.220 0.306 0.225 0.317 0.223 0.318 0.280 0.363 0.235 0.323

Avg 0.176 0.268 0.178 0.270 0.186 0.287 0.244 0.334 0.199 0.288

Table 6 presents the full results of ‘Energy-based Key-Frequency Picking Block (EKPB)’ and other
inter-series dependency modeling backbones on multivariate time series forecasting tasks. We com-
pared ‘Energy-based Key-Frequency Picking Block’ (EKPB) with several well-established backbones,
including iTransformer (Liu et al., 2024b), TSMixer (Chen et al., 2023), and Crossformer (Zhang &
Yan, 2023), which have demonstrated exceptional performance in modeling inter-series dependen-
cies. Additionally, we included FECAM (Jiang et al., 2023), a method also designed for modeling
cross-channel frequency-domain dependencies. The results presented in Table 6 demonstrate that our
EKPB outperforms in modeling inter-series dependencies across multiple datasets.

F ABLATION STUDY OF DIFFERENT FREQUENCY PROCESSING STRATEGY

In Table 7, the performance of AMEO on two prediction tasks across two datasets consistently
surpasses the results achieved by methods based on RevIN and Filters. Furthermore, while Filters and
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Table 7: Experiment result of high-pass filter, low-pass filter, RevIN, and AMEO using a simple linear
projection as the forecaster on Weather and ETTm1 dataset. We set the input length T = 96 and forecasting
length F ∈ {720, 96}.

Dataset Length
AMEO RevIN Low High None

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1
96 0.331 0.365 0.354 0.375 0.345 0.371 1.097 0.792 0.348 0.375

720 0.466 0.440 0.486 0.448 0.478 0.458 1.106 0.796 0.479 0.456

Weather
96 0.164 0.236 0.194 0.234 0.198 0.258 0.636 0.608 0.198 0.258

720 0.331 0.370 0.365 0.353 0.353 0.387 0.638 0.611 0.352 0.386

RevIN occasionally lead to degraded performance on certain datasets, AMEO consistently delivers
results that outperform the original methods. These findings further highlight the superiority of
AMEO over alternative approaches.

G VISUALIZATION OF MULTIVARIATE CORRELATIONS

In addition to the main results, we further provide visualizations of multivariate correlations on the
Traffic datasets, as shown in Figure 9 (LEFT). We calculate the value of the correlation map by:

x̄i,: =
1

T

T∑
t=1

xi,t, x̃i,t = xi,t − x̄i,:,

ρ̃ij =

∑T
t=1 x̃i,t x̃j,t√∑T

t=1 x̃
2
i,t

√∑T
t=1 x̃

2
j,t + ϵ

, ϵ = 1× 10−8,

corij =
exp (ρ̃ij)∑N
k=1 exp (ρ̃ik)

. (17)

These results demonstrate that ReFocus effectively captures inter-series dependencies. Moreover,
the encoder layer built based on the ‘Energy-based Frequency Picking Block’ (EKPB) exhibits
highly interpretable feature maps. Notably, in the shallow layers, the correlation maps of the learned
representation closely resemble the input sequence X , while in deeper layers, the representations pro-
gressively align with the target outputs Y . This suggests that ReFocus progressively transforms input
features toward task-relevant representations, enabling both effective modeling and interpretability.

Figure 9: Left: Visualization of multivariate correlations of raw time series (X , Y ) and the learned embedding.
O1 is the output embedding of the first encoder block, and OS the last. We use the Frobenius norm ∥A−B∥F =√∑

i,j(Aij −Bij)2 to quantify the similarity. The lower, the higher. Right: Memory Usage comparison of
ReFocus and iTransformer. We compare the memory consumption under varying numbers of channels (with
B = 4, T = 96, F = 720).
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H COMPLEXITY ANALYSIS OF REFOCUS

We analyze the complexity of the ReFocus Encoder concerning the Dimension of model D, number
of channels N , dimension of ‘Energy-based Frequency Picking Block’ (EKPB) Q. The complexity
of input MLP is O(N · D2) + O(N · D · Q). Since Q ≪ D (Q = 128, D = 512 in this work),
the dominant cost is O(N ·D2). During EKPB, the complexity of FFT is O(N · Q · logQ), and
so is the IFFT. Complexity of Energy computing, Softmax and Component Picking, each part is
O(N ·Q). Map the representation back to the original space: O(N ·D ·Q). So the overall complexity
is O(N · D · Q), which is negligible compared to O(N · D2). Each later FFN has O(N · D2)
complexity. So, the overall complexity of ReFocus Encoder is dominated by O(N ·D2), which is
Linear to input token number N .

On the other hand, a standard Transformer encoder has complexity O(N2 ·D) +O(N ·D2) (Self-
Attention + FFN). For large N , the Quadradic O(N2) term becomes the bottleneck, whereas our
ReFocus Block avoids this quadratic cost.

As shown in Figure 9 (RIGHT), we compare the memory consumption of ReFocus and iTransformer
under varying numbers of channels. ReFocus exhibits high efficiency, achieving SOTA performance
with significantly reduced memory usage and computational cost.

Table 8: Model efficiency analysis. We evaluated the parameter count, and the inference time (average of
5 runs on a single NVIDIA 4090 24GB GPU) with batch_size = 1 on ECL dataset. We set the dimension
of layer dim ∈ {256, 512}, and the number of network layers N = 2. The task is input-96-forecast-720. *
means ‘former.’ Para means ‘Parameter count(M).’ Time means ‘inference time(ms).’

Dim EKPB Cross* iTrans* TSMixer FECAM

Param Time Para Time Para Time Para Time Para Time

256 0.29 68.91 0.93 98.37 1.27 192.12 13.66 432.40 1.39 205.66
512 0.97 84.54 1.78 118.29 4.63 249.60 43.04 507.54 5.14 277.43

Additionally, when comparing the number of parameters and inference time during prediction under
identical configurations on the ECL dataset, our EKPB method still outperforms other inter-series
dependencies modeling baselines by a significant margin, as in Table 8.

I SENSITIVITY OF HYPERPARAMETERS

Table 9: Sensitivity to mixing coefficient in KET (α). Since we don’t know in advance which two
channels share the same frequency information and their correlation intensity, in our work, we choose
to use α sampled from a Normal Distribution to simulate such correlation. Here, we design three
ablation methods: w/o means α = 0, Normal is our default design, and Constant denotes α = 1.

Dataset w/o Normal Constant

ETTm2 0.402/0.396 0.395/0.392 0.399/0.394
Weather 0.350/0.346 0.344/0.343 0.349/0.346

Table 10: Sensitivity to augmentation intensity (β) in AMEO.

Dataset 0.0 0.2 0.4 0.6 0.8 1.0

ETTm2 0.398 0.397 0.397 0.397 0.397 0.396
Weather 0.349 0.348 0.346 0.346 0.347 0.348

We studied the sensitivity of ReFocus to four major hyperparameters: the mixing coefficient in KET
(α, Table 9), the augmentation intensity parameter (β, Table 10), the kernel size (K, Table 11) in
AMEO, and the number of encoder layers (N , Table 12). Results of MSE on ETTm2 and Weather
datasets are reported.
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Table 11: Sensitivity to kernel size (K) in AMEO.

Dataset 7 15 25 51 75

ETTm2 0.398 0.399 0.396 0.397 0.397
Weather 0.346 0.346 0.346 0.349 0.349

Table 12: Sensitivity to the number of encoder layers (N ).

Dataset 1 2 3 4 5

ETTm2 0.396 0.397 0.397 0.398 0.398
Weather 0.347 0.346 0.348 0.344 0.348

J EXTENDED DISCUSSION AND EVALUATION

J.1 BROADER DISCUSSION ON THE MID-FREQUENCY GAP

Although we only demonstrated the mid-frequency gap on energy, traffic, and weather benchmarks,
this phenomenon is well-documented in many other domains. In econometrics, financial time series
exhibit spectra dominated by very low frequencies with a mid-band “valley” that simple filters
cannot remedy (Stock & Watson, 2002; Granger & Newbold, 1974). In biomedical signals such as
EEG, negligible mid-frequency energy in resting-state recordings is commonly reported (Chatfield
& Xing, 2019; Niedermeyer & da Silva, 2005). Similar patterns were also observed in human
activity recognition (HAR) signals, where energy is concentrated in low-frequency bands while the
mid-frequency region remains nearly empty (Anguita et al., 2013; Lara & Labrador, 2012).

To validate the broader applicability of ReFocus, we extended experiments to classification tasks in
Medical time series and HAR. Following Medformer (Wang et al., 2024c), we evaluate on APAVA
(EEG dataset) and UCI-HAR benchmarks, both known to exhibit mid-frequency gaps. Baselines
include Medformer (Wang et al., 2024c), iTransformer (Liu et al., 2024b), and PatchTST (Nie et al.,
2023), using Accuracy and F1-score as metrics. Results in Table 13 confirm the effectiveness of
ReFocus across these tasks.

Table 13: Classification results on APAVA and UCI-HAR datasets.

Dataset Metric ReFocus (Ours) Medformer iTransformer PatchTST

APAVA Accuracy 82.61 78.74 74.55 67.03
F1-score 81.88 76.31 72.30 55.97

UCI-HAR Accuracy 93.17 91.65 92.41 87.67
F1-score 93.27 91.61 92.39 88.02

J.2 SHORT-TERM TIME SERIES FORECASTING

We conducted experiments on the M4 benchmark to test the generalizability of ReFocus on short-
term time series forecasting. Following the protocol of TimesNet (Wu et al., 2023), we compare
against TimesNet (Wu et al., 2023), PatchTST (Nie et al., 2023), DLinear (Zeng et al., 2023), and
Autoformer (Wu et al., 2021). Performance is reported with SMAPE, MASE, and OWA (lower
is better). As shown in Table 14, ReFocus consistently achieves the best overall results across
yearly, quarterly, and monthly tasks, further affirming its robustness in modeling complex temporal
variations.

These extended evaluations demonstrate the broad applicability and robustness of our approach
beyond the original long-term time series forecasting tasks.
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Table 14: Forecasting results on the M4 dataset. Lower SMAPE/MASE/OWA is better.

Category Metric ReFocus (Ours) TimesNet PatchTST DLinear Autoformer

Yearly
SMAPE 13.201 13.387 16.463 16.965 13.974
MASE 2.912 2.996 3.967 4.283 3.134
OWA 0.778 0.786 1.003 1.058 0.822

Quarterly
SMAPE 9.964 10.100 10.644 12.145 11.338
MASE 1.162 1.182 1.278 1.520 1.365
OWA 0.873 0.890 0.949 1.106 1.012

Monthly
SMAPE 12.541 12.670 13.399 13.514 13.958
MASE 0.914 0.933 1.031 1.037 1.103
OWA 0.862 0.878 0.949 0.956 1.002

K FULL RESULTS

The full experiment results are provided in the following section due to the space limitation of the
main text.

K.1 FULL MULTIVARIATE FORECASTING RESULTS

Table 15 contains the detailed results of Ten baselines and our ReFocus on eight well-acknowledged
forecasting benchmarks. ReFocus consistently achieves the best overall performance across all
datasets, especially in tasks with a large number of channels, such as the Solar_Energy dataset
(137 channels), ECL dataset (321 channels), and Traffic dataset (862 channels). It obtains the best
performance in terms of MSE: 34 out of 40 tasks, and MAE: 36 out of 40 tasks. These results
demonstrate the outstanding performance of ReFocus in multivariate time series forecasting tasks.

K.2 FULL RESULTS OF ABLATION ON AMEO AND KET

Table 16 presents the full results of the ablation study on ‘Adaptive Mid-Frequency Energy Optimizer
(AMEO)’ and ‘Key-Frequency Enhanced Training (KET)’. KET and AMEO contribute significantly
to the model’s performance, each providing substantial improvements. Moreover, their combination
further enhances the model, achieving peak performance. These results provide strong evidence of
the effectiveness of both AMEO and KET.

K.3 FULL RESULTS OF FURTHER ABLATION STUDY ON KET

Table 17 exhibits the full results of a further ablation study on the ‘Key-Frequency Enhanced Training
(KET)’ strategy. Introducing Pseudo samples—obtained by randomly incorporating spectral infor-
mation from other channels into the current channel—generally leads to performance improvement.
However, on more complex datasets, it results in performance degradation. In contrast, alternating
training between Real and Pseudo samples (Our KET) overcomes this issue, yielding a further and
consistent enhancement in performance.

K.4 FULL RESULTS OF ABLATION STUDY OF DIFFERENT KEY-FREQUENCY PICKING
STRATEGIES

Table 18 illustrates the complete results of the ablation study on various Key-Frequency Picking
strategies. Notably, our Softmax-based random sampling strategy consistently achieves the best
overall performance, particularly on more complex datasets.
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Table 15: Multivariate long-term forecasting result comparison. We use prediction lengths F ∈
{96, 192, 336, 720}, and input length T = 96. The best results are in bold, and the second best are underlined.

Model ReFocus FilterNet iTransformer ModernTCN FITS PatchTST Crossformer TimesNet TSMixer DLinear FreTS
(Ours) (2024) (2024b) (2024) (2024b) (2023) (2023) (2023) (2023) (2023) (2023c)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.321 0.360 0.321 0.361 0.334 0.368 0.317 0.362 0.355 0.375 0.329 0.367 0.404 0.426 0.338 0.375 0.323 0.363 0.345 0.372 0.335 0.372
192 0.365 0.379 0.367 0.387 0.377 0.391 0.366 0.389 0.392 0.393 0.367 0.385 0.450 0.451 0.374 0.387 0.376 0.392 0.380 0.389 0.388 0.401
336 0.398 0.400 0.401 0.409 0.426 0.420 0.407 0.412 0.424 0.414 0.399 0.410 0.532 0.515 0.410 0.411 0.407 0.413 0.413 0.413 0.421 0.426
720 0.463 0.437 0.477 0.448 0.491 0.459 0.466 0.443 0.487 0.449 0.454 0.439 0.666 0.589 0.478 0.450 0.485 0.459 0.474 0.453 0.486 0.465

Avg 0.387 0.394 0.392 0.401 0.407 0.410 0.389 0.402 0.415 0.408 0.387 0.400 0.513 0.496 0.400 0.406 0.398 0.407 0.403 0.407 0.408 0.416

E
T

T
m

2

96 0.173 0.255 0.175 0.258 0.180 0.264 0.173 0.255 0.183 0.266 0.175 0.259 0.287 0.366 0.187 0.267 0.182 0.266 0.193 0.292 0.189 0.277
192 0.237 0.297 0.240 0.301 0.250 0.309 0.235 0.296 0.247 0.305 0.241 0.302 0.414 0.492 0.249 0.309 0.249 0.309 0.284 0.362 0.258 0.326
336 0.295 0.334 0.311 0.347 0.311 0.348 0.308 0.344 0.307 0.342 0.305 0.343 0.597 0.542 0.321 0.351 0.309 0.347 0.369 0.427 0.343 0.390
720 0.395 0.392 0.414 0.405 0.412 0.407 0.398 0.394 0.407 0.399 0.402 0.400 1.730 1.042 0.408 0.403 0.416 0.408 0.554 0.522 0.495 0.480

Avg 0.275 0.320 0.285 0.328 0.288 0.332 0.279 0.322 0.286 0.328 0.281 0.326 0.757 0.610 0.291 0.333 0.289 0.333 0.350 0.401 0.321 0.368

E
T

T
h1

96 0.376 0.394 0.382 0.402 0.386 0.405 0.386 0.394 0.386 0.396 0.414 0.419 0.423 0.448 0.384 0.402 0.401 0.412 0.386 0.400 0.395 0.407
192 0.428 0.422 0.430 0.429 0.441 0.436 0.436 0.423 0.436 0.423 0.460 0.445 0.471 0.474 0.436 0.429 0.452 0.442 0.437 0.432 0.448 0.440
336 0.462 0.442 0.472 0.451 0.487 0.458 0.479 0.445 0.478 0.444 0.501 0.466 0.570 0.546 0.491 0.469 0.492 0.463 0.481 0.459 0.499 0.472
720 0.470 0.474 0.481 0.473 0.503 0.491 0.481 0.469 0.502 0.495 0.500 0.488 0.653 0.621 0.521 0.500 0.507 0.490 0.519 0.516 0.558 0.532

Avg 0.434 0.433 0.441 0.439 0.454 0.447 0.446 0.433 0.451 0.440 0.469 0.454 0.529 0.522 0.458 0.450 0.463 0.452 0.456 0.452 0.475 0.463

E
T

T
h2

96 0.288 0.337 0.293 0.343 0.297 0.349 0.292 0.340 0.295 0.350 0.302 0.348 0.745 0.584 0.340 0.374 0.319 0.361 0.333 0.387 0.309 0.364
192 0.371 0.390 0.374 0.396 0.380 0.400 0.377 0.395 0.381 0.396 0.388 0.400 0.877 0.656 0.402 0.414 0.402 0.410 0.477 0.476 0.395 0.425
336 0.409 0.421 0.417 0.430 0.428 0.432 0.424 0.434 0.426 0.438 0.426 0.433 1.043 0.731 0.452 0.452 0.444 0.446 0.594 0.541 0.462 0.467
720 0.417 0.436 0.449 0.460 0.427 0.445 0.433 0.448 0.431 0.446 0.431 0.446 1.104 0.763 0.462 0.468 0.441 0.450 0.831 0.657 0.721 0.604

Avg 0.371 0.396 0.383 0.407 0.383 0.407 0.382 0.404 0.383 0.408 0.387 0.407 0.942 0.684 0.414 0.427 0.401 0.417 0.559 0.515 0.472 0.465

E
C

L

96 0.143 0.238 0.147 0.245 0.148 0.240 0.173 0.260 0.200 0.278 0.181 0.270 0.219 0.314 0.168 0.272 0.157 0.260 0.197 0.282 0.176 0.258
192 0.158 0.252 0.160 0.250 0.162 0.253 0.181 0.267 0.200 0.280 0.188 0.274 0.231 0.322 0.184 0.289 0.173 0.274 0.196 0.285 0.175 0.262
336 0.172 0.267 0.173 0.267 0.178 0.269 0.196 0.283 0.214 0.295 0.204 0.293 0.246 0.337 0.198 0.300 0.192 0.295 0.209 0.301 0.185 0.278
720 0.198 0.290 0.210 0.309 0.225 0.317 0.238 0.316 0.255 0.327 0.246 0.324 0.280 0.363 0.220 0.320 0.223 0.318 0.245 0.333 0.220 0.315

Avg 0.168 0.262 0.173 0.268 0.178 0.270 0.197 0.282 0.217 0.295 0.205 0.290 0.244 0.334 0.192 0.295 0.186 0.287 0.212 0.300 0.189 0.278

Tr
af

fic

96 0.380 0.248 0.430 0.294 0.395 0.268 0.550 0.355 0.651 0.391 0.462 0.295 0.522 0.290 0.593 0.321 0.493 0.336 0.650 0.396 0.593 0.378
192 0.403 0.259 0.452 0.307 0.417 0.276 0.527 0.337 0.602 0.363 0.466 0.296 0.530 0.293 0.617 0.336 0.497 0.351 0.598 0.370 0.595 0.377
336 0.419 0.267 0.470 0.316 0.433 0.283 0.537 0.342 0.609 0.366 0.482 0.304 0.558 0.305 0.629 0.336 0.528 0.361 0.605 0.373 0.609 0.385
720 0.446 0.287 0.498 0.323 0.467 0.302 0.570 0.359 0.647 0.385 0.514 0.322 0.589 0.328 0.640 0.350 0.569 0.380 0.645 0.394 0.673 0.418

Avg 0.412 0.265 0.463 0.310 0.428 0.282 0.546 0.348 0.627 0.376 0.481 0.304 0.550 0.304 0.620 0.336 0.522 0.357 0.625 0.383 0.618 0.390

W
ea

th
er

96 0.160 0.202 0.162 0.207 0.174 0.214 0.165 0.203 0.166 0.213 0.177 0.218 0.158 0.230 0.172 0.220 0.166 0.210 0.196 0.255 0.174 0.208
192 0.211 0.248 0.210 0.250 0.221 0.254 0.212 0.247 0.213 0.254 0.225 0.259 0.206 0.277 0.219 0.261 0.215 0.256 0.237 0.296 0.219 0.250
336 0.266 0.290 0.265 0.290 0.278 0.296 0.266 0.293 0.269 0.294 0.278 0.297 0.272 0.335 0.280 0.306 0.287 0.300 0.283 0.335 0.273 0.290
720 0.344 0.343 0.342 0.340 0.358 0.349 0.344 0.343 0.346 0.343 0.354 0.348 0.398 0.418 0.365 0.359 0.355 0.348 0.345 0.381 0.334 0.332

Avg 0.245 0.271 0.245 0.272 0.258 0.279 0.247 0.272 0.249 0.276 0.259 0.281 0.259 0.315 0.259 0.287 0.256 0.279 0.265 0.317 0.250 0.270

So
la

r_
E

ne
rg

y 96 0.182 0.219 0.206 0.251 0.203 0.237 0.206 0.264 0.371 0.417 0.234 0.286 0.310 0.331 0.250 0.292 0.221 0.275 0.290 0.378 0.217 0.278
192 0.222 0.249 0.242 0.279 0.233 0.261 0.246 0.285 0.377 0.398 0.267 0.310 0.734 0.725 0.296 0.318 0.268 0.306 0.320 0.398 0.256 0.302
336 0.240 0.268 0.255 0.291 0.248 0.273 0.260 0.296 0.416 0.412 0.290 0.315 0.750 0.735 0.319 0.330 0.272 0.294 0.353 0.415 0.263 0.307
720 0.242 0.271 0.267 0.301 0.249 0.275 0.264 0.298 0.414 0.400 0.289 0.317 0.769 0.765 0.338 0.337 0.281 0.313 0.356 0.413 0.256 0.297

Avg 0.222 0.252 0.243 0.283 0.233 0.262 0.244 0.286 0.395 0.407 0.270 0.307 0.641 0.639 0.301 0.319 0.260 0.297 0.330 0.401 0.248 0.296

1st Count 34 36 2 2 0 0 1 2 0 0 1 0 2 0 0 0 0 0 0 0 0 0
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Table 16: Full result of ablation study on the ‘Adaptive Mid-Frequency Energy Optimizer (AMEO)’ and the
‘Key-Frequency Enhanced Training (KET)’ strategy. We use prediction lengths F ∈ {96, 192, 336, 720}, and
input length T = 96. The best results are in bold.

Model Both (ReFocus) + AMEO + KET None

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1
96 0.321 0.360 0.331 0.368 0.331 0.363 0.339 0.367
192 0.365 0.379 0.377 0.390 0.373 0.382 0.381 0.391
336 0.398 0.400 0.403 0.407 0.403 0.402 0.414 0.413
720 0.463 0.437 0.462 0.441 0.467 0.438 0.468 0.442

Avg 0.387 0.394 0.393 0.402 0.394 0.396 0.401 0.403

E
T

T
m

2

96 0.173 0.255 0.179 0.262 0.178 0.260 0.180 0.262
192 0.237 0.297 0.244 0.304 0.241 0.299 0.245 0.302
336 0.295 0.334 0.304 0.340 0.300 0.337 0.304 0.340
720 0.395 0.392 0.402 0.396 0.398 0.393 0.404 0.396

Avg 0.275 0.320 0.282 0.326 0.279 0.322 0.283 0.325

E
T

T
h1

96 0.376 0.394 0.382 0.398 0.378 0.395 0.383 0.395
192 0.428 0.422 0.433 0.425 0.432 0.423 0.432 0.425
336 0.462 0.442 0.468 0.450 0.469 0.447 0.469 0.449
720 0.470 0.474 0.489 0.486 0.470 0.474 0.474 0.480

Avg 0.434 0.433 0.443 0.440 0.437 0.435 0.440 0.437

E
T

T
h2

96 0.288 0.337 0.285 0.336 0.289 0.339 0.288 0.338
192 0.371 0.390 0.375 0.391 0.374 0.390 0.374 0.391
336 0.409 0.421 0.405 0.420 0.412 0.425 0.419 0.428
720 0.417 0.436 0.424 0.441 0.418 0.438 0.423 0.441

Avg 0.371 0.396 0.372 0.397 0.373 0.398 0.376 0.400

E
C

L

96 0.143 0.238 0.146 0.241 0.145 0.239 0.147 0.242
192 0.158 0.252 0.165 0.259 0.161 0.253 0.162 0.256
336 0.172 0.267 0.177 0.272 0.176 0.269 0.180 0.274
720 0.198 0.290 0.206 0.297 0.203 0.292 0.221 0.307

Avg 0.168 0.262 0.174 0.267 0.171 0.263 0.178 0.270

Tr
af

fic

96 0.380 0.248 0.414 0.274 0.380 0.250 0.414 0.278
192 0.403 0.259 0.439 0.287 0.404 0.262 0.437 0.284
336 0.419 0.267 0.449 0.288 0.421 0.270 0.449 0.288
720 0.446 0.287 0.506 0.307 0.450 0.290 0.495 0.307

Avg 0.412 0.265 0.452 0.289 0.414 0.268 0.449 0.289

W
ea

th
er

96 0.160 0.202 0.165 0.209 0.164 0.207 0.164 0.209
192 0.211 0.248 0.210 0.252 0.215 0.252 0.216 0.256
336 0.266 0.290 0.267 0.291 0.273 0.295 0.275 0.299
720 0.344 0.343 0.350 0.346 0.349 0.345 0.353 0.349

Avg 0.245 0.271 0.248 0.275 0.250 0.275 0.252 0.278

So
la

r_
E

ne
rg

y 96 0.182 0.219 0.197 0.226 0.192 0.230 0.192 0.234
192 0.222 0.249 0.236 0.269 0.231 0.255 0.235 0.265
336 0.240 0.268 0.246 0.276 0.244 0.271 0.249 0.279
720 0.242 0.271 0.245 0.274 0.245 0.274 0.250 0.278

Avg 0.222 0.252 0.231 0.261 0.228 0.258 0.232 0.264
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Table 17: Full result of further ablation study on the ‘Key-Frequency Enhanced Training (KET)’ strategy. We
use prediction lengths F ∈ {96, 192, 336, 720}, and input length T = 96. The best results are in bold.

Model Both (KET) Pseudo Real

Metric MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.331 0.363 0.331 0.362 0.339 0.367
192 0.373 0.382 0.375 0.384 0.381 0.391
336 0.403 0.402 0.406 0.405 0.414 0.413
720 0.467 0.438 0.471 0.440 0.468 0.442

Avg 0.394 0.396 0.396 0.398 0.401 0.403

E
T

T
m

2

96 0.178 0.260 0.178 0.260 0.180 0.262
192 0.241 0.299 0.242 0.299 0.245 0.302
336 0.300 0.337 0.301 0.339 0.304 0.340
720 0.398 0.393 0.399 0.393 0.404 0.396

Avg 0.279 0.322 0.280 0.323 0.283 0.325

E
T

T
h1

96 0.378 0.395 0.382 0.394 0.383 0.395
192 0.432 0.423 0.429 0.423 0.432 0.425
336 0.469 0.447 0.467 0.445 0.469 0.449
720 0.470 0.474 0.467 0.472 0.474 0.480

Avg 0.437 0.435 0.436 0.434 0.440 0.437

E
T

T
h2

96 0.289 0.339 0.288 0.338 0.288 0.338
192 0.374 0.390 0.370 0.390 0.374 0.391
336 0.412 0.425 0.412 0.423 0.419 0.428
720 0.418 0.438 0.418 0.437 0.423 0.441

Avg 0.373 0.398 0.372 0.397 0.376 0.400

E
C

L

96 0.145 0.239 0.147 0.241 0.147 0.242
192 0.161 0.253 0.165 0.257 0.162 0.256
336 0.176 0.269 0.179 0.271 0.180 0.274
720 0.203 0.292 0.209 0.296 0.221 0.307

Avg 0.171 0.263 0.175 0.266 0.178 0.270

Tr
af

fic

96 0.380 0.250 0.383 0.254 0.414 0.278
192 0.404 0.262 0.406 0.265 0.437 0.284
336 0.421 0.270 0.424 0.272 0.449 0.288
720 0.450 0.290 0.454 0.293 0.495 0.307

Avg 0.414 0.268 0.417 0.271 0.449 0.289

W
ea

th
er

96 0.164 0.207 0.166 0.207 0.164 0.209
192 0.215 0.252 0.216 0.255 0.216 0.256
336 0.273 0.295 0.275 0.297 0.275 0.299
720 0.349 0.345 0.352 0.346 0.353 0.347

Avg 0.250 0.275 0.253 0.276 0.252 0.278

So
la

r_
E

ne
rg

y 96 0.192 0.230 0.235 0.263 0.192 0.234
192 0.231 0.255 0.290 0.303 0.235 0.265
336 0.244 0.271 0.287 0.301 0.249 0.279
720 0.245 0.274 0.296 0.308 0.250 0.278

Avg 0.228 0.258 0.277 0.294 0.232 0.264
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Table 18: Full result about ablation study of different Key-Frequency Picking strategies. We use prediction
lengths F ∈ {96, 192, 336, 720}, and input length T = 96. The best results are in bold.

Model Softmax Max Min

Metric MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.321 0.360 0.331 0.360 0.321 0.357
192 0.365 0.379 0.370 0.380 0.366 0.377
336 0.398 0.400 0.401 0.402 0.400 0.399
720 0.463 0.437 0.467 0.438 0.464 0.436

Avg 0.387 0.394 0.392 0.395 0.388 0.392
E

T
T

m
2

96 0.173 0.255 0.175 0.258 0.177 0.259
192 0.237 0.297 0.240 0.300 0.242 0.300
336 0.295 0.334 0.303 0.338 0.302 0.338
720 0.395 0.392 0.396 0.392 0.398 0.394

Avg 0.275 0.320 0.279 0.322 0.280 0.323

E
T

T
h1

96 0.376 0.394 0.380 0.396 0.372 0.391
192 0.428 0.422 0.430 0.423 0.426 0.423
336 0.462 0.442 0.464 0.444 0.464 0.443
720 0.470 0.474 0.473 0.478 0.467 0.472

Avg 0.434 0.433 0.437 0.435 0.432 0.432

E
T

T
h2

96 0.288 0.337 0.289 0.340 0.287 0.337
192 0.371 0.390 0.373 0.391 0.366 0.388
336 0.409 0.421 0.414 0.425 0.410 0.423
720 0.417 0.436 0.418 0.437 0.419 0.437

Avg 0.371 0.396 0.374 0.398 0.371 0.396

E
C

L

96 0.143 0.238 0.145 0.241 0.165 0.256
192 0.158 0.252 0.162 0.256 0.176 0.267
336 0.172 0.267 0.175 0.269 0.192 0.283
720 0.198 0.290 0.204 0.293 0.242 0.318

Avg 0.168 0.262 0.172 0.265 0.194 0.281

Tr
af

fic

96 0.380 0.248 0.389 0.253 0.504 0.341
192 0.403 0.259 0.413 0.268 0.505 0.338
336 0.419 0.267 0.427 0.276 0.521 0.351
720 0.446 0.287 0.457 0.296 0.536 0.347

Avg 0.412 0.265 0.422 0.273 0.517 0.344

W
ea

th
er

96 0.160 0.202 0.166 0.207 0.164 0.205
192 0.211 0.248 0.212 0.248 0.212 0.249
336 0.266 0.290 0.268 0.291 0.269 0.290
720 0.344 0.343 0.348 0.344 0.349 0.344

Avg 0.245 0.271 0.249 0.273 0.249 0.272

So
la

r_
E

ne
rg

y 96 0.182 0.219 0.189 0.228 0.208 0.247
192 0.222 0.249 0.236 0.262 0.242 0.270
336 0.240 0.268 0.245 0.273 0.256 0.283
720 0.242 0.271 0.248 0.276 0.253 0.280

Avg 0.222 0.252 0.230 0.260 0.240 0.270
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L LIMITATIONS AND FUTURE WORKS

Limitations Despite ReFocus demonstrating significant improvements in multivariate time series
forecasting by addressing the mid-frequency spectrum gap and exploiting shared key-frequency
information, several limitations remain. First, our experiments primarily rely on benchmark datasets
(Traffic, ECL, Solar), which may not capture the full variability of more diverse, high-frequency, or
non-stationary applications. Additionally, further analysis is needed to understand the robustness of
our approach under abrupt distribution shifts or extreme noise conditions.

Future Works Future work should extend the ReFocus framework to a broader range of application
domains, such as financial, medical, and human activity time series, to verify its generalizability.
We plan to explore adaptive mechanisms to dynamically tune module parameters and mitigate
sensitivity issues. Moreover, investigating lightweight or hybrid architectures could improve real-time
forecasting efficiency. Incorporating external contextual information may further enrich inter-channel
dependency modeling. All these will help refine the overall design and improve resilience against
challenging, non-stationary environments.

M SOCIETAL IMPACTS

The development of the ReFocus forecaster has the potential to significantly benefit various fields,
such as finance and traffic, by improving the accuracy and efficiency of time series forecasting,
thereby enhancing decision-making processes. However, there are potential negative societal impacts
to consider. Privacy concerns may arise from the use of personal data, especially in healthcare
and finance, leading to possible violations. Additionally, biases in the data could result in unfair
outcomes, perpetuating existing disparities. Over-reliance on automated forecasting models might
lead to the neglect of important context, causing adverse outcomes. To mitigate these risks, robust
data protection protocols should be implemented, and continuous monitoring for bias is necessary to
ensure fairness. Developing ethical use policies and maintaining human oversight in decision-making
can further ensure that the deployment of ReFocus maximizes its positive societal impact while
minimizing potential negative consequences.
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