
Published as a conference paper at COLM 2024

A Reparameterized Discrete Diffusion Model for Text Gener-
ation

Lin Zheng1 Jianbo Yuan2 Lei Yu3 Lingpeng Kong1

1The University of Hong Kong 2ByteDance Inc. 3Google DeepMind
lzheng2@cs.hku.hk

Abstract

This work studies discrete diffusion probabilistic models with applications
to natural language generation. We derive an alternative yet equivalent
formulation of the sampling from discrete diffusion processes and leverage
this insight to develop a family of reparameterized discrete diffusion models.
The derived generic framework is highly flexible, offers a fresh perspec-
tive of the generation process in discrete diffusion models, and features
more effective training and decoding techniques. We conduct extensive
experiments to evaluate the text generation capability of our model, demon-
strating significant improvements over existing diffusion models.

1 Introduction

Diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021b), or diffusion models for short, have achieved remarkable progress and shown great
success in generating high-quality and photo-realistic images (Ramesh et al., 2022; Saharia
et al., 2022; Rombach et al., 2022; Balaji et al., 2022; Peebles & Xie, 2022). Researchers
have successfully extended diffusion models to various data modalities beyond 2D images,
including audio (Kong et al., 2021), video (Ho et al., 2022), as well as molecule generation
(Hoogeboom et al., 2022b; Jo et al., 2022). There has also been a surge of interest in extending
diffusion models to natural languages (Hoogeboom et al., 2021; Austin et al., 2021; Li et al.,
2022b; Dieleman et al., 2022). Diffusion-based language models are appealing in that the
generation process is typically conducted in a non-autoregressive manner, which features
in-parallel decoding by design and potentially a faster runtime (Hoogeboom et al., 2021;
Austin et al., 2021). In addition, due to the iterative reconstruction process in diffusion-
based models, it is often possible to refine the previously generated texts (Savinov et al.,
2022). As a result, compared with the conventional auto-regressive models, diffusion-based
language models are more flexible and attain better trade-offs between generation quality
and efficiency.

However, there are noticeably fewer success cases in employing diffusion models for large-
scale text generation tasks. This is possibly due to the discrete nature of natural languages,
while most conventional diffusion models focus on continuous-valued contents. To bridge
the discrepancy, a recent line of work suggests conducting continuous diffusion processes
over token embeddings (Li et al., 2022b; Gong et al., 2022; Strudel et al., 2022; Dieleman et al.,
2022) or logits (Han et al., 2022; Richemond et al., 2022). Nevertheless, these approaches
often require designing a well-crafted rounding scheme to convert the diffused continuous
vectors to the actual discrete tokens. In addition, existing continuous diffusion models
often require a large number of sampling iterations to achieve the desired performance.
This issue is exacerbated in the case of modeling texts, as the diffusing steps over text
embeddings are hard to be translated to significant movements of token states due to the
rounding quantization. This results in a considerably slower runtime than auto-regressive
models. For example, a recent continuous text diffusion model (DiffuSeq; Gong et al.,
2022) runs several orders of magnitude slower than the auto-regressive baseline of a similar
scale, as shown in Figure 2b. Different from the above, another research direction focuses
on diffusion processes that directly operate on discrete state spaces (Sohl-Dickstein et al.,

1

Published as a conference paper at COLM 2024

2015; Hoogeboom et al., 2021; Austin et al., 2021, see §2). However, they are relatively
under-explored and often achieve inferior results in text generation.

x0 x1 x2 x3

(a) Conventional discrete diffusion.

x0 x1 x2 x3

v1 v2 v3

(b) Reparameterized discrete diffusion.

Figure 1: Graphical models of
backward diffusion processes.

In this work, we demonstrate that discrete diffusion
models can serve as strong baselines for text generation.
By re-examining the formulation, we observe that sam-
pling from discrete diffusion models admits a novel yet
equivalent reparameterization (§3). Specifically, starting
with a completely noisy sequence, the sampling pro-
cedure in a discrete diffusion model is equivalent to
the following route-and-denoise process where at each
iteration, each token within the sequence is either de-
noised or reset to noisy states according to an under-
lying stochastic routing mechanism (§3.2). The router
assigns the same probability to the decision for each
token, processing the sequence in a uniform manner.
Based on this insight, we propose Reparameterized
Discrete diffusion Models (RDMs; Figure 1), a new fam-
ily of models that respects the reparameterization and
formulates the routing process explicitly. RDMs enjoy
appealing properties for both training (§4.2) and sampling (§4.3): (1) Simplified training.
We demonstrate that the training objective for RDMs can be reduced to a re-weighted
standard cross-entropy loss. Furthermore, the loss objective is invariant to different routing
probabilities up to reweighting, indicating that the large family of RDMs with distinct
routing processes can be trained with the same surrogate objective; (2) Flexible sampling.
The shared training objective makes sampling highly flexible and allows more expressive
routing processes. In particular, we develop an adaptive routing strategy that routes tokens
to the denoised state only if the router outputs high scores instead of uniformly process-
ing all the tokens. Equipped with such training and decoding schemes, we demonstrate
that RDMs significantly improve vanilla discrete diffusion models across several standard
text generation benchmarks (§5). They also achieve much better performance than the
continuous diffusion models while running several orders faster.

Our contributions can be summarized as follows:

• We analyze existing discrete diffusion probabilistic models and derive a more compact
formulation that generalizes various diffusion processes and reveals an internal routing
mechanism for selectively denoising tokens;

• We introduce reparameterized diffusion models (RDMs), a new model family that param-
eterizes both routing and denoising processes. RDMs yield a greatly simplified training
objective and enable more flexible decoding algorithms for text generation;

• We provide extensive results and analyses across several benchmarks to demonstrate the
improved text generation quality of RDMs.

2 Background

Let x0 ∼ pdata(x0) denote a discrete random variable with K possible outcomes. To ease
notation, we represent discrete variables as one-hot vectors in {0, 1}K, which is 0 everywhere
except that the entry corresponding to the current state is 1. Discrete diffusion probabilistic
models (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021; Austin et al., 2021) are usually
defined as a class of latent variable models characterized by a forward and backward pro-
cess. The forward process gradually transforms input data to some noise distribution qnoise
through T intermediate latent variables x1, . . . , xT ∈ {0, 1}K, with the forward transition
q(xt|xt−1) = βtxt−1 + (1− βt)qnoise. In this case, the distribution q(xt|x0) is available in
closed form,

q(xt|x0) = αtxt−1 + (1− αt)qnoise, (1)

where αt := ∏t
i=1 βi is specified to decrease from 1 to 0 w.r.t. t. qnoise characterizes different

diffusion processes; for example, multinomial diffusion (Hoogeboom et al., 2021) adopts

2

Published as a conference paper at COLM 2024

a uniform noise distribution over the vocabulary {1, 2, . . . , K}; alternatively, absorbing
diffusion specifies qnoise to be a point mass with all of the probability on an absorbing state
(Austin et al., 2021).

The backward process q(xt−1|xt) is the key ingredient for diffusion-based generative mod-
eling, based on which we can start with unstructured noise xT ∼ qnoise and perform
ancestral sampling xt−1 ∼ q(xt−1|xt) to obtain new draws from pdata(x0). Unfortu-
nately, the backward transition q(xt−1|xt) is mostly intractable due to the marginaliza-
tion over the entire data distribution. Therefore, we resort to approximating it with a
parameterized distribution pθ(xt−1|xt) at each step t. This results in a generative model
pθ(x0, x1, . . . , xT) = pθ(xT)∏T

t=1 pθ(xt−1|xt), which can be trained by maximizing the evi-
dence lower bound (ELBO) of log pθ(x0),

log pθ(x0) ≥ L1(θ)−
T

∑
t=2
Lt(θ) + const.,

with Lt(θ) := Eq(xt |x0) [KL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))]. For the case t = 1, we have
L1(θ) := Eq(x1|x0) [log pθ(x0|x1)]. The ELBO decomposes into a sum of KL divergences
between the conditional backward transition q(xt−1|xt, x0) and pθ(xt−1|xt) at each time step
t. Note that q(xt−1|xt, x0) ∝ q(xt|xt−1)q(xt−1|x0) can be calculated analytically for most
discrete diffusion models. To define the distribution pθ(xt−1|xt), previous work (Hooge-
boom et al., 2021) suggests that it can be parameterized similarly to q(xt−1|xt, x0) by letting
pθ(xt−1|xt) = q(xt−1|xt, f (xt; θ)), where a neural network f (xt; θ) is adopted to predict
x0. Typically f (xt; θ) ∈ (0, 1)K is the model output normalized by a softmax function,
representing the probability vector for each token. For text generation, each discrete text
token within an input sequence is often assumed to be diffused independently. Thus to
avoid cluttering the discussion, we focus initially on the diffusion process of a single token
and address the entire sequence later in §4.2 and §4.3. A more detailed discussion about the
related work and derivations about discrete diffusion models are provided in Appendices A
and B, respectively.

3 Reparameterizing the Backward Processes

This section presents an in-depth study of discrete diffusion probabilistic models. We derive
an alternative formulation for the backward process (§3.1) and devise a reparameterized
sampling scheme (§3.2), which paves the way for a more generic family of discrete diffusion
models (§4).

3.1 An Alternative Backward Formulation

We first elaborate on how the conditional backward transition of existing discrete diffusion
models can be written in a more compact formulation (see Appendix C for the proof).
Proposition 3.1. Let the forward transition of discrete diffusion be q(xt|xt−1) = βtxt−1 + (1−
βt)qnoise. Then the conditional backward transition q(xt−1|xt, x0) can be equivalently written as

q(xt−1|xt, x0) =

λ
(1)
t−1xt +

(
1− λ

(1)
t−1

)
qnoise, if xt = x0

λ
(2)
t−1x0 +

(
1− λ

(2)
t−1

)
qnoise(xt), if xt ̸= x0.

(2)

Here qnoise(xt) = βtxt + (1− βt)qnoise denotes a noise distribution that interpolates between xt

and qnoise, λ
(1)
t−1 := 1− (1−βt)(1−αt−1)qnoise(u=xt)

αt+(1−αt)qnoise(u=xt)
, and λ

(2)
t−1 := αt−1−αt

1−αt
, where qnoise(u = xt) is

the probability of the noise equal to xt.

Intuitively, Equation 2 reveals that the main mechanism of the backward process is to shuttle
discrete tokens between fully noisy states and the ground truth state x0, conditioned on
the equality of xt and x0. If xt = x0, the current token state is possibly noise-free, and the
model either remains noise-free by copying the state xt−1← xt, or resets the state to the

3

Published as a conference paper at COLM 2024

noise. If xt ̸= x0, the current state is considered noisy, and the model opts to denoise xt to x0
or remains noisy otherwise. The probability of moving noisy tokens to ground truth states
or turning denoised tokens back to noise is governed by λ

(2)
t−1 and 1− λ

(1)
t−1, respectively.

3.2 Reparameterized Sampling

Next, we demonstrate that sampling from the backward transition can be conducted via an
augmented path, leading to our full reparameterization. We make use of the simple fact that
the mixture distribution in Equation 2 can be sampled in two steps: first, randomly select a
component according to their weight, and then sample from the corresponding component
distribution. Concisely, we have

bt = 1xt=x0

v(1)t−1 ∼ Bernoulli
(

λ
(1)
t−1

)
, u(1)

t ∼ qnoise

v(2)t−1 ∼ Bernoulli
(

λ
(2)
t−1

)
, u(2)

t ∼ qnoise(xt)

xt−1 = bt

[
v(1)t−1xt +

(
1− v(1)t−1

)
u(1)

t

]
+ (1− bt)

[
v(2)t−1x0 +

(
1− v(2)t−1

)
u(2)

t

]
. (3)

To simplify the notation, we denote vt−1 :=
[
v(1)t−1, v(2)t−1

]
and λt−1 :=

[
λ
(1)
t−1, λ

(2)
t−1

]
. This

reparameterized backward transition highlights an underlying routing mechanism, where
the model routes tokens to different distributions according to vt−1: given bt that discrimi-
nates which tokens are currently noisy, v(2)t−1 selects and denoises noisy tokens to recover the

ground truth x0, while v(1)t−1 determines which denoised tokens revert to the noisy state.

4 Reparameterized Discrete Diffusion Models

In this section, we introduce our proposed diffusion models that reflect the reparameteriza-
tion (§4.1), which imply effective training (§4.2) and sampling (§4.3) algorithms.

4.1 Joint Diffusion Modeling

The routing mechanism in §3.2 works in a latent manner; that is, it is only active during
the sampling process but marginalized when advancing the distribution of xt−1. To fully
utilize the potential of the developed reparameterization, we propose to elevate the latent
routing mechanism to the formulation explicitly and model the joint q(xt−1, vt−1|xt, x0) =
q(vt−1)q(xt−1|vt−1, xt, x0), where

q(vt−1) = Bernoulli (λt−1)

q(xt−1|vt−1, xt, x0) =

v(1)t−1xt +
(

1− v(1)t−1

)
qnoise, if bt = 1

v(2)t−1x0 +
(

1− v(2)t−1

)
qnoise(xt), if bt = 0.

(4)

Note that bt = 1xt=x0 . This can be considered as a standard discrete diffusion model
augmented with step-wise routing indicators {vt−1}T

t=1 (see Figure 1). It closely relates to
the conventional formulation (Equation 2) in that the original backward process amounts
to marginalizing out vt−1 at each time step: q(xt−1|xt, x0) = Eq(vt−1)

[q(xt−1|vt−1, xt, x0)].
Since the distribution over vt−1 is explicitly considered, this joint diffusion model offers
improved flexibility and expressiveness. We refer to this class of models as reparameterized
discrete diffusion models (RDMs), as it yields an equivalent sampling process to the original
formulation but via a reparameterized path.

4

Published as a conference paper at COLM 2024

4.2 Training

Similar to previous diffusion models (§2), we define a joint generative process
pθ(xt−1, vt−1|xt) and optimize the ELBO via the following factorization,

log p(x0) ≥ Eq(x1:T ,v1:T |x0)

[
log

pθ(x0, x1:T , v1:T)

q(x1:T , v1:T |x0)

]
:= L1(θ)−

T

∑
t=2
Lt(θ) + const..

Following standard practices in diffusion models (Hoogeboom et al., 2021; Austin et al.,
2021), we randomly sample a time step t and optimize θ with respect to Lt(θ). In our case,
L1(θ) = Eq(x1|x0) [log pθ(x0|x1)]; for t > 1, Lt decomposes into a sum of two expected KL
divergences over vt−1 and xt−1 respectively (see Appendix D for the full derivation),

Lt(θ) = E [KL(q(vt−1) ∥ pθ(vt−1))] + E [KL(q(xt−1|vt−1, xt, x0) ∥ pθ(xt−1|vt−1, xt))] , (5)

where the expectations are with respect to q(xt|x0) and q(xt|x0)q(vt−1), respectively.

Algorithm 1 Training RDMs

Input: neural network f (·; θ), data distribution
pdata(x0,1:N), and a custom reweighting scalar λt−1.
Output: model parameters θ.
repeat

Draw x0,1:N ∼ pdata(x0,1:N);
Draw t ∈ Uniform({1, . . . , T});
for n = 1, 2, . . . , N do

Draw xt,n ∼ q(xt,n|x0,n);
Let bt,n = 1xt,n=x0,n ;

end for
L(θ) =−λt−1∑N

n=1(1−bt,n)x⊤0,nlog f (xt,n; θ);
Minimize L(θ) with respect to θ;

until converged

Parameterization. The decomposition
in Equation 5 suggests parameterizing
each conditional of pθ(xt−1, vt−1|xt) =
pθ(xt−1|vt−1, xt)pθ(vt−1|xt) separately. To
simplify the model representation, we
constrain pθ(vt−1|xt) to be the same as
q(vt−1) so that the first KL term vanishes.
In terms of pθ(xt−1|vt−1, xt), it needs to
approximate q(xt−1|vt−1, xt, x0) for both
x0 and bt = 1xt=x0 . For the former, we
approximate x0 with a neural network
output f (xt; θ) (§2); for the latter, it is
circumvented via a teacher-forcing approach.
We leverage the fact that bt = 1xt=x0 is
readily available during training and plug the oracle into pθ(xt−1|vt−1, xt), which works
well empirically and yields interesting implications as presented below.

Simplified Training Objectives. The discussion so far focuses on the diffusion process
over a single token. We now slightly abuse the term and denote the sequence of tokens at
step t as xt,1:N := {xt,n}N

n=1, where the joint distribution factorizes over each token, xt,n is
the n-th token with N being the sequence length.1 We show that the training objective Lt(θ)
for sequence xt,1:N at the t-th step can be reduced to a surprisingly simple expression (see
Appendix E for the proof and its connection to previous works) as follows,

Lt(θ) = Epdata(x0,1:N)∏N
n=1 q(xt,n |x0,n)

[
−λ

(2)
t−1

N

∑
n=1

(1− bt,n)x⊤0,n log f (xt,n; θ)

]
. (6)

Based on this result, training RDMs is equivalent to optimizing the standard multi-class cross-
entropy loss function, which is evaluated over noisy tokens and weighted by λ

(2)
t−1 = E

[
v(2)

t−1

]
.

This formulation is conceptually simpler than that of the original discrete diffusion, which
requires evaluating the KL divergence between two complicated categoricals (Hoogeboom
et al., 2021). Besides, this formulation establishes the discrete analog of reweighting training
strategies, which are recognized as common practices for training continuous-domain dif-
fusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Vahdat et al., 2021; Karras et al.,
2022). In particular, we can adjust the weight λ

(2)
t−1 to reweigh the cross-entropy function so

that it is more amenable for training.

More importantly, we note that the training loss function can be invariant with respect to
q(vt−1) up to reweighting, where different q(vt−1) lead to the same shared objective except

1We sometimes use xt and xt,n interchangeably to represent a single token when there is no
ambiguity.

5

Published as a conference paper at COLM 2024

for the weight λ
(2)
t−1. This makes it possible to train the neural network with one amenable

distribution of vt−1 but share the trained model for sampling among a broad family of
diffusion processes indexed by q(vt−1).

4.3 Sampling

Decoding text from discrete diffusion processes usually starts with a sequence comprising
only noisy tokens and proceeds by sampling a (partially) denoised sequence xt−1,1:N from
the previous step xt,1:N for each t.

Recursive Computation for bt. The key challenge in decoding is to compute bt,n =
1xt,n=x0,n in Equation 4, which is intractable since we lack access to the ground truth x0,n as
in training. We circumvent this issue by leveraging a recursive computation based on the
functionality of vt−1,n. Starting with bT,n = 0, we compute bt−1,n as

bt−1,n =
(

bt,n ∧ v(1)t−1,n

)
∨ v(2)t−1,n. (7)

Intuitively, bt,1:N represents a frontier set that stores the denoised tokens up to the previous

iteration. At the current iteration, we add new tokens to the set if v(2)t−1,n = 1 and remove

elements from the set if the corresponding v(1)t−1,n = 0. The updated set is then read out to
form bt−1,1:N .2 Note that the update does not add extra computational costs. Equipped with
these results, we can efficiently execute the sampling algorithm without difficulties.

Algorithm 2 Sampling from RDMs

Input: trained network f (·; θ) and temperature τ.
Output: generated sample x0.
for n = 1, 2, . . . , N do

Initialize xT,n ∼ qnoise;
Initialize bT,n = 0;

end for
for t = T, . . . , 1 do

for n = 1, 2, . . . , N do
Draw x̃0,n ∼ Categorical (f (xt,n; θ)/τ);
Generate vt−1,n according to Equation 8;
if bt,n = 1 then

Draw u(1)
t,n ∼ qnoise;

xt−1,n = v(1)t−1,nxt,n +
(

1− v(1)t−1,n

)
u(1)

t,n ;
else

Draw u(2)
t,n ∼ qnoise(xt,n);

xt−1,n = v(2)t−1,n x̃0,n +
(

1− v(2)t−1,n

)
u(2)

t,n ;
end if
Let bt−1,n = bt,n ∧ v(1)t−1,n ∨ v(2)t−1,n;

end for
end for
Return x0,1:N .

Generating vt−1. As shown in Equation 4,
a naïve approach of generating vt−1 is by
drawing vt−1,n ∼ Bernoulli (λt−1) for each
token n. However, this assigns equal rout-
ing probability λt−1 to all tokens, which
may be sub-optimal for routing different to-
kens to distinct states. This observation mo-
tivates us to employ a more discriminative
routing mechanism, where only tokens with
high confidence from neural networks are
denoised (Ghazvininejad et al., 2019; Savi-
nov et al., 2022; Chang et al., 2022). At each
step, assume v(1)

t−1,n and v(2)
t−1,n are set to 1

and 0 by default, respectively. We feed the
noisy sequence xt,1:N into the neural net-
work and collect the output f (xt,n; θ) for
each token n. After that, We obtain token
scores st,n by taking the maximum value of
f (xt,n; θ) ∈ (0, 1)K, which reflects the model
confidence. vt−1,n is then set to 1 only when
st,n is among the k largest scores. Formally,

st,n := max
1≤j≤K

f j(xt,n; θ), Pt−1 = arg topk
1≤n≤N

{st,n}N
n=1, v(i)

t−1,n = 1n∈Pt−1 , (8)

where i = 1 if bt,n = 1 and i = 2 otherwise. This strategy is more informative, as the router
can compare token scores to determine their states. Note that vt−1 is now defined as a
function of model scores and its explicit probability distribution is possibly different from
the one used in training; however, thanks to §4.2, the diffusion model corresponding to
this routing distribution can also be trained effectively with the shared surrogate objective,
justifying the usage of the adaptive strategy.

2Technically, for certain noise distributions qnoise, these logic operations ∧ and ∨ should also be
noisy since they should compensate for the possibility that noises drawn from qnoise can also coincide
with x0; however, for most diffusion processes considered in this work, such probability is either zero
or so small that it can be safely ignored.

6

Published as a conference paper at COLM 2024

4.4 Implementation

Algorithms 1 and 2 list the full pseudo-codes for training and sampling of RDMs, respec-
tively. Note that the loop over the sequence length N is computed in parallel. The developed
formulation of RDMs offers great flexibility for both training and sampling. For instance,
we can pass a custom λt−1 to reweigh the loss for training, similar to continuous diffusion
models. Besides, the denoised token states x̃0 during decoding can be obtained in vari-
ous ways, such as sampling with annealed temperatures or simply taking the arg max of
f (xt,n; θ). Please refer to Appendix F for the full implementation details.

5 Experiments

We evaluate our model on various text generation benchmarks, including machine transla-
tion (§5.1), open-ended text generation (Appendix H.3), question generation, and paraphras-
ing (§5.2). Our implementation is based on FairSeq toolkit (Ott et al., 2019); more detailed
experimental setup and analyses can be found in Appendices F and H, respectively.

5.1 Machine Translation

Setup. We conducted machine translation experiments on three standard benchmarks:
IWSLT14 DE-EN (Cettolo et al., 2014), WMT14 EN-DE (Bojar et al., 2014), and WMT16 EN-RO (Bojar
et al., 2016), consisting of around 160K/7K/7K, 4.0M/3K/3K, and 610K/2K/2K train-
ing/validation/testing sentence pairs, respectively. We operate on original data for all
translation tasks and do not adopt knowledge distillation (Kim & Rush, 2016; Gu et al.,
2018) that replaces the target side of training data with outputs generated by a pre-trained
autoregressive Transformer.

Results. As seen from Table 1, existing discrete diffusion models usually perform badly
on the translation task and do not scale well for large-sized datasets. In particular, multi-
nomial diffusion achieves worse translation quality albeit with more iterations and fails to
decode decently on WMT14 EN-DE dataset. The proposed reparameterization yields significant
performance boosts (about 3~20 BLEU improvements) on both absorbing and multinomial
diffusion across all datasets and iteration steps. We also observe that the performance
gain is much more significant for multinomial diffusion, which is possibly due to the fix of
its degenerated behavior (more details are in §5.4). Our approach effectively scales diffu-
sion models to larger datasets, outperforming previous non-autoregressive baselines CMLM
(Ghazvininejad et al., 2019), and achieves promising results even competitive with autore-
gressive baselines. Besides, RDMs perform significantly better than continuous diffusion
models CDCD (Dieleman et al., 2022) while running with more than 8× fewer iterations.

5.2 Question Generation and Paraphrasing

Setup. We also evaluate the performance of our model on general sequence-to-sequence
generation tasks, following Gong et al. (2022). Due to the limited computation budget,
the tasks we focus on are 1) question generation (QG) using the Quasar-T dataset (Dhin-
gra et al., 2017) with approximately 117K/2K/10K pairs for training/validation/testing,
and 2) paraphrasing with Quora Question Pairs (QQP) containing around 145K/2K/2.5K
training/validation/testing question pairs.

Results. We report comparisons among discrete diffusion, continuous diffusion, and
auto-regressive baselines in Table 3. We observe that either variant of RDMs not only
improves their vanilla counterparts by a large margin but also outperforms the strong
continuous diffusion baseline DiffuSeq as well as various auto-regressive baselines across
several evaluation metrics. Besides, DiffuSeq needs 2000 steps to finish the decoding, while
RDMs can produce higher-quality samples with 10 iterations, reducing runtime by over
200×. This implies that RDMs can attain a much better trade-off between generation quality
and runtime. In addition, we also investigate the effect of candidate sample size in Table 8.

7

Published as a conference paper at COLM 2024

Model # Iterations IWSLT14 DE-EN WMT16 EN-RO WMT14 EN-DE
Vanilla Reparam. Vanilla Reparam. Vanilla Reparam.

Continuous Diffusion CDCD
(Dieleman et al., 2022) 200 – – 20.0*

Discrete Diffusion

Multinomial Diffusion
(Hoogeboom et al., 2021)

2 23.05 28.01 26.61 30.16 4.28 21.43
4 24.24 30.57 27.81 31.70 4.31 24.05
10 21.28 32.23 25.25 33.00 6.94 25.63
16 20.59 32.58 24.36 33.11 6.07 25.64
25 20.06 32.84 23.94 33.31 3.69 26.04

Absorbing Diffusion
(Austin et al., 2021)

2 25.24 27.60 27.24 30.72 16.46 21.00
4 26.93 31.47 29.16 32.60 19.48 24.26
10 28.32 33.91 30.41 33.38 21.62 26.96
16 28.38 34.41 30.79 33.82 22.07 27.58
25 28.93 34.49 30.56 33.99 22.52 27.59

Non-autoregressive Models

CMLM
(Ghazvininejad et al., 2019) 16 32.18 32.90 25.00

CMLM+SMART
(Ghazvininejad et al., 2020) 10 30.74* 32.71* 25.10*

Levenshtein Transformer
(Gu et al., 2019) Adaptive - - 25.20*

DisCo
(Kasai et al., 2020) Adaptive - - 25.64*

CMLMC
(Huang et al., 2022) 10 34.28* 34.14* 26.40*

Autoregressive Models Transformer-base
(Vaswani et al., 2017) n.a. 34.51 34.16 27.53

Table 1: BLEU score comparisons on IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO bench-
marks. * denotes results reported from previous work.

We notice that DiffuSeq benefits more from large sample sets (e.g., when the sample size
increases from 1 to 10) than RDMs. We attribute this to the possibility that adding Gaussian
noise to token embeddings in DiffuSeq might lead to more diverse samples. This helps
make better use of the MBR decoding, indicating that there might be room to improve
RDMs to leverage multiple decodes. Nevertheless, RDMs still achieve better performance
than DiffuSeq across both cases of single and multiple samples.

5.3 Analysis

Reweighting training scheme Vanilla Improved

Original
(

λ
(2)
t−1=

αt−1−αt
1−αt

)
28.32 30.64

Linear
(

λ
(2)
t−1=1− t−1

T

)
31.04 33.91

Constant
(

λ
(2)
t−1=1

)
29.75 32.57

Table 2: BLEU scores on IWSLT14 DE-EN with
different reweighting schemes, evaluated un-
der RDM-absorbing with 10 vanilla/improved
decoding steps.

On the Effect of Training and Decoding
Strategies. This section explores the im-
pact of improved training and decoding
techniques developed for RDMs. Concern-
ing the training aspect, we compare the de-
rived loss objective, which takes the form of
a reweighting cross-entropy function (§4.2),
with that of traditional discrete diffusion
models. As for decoding, we evaluate the
effectiveness of the discriminative routing
mechanism (§4.3) against the vanilla strat-
egy that randomly denoises tokens. The
overall comparison is presented in Figure 2a (as well as Figures 3a and 3b in Appendix H.4).
The results indicate that adopting either the improved training or decoding scheme leads to
a significant performance boost over vanilla baselines, which can be further amplified by
integrating both. In particular, we discover that the inferior performance of vanilla multino-
mial diffusion stems from both inadequate training and ineffective decoding. Improving
either the training or decoding process results in gains of over 10~20 BLEU points, allowing
the model to scale well for more decoding steps. Besides, we also ablate the design choice
of reweighting strategies (§4.2) in Table 2, and observe that a linear heuristic proposed
in (Bond-Taylor et al., 2022) yields large improvements in performance on IWSLT14 DE-EN.
Therefore, this reweighting scheme is adopted by default unless specified otherwise.

On Decoding Speed. This section visualizes the performance-runtime comparison among
different text generation models. All models considered here have roughly the same

8

Published as a conference paper at COLM 2024

0 5 10 15 20 25
Iteration

5

10

15

20

25

B
LE

U

Absorbing Diffusion

Ablation

Vanilla

Improved Training

Improved Decoding

Improved Training & Decoding

0 5 10 15 20 25
Iteration

Multinomial Diffusion

(a)

10 1 100 101 102

Speed (sentences / sec)

0.00

0.05

0.10

0.15

0.20

0.25

BL
EU

 S
co

re
s

Transformer-base

GPT2-base

10100250

1000

2000
2

51020
251020

Model

RDM-absorbing
RDM-multinomial
GPT2-base
Transformer-base
DiffuSeq

(b)

Figure 2: Left: ablation study of improved training and decoding strategies on WMT14 EN-DE
test set for absorbing and multinomial diffusion, respectively. Right: The quality-speed
comparison among different models for QQP dataset. The number annotation indicates the
iteration steps except for GPT2-base and Transformer-base, which generate auto-regressively
and do not have a fixed number of iterations. The horizontal axis is in log scale.

parameter counts (90~110M), and the speed is measured under the setting of 32 batch size
on one NVIDIA GeForce RTX 3090 GPU, averaged by 30 runs. As shown in Figure 2b, there
is a clear trend that RDMs usually run up to 10× faster than a similar-sized auto-regressive
baseline GPT2 (Radford et al., 2019) or Transformer (Vaswani et al., 2017), while to achieve
similar performance, continuous diffusion models are several orders of magnitude slower
than these baselines. Furthermore, discrete diffusion models here are trained with 50 time
steps in total but are able to achieve satisfactory quality even with 2 or 5 steps. In contrast,
the continuous diffusion model DiffuSeq, trained with 2000 time steps, mostly generates
non-meaningful sentences (BLEU scores getting close to zero) under down-sampled time
steps, even equipped with advanced samplers like DDIM (Song et al., 2021a). This reveals
the inherent difference between discrete and continuous diffusion, where discrete diffusion
generalizes much better to various setups of iteration steps.

5.4 Examples

This section illustrates the samples generated by RDMs. We focus on the case of multinomi-
nal diffusion and its reparameterized variant; a more comprehensive analysis can be found
in Appendix H.5.

Multinomial Diffusion Does Not Decode Iteratively. As seen in Table 4, we observe that
across all text generation tasks, vanilla multinomial diffusion only generates the hypothesis
at the first iteration and gets stuck in the same state thereafter. This means multinomial dif-
fusion decodes in one shot and does not leverage the iterative process for further refinement.
In Appendix H.5, we show that this abnormal behavior is primarily due to its degenerated
backward formulation, which can be neatly fixed by our reparameterization. The resulting
behavior is much more expected and leads to better generation quality.

The Slow Convergence of Continuous Diffusion. We also demonstrate the down-
sampled dynamics during the generation of DiffuSeq. In contrast to discrete diffusion
models, where relevant tokens emerge within only a few steps, continuous diffusion hardly
decodes meaningful tokens until the 1000-th iteration or later. This validates our hypothesis
that the Gaussian diffusion over token embeddings is noisy and slow by design; further-
more, many diffusing steps are required to emit a significant change over token states due
to the rounding quantization (see Table 12 for an illustration).

6 Conclusion

This work presents an extensive analysis of discrete diffusion models. Based on the devel-
oped understanding, we propose a family of reparameterized discrete diffusion models (RDMs)

9

Published as a conference paper at COLM 2024

Task Model BLEU ↑ ROUGE-L ↑ BERTScore ↑ Dist-1↑

QG

Transformer-base† 0.1663 0.3441 0.6307 0.9309
GPT2-base FT† 0.0741 0.2714 0.6052 0.9602
GPT2-large FT† 0.1110 0.3215 0.6346 0.9670
GPVAE-T5† 0.1251 0.3390 0.6308 0.9381
NAR-LevT† 0.0930 0.2893 0.5491 0.8914
DiffuSeq† 0.1731 0.3665 0.6123 0.9056

Absorbing 0.1738 0.3503 0.6312 0.9095
RDM-absorbing 0.1791 0.3565 0.6393 0.9202
Multinomial 0.1696 0.3429 0.6188 0.8990
RDM-multinomial 0.1802 0.3550 0.6310 0.9082

QQP

Transformer-base† 0.2722 0.5748 0.8381 0.9748
GPT2-base FT† 0.1980 0.5212 0.8246 0.9798
GPT2-large FT† 0.2059 0.5415 0.8363 0.9819
GPVAE-T5† 0.2409 0.5886 0.8466 0.9688
NAR-LevT† 0.2268 0.5795 0.8344 0.9790
DiffuSeq† 0.2413 0.5880 0.8365 0.9807

Absorbing 0.2382 0.5834 0.8294 0.9566
RDM-absorbing 0.2510 0.5945 0.8472 0.9849
Multinomial 0.2070 0.5539 0.7985 0.9175
RDM-multinomial 0.2498 0.5886 0.8466 0.9817

Table 3: Comparisons among different text
generators on QG and QQP. † numbers are
taken from Gong et al. (2022). All discrete
diffusion models are run with 10 steps.

Source: how can one increase concentration?
Reference: how can i improve my concentration?

Iter. Decodes

D
iff

uS
eq

0 ◦ skeptical coli ##zam gael erika calves wharf [unused791]‡

500 ◦ cessna i perez newark ? venezuelan regeneration 283 zhejiang‡

1000 ◦ johanna 730 i improve terminals ?
1500 ◦ how do i improve concentration ?
2000 ◦ how do i improve concentration ?

M
ul

ti
no

m
ia

l

0 ◦ ##tly distances outline ##cera khmer curvature question ##tl
1 ◦ how can i improve focus in concentration ?
2 ◦ how can i improve focus in concentration ?
3 ◦ how can i improve focus in concentration ?
4 ◦ how can i improve focus in concentration ?
5 ◦ how can i improve focus in concentration ?

R
D

M
-m

ul
ti

no
m

ia
l 0 ◦ lungs ##down intensity cortes ##lden ufo oldies

1 ◦ worker blurted i ##kal caledonia concentration ##vb
2 ◦ how trait i ##kal my concentration ##vb
3 ◦ how trait i increase my concentration ?
4 ◦ how trait i increase my concentration ?
5 ◦ how do i increase my concentration ?

Table 4: Qualitative samples of test para-
phrases generated from different diffusion
models on QQP dataset. ‡ texts are truncated
to fit into the table. Words are in lower case.

that significantly improve previous work in both training and decoding. We evaluate the
proposed model family in various text generation benchmarks and demonstrate the boosted
generation quality.

RDMs define a general framework for discrete diffusion processes and can be extended in
several ways. For instance, RDMs are currently confined to generating fixed-length sentences
and rely on an explicit length prediction module to propose the sequence length. It would
be interesting to extend the model to enable variable-length sequence generation. Besides,
our proposed adaptive routing mechanism (§4.3) makes the initial attempt to unleash the
expressiveness of RDMs; the shared training objective (§4.2) allows more advanced search
methods to be incorporated into the sampling process for better generation quality. A
further investigation into this direction is left as future work.

Acknowledgements

We would like to thank the HKU NLP group, the Shark NLP group, and the anonymous
reviewers for their valuable suggestions that greatly helped improve this work. We also
thank Runhao Shi and Zijing Ou for the initial discussion on an earlier draft of this work.
This work is partially supported by the joint research scheme of the National Natural Science
Foundation of China (NSFC) and the Research Grants Council (RGC) under grant number
N_HKU714/21.

References

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=h7-XixPCAL.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika
Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion
models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut,
Lucia Specia, and Aleš Tamchyna. Findings of the 2014 workshop on statistical machine
translation. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58,
Baltimore, Maryland, USA, June 2014. Association for Computational Linguistics. doi:
10.3115/v1/W14-3302. URL https://aclanthology.org/W14-3302.

10

https://openreview.net/forum?id=h7-XixPCAL
https://aclanthology.org/W14-3302

Published as a conference paper at COLM 2024

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino,
Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri.
Findings of the 2016 conference on machine translation. In Proceedings of the First Confer-
ence on Machine Translation: Volume 2, Shared Task Papers, pp. 131–198, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/W16-2301.
URL https://aclanthology.org/W16-2301.

Sam Bond-Taylor, Peter Hessey, Hiroshi Sasaki, Toby P Breckon, and Chris G Willcocks.
Unleashing transformers: parallel token prediction with discrete absorbing diffusion for
fast high-resolution image generation from vector-quantized codes. In European Conference
on Computer Vision, pp. 170–188. Springer, 2022.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis,
and Arnaud Doucet. A continuous time framework for discrete denoising models. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
DmT862YAieY.

Hanqun Cao, Cheng Tan, Zhangyang Gao, Guangyong Chen, Pheng-Ann Heng, and Stan Z
Li. A survey on generative diffusion model. arXiv preprint arXiv:2209.02646, 2022.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico.
Report on the 11th IWSLT evaluation campaign. In Proceedings of the 11th International
Workshop on Spoken Language Translation: Evaluation Campaign, pp. 2–17, Lake Tahoe,
California, December 4-5 2014. URL https://aclanthology.org/2014.iwslt-evaluation.
1.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked
generative image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11315–11325, 2022.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-
Hsuan Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-
image generation via masked generative transformers. arXiv preprint arXiv:2301.00704,
2023.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data
using diffusion models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion
models in vision: A survey. arXiv preprint arXiv:2209.04747, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1423. URL https://aclanthology.org/N19-1423.

Bhuwan Dhingra, Kathryn Mazaitis, and William W Cohen. Quasar: Datasets for question
answering by search and reading. arXiv preprint arXiv:1707.03904, 2017.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin,
Pierre H Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al.
Continuous diffusion for categorical data. arXiv preprint arXiv:2211.15089, 2022.

Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirec-
tional context with multinomial diffusion for autoregressive image synthesis. Advances in
Neural Information Processing Systems, 34:3518–3532, 2021.

11

https://aclanthology.org/W16-2301
https://openreview.net/forum?id=DmT862YAieY
https://openreview.net/forum?id=DmT862YAieY
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/N19-1423

Published as a conference paper at COLM 2024

Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and Linli Xu.
Difformer: Empowering diffusion model on embedding space for text generation. arXiv
preprint arXiv:2212.09412, 2022.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict:
Parallel decoding of conditional masked language models. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6112–6121, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/
D19-1633. URL https://aclanthology.org/D19-1633.

Marjan Ghazvininejad, Omer Levy, and Luke Zettlemoyer. Semi-autoregressive training
improves mask-predict decoding. arXiv preprint arXiv:2001.08785, 2020.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Se-
quence to sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933,
2022.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-
autoregressive neural machine translation. In International Conference on Learning Represen-
tations, 2018. URL https://openreview.net/forum?id=B1l8BtlCb.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. Advances in Neural
Information Processing Systems, 32, 2019.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10696–10706,
2022.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Watten-
hofer. Diffusion models for graphs benefit from discrete state spaces. arXiv preprint
arXiv:2210.01549, 2022.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-
based diffusion language model for text generation and modular control. arXiv preprint
arXiv:2210.17432, 2022.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffu-
sionbert: Improving generative masked language models with diffusion models. arXiv
preprint arXiv:2211.15029, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 6840–6851, 2020. URL https://proceedings.
neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
David J Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rygGQyrFvH.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=6nbpPqUCIi7.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg,
and Tim Salimans. Autoregressive diffusion models. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=Lm8T39vLDTE.

12

https://aclanthology.org/D19-1633
https://openreview.net/forum?id=B1l8BtlCb
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=6nbpPqUCIi7
https://openreview.net/forum?id=Lm8T39vLDTE

Published as a conference paper at COLM 2024

Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3D. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 8867–8887. PMLR, 17–23 Jul 2022b. URL https://proceedings.mlr.press/v162/
hoogeboom22a.html.

Minghui Hu, Yujie Wang, Tat-Jen Cham, Jianfei Yang, and Ponnuthurai N Suganthan. Global
context with discrete diffusion in vector quantised modelling for image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11502–11511, 2022a.

Minghui Hu, Chuanxia Zheng, Heliang Zheng, Tat-Jen Cham, Chaoyue Wang, Zuopeng
Yang, Dacheng Tao, and Ponnuthurai N Suganthan. Unified discrete diffusion for simul-
taneous vision-language generation. arXiv preprint arXiv:2211.14842, 2022b.

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs. Improving non-autoregressive transla-
tion models without distillation. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=I2Hw58KHp8O.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via
the system of stochastic differential equations. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 10362–10383. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/jo22a.html.

Daniel D. Johnson, Jacob Austin, Rianne van den Berg, and Daniel Tarlow. Beyond in-place
corruption: Insertion and deletion in denoising probabilistic models. In ICML Workshop
on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021. URL
https://openreview.net/forum?id=cAsVBUe1Rnj.

Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy,
Matthew Peters, and Arman Cohan. TESS: Text-to-text self-conditioned simplex dif-
fusion. In Proceedings of the 18th Conference of the European Chapter of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 2347–2361, 2024. URL
https://aclanthology.org/2024.eacl-long.144.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=k7FuTOWMOc7.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-autoregressive
machine translation with disentangled context transformer. In International conference on
machine learning, pp. 5144–5155. PMLR, 2020.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1317–1327,
Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/
v1/D16-1139. URL https://aclanthology.org/D16-1139.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A
versatile diffusion model for audio synthesis. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=a-xFK8Ymz5J.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them:
The gumbel-top-k trick for sampling sequences without replacement. In International
Conference on Machine Learning, pp. 3499–3508. PMLR, 2019.

13

https://proceedings.mlr.press/v162/hoogeboom22a.html
https://proceedings.mlr.press/v162/hoogeboom22a.html
https://openreview.net/forum?id=I2Hw58KHp8O
https://proceedings.mlr.press/v162/jo22a.html
https://proceedings.mlr.press/v162/jo22a.html
https://openreview.net/forum?id=cAsVBUe1Rnj
https://aclanthology.org/2024.eacl-long.144
https://openreview.net/forum?id=k7FuTOWMOc7
https://aclanthology.org/D16-1139
https://openreview.net/forum?id=a-xFK8Ymz5J

Published as a conference paper at COLM 2024

Wouter Kool, Herke van Hoof, and Max Welling. Ancestral gumbel-top-k sampling for
sampling without replacement. Journal of Machine Learning Research, 21(47):1–36, 2020.
URL http://jmlr.org/papers/v21/19-985.html.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive
neural sequence modeling by iterative refinement. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 1173–1182, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1149. URL https://aclanthology.org/D18-1149.

José Lezama, Huiwen Chang, Lu Jiang, and Irfan Essa. Improved masked image generation
with token-critic. In European Conference on Computer Vision, pp. 70–86. Springer, 2022.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto,
Luke Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation
as optimization. arXiv preprint arXiv:2210.15097, 2022a.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto.
Diffusion-LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022b. URL https://openreview.net/forum?id=3s9IrEsjLyk.

Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion models for non-
autoregressive text generation: A survey. arXiv preprint arXiv:2303.06574, 2023.

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Weizhu Chen,
and Nan Duan. Genie: Large scale pre-training for text generation with diffusion model.
arXiv preprint arXiv:2212.11685, 2022.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Weinberger. Latent
diffusion for language generation. arXiv preprint arXiv:2212.09462, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. arXiv preprint arXiv:1609.07843, 2016.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pp. 48–53, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-4009. URL https:
//aclanthology.org/N19-4009.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin
Choi, and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human
text using divergence frontiers. Advances in Neural Information Processing Systems, 34:
4816–4828, 2021.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pp. 186–191, Brussels, Belgium, October 2018.
Association for Computational Linguistics. doi: 10.18653/v1/W18-6319. URL https:
//aclanthology.org/W18-6319.

14

http://jmlr.org/papers/v21/19-985.html
https://aclanthology.org/D18-1149
https://openreview.net/forum?id=3s9IrEsjLyk
https://aclanthology.org/N19-4009
https://aclanthology.org/N19-4009
https://aclanthology.org/P02-1040
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319

Published as a conference paper at COLM 2024

Lihua Qian, Mingxuan Wang, Yang Liu, and Hao Zhou. Diff-glat: Diffusion glancing
transformer for parallel sequence to sequence learning. arXiv preprint arXiv:2212.10240,
2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. COMET: A neural framework
for MT evaluation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 2685–2702, Online, November 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.213. URL https://
aclanthology.org/2020.emnlp-main.213.

Machel Reid, Vincent J Hellendoorn, and Graham Neubig. Diffuser: Discrete diffusion via
edit-based reconstruction. arXiv preprint arXiv:2210.16886, 2022.

Pierre H Richemond, Sander Dieleman, and Arnaud Doucet. Categorical sdes with simplex
diffusion. arXiv preprint arXiv:2210.14784, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=08Yk-n5l2Al.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den
Oord. Step-unrolled denoising autoencoders for text generation. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=T0GpzBQ1Fg6.

Ari Seff, Wenda Zhou, Farhan Damani, Abigail Doyle, and Ryan P Adams. Discrete
object generation with reversible inductive construction. Advances in Neural Information
Processing Systems, 32, 2019.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
URL https://aclanthology.org/P16-1162.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In International Conference
on Machine Learning, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021a. URL https://openreview.net/
forum?id=St1giarCHLP.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
In International Conference on Learning Representations, 2021b. URL https://openreview.
net/forum?id=PxTIG12RRHS.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer:
Flexible sequence generation via insertion operations. In International Conference on
Machine Learning, pp. 5976–5985. PMLR, 2019.

15

https://aclanthology.org/2020.emnlp-main.213
https://aclanthology.org/2020.emnlp-main.213
https://openreview.net/forum?id=08Yk-n5l2Al
https://openreview.net/forum?id=T0GpzBQ1Fg6
https://aclanthology.org/P16-1162
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

Published as a conference paper at COLM 2024

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch,
Will Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, et al. Self-conditioned
embedding diffusion for text generation. arXiv preprint arXiv:2211.04236, 2022.

Yixuan Su and Nigel Collier. Contrastive search is what you need for neural text generation.
arXiv preprint arXiv:2210.14140, 2022.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-
time discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector
quantized diffusion models. arXiv preprint arXiv:2205.16007, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent
space. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
P9TYG0j-wtG.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pp. 5998–6008, 2017.

Tim Vieira. Gumbel-max trick and weighted reservoir sampling,
2014. URL http://timvieira.github.io/blog/post/2014/08/01/
gumbel-max-trick-and-weighted-reservoir-sampling/.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Rose E Wang, Esin Durmus, Noah Goodman, and Tatsunori Hashimoto. Language modeling
via stochastic processes. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=pMQwKL1yctf.

Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo,
Nan Duan, Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text
generation. Advances in Neural Information Processing Systems, 36:39957–39974, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive
survey of methods and applications. arXiv preprint arXiv:2209.00796, 2022.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understand-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32, pp. 5753–5763.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused
conditional sequence learning by manipulating noises. arXiv preprint arXiv:2302.10025,
2023.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative
video transformer. arXiv preprint arXiv:2212.05199, 2022.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Seqdiffuseq:
Text diffusion with encoder-decoder transformers. arXiv preprint arXiv:2212.10325, 2022.

16

https://openreview.net/forum?id=P9TYG0j-wtG
https://openreview.net/forum?id=P9TYG0j-wtG
http://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
http://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
https://openreview.net/forum?id=pMQwKL1yctf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

Published as a conference paper at COLM 2024

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

Ye Zhu, Yu Wu, Kyle Olszewski, Jian Ren, Sergey Tulyakov, and Yan Yan. Discrete contrastive
diffusion for cross-modal and conditional generation. arXiv preprint arXiv:2206.07771,
2022.

17

Published as a conference paper at COLM 2024

Appendices

A Related Work

A.1 Diffusion Models for Text Generation

Text Generation with Discrete Diffusion. Discrete diffusion processes have close connec-
tions with previously developed language models. For instance, traditional auto-regressive
language models can be seen as a special deterministic discrete diffusion process (Austin
et al., 2021). In addition, D3PMs (Austin et al., 2021) also introduce an absorbing diffusion
strongly linked to masked language models (Devlin et al., 2019). The diffusion formulation
is further generalized in various aspects, such as enabling editing-based operations (Johnson
et al., 2021) or casting generic permuted language models (Yang et al., 2019) as a diffusion
process (Hoogeboom et al., 2022a).

The text generation performance of discrete diffusion processes is initially evaluated on
language modeling tasks (Hoogeboom et al., 2021; Austin et al., 2021), despite limited
success. Recent studies have improved the performance of discrete diffusion on various tasks
by devising unrolling training strategies (Savinov et al., 2022), combining pre-trained models
(He et al., 2022), incorporating autoregressive decoding with editing-based refinements
(Reid et al., 2022), or leveraging a more effective diffusion process over data modalities with
advanced search algorithms (Qian et al., 2022).

Text Generation with Continuous Diffusion. There has been a surge of recent interest in
adapting continuous diffusion models for text generation. This approach typically applies
Gaussian diffusion over the embedding space, achieving impressive results (Li et al., 2022b;
Gong et al., 2022; Dieleman et al., 2022; Strudel et al., 2022; Lin et al., 2022; Yuan et al.,
2022; Gao et al., 2022; Ye et al., 2023; Wu et al., 2023). Some studies convert discrete tokens
to bit strings and model them as real values (Chen et al., 2022), or inject Gaussian noise
into token logits instead of embeddings (Han et al., 2022; Karimi Mahabadi et al., 2024).
Other studies focus on learning a latent continuous diffusion of pre-trained auto-regressive
models (Wang et al., 2022; Lovelace et al., 2022). In contrast, RDMs do not rely on pretrained
language model checkpoints and generate high-quality text with significantly fewer steps
compared to continuous diffusion models. For a detailed review of recent advances in
diffusion models, we refer readers to Cao et al. (2022); Croitoru et al. (2022); Yang et al.
(2022); Li et al. (2023).

A.2 Iterative Non-autoregressive Text Generation

Diffusion-based generative models are closely related to iterative non-autoregressive gener-
ation (Gu et al., 2018) in the context of machine translation. The generation process often
involves iterative refinement (Lee et al., 2018; Ghazvininejad et al., 2019; Stern et al., 2019;
Gu et al., 2019; Kasai et al., 2020; Ghazvininejad et al., 2020; Huang et al., 2022). Our adaptive
routing mechanism (§4.3) takes inspiration from the heuristic used in CMLM (Ghazvinine-
jad et al., 2019), which refines the sequence by masking tokens with low model confidence.
However, unlike CMLM, our approach only integrates the masking heuristic within the
routing mechanism at each diffusion step, rather than relying entirely on it for decoding.
This makes the decoding procedure governed by the formulated diffusion process and helps
achieve better performance in practice.

B Extended Background about Discrete Diffusion Models

Discrete diffusion probabilistic models are first explored in Sohl-Dickstein et al. (2015) for
Bernoulli data. Multinomial diffusion (Hoogeboom et al., 2021) later proposes a uniform
corruption process for categorical variables, which are extended by D3PMs (Austin et al.,
2021) to support general transition matrices, including an absorbing variant that draws
close connections to masked language models (Devlin et al., 2019). Several recent works

18

Published as a conference paper at COLM 2024

push this line of research further in various aspects, such as incorporating editing-based
operations (Johnson et al., 2021; Reid et al., 2022), casting permuted language models (Yang
et al., 2019) as diffusion models (Hoogeboom et al., 2022a), developing a continuous-time
framework (Campbell et al., 2022), as well as exploring an analog of score functions for
learning the reverse process Sun et al. (2022).

Applications. Discrete diffusion has been applied to a variety of tasks, including graph
generation (Seff et al., 2019; Haefeli et al., 2022; Vignac et al., 2022), image generation (Esser
et al., 2021; Bond-Taylor et al., 2022; Gu et al., 2022; Tang et al., 2022; Hu et al., 2022a), vision-
language generation (Hu et al., 2022b), and general multimodal conditional synthesis (Zhu
et al., 2022). Lezama et al. (2022) draws connections between discrete diffusion processes
and non-autoregressive Transformers for visual domains (Chang et al., 2022; Yu et al., 2022;
Chang et al., 2023).

B.1 The derivation of ELBO

Discrete diffusion models are typically trained by maximizing a lower bound of its marginal
log-likelihood, defined below,

log pθ(x0)

= log
∫

pθ(x0, x1, . . . , xT)dx1 · · · dxT

= log
∫ pθ(x0, x1, . . . , xT)

q(x1, . . . , xT |x0)
q(x1, . . . , xT |x0)dx1 · · · dxT

= log Eq(x1,...,xT |x0)

[
pθ(x0, x1, . . . , xT)

q(x1, . . . , xT |x0)

]
≥ Eq(x1,...,xT |x0)

[
log

pθ(x0, x1, . . . , xT)

q(x1, . . . , xT |x0)

]
= Eq(x1,...,xT |x0)

[
log

pθ(x0|x1)pθ(xT)∏T
t=2 pθ(xt−1|xt)

q(xT |x0)∏T
t=2 q(xt−1|xt, x0)

]

= Eq(x1,...,xT |x0)

[
log pθ(x0|x1)−

T

∑
t=2

log
q(xt−1|xt, x0)

pθ(xt−1|xt)
− log

q(xT |x0)

pθ(xT)

]

= Eq

[
log pθ(x0|x1)−

T

∑
t=2

KL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))−KL(q(xT |x0) ∥ pθ(xT))

]

= Eq(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸
L1(θ)

−
T

∑
t=2

Eq(xt |x0) [KL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))]︸ ︷︷ ︸
Lt(θ)

+const. (9)

B.2 Parameterization

Recall that our objective is to minimize the KL divergence between q(xt−1|xt, x0) and
a parameterized distribution pθ(xt−1|xt) at each time step. A widely adopted way is
then defining pθ(xt−1|xt) = q(xt−1|xt, x̃0), where x̃0 = f (xt; θ) is predicted by a Trans-
former model. Austin et al. (2021) considers an alternative parameterization by letting
pθ(xt−1|xt) ∝ ∑x̃0

q(xt−1, xt|x̃0)pθ(x̃0|xt), where we learn pθ(x̃0|xt) similarly to f (xt; θ).
These two approaches are different in general and define distinct generative processes in
general; we follow the former method due to its simplicity and conciseness. More details
can be found below.

B.3 Backward Transition Probabilities

This section provides separate derivations for the original backward transition formulation
of various discrete diffusion processes.

19

Published as a conference paper at COLM 2024

Absorbing Diffusion. The absorbing diffusion (Austin et al., 2021) defines a Markov chain
where a token goes into an absorbing mask state denoted by [M] with some probability at
each time step and stays the same thereafter. The forward transition probability is defined
as q(xt|xt−1) = βtxt−1 + (1− βt)qnoise, where qnoise = [M] is the point mass with all of the
probability on an absorbing state (the mask state [M] is denoted as a one-hot vector).

Regarding the conditional backward transition probability q(xt−1|xt, x0), xt can only stay
in either state x0 or state [M]. If xt = x0, then xt−1 must also be in state x0 since it is not
absorbed yet; while if xt = e[M], we have

q(xt−1 = [M]|xt = [M], x0) =
q(xt = [M]|xt−1 = [M])q(xt−1 = [M]|x0)

q(xt = [M]|x0)

=
1 · (1− αt−1)

1− αt
=

1− αt−1

1− αt
;

q(xt−1 = x0|xt = [M], x0) =
q(xt = [M]|xt−1 = x0)q(xt−1 = x0|x0)

q(xt = [M]|x0)

=
(1− βt)αt−1

1− αt
=

αt−1 − αt

1− αt
.

The actual generative process is defined as pθ(xt−1|xt) ∝ ∑x̃0
q(xt−1, xt|x̃0)pθ(x̃0|xt), where

we predict the probability vector pθ(x̃0|xt) := f x̃0(xt; θ) from a Transformer. As shown in
Austin et al. (2021), this formulation has a simple expression. Suppose k ̸= [M] is one of the
K possible states. Note that

• if xt = k ̸= [M], then due to the joint q(xt−1, xt|x̃0) there is only one entry that is
non-zero within the sum q(xt−1 = k, xt = k|x̃0 = k)pθ(x̃0 = k|xt). As a result, the
reverse distribution becomes a point mass over position k;

• if xt = [M], we have

pθ(xt−1 = [M]|xt = [M]) ∝ ∑
x̃0

q(xt = [M]|xt−1 = [M])q(xt−1 = [M]|x̃0)pθ(x̃0|xt)

= ∑
x̃0

(1− αt−1)pθ(x̃0|xt)

= (1− αt−1)∑
x̃0

pθ(x̃0|xt)

= 1− αt−1;

pθ(xt−1 = k|xt = [M]) ∝ ∑
x̃0

q(xt = [M]|xt−1 = k)q(xt−1 = k|x̃0)pθ(x̃0|xt)

= q(xt = [M]|xt−1 = k)q(xt−1 = k|x̃0 = k)pθ(x̃0 = k|xt)

= (αt−1 − αt)pθ(x̃0 = k|xt).

They can be easily normalized as well,

pθ(xt−1 = [M]|xt = [M]) =
1− αt−1

1− αt

pθ(xt−1 = k|xt = [M]) =
(αt−1 − αt)pθ(x̃0 = k|xt)

1− αt
.

This can be written in a more compact way, where pθ(x̃0 = k|xt) := fk(xt; θ) and qnoise =
[M] is a point mass with all the probability put over the absorbing state [M].

pθ(xt−1|xt) =

{(
1− 1−αt−1

1−αt

)
f (xt; θ) + 1−αt−1

1−αt
qnoise, if xt = [M]

xt, if xt ̸= [M].
(10)

We can also generalize this result for 0 < s < t ≤ T. For the forward transition, we
have q(xt|xs = x0) = ∏t

i=s+1 βix0 +
(
1−∏t

i=s+1 βi
)

qnoise = αt
αs

x0 +
αs−αt

αs
qnoise. Thus the

20

Published as a conference paper at COLM 2024

backward transition can be derived as well according to Bayes’ rule,

q(xs|xt, x0) =

{
αs−αt
1−αt

x0 +
1−αs
1−αt

qnoise, if xt = [M]

xt, if xt ̸= [M].
(11)

pθ(xs|xt) =

{
αs−αt
1−αt

f (xt; θ) + 1−αs
1−αt

qnoise, if xt = [M]

xt, if xt ̸= [M].
(12)

Multinomial Diffusion. In multinomial diffusion (Hoogeboom et al., 2021), the forward
transition probability is defined as q(xt|xt−1) = βtxt−1 + (1− βt)qnoise, where qnoise = 1/K
is a uniform distribution over {1, 2, . . . , K} with 1 is a K-dimensional vector with all ones.
The backward transition probability conditional on the original data x0 can be derived
according to Bayes’ rule and in closed form:

q(xt−1|xt, x0)

=
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)

=

(
βtxt + (1− βt)

1
K
)
⊙

(
αt−1x0 + (1− αt−1)

1
K
)

x⊤t
(
αtx0 + (1− αt)

1
K
)

=
αtxt ⊙ x0 +

1
K βt(1− αt−1)xt +

1
K (1− βt)αt−1x0 +

1
K2 (1− βt)(1− αt−1)1

αtx⊤t x0 +
1
K (1− αt)

. (13)

Multinomial diffusion (Hoogeboom et al., 2021) learns a parameterized distribu-
tion pθ(xt−1|xt) to approximate q(xt−1|xt, x0) at each time step, which is defined as
pθ(xt−1|xt) = q(xt−1|xt, x̃0) with x̃0 = f (xt; θ) being the output by a Transformer model.

pθ(xt−1|xt)

=
αtxt ⊙ f (xt; θ) + 1

K βt(1− αt−1)xt +
1
K (1− βt)αt−1 f (xt; θ) + 1

K2 (1− βt)(1− αt−1)1

αtx⊤t f (xt; θ) + 1
K (1− αt)

.

(14)

C Derivation for Proposition 3.1

In this section, we provide the derivation for Equation 2 based on Bayes’ rule.

Proof. We denote Pt ∈ RK×K as the probability transition matrix for the t-th step, where
[Pt]ij = p(xt = j|xx−1 = i) and thus the probability distribution in the forward process can
be described as q(xt|xt−1) = Categorical

(
xt; P⊤t xt−1

)
. It is then easy to see that

q(xt|x0) = ∑
xt−1,xt−2,...,x1

q(xt, xt−1, xt−2, . . . , x1|x0) = Categorical
(

xt; sP⊤t x0

)

with sPt = P1P2 . . . Pt. Returning to our case where the forward transition takes the form
q(xt|xt−1) = βtxt−1 + (1− βt)qnoise. The transition matrix can be represented by Pt =
βt I + (1− βt)1q⊤noise, and thus sPt = P1P2 . . . Pt = αt I + (1− αt)1q⊤noise. Equipped with

21

Published as a conference paper at COLM 2024

these results, we can proceed with the derivation as follows,
q(xt−1|xt, x0)

=
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
=

Ptxt ⊙ sP⊤t−1x0

x⊤t sP⊤t x0

=
[βtxt + (1− βt)σxt 1]⊙ [αt−1x0 + (1− αt−1)qnoise]

αtx⊤t x0 + (1− αt)x⊤t qnoise

=
βtαt−1xt⊙x0+βt(1−αt−1)xt⊙qnoise+(1−βt)αt−1σxt1⊙x0+(1−βt)(1−αt−1)σxt1⊙qnoise

αtx⊤t x0 + (1− αt)x⊤t qnoise

=
βtαt−1xt⊙x0 + βt(1−αt−1)σxt xt + (1−βt)αt−1σxt x0 + (1−βt)(1−αt−1)σxt qnoise

αtx⊤t x0 + (1− αt)σxt

.

Here we denote ⊙ as element-wise product and σxt := qnoise(u = xt) to represent the
probability of noise drawn from qnoise being equal to xt. The need to differentiate between
xt and x0 emerges when we calculate xt ⊙ x0, which would be an all-zero vector 0 except
that it would be one if xt = x0. Thus the computation of backward transition probabilities
breaks down into two cases:

• If xt = x0, we have xt ⊙ x0 = xt, xt⊤x0 = 1 and thus
q(xt−1|xt, x0)

=
βtαt−1xt + βt(1− αt−1)σxt xt + (1− βt)αt−1σxt xt + (1− βt)(1− αt−1)σxt qnoise

αt + (1− αt)σxt

=
βtαt−1 + βt(1− αt−1)σxt + (1− βt)αt−1σxt

αt + (1− αt)σxt

xt +
(1− βt)(1− αt−1)σxt

αt + (1− αt)σxt

qnoise.

• If xt ̸= x0, we have xt ⊙ x0 = 0, xt⊤x0 = 0 and thus

q(xt−1|xt, x0) =
βt(1− αt−1)σxt xt + (1− βt)αt−1σxt x0 + (1− βt)(1− αt−1)σxt qnoise

(1− αt)σxt

=
βt(1− αt−1)xt + (1− βt)αt−1x0 + (1− βt)(1− αt−1)qnoise

1− αt

=
(1− βt)αt−1

1− αt
x0 +

βt(1− αt−1)

1− αt
xt +

(1− βt)(1− αt−1)

1− αt
qnoise

=
(1− βt)αt−1

1− αt
x0 +

1− αt−1

1− αt
[βtxt + (1− βt)qnoise]

=
αt−1 − αt

1− αt
x0 +

(
1− αt−1 − αt

1− αt

)
[βtxt + (1− βt)qnoise] .

Putting them together, we arrive at the resulting formulation,

q(xt−1|xt, x0) =

λ
(1)
t−1xt +

(
1− λ

(1)
t−1

)
qnoise, if xt = x0

λ
(2)
t−1x0 +

(
1− λ

(2)
t−1

)
qnoise(xt), if xt ̸= x0.

Here λ
(1)
t−1 := 1 − (1−βt)(1−αt−1)qnoise(u=xt)

αt+(1−αt)qnoise(u=xt)
, λ

(2)
t−1 := αt−1−αt

1−αt
, and qnoise(xt) = βtxt + (1 −

βt)qnoise denotes a noise distribution that interpolates between xt and qnoise, both of which
are possibly noisy.

Generalization. Similar to vanilla diffusion models, we can also derive backward transi-
tion processes with a gap ∆t; that is, we consider q(xs|xt, x0) with s = t− ∆t. It can be easily
seen that

q(xs|xt, x0) =

λ
(1)
s xt +

(
1− λ

(1)
s

)
qnoise, if xt = x0

λ
(2)
s x0 +

(
1− λ

(2)
s

)
qnoise(xt), if xt ̸= x0,

(15)

22

Published as a conference paper at COLM 2024

with λ
(1)
s := 1− (1− αt

αs)(1−αs)qnoise(u=xt)

αt+(1−αt)qnoise(u=xt)
and λ

(2)
s := αs−αt

1−αt
.

D Derivations for the ELBO of RDMs

The following provides the derivation for the loss objective of RDMs. Specifically,

log p(x0)

≥ Eq(x1:T ,v1:T |x0)

[
log

pθ(x0, x1:T , v1:T)

q(x1:T , v1:T |x0)

]
= Eq(x1:T ,v1:T |x0)

[
log

pθ(x0|x1)∏T
t=2 pθ(xt−1, vt−1|xt)p(xT , vT)

∏T
t=2 q(xt−1, vt−1|xt, x0)q(xT , vT |x0)

]

= Eq(x1:T ,v1:T |x0)

[
log pθ(x0|x1) +

T

∑
t=2

log
pθ(xt−1, vt−1|xt)

q(xt−1, vt−1|xt, x0)
+ log

p(xT , vT)

q(xT , vT |x0)

]

:= L1(θ)−
T

∑
t=2
Lt(θ) + const.

Here we denote L1(θ) := Eq(x1|x0) [log pθ(x0|x1)], and for t > 1, Lt(θ) :=
Eq(xt |x0) [KL(q(xt−1, vt−1|xt, x0) ∥ pθ(xt−1, vt−1|xt))]. We can push the decomposition of
Lt(θ) for time step t > 1 further,

Lt(θ)

=Eq(xt |x0) [KL(q(xt−1, vt−1|xt, x0) ∥ pθ(xt−1, vt−1|xt))]

=Eq(xt |x0)

[
∑

xt−1,vt−1

q(xt−1, vt−1|xt, x0) log
q(xt−1, vt−1|xt, x0)

pθ(xt−1, vt−1|xt)

]

=Eq(xt |x0)

[
∑

xt−1,vt−1

q(xt−1|vt−1, xt, x0)q(vt−1)

[
log

q(xt−1|vt−1, xt, x0)

pθ(xt−1|vt−1, xt)
+ log

q(vt−1)

pθ(vt−1)

]]
=Eq(xt |x0)

[
Eq(vt−1)

[KL(q(xt−1|vt−1, xt, x0)∥ pθ(xt−1|vt−1, xt))]+KL(q(vt−1)∥ pθ(vt−1))
]

.

E Derivation for Equation 6 and Discussions

Proof. We first consider the loss objective at each step for each token at n-th position, which
can be expanded as follows,

Ln
t (θ) = Eq(xt,n |x0,n)

[
Eq(vt−1,n)

[KL(q(xt−1,n|vt−1,n, xt,n, x0,n) ∥ pθ(xt−1,n|vt−1,n, xt,n))]
]

.

Typically we draw a Monte Carlo sample xt,n ∼ q(xt,n|x0,n) to estimate the outermost ex-
pectation above. For the inner term, recall that bt,n = 1xt,n=x0,n and q(xt−1,n|vt−1,n, xt,n, x0,n)
takes the form as

q(xt−1,n|vt−1,n, xt,n, x0,n) =

v(1)t−1,nxt,n +
(

1− v(1)t−1,n

)
qnoise, if bt,n = 1

v(2)t−1,nx0,n +
(

1− v(2)t−1,n

)
qnoise(xt,n), if bt,n = 0.

Since we use the teacher-forcing approach that employs the same oracle bt,n for
pθ(xt−1,n|vt−1,n, xt,n) as well, it can also be written in a similar manner,

pθ(xt−1,n|vt−1,n, xt,n) =

v(1)t−1,nxt,n +
(

1− v(1)t−1,n

)
qnoise, if bt,n = 1

v(2)t−1,n f (xt,n; θ) +
(

1− v(2)t−1,n

)
qnoise(xt,n), if bt,n = 0.

The derivation then breaks down into two cases with respect to bt,n:

23

Published as a conference paper at COLM 2024

If bt,n = 1. In this case, q(xt−1,n|vt−1,n, xt,n, x0,n) = pθ(xt−1,n|vt−1,n, xt,n) = v(1)t−1,nxt,n +(
1− v(1)t−1,n

)
qnoise. Since these two distributions become identical, this leads to zero KL

divergence irrespective of vt−1,n so that Lt(θ) = 0;

If bt,n = 0. In this scenario, we have q(xt−1,n|bt−1, xt,n, x0,n) = v(2)t−1,nx0,n +(
1− v(2)t−1,n

)
qnoise(xt,n) and v(2)t−1,n f (xt,n; θ) +

(
1− v(2)t−1,n

)
qnoise(xt,n). We then enumerate

all the possible outcomes for v(2)t−1,n. If v(2)t−1,n = 1, q(vt−1,n) = λ
(2)
t−1 and

KL(q(xt−1,n|vt−1,n, xt,n, x0,n) ∥ pθ(xt−1,n|vt−1,n, xt,n)) = KL(x0,n ∥ f (xt,n; θ))

= −x⊤0,n log f (xt,n; θ) .

If v(2)t−1,n = 0, then q(vt−1,n) = 1− λ
(2)
t−1 and

KL(q(xt−1,n|vt−1,n, xt,n, x0,n) ∥ pθ(xt−1,n|vt−1,n, xt,n)) = KL(qnoise(xt,n) ∥ qnoise(xt,n))

= 0.

Putting them together, we have

Eq(vt−1,n)
[KL(q(xt−1,n|vt−1,n, xt,n, x0,n) ∥ pθ(xt−1,n|vt−1,n, xt,n))]

= −λ
(2)
t−1x⊤0,n log f (xt,n; θ) + (1− λ

(2)
t−1) · 0

= −λ
(2)
t−1x⊤0,n log f (xt,n; θ) .

Since each token is modeled conditionally independently, we can add all computed losses
for each token, arriving at the final expression for the whole sequence,

Lt(θ) =
N

∑
n=1
Ln

t (θ) = Epdata(x0,1:N)∏N
n=1 q(xt,n |x0,n)

[
−λ

(2)
t−1

N

∑
n=1

(1− bt,n)x⊤0,n log f (xt,n; θ)

]
.

Connections to D3PMs. The derived simplified loss objective bears some resemblance
to that of absorbing diffusion in D3PMs (Austin et al., 2021), which also takes the form
of a cross-entropy function over masked positions. However, our derivation arises from
the developed reparameterization perspective and thus stems from a distinct motivation
from D3PMs. In addition, our objective applies to a wide range of discrete diffusion
processes, including those with multinomial noise, absorbing noise, or a mixture of both.
This constitutes a non-trivial generalization of D3PMs, which only demonstrates that the
cross-entropy representation is available for absorbing diffusion. Besides, our formulation
explicitly elucidates the role of routing mechanisms in training, which provides insights
into techniques that improve decoding quality.

F Additional Implementation Details

This section describes the implementation details of our experiments.

F.1 Tasks

Machine Translation. For experiments on machine translation, we consider three standard
benchmarks:

• IWSLT14 DE-EN (Cettolo et al., 2014), which contains around 160K/7K/7K sentence pairs
for training, validation, and testing, respectively. We build a joint vocabulary for the
source and target language, resulting in 10152 Byte Pair Encoding (BPE; Sennrich et al.,
2016) types.

24

Published as a conference paper at COLM 2024

Model Iterations Tokenized BLEU sacreBLEU COMET

Auto-regressive n.a. 27.53 26.5 0.8238

RDM-multinomial 10 25.63 24.1 0.7808
16 25.64 24.2 0.7937

RDM-absorbing 10 26.96 25.2 0.8082
16 27.58 26.2 0.8288

Table 5: Comparisons among different evaluation metrics on WMT14 EN-DE.

• WMT14 EN-DE (Bojar et al., 2014) dataset consists of around 4.0M/3K/3K train-
ing/validation/testing pairs. The preprocessing follows Ghazvininejad et al. (2019)
and yields a shared vocabulary with 40624 BPE types;

• WMT16 EN-RO (Bojar et al., 2016). We use the same data split from Lee et al. (2018) that
comprises around 610K/2K/2K pairs. The vocabulary is shared between the source and
target sides with 34976 joint BPE types.

We operate on original data for all translation tasks and do not adopt knowledge distillation
(Kim & Rush, 2016; Gu et al., 2018) that replaces the target side of training data with outputs
generated by a pre-trained autoregressive Transformer.

For evaluation, we report tokenized BLEU (Papineni et al., 2002) scores ap-
plied with compound split post-processing to facilitate comparison. In addi-
tion, we also compute sacreBLEU (Papineni et al., 2002; Post, 2018) (signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0) and COMET (Rei et al.,
2020) (with version 2.0.0 and model Unbabel/wmt22-comet-da) scores on WMT14 EN-DE test
set, as presented in Table 5. It can be seen that both sacreBLEU and COMET reveal a trend
similar to that of tokenized BLEU scores.

Question Generation and Paraphrasing. For both QG and QQP tasks, we use the same data
split pre-processed as in Gong et al. (2022):

• Question Generation (QG) with the Quasar-T dataset (Dhingra et al., 2017), containing
around 117K/2K/10K pairs for training/validation/testing, respectively.

• Paraphrasing with Quora Question Pairs (QQP). This dataset comprises around
145K/2K/2.5K training/validation/testing question pairs.

Following Gong et al. (2022), we use WordPiece tokenization as in BERT (Devlin et al., 2019)
and obtain a vocabulary of size 30522 for both tasks.

F.2 Architectures

• We employ the Transformer-base architecture (Vaswani et al., 2017) for WMT experiments,
while for IWSLT14 DE-EN,QG, and QQP tasks we use a smaller Transformer model. Note that
all self-attention blocks with the model are bi-directional and do not use causal masks.

• We adopt a length prediction module (Ghazvininejad et al., 2019) on top of the Trans-
former encoder to propose target length candidates for the generated sequence. Given
the source input, we first run the Transformer encoder to obtain the encoder’s hidden
representation, which is averaged and passed to a linear layer to output the length scores.

• The timestep embedding is obtained by first projecting the input timestep t with sinu-
soidal encodings and then passing it through a two-layer MLP.

• We adopt concatenated instead of additive position encodings, which is shown to enhance
the positional information and produce better performance in the context of machine
translation (Huang et al., 2022).

The detailed configuration for the neural network is listed in Table 6.

25

Published as a conference paper at COLM 2024

Hyper-parameter WMT14 EN-DE WMT16 EN-RO IWSLT14 DE-EN QG QQP

Number of transformer encoder layers 6 6 6 6 6
Number of transformer decoder layers 6 6 6 6 6
Hidden size 512 512 512 512 512
hidden size in FFN 2048 2048 1024 1024 1024
Number of attention heads 8 8 4 8 8
Maximum number of tokens in a batch 128K 32K 4K – –
Maximum number of sentences in a batch – – – 256 256
Number of training steps 300K 120K 300K 70K 70K
Number of warm-up steps 10K 15K 30K 10K 10K
Weight decay rate 0.01 0.01 0.01 0.01 0.01
Peak Learning Rate 0.0005 0.0005 0.0005 0.0005 0.0005
Label Smoothing 0.1 0.1 0.1 0.1 0.1
Learning rate decay Inverse square root Inverse square root Inverse square root Inverse square root Inverse square root
Optimizer Adam Adam Adam Adam Adam
Dropout 0.1 0.3 0.3 0.2 0.2
Gradient Clipping Norm – – – 1.0 1.0

Table 6: The hyper-parameter configuration for machine translation.

Conditioned training Absorbing Multinomial RDM-absorbing RDM-multinomial

✗ 28.32 21.28 33.73 31.99

✓ 29.67 23.58 33.91 32.23

Table 7: BLEU scores on IWSLT14 DE-EN test set with/without conditioned training. The
results are evaluated under different diffusion models with 10 decoding iterations. Default
decoding strategies are adopted for these models: vanilla multinomial or absorbing diffusion
uses vanilla decoding, while reparameterized discrete diffusion models adopt improved
decoding.

F.3 Training

• We allocate a large number of diffusion time steps for training, such as 50 or 100. We found
the number of diffusion steps in training does not affect the performance too much. Note
that decoding can be performed with an arbitrary number of iterations by choosing the
appropriate step size ∆t > 1. That is, we can decode by sampling xt−∆t ∼ pθ(xt−∆t|xt),
following a similar treatment as Equation 15.

• Modern Transformer models usually process input sequences that are associated with
some special symbols, such as the begin-of-sentence symbol <bos>, eos-of-sentence symbol
<eos>, padding symbol <pad>, and so on. We found it beneficial to treat these special
symbols as normal tokens in vanilla/reparameterized absorbing diffusion (and thus
these symbols can be noised), but this treatment leads to much worse performance in
vanilla/reparameterized multinomial diffusion.

• We also adopt conditioned training (details in Appendix G) to further improve the
model, which leads to consistent improvements upon vanilla training. Its effect is ablated
in Table 7. In particular, conditioned training leads to almost 2 BLEU improvements
over vanilla diffusion processes but the gain becomes marginal for our reparameterized
variants.

The detailed configuration for the optimization hyper-parameters is listed in Table 6.

F.4 Decoding

• Note that we train a neural network f (·; θ) to approximate x0, which is a softmax-
normalized probability vector. There are several ways to decode a token from the prob-
ability vector, such as simply taking its argmax position or performing sampling with
temperatures τ. Empirically, we find a low temperature τ = 0.1, or simply the argmax
works well across tasks, and use the argmax approach by default; Nevertheless, the
diversity of generated sentences can be improved by adopting a larger temperature as
well.

• Like common diffusion models, we use an exponential moving average (EMA) to track
the model parameters with a decay rate of 0.9999. We also average model parameters
among the five last checkpoints for generation, following standard practices in machine
translation (Vaswani et al., 2017).

26

Published as a conference paper at COLM 2024

• For translation experiments, we use 5 length candidates, decode them in parallel, and
select the sequence with the highest model score as the final output. For question genera-
tion and paraphrasing, we follow DiffuSeq (Gong et al., 2022) to use MBR decoding with
10 samples to ensure a head-to-head comparison. The candidates in MBR decoding are
generated in the following manner: first selecting 3 length candidates, and then sampling
3,3, and 4 additional sentences for each length size, resulting in 10 candidates in total.

• We also investigate several components of the adaptive decoding algorithm (§4.3) and
provide more implementation details below:

• The top-k selection mechanism in Equation 8, which is deterministic by design, can
also be made stochastic. In particular, instead of directly selecting those tokens with
top-k largest scores, we first add Gumbel noise to the score st,n of each token, and then
fetch the top-k tokens with the largest perturbed scores. This is inspired by previous
work that aims to sample multiple items from a set without replacement (Vieira, 2014;
Kool et al., 2019; 2020); however, this simple approach brings several benefits in that
the selection of k tokens from the sequence could involve extra randomness, and this
might be helpful for exploration during decoding.

• Recall that during decoding, the role of v(1)
t−1,n is to indicate whether the token can

remain in the denoised state, while v(2)
t−1,n is used to denoise the token that is cur-

rently noisy. In Equation 8, both of them would be set to 1 as long as the n-th to-
ken belongs to the top-k set. However, we observe that v(1)

t−1,n and v(2)
t−1,n can also

be generated differently. For example, one might adopt a more conservative ap-
proach, where already denoised tokens rarely or never turn back to the noise. We
implemented a strategy to achieve this by imposing more constraints over v(1)

t−1,n:

v(i)
t−1,n = 1(n∈Pt−1)∨(st,n>st+1,n)∨(xt,n ̸=xt+1,n)

, where we set v(1)
t−1,n = 0 only when its cor-

responding token score is not in the top-k set and indeed becomes smaller than the
previous iteration. Intuitively, this means the denoised tokens should remain as de-
noised most time, except that the Transformer model becomes less confident and
requires re-prediction. This is one of many possible approaches to achieving such
control, as our framework allows us to do such conditioning flexibly; we find this
strategy works sometimes better than the vanilla approach, especially on IWSLT14 DE-EN
dataset.

• Another important hyper-parameter during decoding is k, the number of tokens to be
in denoised states at each iteration for our discriminative routing mechanism (§4.3).
To ensure that the degree of noise decreases as the generation process proceeds, we
schedule k to increase from 1 to N monotonically as the diffusion step t goes from T
to 1. We set k to follow either a {cosine, linear} scheme based on the development set
performance. The cosine strategy yields k =

⌊
cos πt

2T · N
⌋
, while the linear variant gives

k =
⌊(

1− t
T
)
· N

⌋
.

Based on our preliminary experiments, we discerned that while these components indeed
have an influence on task performance, their impact is relatively minor compared to the
primary improvements (e.g., reweighted training and adaptive decoding), as elucidated
in the main paper.

• To perform conditional generation, we delegate the full task of conditioning to the
encoder-decoder architecture. That is, instead of designing complicated guidance to
condition the diffusion probabilistic process, we treat the conditioning information as the
input of the Transformer encoder. This simple strategy is found to work well in practice.

G Extension: Improved Training with Conditioning

Training discrete diffusion models usually involves a heavy amount of randomness. For
instance, at each training iteration, one has to sample a time step and corrupt a ran-
dom subset of sequence tokens for denoising. To control the introduced variance, we
adopt a simple yet effective conditioning strategy that uses multiple samples to perform
training. The key idea is conceptually simple: we start with sampling two i.i.d. time

27

Published as a conference paper at COLM 2024

steps s, t ∼ Uniform(T) (without the loss of generality, we assume s < t). After that,
we draw xt ∼ q(xt|x0) as usual, but condition the sample at step s by drawing from
q(xs|x0) = Eq(xt |x0) [q(xs|xt, x0)] ≈ q(xs|xt, x0). The losses (Equation 6) at step s and t are
then estimated individually and averaged to obtain the final training objective. In case s = t,
we simply drop the conditioning and sample xs ∼ (xs|x0) instead.

This method utilizes multiple samples to estimate the loss objective while remaining unbi-
ased. To see this, note that

− (Ls + Lt)

= Eq

[
log

q(xs−1|xs, x0)

pθ(xs−1|xs)
+ log

q(xt−1|xt, x0)

pθ(xt−1|xt)

]
= Eq(xs−1,xs ,xt−1,xt |x0)

[
log

q(xs−1|xs, x0)

pθ(xs−1|xs)
+ log

q(xt−1|xt, x0)

pθ(xt−1|xt)

]
= Eq(xs−1,xs ,xt−1,xt |x0)

[
log

q(xs−1|xs, x0)

pθ(xs−1|xs)

]
+ Eq(xt−1,xt |x0)

[
log

q(xt−1|xt, x0)

pθ(xt−1|xt)

]
= Eq(xt |x0)q(xs |xt ,x0) [KL(q(xs−1|xs, x0) ∥ pθ(xs−1|xs))] +

Eq(xt |x0) [KL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))] .

This conditioned training brings several benefits. On the one hand, it introduces explicit
coupling between xs and xt, which can be seen as an application of Rao-blackwellization
and constrains the degree of randomness while still maintaining unbiasedness; on the other
hand, as we deal with samples from the simulated backward transition q(xs|xt, x0) instead
of q(xs|x0), this formulation aligns better with the generation process. In practice, this
technique can be applied to most existing diffusion processes, only amounts to double
the batch size within a single model forward pass, and consistently brings large empirical
improvements over vanilla discrete diffusion baselines (Table 7). However, the gains become
marginal when switched to our reparameterized variants. We hypothesize that this is due
to insufficient training in vanilla discrete diffusion models, which is already alleviated in
our improved training scheme.

H Additional Experimental Results

H.1 Additional Experiments For Question and Paraphrase Generation

Table 8 presents the comparison between text diffusion models under different number of
candidate samples. We notice that DiffuSeq benefits slightly more from large sample sets
(e.g., when the sample size m increases from 1 to 10) than RDMs. We attribute this to the
possibility that adding Gaussian noise to token embeddings in DiffuSeq might lead to more
diverse samples. This helps make better use of the MBR decoding, indicating that there
might be room to improve RDMs to leverage multiple decodes. Nevertheless, RDMs still
achieve better performance than DiffuSeq across both cases of single and multiple samples.
Note that due to the limited computation resources, our reproduction of DiffuSeq (Gong
et al., 2022) adopts a smaller Transformer model with around 36M parameters (the same
as our setting) and runs with a smaller batch size of 256, thus resulting in slightly worse
results than those reported.

H.2 Additional Experiments for Runtime Comparison

Table 9 compares the decoding runtime between RDMs and prior non-autoregressive
baselines, namely CMLM (Ghazvininejad et al., 2019). Note that both CMLM and RDMs
are implemented with the same codebase fairseq (Ott et al., 2019), and the statistics are
calculated as the wall time to decode the entire WMT14 EN-DE test set on one NVIDIA GeForce
RTX 3090 GPU with 50 batch size and 16 iteration steps, averaged by 10 runs. Under
this setting, we observe that the primary factor affecting decoding runtime among non-
autoregressive baselines and our diffusion models is the number of Transformer decoder
calls.

28

Published as a conference paper at COLM 2024

Algorithm 3 Training RDMs with Conditioning

Input: neural network f (·; θ), data distribution pdata(x0,1:N), and a specified reweighting
scalar λt−1, λs−1.
Output: model parameters θ.
repeat

Draw x0,1:N ∼ pdata(x0,1:N);
Draw s ∈ Uniform({1, . . . , T});
Draw t ∈ Uniform({1, . . . , T});
Swap t and s if necessary so that s ≤ t;
for n = 1, 2, . . . , N do

Draw xt,n ∼ q(xt,n|x0,n);
Let bt,n = 1xt,n=x0,n ;
if s = t then

Draw xs,n ∼ q(xs,n|x0,n);
else

Draw xs,n ∼ q(xs,n|xt,n, x0,n);
end if
Let bs,n = 1xs,n=x0,n ;

end for
Lt(θ) =−λt−1∑N

n=1(1−bt,n)x⊤0,nlog f (xt,n; θ);
Ls(θ) =−λs−1∑N

n=1(1−bs,n)x⊤0,nlog f (xs,n; θ);
Compute L(θ) = 1

2 (Ls(θ) + Lt(θ));
Minimize L(θ) with respect to θ;

until converged

Task Model BLEU ↑ ROUGE-L ↑ BERTScore ↑ Dist-1↑

QG

Transformer-base 0.1663 0.3441 0.6307 0.9309
GPT2-base FT 0.0741 0.2714 0.6052 0.9602
GPT2-large FT 0.1110 0.3215 0.6346 0.9670
GPVAE-T5 0.1251 0.3390 0.6308 0.9381
NAR-LevT 0.0930 0.2893 0.5491 0.8914
DiffuSeq 0.1731 0.3665 0.6123 0.9056

DiffuSeq† (m=1) 0.1405 0.3343 0.5783 0.9109
RDM-absorbing† (m=1) 0.1699 0.3517 0.6286 0.9098
RDM-multinomial† (m=1) 0.1768 0.3559 0.6305 0.9081

DiffuSeq† (m=10) 0.1569 0.3561 0.5945 0.9062
RDM-absorbing† (m=10) 0.1791 0.3565 0.6393 0.9202
RDM-multinomial† (m=10) 0.1802 0.3550 0.6310 0.9082

QQP

Transformer-base 0.2722 0.5748 0.8381 0.9748
GPT2-base FT 0.1980 0.5212 0.8246 0.9798
GPT2-large FT 0.2059 0.5415 0.8363 0.9819
GPVAE-T5 0.2409 0.5886 0.8466 0.9688
NAR-LevT 0.2268 0.5795 0.8344 0.9790
DiffuSeq 0.2413 0.5880 0.8365 0.9807

DiffuSeq† (m=1) 0.1845 0.5284 0.7936 0.9739
RDM-absorbing† (m=1) 0.2336 0.5789 0.8374 0.9805
RDM-multinomial† (m=1) 0.2291 0.5725 0.8366 0.9802

DiffuSeq† (m=10) 0.2371 0.5835 0.8327 0.9818
RDM-absorbing† (m=10) 0.2510 0.5945 0.8472 0.9849
RDM-multinomial† (m=10) 0.2498 0.5886 0.8466 0.9817

Table 8: Comparisons among different text generators on QG and QQP tasks. Numbers are
taken from Gong et al. (2022). † denotes results due to our implementation. m denotes the
number of samples used for MBR decoding. RDM variants are run with 10 iterations.

H.3 Additional Experiments for Open-ended Text Generation

In this section, we further explore the generative capabilities of RDMs in open-ended text
generation. In particular, we conduct experiments on the Wikitext-103 dataset (Merity et al.,
2016) from the Wikipedia domain, and recruit the following metrics for automatic evaluation
according to prior research on open-ended text generation (Li et al., 2022a; Su & Collier,

29

Published as a conference paper at COLM 2024

Iteration CMLM RDM-absorbing RDM-multinomial
BLEU Runtime BLEU Runtime BLEU Runtime

2 19.73 13.4s 21.00 12.7s 21.43 14.4s
4 22.91 17.1s 24.26 18.2s 24.05 18.1s

10 24.89 32.2s 26.96 31.5s 25.63 34.7s
16 25.00 44.7s 27.58 44.9s 25.64 46.8s

Table 9: Decoding runtime comparison between the non-autoregressive baseline CMLM
and RDMs.

Model Iteration Diversity(%) MAUVE(%) Coherence

Autoregressive LM n.a. 94.07 95.71 -4.54

Absorbing Diffusion
16 98.04 47.75 -7.04
64 96.93 64.61 -6.59

100 97.01 75.70 -6.38

RDM-absorbing
16 97.32 62.32 -6.04
64 96.84 79.14 -5.68

100 96.80 91.66 -5.15

Table 10: Automatic evaluation results on Wikitext-103 with different text generation models.

2022): 1) Diversity, which measures the generation repetition at different n-gram levels;
2) MAUVE (Pillutla et al., 2021), evaluating the distance of token distributions between
the generated and human-written text on the test set; and 3) Coherence, calculating the
average-token log likelihood under a well-trained language model, which is set to OPT-2.7B
(Zhang et al., 2022). We refer readers to Su & Collier (2022) for more technical details of
these metrics.

We train three different models for comparison: auto-regressive language models, vanilla
discrete diffusion models, and our RDMs. All of these models have approximately 430M
parameters and are trained with 100k steps on the Wikitext-103 training set. Both auto-
regressive language models and discrete diffusion models here adopt the same decoder-only
Transformers following the Llama architecture (Touvron et al., 2023), except that discrete
diffusion models remove the use of causal masks in self-attention blocks and introduce an
additional lightweight time-step embedding for proper conditioning. During training, the
maximum sequence length and the batch size are set to 256 and 128, respectively, where
shorter sequences are packed together. The Adam (Kingma & Ba, 2014) optimizer is used,
and the learning rate is set to 3e-4 with the cosine scheduler. To facilitate evaluation on
open-ended generation, we follow previous practices (Li et al., 2022a) and condition the
generation of different models on test prefix prompts with a fixed length of 32. We limit
the maximum generation length to 256 and truncate the generated output for each test
case to the first 128 tokens for subsequent evaluation. For diffusion models, we the initial
sequence length to 256 and truncate all content after the first <eos> token upon the iterative
process finishes. For all models, we generate samples at the temperature of 1.0 by nucleus
sampling (Holtzman et al., 2020) with top-p 0.95. Table 10 demonstrates the comparison
among autoregressive language models, vanilla discrete diffusion models, and our RDMs
in the task of open-ended text generation. We observe that while discrete diffusion models
generally lag behind auto-regressive LMs, RDMs effectively reduce the gap, scale well with
the number of iterations, and achieve competitive performance with auto-regressive LMs
while exhibiting greater generation variety. Generation examples can be found in Table 11.

H.4 Additional Ablation Study For Translation Tasks

This section presents additional plots (Figure 3) that visualize the effect of different compo-
nents in our model.

30

Published as a conference paper at COLM 2024

Model Decodes

Autoregressive LM

The route of what became US 2 was used as part of two Indian
trails before European settlers came to the UP, and as part of the
Michigan segments of the Great Northern Railway and Chicago
Railway . The various segments of the UP were later often referred
to other western Ohio routes such as the Mid @-@ Continental
Route , I @-@ 280 and the Western Interstate route , which went
through eastern Ohio into eastern Ohio near Knolls Creek .

Absorbing Diffusion - 64 Steps

The route of what became US 2 was used as part of two Indian
trails before European settlers came to the UP, and as part of
the Michigan segments . When the current Detroit segment was
completed , both in 1956 and 1973 and removed from the state .

RDM-absorbing - 64 Steps

The route of what became US 2 was used as part of two Indian
trails before European settlers came to the UP, and as part of
the Michigan segments of this section , it is included in the 1930
State Highway construction portion that exceeds only generallyat
4 @.@ 5 million in 1935 . In January 1936 , another state highway
was created . The B̈ig Pine Highway f̈lew by DVP was so named
State Highway 7 .

Table 11: Generation examples of open-ended text generation on Wikitext-103 with different
text models. The underlined text denotes the prefix prompt for generation.

0 5 10 15 20 25
Iteration

22

24

26

28

30

32

34

B
LE

U

Absorbing Diffusion

Ablation

Vanilla

Improved Training

Improved Decoding

Improved Training & Decoding

0 5 10 15 20 25
Iteration

Multinomial Diffusion

(a) WMT16 EN-RO dataset.

0 5 10 15 20 25
Iteration

20

25

30

35

B
LE

U

Absorbing Diffusion

Ablation

Vanilla

Improved Training

Improved Decoding

Improved Training & Decoding

0 5 10 15 20 25
Iteration

Multinomial Diffusion

(b) IWSLT14 DE-EN dataset.

Figure 3: The ablation study of improved training and decoding strategies for both absorbing
diffusion and multinomial diffusion on WMT16 EN-RO and IWSLT14 DE-EN test sets.

H.5 Extended Qualitative Analysis

This section provides a more comprehensive qualitative analysis of different diffusion
models, including several generated samples as in Tables 12 to 14.

Multinomial Diffusion Does Not Decode Iteratively. As presented in Tables 12 to 14,
multinomial diffusion finishes the generation of most sentences in the first iteration and
remains unchanged afterward, despite multiple iteration steps being allocated.

This unexpected behavior is due to the formulation of its original backward process, which
is of the form as Equation 14 (copied here for convenience),

pθ(xt−1|xt)

=
αtxt ⊙ f (xt; θ) + 1

K βt(1− αt−1)xt +
1
K (1− βt)αt−1 f (xt; θ) + 1

K2 (1− βt)(1− αt−1)1

αtx⊤t f (xt; θ) + 1
K (1− αt)

.

Note that f (·; θ) is a softmax probability vector output from a Transformer model. At the
initial iteration, αt is very close to zero, and the Transformer prediction f (·; θ) has the chance
to come into play and denoise to a certain degree. But when the process moves onward, αt
becomes larger, which will soon make the first term dominate significantly over the others
since all the other terms are scaled down by 1/K. Since the vocabulary size K is usually

31

Published as a conference paper at COLM 2024

Source: i have only 2 months for my ca cpt exams how do i prepare?
Reference: i want to crack ca cpt in 2 months. how should i study?

Iter. Decodes

A
bs

or
bi

ng

0 ◦ <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M>
1 ◦ <M> <M> <M> <M> <M> ca <M> ca <M> <M> ca <M> <M> <M> <M>
2 ◦ <M> <M> <M> <M> <M> ca <M> ca <M> <M> ca <M> <M> <M> <M>
3 ◦ <M> <M> <M> <M> <M> ca - ca cp <M> ca <M> <M> exam <M>
4 ◦ <M> can <M> prepare <M> ca - ca cp <M> ca <M> ##t exam ?
5 ◦ how can i prepare for ca - ca cp ##t ca cp ##t exam ?

R
D

M
-a

bs
or

bi
ng 0 ◦ <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M>

1 ◦ how <M> i <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> ?
2 ◦ how <M> i prepare for ca <M> ##t <M> <M> <M> <M> <M> ?
3 ◦ how <M> i prepare for ca cp ##t <M> <M> <M> months months ?
4 ◦ how <M> i prepare for ca cp ##t exam in two months <M> ?
5 ◦ how can i prepare for ca cp ##t exam in two months left ?

M
ul

ti
no

m
ia

l 0 ◦ glossy [unused448] raymond manga subjective questioning suriname masonic listen explored
1 ◦ how can i prepare for ca cp ##t months ?
2 ◦ how can i prepare for ca cp ##t months ?
3 ◦ how can i prepare for ca cp ##t months ?
4 ◦ how can i prepare for ca cp ##t months ?
5 ◦ how can i prepare for ca cp ##t months ?

R
D

M
-m

ul
ti

no
m

ia
l 0 ◦ consonants ##nin leading elegance 406 173 militant teams ##nin dyke thee seafood

1 ◦ how residues i ##fighting sentences malaysian jenkins remembers transatlantic universite ##rp monarch ?
2 ◦ how can i cyril for malaysian jenkins goldberg transatlantic in relationships pursuing ?
3 ◦ how can i chu for ca fashionable ##t exam in clerks months ?
4 ◦ how can i prepare for ca cp ##t exam in 2 months ?
5 ◦ how can i prepare for ca cp ##t exam in 2 months ?

D
iff

uS
eq

0 ◦ defective thereby evaluation michaels fragments primal electrically aground hostilities‡

10 ◦ simulcast candidacy ##bner [unused106] ##wide subgenus dangerously sincerity resolving migrated menon ##lase ‡

100 ◦ westphalia ##tracted universite ##erly reissued neglect showcased [unused574] slade‡

250 ◦ souza electronically compliant gerard priority townships ##neo hidalgo [unused574] ‡

500 ◦ spikes peptide ##ales borneo makeshift moi rebelled neglect textual 1899 erasmus publishes ‡

750 ◦ i reduces griffin ##ales bukit makeshift moi ##sław mcbride how ministries ‡

1000 ◦ i [unused582] to gazing monterrey makeshift ca wastewater norton , how ministries can‡

1001 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1002 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1003 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1004 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1005 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1006 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1007 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1008 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1009 ◦ i [unused582] to gazing monterrey makeshift ca iata norton , how ministries can ‡

1250 ◦ i want to prepare ##cchi my ca glove henan rouen how synthesized can [unused201] ##yya exam ?
1500 ◦ i want to prepare for my ca cp exam , how transvaal can warmed ##yya exam ?
1750 ◦ i want to prepare for my ca cp exam , how yun can get 2 exam ?
2000 ◦ i want to prepare for my ca cp exam , how might can get 2 exam ?

Table 12: A snapshot of all iterations for qualitative samples of test paraphrases generated
from different diffusion models on QQP dataset. ‡ texts are truncated to fit into the table.
Words are in lower case. <M> stands for mask states, and ## denotes the sub-word tokeniza-
tion artifacts.

large in text generation tasks (usually larger than 10K), this would make all the other terms
very close to zero. In this case, the backward transition distribution degenerates to

pθ(xt−1|xt) ≈
αtxt ⊙ f (xt; θ)

αtx⊤t f (xt; θ)
= xt.

That is, what multinomial diffusion does after the initial steps is merely copying previous
states, and hence the sequence mostly remains unchanged. The only chance for the multi-
nomial diffusion processes to decode is at the initial stage; after that, the model would get
stuck in the current state and cannot escape. This explains why multinomial diffusion does
not behave like typical iterative processes.

Our reparameterization does not suffer from these issues. Thanks to Equation 2, the developed
reparameterized formulation alleviates the need to normalize all terms together; instead, it
divides different terms into two cases, which are then normalized separately. This avoids the
possibility that different terms are affected by their relative scales. The resulting behavior is
much more expected and leads to better generation quality.

32

Published as a conference paper at COLM 2024

Source: how can one increase concentration?
Reference: how can i improve my concentration?

Iter. Decodes

A
bs

or
bi

ng
0 ◦ <M> <M> <M> <M> <M> <M> <M> <M>
1 ◦ <M> can i increase <M> <M> <M> <M>
2 ◦ how can i increase concentration <M> <M> <M>
3 ◦ how can i increase concentration in studying <M>
4 ◦ how can i increase concentration in studying <M>
5 ◦ how can i increase concentration in studying ?

R
D

M
-a

bs
or

bi
ng 0 ◦ <M> <M> <M> <M> <M> <M> <M> <M>

1 ◦ <M> <M> <M> <M> <M> concentration ?
2 ◦ how <M> <M> <M> my concentration ?
3 ◦ how <M> <M> increase my concentration ?
4 ◦ how <M> i increase my concentration ?
5 ◦ how can i increase my concentration ?

M
ul

ti
no

m
ia

l 0 ◦ ##tly distances outline ##cera khmer curvature question ##tl
1 ◦ how can i improve focus in concentration ?
2 ◦ how can i improve focus in concentration ?
3 ◦ how can i improve focus in concentration ?
4 ◦ how can i improve focus in concentration ?
5 ◦ how can i improve focus in concentration ?

R
D

M
-m

ul
ti

no
m

ia
l 0 ◦ lungs ##down intensity cortes ##lden ufo oldies

1 ◦ worker blurted i ##kal caledonia concentration ##vb
2 ◦ how trait i ##kal my concentration ##vb
3 ◦ how trait i increase my concentration ?
4 ◦ how trait i increase my concentration ?
5 ◦ how do i increase my concentration ?

D
iff

uS
eq

0 ◦ skeptical coli ##zam gael erika calves wharf [unused791] ##pta vhf ##kley adoptive ‡

10 ◦ encompassing hesse informally campos cosmopolitan postmaster stabilization realised ‡

100 ◦ thump haitian i ##anov xiv ? ##] norris illuminated ##had kilometers disagreed [unused730]‡

250 ◦ fatal correlated trenton i ##anov exhibits ##] scandinavia 1934 plaza leveled 910 ‡

500 ◦ cessna i perez newark ? venezuelan regeneration 283 zhejiang ##hectares [PAD] ‡

750 ◦ johanna cessna i perez shriek ? [PAD] [PAD] [PAD] [PAD] rahman [PAD] [PAD] [PAD] [PAD] postmaster‡

1000 ◦ johanna 730 i improve terminals ?
1001 ◦ johanna 730 i improve terminals ?
1002 ◦ johanna 730 i improve terminals ?
1003 ◦ johanna 730 i improve terminals ?
1004 ◦ johanna 730 i improve terminals ?
1005 ◦ johanna 730 i improve terminals ?
1006 ◦ johanna 730 i improve terminals ?
1007 ◦ johanna 730 i improve terminals ?
1008 ◦ johanna 730 i improve terminals ?
1009 ◦ johanna 730 i improve terminals ?

1250 ◦ how do i improve concentration ?
1500 ◦ how do i improve concentration ?
1750 ◦ how do i improve concentration ?
2000 ◦ how do i improve concentration ?

Table 13: A snapshot of all iterations for qualitative samples of test paraphrases generated
from different diffusion models on QQP dataset. ‡ texts are truncated to fit into the table.
Words are in lower case. <M> stands for mask states, and ## denotes the sub-word tokeniza-
tion artifacts.

The Slow Convergence of Continuous Diffusion. In contrast to discrete diffusion models
that can perform generation in 10 steps or fewer, continuous diffusion usually requires
thousands of steps to decode a decent sample. We hypothesize that this is due to two
reasons: (1) the noisy and slow Gaussian diffusion over token embeddings by design; (2)
furthermore, many diffusing steps are required to emit a significant change over token
states due to the rounding operation. We provide empirical evidence for our hypothesis
by zooming in to inspect the generation process. As can be seen in Tables 12 and 13, many
consecutive steps in continuous diffusion (1000~1009 iteration) do not modify the decode at
all, even when it is not converged yet, leading to a potential waste of computation.

Vanilla Absorbing Diffusion Cannot Fix Previous Errors. While vanilla absorbing dif-
fusion performs decoding more steadily, it also suffers from some issues. As shown in
Tables 12 to 14, since all tokens are predicted independently conditional on the source input,
there is some chance for the model to decode multiple identical tokens simultaneously.
However, in vanilla absorbing diffusion, such decoding errors cannot be fixed. To see this,
note that its backward transition formulation can be written as Equation 10, which is copied

33

Published as a conference paper at COLM 2024

Source: alleine dieser flughafen hat eine fläche von 100 quadratkilometern .
Reference: this airport alone covers more than 100 square kilometers .

Iter. Decodes

A
bs

or
bi

ng
0 ◦ <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M>
1 ◦ <M> <M> <M> <M> <M> has an an <M> of <M> <M> miles <M>
2 ◦ <M> <M> <M> <M> <M> has an an <M> of <M> <M> miles <M>
3 ◦ <M> <M> air## <M> <M> has an an <M> of <M> <M> miles <M>
4 ◦ <M> <M> air## <M> <M> has an an <M> of <M> square miles <M>
5 ◦ <M> this air## port alone has an an <M> of <M> square miles <M>
6 ◦ <M> this air## port alone has an an <M> of <M> square miles <M>
7 ◦ <M> this air## port alone has an an <M> of <M> square miles .
8 ◦ <M> this air## port alone has an an <M> of 100 square miles .
9 ◦ <M> this air## port alone has an an <M> of 100 square miles .

10 ◦ and this air## port alone has an an area of 100 square miles .

R
D

M
-a

bs
or

bi
ng

0 ◦ <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M> <M>
1 ◦ <M> <M> air## <M> <M> <M> <M> <M> <M> <M> square <M> <M>
2 ◦ <M> <M> air## <M> <M> <M> <M> <M> <M> <M> square <M> .
3 ◦ <M> <M> air## <M> alone <M> <M> area <M> 100 square kilometers .
4 ◦ <M> <M> air## port <M> <M> an <M> of <M> square kilometers .
5 ◦ <M> <M> air## <M> <M> <M> <M> area of 100 square kilometers .
6 ◦ <M> this air## port <M> <M> an area of <M> square kilometers .
7 ◦ <M> this air## port alone <M> an area of 100 square kilometers .
8 ◦ <M> this air## port <M> has an area of 100 square kilometers .
9 ◦ <M> this air## port alone has an area of 100 square kilometers .

10 ◦ so this air## port alone has an area of 100 square kilometers .

M
ul

ti
no

m
ia

l

0 ◦ eher spending des## vagina drin production mili## inven## primi## open## freiheit sit schlüssel search
1 ◦ alone alone air## air## port has a a area of 100 square miles .
2 ◦ alone alone air## air## port has a a area of 100 square miles .
3 ◦ alone alone air## air## port has a a area of 100 square miles .
4 ◦ alone alone air## air## port has a a area of 100 square miles .
5 ◦ alone alone air## air## port has a a area of 100 square miles .
6 ◦ alone alone air## air## port has a a area of 100 square miles .
7 ◦ alone alone air## air## port has a a area of 100 square miles .
8 ◦ alone alone air## air## port has a a area of 100 square miles .
9 ◦ alone alone air## air## port has a a area of 100 square miles .

10 ◦ alone alone air## air## port has a a area of 100 square miles .

R
D

M
-m

ul
ti

no
m

ia
l

0 ◦ beschreiben denk## architect mittleren words alism grou## hilft atoms pus he## jähri## enti## ball## generally
1 ◦ expe## standing nahme cted baum katastrop## bares tion later colle## haufen 100 anstatt zy .
2 ◦ cognitive standing natürlich cted ution ity bares an later aus## informa## 100 square zy .
3 ◦ cognitive standing llig port wieder oth has an later erhalten saal 100 square kilometers .
4 ◦ crime standing air## port spending imag## has an area incredible of 100 square prototyp## .
5 ◦ crime standing air## port alone psychi## edi## an area oder of 100 square prototyp## .
6 ◦ starke standing air## port alone psychi## armut an area out of 100 square kilometers .
7 ◦ starke that air## port alone psychi## armut an area out of 100 square kilometers .
8 ◦ starke that air## port alone has armut an area out of 100 square kilometers .
9 ◦ and that air## port alone has got an area out of 100 square kilometers .

10 ◦ and that air## port alone has got an area out of 100 square kilometers .

Table 14: A snapshot of all iterations for generated translates from different diffusion models
on IWSLT14 DE-EN benchmark. Words are in lower case. <M> stands for mask states, and ##
denotes the sub-word tokenization artifacts.

here for convenience,

pθ(xt−1|xt) =

{(
1− 1−αt−1

1−αt

)
f (xt; θ) + 1−αt−1

1−αt
qnoise, if xt = [M]

xt, if xt ̸= [M].

Under this backward formulation, once a token is decoded, it will stay in the state thereafter
and does not have the chance to be re-predicted again. As a result, vanilla absorbing
diffusion processes cannot fix previously made errors.

This issue can be alleviated by RDMs, which employ a more generic formulation as follows,

pθ(xt−1|vt−1, xt) =

v(1)t−1xt +
(

1− v(1)t−1

)
qnoise, if bt = 1

v(2)t−1 f (xt; θ) +
(

1− v(2)t−1

)
qnoise(xt), if bt = 0.

Here bt is a binary variable indicating whether xt is denoised or not, and v(1)t−1 can be either 1
or 0, depending on the strategy (§4.3). Therefore, in RDMs, we can allow decoded tokens to
be rolled back to noisy states by setting v(1)t−1 = 0 (e.g., these repetitive tokens might receive
lower model scores than the others, which can be recognized as low-confidence outputs in
Equation 8). An example can be found in Table 12, where the decoded repetitive tokens
months months at 3-th iteration are then re-masked at the next iteration.

34

	Introduction
	Background
	Reparameterizing the Backward Processes
	An Alternative Backward Formulation
	Reparameterized Sampling

	Reparameterized Discrete Diffusion Models
	Joint Diffusion Modeling
	Training
	Sampling
	Implementation

	Experiments
	Machine Translation
	Question Generation and Paraphrasing
	Analysis
	Examples

	Conclusion
	Related Work
	Diffusion Models for Text Generation
	Iterative Non-autoregressive Text Generation

	Extended Background about Discrete Diffusion Models
	The derivation of ELBO
	Parameterization
	Backward Transition Probabilities

	Derivation for prop:diffusionasbranching
	Derivations for the ELBO of RDMs
	Derivation for eqn:simpleloss and Discussions
	Additional Implementation Details
	Tasks
	Architectures
	Training
	Decoding

	Extension: Improved Training with Conditioning
	Additional Experimental Results
	Additional Experiments For Question and Paraphrase Generation
	Additional Experiments for Runtime Comparison
	Additional Experiments for Open-ended Text Generation
	Additional Ablation Study For Translation Tasks
	Extended Qualitative Analysis

