Bayesian Dynamic Causal Discovery

*

Alexander Tong':?* Lazar Atanackovic>**T Jason Hartford"> Yoshua Bengio'?
Mila - The Quebec Al Institute ~ 2Université de Montréal ~ 2University of Toronto ~ *Vector Institute

Abstract

Learning the causal structure of observable variables is a central focus for scientific
discovery. Bayesian causal discovery methods tackle this problem by learning a
posterior over the set of admissible graphs that are equally likely given our priors
and observations. Existing methods primarily consider observations from static
systems and assume the underlying causal structure takes the form of a directed
acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate
the trajectories of individual variables, this acyclicity assumption fails unless we
account for time. We treat causal discovery in the unrolled causal graph as a
problem of sparse identification of a dynamical system. This imposes a natural
temporal causal order between variables and captures cyclic feedback loops through
time. Under this lens, we propose a new framework for Bayesian causal discovery
for dynamical systems and present a novel generative flow network architecture
(Dyn-GFN) tailored for this task. Dyn-GFN imposes an edge-wise sparse prior to
sequentially build a k-sparse causal graph. Through evaluation on temporal data,
our results show that the posterior learned with Dyn-GFN yields improved Bayes
coverage of admissible causal structures relative to state of the art Bayesian causal
discovery methods.

1 Introduction

The first step to understanding a complex system is to understand the dependencies between its
variables. Because of this, accurately modelling the causal dependencies between observable variables
is a focal point for progress in scientific discovery. Causal discovery methods aim to automate this
task by learning the graph that relates these variables (Glymour et al., 2019; Pearl, 2009; Peters
et al., 2017). Most methods have focused on fully observed static systems where the true graph is
assumed to be directed and acyclic (i.e. the graph is a “DAG”), which enables structure learning (up
to Markov equivalence classes) because conditional independences among variables imply missing
edges in the causal graph. However, many natural systems are dynamic in nature with complex time
varying behavior and feedback loops that induce cyclicity in the time-collapsed graph (also called the
summary graph in some work) (Peters et al., 2022). Hence, considering only static data rules out
most causal structure learning approaches.

Time imposes a natural causal order on a system: if y is a cause of z, then the effect on must
precede the observed effects on y (Granger, 1969). We aim to leverage time-series observations to
identify the causal structure between variables that define the data generating process of a dynamical
system. Dynamical system models are a natural tool of choice when trying to capture dependencies
between variables with time-series data. For example, cellular response to environmental stimuli or
genetic perturbations can be modelled as a complex time-varying dynamical system (Hashimoto et al.,
2016; Aliee et al., 2021). From a dynamical systems perspective, one can model both causal structure

*Equal Contribution
"Work done during an internship at Mila.

A causal view on dynamical systems workshop at the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).

between variables as well as their time-dependent system response with the drift function (Mooij
et al., 2013; Peters et al., 2022), and hence we can treat causal discovery as a problem of identification
of a dynamical system. However, jointly identifying the sparse causal structure between variables
and their respective dynamic relationships is a persisting challenge.

There is prior work on the problem of jointly identifying causal structure G and a set of parameters
that define the functional relationships between the variables (Lorch et al., 2021; Cundy et al., 2021;
Annadani et al., 2021; Deleu et al., 2022), but the majority of existing methods typically assume
fully observed systems in the infinite data setting. This is unrealistic in applications as in many
scientific settings acquiring a sufficient quantity of data with low-to-no measurement noise is costly,
time-consuming, and often impractical. Finite data, measurement noise, and correlated variables may
lead to a non-identifiable systems and high degree of uncertainty when inferring causal structure from
data. Capturing this uncertainty is critical for downstream scientific applications.

Bayesian causal discovery methods address this by modelling a posterior over equally admissible
directed acyclic graph (DAG) structures P(G|D) that explain the observational data (Lorch et al.,
2021; Cundy et al., 2021; Annadani et al., 2021; Deleu et al., 2022). Recently, application of
Generative Flow Networks (GFlowNets) have shown success for modelling P(G|D) (Deleu et al.,
2022). Since the distribution over admissible structures is discrete, GFlowNets are a natural choice
for this task. However, it remains restrictive to assume the underlying causal structure of the
observed system is a DAG as natural dynamic systems typically contain feedback loops. We leverage
GFlowNets for Bayesian causal discovery of dynamical systems and show a use-case of our framework
for causal discovery of gene regulatory networks (GRNs). Our main contributions are summarized as
follows:

* We develop a novel GFlowNet architecture tailored for modelling posteriors over temporal
causal graphs.

* We apply our Dyn-GFN framework for causal discovery of GRNs using single-cell RNA-
velocity and gene expression data.

* To test learning of Bayesian posteriors over structures we empirically evaluated Dyn-GFN
on synthetic and single-cell RNA-velocity data designed to induce highly multi-modal
posteriors over causal graphs.

While we show a specific use-case for discovery of GRNs, our framework is applicable to a broad
range of problems where a system is dynamic in nature and can be observed over time.

2 Related Work

Recently, there has been significant interest in fully differentiable Bayesian methods for causal dis-
covery in the static case. DIBS (Lorch et al., 2021), BCD-Nets (Cundy et al., 2021), VCN (Annadani
et al., 2021), and Bayes-GFN (Deleu et al., 2022) all attempt to learn a distribution over causal
models from a fully observed system. The key difference is in how these methods parameterize
the graph. DIBS is a particle variational inference method that uses two matrices U and V where
G = sigmoid(UTV) where the sigmoid is applied elementwise which is similar to graph autoen-
coders. BCD-Nets and DP-DAG use the Gumbal-Sinkhorn distribution to parameterize a permutation
and direct parameterization of a lower triangular matrix. VCN uses an autoregressive LSTM to gener-
ate the graph as this gets rid of the standard unimodal constraint of gaussian distributed parameters. In
small graphs, these methods can model the uncertainty over possible models (including over Markov
equivalence classes).

However, there has been comparatively little work towards Bayesian structure learning from dynamics.
Recent works in this direction based on NeuralODEs (Chen et al., 2018) propose a single explanatory
structure (Tank et al., 2021; Bellot & Branson, 2022; Aliee et al., 2021), but do not attempt to model
uncertainty over the explanatory structure. Motivated by gene regulatory networks, in this work our
goal is to model uncertainty over the explanatory graph for a dynamical system.

One dynamical system of interest is that of cells. In this work we are primarily interested in identifying
the underlying cell dynamics from data. A reasonable model for cell dynamics is as a stochastic
dynamical system with many, possibly unobserved, components. There are many data collection
models for gaining insight into this system from single-cell RNA-sequencing data. We will primarily

focus on RNA velocity type methods, where both = and an estimate of dx are available in each cell,
but note that there are other assumptions to infer dynamics and regulation such as pseudotime-based
methods (Saelens et al., 2019; Aliee et al., 2021), and optimal transport methods (Hashimoto et al.,
2016; Schiebinger et al., 2019; Tong et al., 2020). After learning a possible explanatory regulation,
this is used in downstream tasks, however, without a quantification of uncertainty it is unclear how
much we are able to trust conclusions drawn from these models. A better model of uncertainty is a
necessary component for more confident conclusions from this datatype inspiring Dyn-GFN.

3 Preliminaries

3.1 Bayesian Structure Discovery

We consider finite data D in R? sampled noisily from an underlying stochastic dynamical system

governed by a latent drift % = f(«) which has some sparsity pattern i.e. gﬁ’: ; # 0 for a small set

of variables, which can be parameterized by a graph G such that G;; = 1[3{, J # 0]. Furthermore,
we do not directly observe x, but rather observe y ~ x + ¢ where ¢ is independent noise. We would
like to model our posterior over explanatory graphs given the data Q(G|D). We assume a generative

model with the following factorization:

p(G,©,D) = p(G)p(©|G)p(D|G, ©) M

This factorization forms the basis of our inference proceedure.

3.2 Learning Gene Regulatory Networks from Single-cell Data

Single-cell transcriptomics has in interesting property in that from a single measurement we can
estimate both the current state x and the current velocity dz. Because mechanistically RNA undergoes
a splicing process, we can measure the quantities of both the unspliced (early) and spliced (late)
RNA in the cell. From these two quantities we can estimate the current RNA content for each
gene and the current transcription rate. There exist many models for denoising and interpreting this
data (La Manno et al., 2018; Bergen et al., 2019; Qiu et al., 2022). Furthermore, there exist more
elaborate measurement techniques to extract more accurate velocity estimates (Qiu et al., 2022).
However, while there are many works attempting to interpret the dynamics for understanding, there
are few works that view this datatype from a causal perspective.

Learning the underlying causal structure from data is one of the open problems in biology. There are
many works that attempt to learn the effect of a change in a gene, or the addition of a drug. These
works often build models that directly predict the outcome of an intervention. This may be useful for
certain applications, but often does not generalize well out of distribution. We would like to learn a
model of the underlying instantaneous dynamics that give rise to effects at longer time scales. This
approach has a number of advantages. (1) it is closer to the mechanistic model; it may be easier to
learn a model of the instantaneous dynamics rather than the dynamics over long time scales. (2) One
model can be trained and applied to data from many sources including RNA-velocity, Pseudotime,
Single-cell time series, and steady state perturbational data. (3) The instantaneous graph may be
significantly sparser (and therefore easier to learn) than the summary graph or the equilibrium graph.

3.3 Generative Flow Networks

GFlowNets are an approach for learning generative models over spaces of discrete objects (Bengio
et al., 2021, 2022). GFlowNets learn a stochastic policy Pr(7) to sequentially sample an object
x from a discrete space X. Here 7 = (s, $1,. . ., Sp) represents a full Markovian trajectory over
plausible discrete states, where s, is the terminating state (i.e. end of a trajectory) (Malkin et al.,
2022a). The GFlowNet is trained such that at convergence, sequential samples from the stochastic
policy over a trajectory, x ~ Pr(7), are equal in distribution to samples from the normalized reward

distribution P(z) = %'
x'e x

The GFlowNet policy can be trained by optimizing the Trajectory Balance Condition (Malkin et al.,
2022a) or the Detailed Balance Condition (Deleu et al., 2022). We evaluated both loss functions to
training the GFlowNet under our Bayesian causal discovery formulation.

Trajectory Balance Loss: For a complete trajectory 7, the trajectory balance (TB) loss is defined as:

@)

Zy T, Pr(silsio13))2
R(z) [Ty Pp(si-1lsizv))

where Pr(s;|si—1;%), Pg(si—1]s:;9), and Zy; represent the forward transition probability, backward
transition probability, and a trainable normalizing constant, respectively. The TB loss in (2) requires
full trajectories 7, which may cause challenges when scaling to larger discrete search spaces due to
increased variance of gradients when training of the stochastic policy (Malkin et al., 2022a).

Lrp(T) = (log

Detailed Balance Loss: If we can assume all states in the discrete search space are complete, we
then can leverage the detailed balance (DB) loss for GFlowNet training (Deleu et al., 2022). The DB
loss is defined as:

R(Si)PB(Si—lSiﬂ/l)PF(SHSi—l;?/J))Q 3)

R(si—1)Pr(si|si—1;¥)Pr(sp|si; 1)

Under this formulation, during GFlowNet training the reward is evaluated at every state. This differs
from the TB loss where the reward is only computed once a complete trajectory is sampled. For
this reason, the DB formulation is in general advantageous for the structure learning problem where
any sampled graph can be viewed as a complete state, hence more robustly inform gradients when
training the stochastic policy.

Lpg(si,si—1) = <log

Previous work has shown GFlowNets are useful in settings with multi-modal posteriors. This is of
particular interest to us where many admissible structures can explain the observed data equally well.
Next, we present our GFlowNet-based solution in section 4, then discuss a toy system which has
many modes in section 5.

4 Bayesian Dynamic Structure Learning

We present a general framework for Bayesian dynamic causal discovery and propose a GFlowNet
architecture, Dyn-GFN, tailored for modelling a posterior over discrete graphical structures. We
summarize our framework in Figure 1 and Algorithm 1. We show further details of Dyn-GFN
training variants in Appendix A.6. Dyn-GFN consists of 3 key modules: (1) a graph sampler that
samples graphical structures that encode the causal dependencies among the observed variables, (2) a
structural equation module that models the functional relationships between the observed variables,
and (3) a hyper network that architecture that outputs the parameters of the structural equations
independent of the data. The main advantage of Dyn-GFN comes when modelling posteriors with
many modes. Prior work has shown GFlowNets are able to efficiently model distributions where we
can share information between different modes (Malkin et al., 2022a). The challenge we tackle is
how to do this with a changing objective function, as the GFlowNet objective is a function of the
current parameter hyper network and the structural equations.

4.1 GFlowNet Exploration vs. Exploitation

The general procedure for training GFlowNets is inspired from reinforcement learning where the
primary objective is to learn a stochastic policy 7(a|s) to sample actions from an action space given
a current state. In our setting, the action space represents possible locations where an additional edge
can be placed to an existing graph and each state is represented by a current graph. Since under this
training procedure we are sampling from the GFlowNet policy Pr(s;|s;—1;%) at every iteration then
attributing a reward associated to the sampled state/graph, the policy is susceptible to exploitation: if
Pr(s;|si—1; 1) samples a graph(s) with a high reward, it becomes easy for the policy to focus on
sampling said graphs since they yield high reward. To alleviate this we encourage exploration using
softmax tempering on our stochastic policy, by multiplying the logits of our forward policy by 1/¢
before applying the softmax function. A larger c flattens the stochastic policy such that exploration
within the action space is encouraged. However, setting the parameters c is challenging and there
exists a trade-off between exploring and exploiting the stochastic policy during optimization. We
address this by using a cosine schedule for ¢ such that 1 < ¢ < 1000. We treat the period of the
cosine schedule as a hyper-parameter.

Dyn-GFN
p(G,6,D) =p(D|G,0)p(61G)p(G)

GFN Graph Sampler Structural Equations

1 1

1 1

1 1

G~ sz(G) : Parameter Hyper-network :
o, : N
} - G he(G) — 0 P — dx

e

1010 0 e

(0 10 1> % a T

R ro1

10 01 x dx; = £i(x,G:0)
01G) =6(01G) =10 = —

. @) xp@) -6 p(016) = 5(016) P(DI6,0) = lldx — fo(x,)|
. hy(G) > 6 fo(x,G) - dx L

Figure 1: Architecture of Dyn-GFN. Dyn-GFEN consists of three main components: A GFlowNet
modeling a posterior distribution over graphs Q(G|D), a hyper network modeling a posterior over
parameters given a graph Q(6|G, D), and the structural equation model scoring G and 6 according to
how well they fit the data.

Algorithm 1 Batch update training of Dyn-GFN with detailed balance loss

1: Input: Data batch (xy, dxy), initial NN weights 1), ¢, LY sparsity prior o, and learning rate e.
2: 59 < O0Bxdaxa > Training is paralleled over B graph trajectories
3: a ~ Pr(s1]s0;¢), > Sample initial actions vector
4: while a not () do

5: Compute PF(S,‘|Si_1;’¢), PB(Si—1|5i;w)

6: 0 h¢(81)

7: dzp < fo(z,s;)

8 Rys;) « e lldm—dml5+Xollsilo

9: Y —eVyLpp(si,si-1) > Lpp(si, si—1) computed as in Equation 3
10: a ~ Pp(s;|si—1;%), $i = Sit1 > Take action step to go to next state
11: end while
12: ¢ < ¢ —€eVylogR
13: return Updated GFN weights 1) and updated hyper network weights ¢.

4.2 Hyper Network

We aim to jointly learn the structural encoding G and parameters 6 that together model the causal
relationships dz = fy(z, G) of the dynamical system variables. To accomplish this, we propose
learning an individual set of parameters # for each graph G and independent of the input data . This
approach encapsulates P(0|G) in (1). We use a hyper network architecture that takes G as input
and outputs the structural equation model parameters 6, i.e. § = hs(G) hence P(8|G) = §(0|G).
Under the current hyper network model we do not capture uncertainty in the parameters, however
our formulation may be extended to the Bayesian setting by placing a prior on the hyper network
parameters .

5 A Useful Model of Indeterminacy

In order to evaluate DynGFN, we need a structure learning problem with a large equivalence class of
admissible graphs. We present a simple way to augment a set of identifiable dynamics under some
model to create a combinatorial number of equally likely dynamics under the same model. More
specifically, this creates a ground truth posterior Q*(G|D) o > T(G*) where T'(:) : G — G is an
analytically computable transformation over graphs and G* is the identified graph under the original
dynamics. We use this system to test how well we can learn a posterior over structures that matches
what we see in single-cell data.

X dx X dx
Vi
Va
V3
+O

Figure 2: For an identifiable graph, we add a new variable which has the same values as v3 and
creates three possible explanations for the data (green). If we consider a sparsity penalty, then we can
eliminate the last possibility for only two possible explanations.

Specifically, given a dataset of (z, dx) € R? x R? pairs, we create a new dataset with d + 1 variables
where the ‘new’ variable v’ is perfectly correlated with an existing variable v. In causal terms,
this new variable inherits the same parents as v, that is Pa(v’) := Pa(v) and the same structural
equations as v, that is dv’ = dv. This is depicted in Figure 2. This creates a number of new possible
explanatory graphs, which we generalize with the following proposition.

Proposition 1. Given any d dimensional ODE system with G* identifiable under f € F, the
D = d + a dimensional system % = Ax, denote the vector of multiplicites m € N¢ with m; as
the number of repetitions of each variable. Then this construction creates an admissible family of
graphs G' where |G'| = [;c,(2™ — 1)9X. Furthermore, under an L° penalty on G, this reduces to

Hi(mi)gil-

The intuition behind this proposition can be seen from the case of adding a single copied variable.
This corresponds to A = [§,.I4] where d,, is a vector with a 1 on node v and zeros elsewhere, and I
is the d-dimensional identity matrix. Let v have ¢ children, such that v € Pa(c) in the identifiable
system, then any of those ¢ child nodes could depend either on v or on the new node v’ or both. This
creates 3¢ possible explanatory graphs. If we restrict ourselves to the set of graphs with minimal L°
norm, then we eliminate the possibility of a child node depending on both v and v/, this gives 2°¢
possible graphs, choosing either v or v’ as a parent.

6 Experimental Results

In this section we evaluate the performance of Dyn-GFN against other methods for Bayesian structure
learning. Specifically, we test against an ensemble method (G-DeepEns) using 100 ensembles and a
(continuous) variational method (G-VI) similar to DIBS (Lorch et al., 2021). We show that Dyn-GFN
is able to better capture the true posterior when there are a large number of modes. We evaluate
methods according to four metrics, Bayes-SHD, Bayes-cover, F1-score, and area under the receiver
operator characteristic curve (AUC). These metrics can only be evaluated when we have a ground
truth posterior over over structures. Bayes-SHD measures the average distance to the closest structure
in the admissible set of graphs according to the structural hamming distance, which in this case is
simply the hamming distance of the adjacency matrix representation to the closest admissible graph.
Bayes-cover measures the fraction of all admissible graphs that were sampled in 1,000 samples from
the Dyn-GFN posterior. Lower Bayes-SHD and higher Bayes-cover, higher F1-score, and higher
AUC are better.

6.1 Toy Example with Known Posterior

We generated toy data from a linear dynamical system dx = Ax for a sparse 5D system using our
unidentifiability model presented in section 5. We considered 3 systems with a varying number of
added correlated variables that create unidentifiability in the causal structure, each with an increasing
quantity of modes in the ground truth posterior over admissible structures. For instance, the system

One Correlated Variable

Model Bayes-SHD Bayes-cover F1-score AUC
G-DeepEns 9.90£0.24 0.254+0.25 0.30£0.01 0.50+£0.01
G-VI 410+£1.74 0.17+0.14 0.57£0.05 0.65=+0.07
Linear Dyn-GFN 4.74+0.09 0.92+0.14 0.57+£0.00 0.70+0.00
Linear kDyn-GFN 5.97+0.03 0.67£0.14 0.54+0.00 0.68+0.00
shdDyn-GFN 4.194+0.18 1.00+0.00 0.58+0.04 0.74+0.03

Two Correlated Variables

Model Bayes-SHD Bayes-cover F1-score AUC
G-DeepEns 8.40+£0.15 0.00£0.00 0.25£0.02 0.50+0.01
G-VI 0.82+£0.61 0.054+£0.04 0.29+£0.09 0.56+0.06
Linear Dyn-GFN 1.134+0.18 0.06 £0.00 0.54 +0.00 0.72 4+ 0.00
Linear kDyn-GFN 0.12+0.20 0.10£0.07 0.60 + 0.00 0.75 4+ 0.00
shdDyn-GFN 4514004 0214+0.06 0.26+0.04 0.57+0.02

Three Correlated Variables

Model Bayes-SHD Bayes-cover F1-score AUC
G-DeepEns 7.06£0.21 0.00£0.01 0.24+0.02 0.4940.02
G-VI 1.64 +132 0.00+£0.01 0.164+0.12 0.47£0.10
Linear Dyn-GFN 4.06 £ 1.11 0.02+£0.03 0.29+0.00 0.57+0.01
Linear kDyn-GFN 3.69 +0.22 0.12+0.07 0.33+0.07 0.58 +0.03
shdDyn-GFN 4544004 0.01+0.01 0.16+0.02 0.52+£0.01

Table 1: Table of performance on 5D unidentifiable linear dataset (test data) generated with 75%
edge-wise sparsity with mean =+ standard deviation over 3 random seeds. As number of correlated
variables increases, the quantity of admissible graphs that explain the data equally well increased.
Here Linear Dyn-GFN and Linear kDyn-GFN use analytic closed form approximation for § while
shdDyn-GFN uses ideal SHD-energy reward. All models are trained over 250 epochs. We observe
that training of shdDyn-GFN has not converged, hence training for longer could yield improved
results.

with 1 added correlated variable has the fewest modes while the system with three added correlated
variables has the most modes.

We considered two Linear Dyn-GFN models. The “Linear” pre-fix indicates that we incorporated
the analytic closed form approximation for the structural equation model parameters, i.e. Linear
Dyn-GFN and Linear kDyn-GFN, respectively. Linear kDyn-GFN samples exactly k edges in every
GFN training iteration. We selected £ to equal the number of edges in the ground truth graph. This
k-sparse approach could serve useful in some applications where there may exist prior knowledge on
the expected number of edges in the ground truth graph. Linear Dyn-GFN leverages the L° prior
on the structure G to encourage sparsity and to enforce structure on the learned graphs. We also
reported results for shdDyn-GFN which uses an ideal reward function based on the SHD of the
sampled graphs relative to the ground truth graph. This model is used as a metric for an “empirical
target” for performance since it incorporates information about the true graphs that would otherwise
be unknown. We summarize our results in Table 1.

We found that G-VI yields competitive Bayes-SHD but fails to capture an accurate representation
of the posterior over admissible graphs, yielding low Bayes-cover in all 3 scenarios. In the cases
where the underlying ground truth posterior over admissible structures has a larger quantity of modes,
we observed that Linear kDyn-GFN outperforms Linear Dyn-GFN. This is as expected since we
inform the Linear kDyn-GFN of the expected number of edges in the true graphs while we need
to tune the sparsity penalty in Linear Dyn-GFN, which proved challenging. We also found that the
shdDyn-GFN produces the most competitive Bayes-cover over admissible structure in cases of 1 and
2 added correlated variables, but fails in the case of 3 added correlated variables. We observed that
the shdDyn-GFN was still at an increasing trajectory for Bayes-cover and decreasing trajectory for
Bayes-SHD at 250 epochs. We believe that with longer training shdDyn-GFN could yield further
improved results relative to the baselines and Linear Dyn-GFN models.

Cell Cycle Module

Cdc25A g Cdki Cde25C

, True edges

> Potential edges

Figure 3: From left to right, correlation structure in the raw single cell data over 5000 cells and
2000 genes selected by scVelo (Bergen et al., 2019) preprocessing. Correlation structure among
genes over (inferred) cell cycle times. This stronger correlation structure is more reflective of the
correlation in the underlying system. Real system with confounding variables as tested in Table 2.
Cdc25A is known to inhibit Cdk1 which is known to inhibit Cdc25C, while the Mcm complex is
highly correlated with Cdc25A, they do not directly interact with Cdk1 (Kanehisa et al., 2021).

6.2 Single-Cell RNA-velocity Data

To show how this can be applied to single cell data we use a cell cycle dataset of human Fibroblasts.
The process of Eukaryotic cell division can be divided into four well regulated stages based on the
phenotype, Gap 1 (G1), Synthesis (S), Gap 2 (G>), and Mitosis (M). This process is a good starting
point for GRN discovery as it is (1) relatively well understood, (2) deterministic, and (3) well studied
with plentiful data. While there is an underlying control loop controlling the progression of the cell
cycle, there are many other genes that also change during this cycle. To rediscover the true control
process from data we must disentangle the true causal genes from the downstream correlated genes.
This may become very difficult when we only observe dynamics at longer time scales.

As a motivating example we show the correlation structure of single-cell RNA-seq data from human
Fibroblast cells (Riba et al., 2022) in Figure 3. We show both the raw correlation and the correlation
over cell cycle time, which is significantly higher. With such a pure cell population whose primary
axis of variation is state in the cell cycle by aggregating over cell cycle time we expect observation
noise to be averaged out, leading to a “truer” view of the correlation between latent variables.

Since there are many genes which are affected by the cell cycle phase, there are many correlated
variables that are downstream of the true cell cycle regulators. This provides a natural way of using
cell cycle data to evaluate a model’s ability to capture the Bayesian posterior. We hide a cell cycle
regulator among two downstream genes that are highly correlated (Spearman p > 0.75) and test
whether we can model the Bayesian posterior — namely that we are uncertain about which of the three
genes (Cdc25A, Mcm?2, or Mcm)) is the true causal parent of Cdkl.

Here, we additionally consider Hyper Dyn-GFN and Hyper kDyn-GFN since assuming a linear
system is no longer viable. The hyper models incorporate the hyper network h,(G) for predicting
the structural equation model parameters. This should yield improved results relative the Linear
Dyn-GFN, however we found it difficult to train in the toy setting due to the trainable energy reward.
In Table 2 we can see how the Dyn-GFN is able to maintain the uncertainty (higher Bayes-cover)
while maintaining a low Bayes-SHD, in particular the Hyper kDyn-GFN does particularly well on
this dataset.

6.3 Discussion of Training Dynamics

GFlowNets are a relatively recent class of models that can be challenging to optimize. We discuss
some of the challenges with training them especially in the context of a learned energy function.
We observed that in settings where the energy reward is fixed and we could proportionally penalize
missing edges as well as the addition of incorrect edges (e.g. shdDyn-GFN), we were able to better
learn posteriors over admissible graphs over models that require sparse priors and/or trainable

Number of correlated genes = 2

Model Bayes-SHD Bayes-cover F1-score AUC
G-DeepEns 8.99+0.19 0.01+0.01 0.36+0.01 0.51+£0.01
G-VI 11.76 £4.51 0.00£0.00 0.444+0.04 0.55=+0.07

Linear Dyn-GFN 9.17+£0.06 0.04 £0.03 0.36 £0.00 0.51 4+0.00

Hyper Dyn-GFN 9.69 £0.41 0.01 £0.01 0.44+0.00 0.57£0.01

Hyper kDyn-GFN 426 +£0.05 0.24£0.01 0.41£0.00 0.59 £ 0.00
Table 2: Table of performance on 5D unidentifiable single-cell RNA-velocity data with 2 correlated
genes. Linear Dyn-GFN uses an analytic solution for structural equation parameters 6 based on linear
assumption on the data. Hyper Dyn-GFN and Hyper kDyn-GFN use trainable reward with hyper
network architecture to compute 6 = hg(G) for each graph. All models are trained over 500 epochs.

energies. This suggests that Dyn-GFN may be limited by an inadequate energy reward. However, we
found training Dyn-GFN with a trainable energy function challenging since the GFlowNet stochastic
policy depends on the rewards, and vice versa. Further investigation and experimentation into this
alternating optimization procedure is required. We note that the loss when training shdDyn-GFN is
still decreasing at the end of the fixed-epoch training in certain settings. For this reason, shdDyn-GFN
is not outperforming counterpart Dyn-GFN methods. We expect that training shdDyn-GFN for longer
would lead to improved performance of shdDyn-GFN under the ideal SHD-energy reward.

7 Conclusion

We presented Dyn-GFN, a method for Bayesian causal discovery from dynamics. In low dimensions
we found that Dyn-GFN is able to better model the distribution over possible explanatory structures
than baseline methods. As a proof of concept, we presented an example of learning the distribution
over likely explanatory graphs from single-cell transcriptomic data where there are many possible
graphs showing Dyn-GFN can better model the uncertainty over possible explanations of this data
rather than capturing a single explanation.

8 Limitations

Although we have demonstrated a degree of efficacy when using Dyn-GFN for Bayesian causal
discovery with observational data, a key limitation of Dyn-GFN is scaling to larger systems. To
effectively model P(G, 6, D), Dyn-GFN needs to search over an environment state space of possible

graphs. This state space grows exponentially with the number of possible edges, i.e. 2% where d is
the number of variables in the system. Therefore, Dyn-GFN is currently limited to smaller systems.
We also found that training Dyn-GFN requires careful tuning of hyper-parameters and in particular
parameters that shape the reward function are particularly important.

9 Acknowledgments and Disclosure of Funding

This research was enabled in part by the computational researches provided by Compute Canada
(ccdb. computecanada. ca). In addition, resources used in preparing this research were in part pro-
vided by the Province of Ontario and companies sponsoring the Vector Institute (vectorinstitute.
ai/partners/). All authors are funded by their primary academic institution. We also acknowl-
edged funding from the Natural Sciences and Engineering Research Council of Canada, Recursion
Pharmaceuticals, CIFAR, Samsung, and IBM.

References

Hananeh Aliee, Fabian J. Theis, and Niki Kilbertus. Beyond Predictions in Neural ODEs: Identifica-
tion and Interventions. arXiv, 2021.

Yashas Annadani, Jonas Rothfuss, Alexandre Lacoste, Nino Scherrer, Anirudh Goyal, Yoshua Bengio,
and Stefan Bauer. Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures. arXiv, 2021.

ccdb.computecanada.ca
vectorinstitute.ai/partners/
vectorinstitute.ai/partners/

Alexis Bellot and Kim Branson. Neural Graphical Modelling in Continuous Time: Consistency
Guarantees and Algorithms. In ICLR, pp. 28, 2022.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
Network based Generative Models for Non-Iterative Diverse Candidate Generation. In Advances
in Neural Information Processing Systems, volume 34, pp. 27381-27394. Curran Associates, Inc.,
2021.

Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio.
GFlowNet Foundations, April 2022.

Volker Bergen, Marius Lange, Stefan Peidli, F. Alexander Wolf, and Fabian J. Theis. Generalizing
RNA velocity to transient cell states through dynamical modeling. BioRxiv 820936, 2019.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary
Differential Equations. In Advances in Neural Information Processing Systems 31, 2018.

Chris Cundy, Aditya Grover, and Stefano Ermon. BCD Nets: Scalable Variational Approaches for
Bayesian Causal Discovery. In NeurlIPS, 2021.

Tristan Deleu, Anténio Géis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian Structure Learning with Generative Flow Networks. 38th Conference
on Uncertainty in Artificial Intelligence, 2022.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of Causal Discovery Methods Based on
Graphical Models. Front. Genet., 10:524, June 2019. ISSN 1664-8021. doi: 10.3389/fgene.2019.
00524.

C. W. J. Granger. Investigating Causal Relations by Econometric Models and Cross-spectral Methods.
Econometrica, 37(3):424-438, 1969.

Tatsunori B Hashimoto, David K Gifford, and Tommi S Jaakkola. Learning Population-Level Diffu-
sions with Generative Recurrent Networks. In Proceedings of the 33rd International Conference
on Machine Learning, pp. 2417-2426, 2016.

Minoru Kanehisa, Miho Furumichi, Yoko Sato, Mari Ishiguro-Watanabe, and Mao Tanabe. KEGG:
Integrating viruses and cellular organisms. Nucleic Acids Research, 49(D1):D545-D551, January
2021. ISSN 0305-1048, 1362-4962. doi: 10.1093/nar/gkaa970.

Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov,
Katja Lidschreiber, Maria E. Kastriti, Peter Lonnerberg, Alessandro Furlan, Jean Fan, Lars E. Borm,
Zehua Liu, David van Bruggen, Jimin Guo, Xiaoling He, Roger Barker, Erik Sundstrém, Gongalo
Castelo-Branco, Patrick Cramer, Igor Adameyko, Sten Linnarsson, and Peter V. Kharchenko. RNA
velocity of single cells. Nature, 560(7719):494—498, 2018.

Lars Lorch, Jonas Rothfuss, Bernhard Scholkopf, and Andreas Krause. DiBS: Differentiable Bayesian
Structure Learning. In NeurlIPS, 2021.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory Balance:
Improved Credit Assignment in GFlowNets, January 2022a.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. Gflownets and variational inference, 2022b.

Joris M. Mooij, Dominik Janzing, and Bernhard Schoélkopf. From Ordinary Differential Equations to
Structural Causal Models: The deterministic case. In UAI 2013.

Judea Pearl. Causality. Caimbridge University Press, second edition, 2009.

Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Jonas Peters, Stefan Bauer, and Niklas Pfister. Causal models for dynamical systems. In Probabilistic
and Causal Inference: The Works of Judea Pearl, pp. 671-690. 2022.

10

Xiaojie Qiu, Yan Zhang, Jorge D. Martin-Rufino, Chen Weng, Shayan Hosseinzadeh, Dian Yang,
Angela N. Pogson, Marco Y. Hein, Kyung Hoi (Joseph) Min, Li Wang, Emanuelle 1. Grody,
Matthew J. Shurtleff, Ruoshi Yuan, Song Xu, Yian Ma, Joseph M. Replogle, Eric S. Lander, Spyros
Darmanis, Ivet Bahar, Vijay G. Sankaran, Jianhua Xing, and Jonathan S. Weissman. Mapping
transcriptomic vector fields of single cells. Cell, 185(4):690-711.e45, February 2022. ISSN
00928674. doi: 10.1016/j.cell.2021.12.045.

Andrea Riba, Attila Oravecz, Matej Durik, Sara Jiménez, Violaine Alunni, Marie Cerciat, Matthieu
Jung, Céline Keime, William M. Keyes, and Nacho Molina. Cell cycle gene regulation dynamics
revealed by RNA velocity and deep-learning. Nat Commun, 13(1):2865, December 2022. ISSN
2041-1723. doi: 10.1038/s41467-022-30545-8.

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell
trajectory inference methods. Nat Biotechnol, 37(5):547-554, 2019.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen, Justin Brumbaugh,
Philippe Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and Eric S. Lander. Optimal-
Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in
Reprogramming. Cell, 176(4):928-943.e22, 2019.

Alex Tank, Tan Covert, Nicholas Foti, Ali Shojaie, and Emily Fox. Neural Granger Causality. IEEE
Trans. Pattern Anal. Mach. Intell., pp. 1-1, 2021. ISSN 0162-8828, 2160-9292, 1939-3539. doi:
10.1109/TPAMI.2021.3065601.

Alexander Tong, Jessie Huang, Guy Wolf, David van Dijk, and Smita Krishnaswamy. TrajectoryNet:
A Dynamic Optimal Transport Network for Modeling Cellular Dynamics. In Proceedings of the
37th International Conference on Machine Learning, 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work?
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets?
(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating?

11

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? It is clear it does not

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Appendix

A.1 Proof of Proposition 1

Proposition 1 calculates the number of admissible structure graphs for a linear ODE system with
correlated variables. We will first show the general case this is [[, (2™ — 1)91, then analyze the

case of an L” penalty on the edges of G, which reduces the size of the set of admissible graphs to

Hi(mz‘)g”l-

Proof. Consider an identifiable linear system % = Ax where we directly observe (z, ”Cll—f) with G*
identifiable. Then the system with m = 1% has exactly one admissible graph by definition. For each
node, we analyze its set of child nodes in G, i.e. c(u) = {v € V s.t. u — v € G}. For an identifiable

system, each child v must have an incoming edge from its parent.

Next, we consider the process of adding a correlated variable, i.e. consider the situation of w.l.o.g.
consider m = (s,1,1,...,1) for some s > 1. Then for each child of ¢;(v1), there are now s possible
parents. This has multiplied the number of possible graphs by 2° — 1. Since each element of m is
independent, this leads to the first statement, i.e. |G'| = [T, (2™ — 1)9:1,

Under an L° penalty, then we constrain the possible graphs to s different graphs, where each
child node picks exactly one of the s possible parents. This leads to the second statement, |G'| =

[T, (mi)9t
A.2 Baseline Method Details

We implemented two baseline Bayesian posterior inference methods an ensemble-based method
(G-DeepEns), and a variational inference-based method (G-VI).

G-DeepEns represents the posterior over graphs Q(G) using an ensemble of 100 graphs. Specifically,
we represent the adjacency matrices of 100 (learned) graphs directly with parameters learned through
gradient descent A € R190>xd where A is low rank. The binary edges are then taken as (A /t) for
some small temperature ¢. This is similar to the Stein variational gradient descent used in DIBS (Lorch
et al., 2021) without the parameter kernel and the acyclicity prior. These methods are only able to
represent a fixed number of “modes” of the posterior (i.e. < 100), but are simple to train in practice.
However, we know that the true Bayesian posterior may have a large number of modes, motivating
Dyn-GFN.

We also implement a variational inference-based method where a prior over each edge is defined
independently (G-VI). Here we define a Gaussian with mean zero and fixed standard deviation as
a prior over edges with a similar parameterization (o(A/t). This is a simplified version of BCD
Nets (Cundy et al., 2021) parameterization , except again we do not need to enforce directed acyclic
properties of the graph. We note that GFlowNets can be seen as optimizing a hierarchical variational
inference problem as shown in Malkin et al. (2022b). Our results show the advantages of this
hierarchical posterior in more complex posteriors.

For both G-VI and G-DeepEns we use a low rank approximation for the learned graphs: A = u”'v
where u,v € R¥™ and where m < d. For d = 5 we used m = 3. Analogous to the Dyn-GFN
pipeline, we use a hyper network hy parameterized as a multi-layer perceptron (MLP) that outputs
parameters for the structural equation module fy. We provide specific details for the parameterization
of hg, fo in Appendix A.5.

12

A.3 Single Cell Dataset Preprocessing

We start with the processed data from (Riba et al., 2022). We first filter it applying steps from the
ScVelo tutorial. We then sub-select the genes of interest and use the “Ms” and “velocity” layers,
which we normalize to mean zero standard deviation one for the states and scale the dz with the same
parameters.

A.4 Implementation Details

Our model is implemented in Pytorch and Pytorch Lightning and is available at https://github.
com/atong01/dyn_gfn. Models were trained on a heterogeneous mix of HPC clusters for a total of
1,000 GPU hours primarily on NVIDIA RTX8000 GPUs.

A.5 Neural Network Architectures and Hyper-parameters

We parameterize Pr(s;|si—1; %), Pg(si—1]s:; %), and hy with MLP architectures. Pp(s;|s;—1;)
and Pp(s;_1|s;; 1) take the current state as input and first compute common representations using a
3 layer MLP. Then a 2 layer MLP with a softmax output activation takes the representations as input
and outputs a distribution over possible actions. The latter MLP is used to parameterize one head for
each distribution Pg(s;|s;—1;%) and Pg(s;_1]|si; 1), respectively. We use a hidden unit dimension
of 1024 and leaky rectified linear unit (Leaky ReLU) activation functions for the Pr(s;|s;—1;%) and
Pg(si—1]s;; 1) MLP architectures. To parameterize hg, we use a 4 layer MLP with hidden layer
dimensions of {1024, 512,128, 64} and exponential linear unit activations (ELU). To parameterize
fo we use a linear transformation of the form y = w” 2 + b to model linear node-wise parent-child
structural equations, where z € R? are the node-wise input observations (6 = {w, b}).

Dyn-GFN requires setting a variety of hyper-parameters that lead to different trade offs in model
performance. In particular, Ao (sparsity encouragement for identified graﬂls), a temperature parameter
T that scales the magnitude of the reward likelihood (e.g. TMSE(dx, dx)), learning rate €, softmax
tempering ¢, and number of training epochs. In our experiments we use grid search to select
Ao = 100,7 = 300 and find these hyper-parameter values lead to competitive performance (this
pertains to Linear and Hyper Dyn-GFN models that use the DB loss). We found through observing
outcomes of numerous experiments that a learning rate of ¢ = 10~% is effective.

A.6 Additional Training Algorithms

We describe two additional training algorithms, one for the case where the structural equation is
linear, and we can analytically solve for the optimal parameter set given a graph (Algorithm 2), and
another for the case where we assume we want to generate graphs with exactly k edges, which uses
the trajectory balance objective (Algorithm 3).

Algorithm 2 Batch update training of Dyn-GFN with linear analytic reward

1: Input: Data batch (z, dxy,), initial NN weights v, ¢, L° sparsity prior Ao, and learning rate €.

2: 80 < O0pxaxd > Training is paralleled over B graph trajectories
3: a ~ Pr(s1]s0;v), > Sample initial actions vector
4: while a not () do
5: Compute PF(SZ'|SZ',1;’(/)), PB(Si,1|Si;’l/J)
6: T = 8; OTp > Mask x; with sampled graph
7 0 = (2L 2, + M) L2l dxy, > We use § = 0.01 for all experiments
8: E;b — f9($7si)
9: Ry(si) « e lldz—dmliz+Xollsillo
10: Y —eVyLpp(Si,si-1) > Lpp(si, $i—1) computed as in Equation 3
11: a ~ Pr(s;]8i—1;%), $i = Sit1 > Take action step to go to next state

12: end while
13: return Updated GFN weights).

13

https://github.com/atong01/dyn_gfn
https://github.com/atong01/dyn_gfn

Algorithm 3 Batch update training of Dyn-GFN with trajectory balance loss and k-sparse prior

1: Input: Data batch (z;, dxy), initial NN weights ¢, ¢, k edge number prior, and learning rate €.
1 80 < O0Bxdxd > Training is paralleled over B graph trajectories

s 0

: a ~ Pr(s1]s0;), > Sample initial actions vector

2

3

4

5: while i < k do
6: Compute Pr(s;|si—1;%), P(si—1|s:;)
7

8

a ~ Pr(s;]8i—1;%), $i = Sit1 > Take action step to go to next state
: T TDS;
9: end while
10: 7= (s1,82,...,5, = Q)
11: 0 < hy(7)

12: C/lﬁzb — fg(a?,T)
13: R(G) + e~ lldzv—dav3

14: Y < — eVyLrp(T) > L1 (7) computed as in Equation 2

15: ¢ < ¢ —eVylogR
16: return Updated GFN weights 1) and updated hyper-network weights ¢.

14

	Introduction
	Related Work
	Preliminaries
	Bayesian Structure Discovery
	Learning Gene Regulatory Networks from Single-cell Data
	Generative Flow Networks

	Bayesian Dynamic Structure Learning
	GFlowNet Exploration vs. Exploitation
	Hyper Network

	A Useful Model of Indeterminacy
	Experimental Results
	Toy Example with Known Posterior
	Single-Cell RNA-velocity Data
	Discussion of Training Dynamics

	Conclusion
	Limitations
	Acknowledgments and Disclosure of Funding
	Appendix
	Proof of Proposition 1
	Baseline Method Details
	Single Cell Dataset Preprocessing
	Implementation Details
	Neural Network Architectures and Hyper-parameters
	Additional Training Algorithms

