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Abstract
Whilst having shown great success in graph representation learning, message
passing neural networks (MPNNs) are known to encounter difficulties in node
classification tasks when learning expressive feature representations on certain
unfavourable graph structures, especially heterophilic and bottlenecked graphs that
have previously been the subject of extensive, but separate, studies. In this paper we
develop a theoretical framework to understand the combined effect of heterophily
and bottlenecking on the expressive power of MPNNs. We provide a statistical
perspective on the performance of the MPNN that decomposes into its expressive
power—as measured by “signal sensitivity” that encodes its maximal sensitivity to
changes in the mean input features of each node class and ought to be maximised—
and generalisation power—as measured by its “noise sensitivity” that ought to be
minimised. We then relate signal sensitivity to the graph structure through ℓ-order
homophily, a quantity that captures both homophily and bottlenecking behaviour
of graphs in a phenomenon we refer to as “homophilic bottlenecking”. Pushing the
statistical view further by assuming a distribution over graph structures yields a
natural decoupling of bottlenecking into two terms measuring underreaching and
oversquashing respectively in an ℓ-layer MPNN which makes use of the distribution
of geodesic distances up to length ℓ in the graph. Using an asymptotic distribution
of geodesic distances in a very general random graph family we can derive tight
bounds on ℓ-order homophily, thus providing a complete analytic characterisation
of homophilic bottlenecking in MPNNs. Notably, we show that our statistic
accurately tracks empirical node classification performance. Our findings offer an
interpretable statistical approach for understanding MPNN performance across a
variety of graph families, and suggest potentially promising ways to design more
powerful MPNNs.

1 Introduction
Message passing graph neural networks. In recent years, graph neural networks (GNNs) have
emerged as a powerful paradigm for learning representations of complex structured data [1–3] since
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they can leverage the rich relational information embedded in graph structures to discover hidden
patterns and dependencies. Most GNNs—like Graph Convolutional Networks (GCN) [4] and Graph
Attention Networks (GAT) [5]—adhere to the message-passing framework [6, 7] which employs
learnable functions to propagate information across the edges of a graph, allowing GNNs to efficiently
update each node’s representation by transforming and aggregating information from its neighbours.
Consider an attributed graph denoted by the tuple (G,X) such that G = (V,E) is the underlying
(undirected and simple) graph encoded by its n × n adjacency matrix A, i.e. Aij = 1 if node i
has an edge to node j and Aij = 0 otherwise, and X = (X1,X2, . . . ,Xn)

T is the n × din matrix
of node feature vectors. Then each node i ∈ V has an initial feature representation H

(0)
i := Xi

which is iteratively updated through a message passing process to obtain a length-dout hidden state
representation H

(ℓ)
i after ℓ passes according to the following update rule:

H
(ℓ)
i := ϕℓ

H
(ℓ−1)
i ,

∑
j∈N(i)

Âijψℓ

(
H

(ℓ−1)
i ,H

(ℓ−1)
j

) , (1)

where N(i) is the set of neighbours of node i, ℓ represents the layer number, Â is a choice of graph
shift operator—usually the symmetric normalised adjacency matrix

Âsym := D− 1
2AD− 1

2 , (2)

where D := diag (A1n) is the diagonal degree matrix and 1n is the size-n vector of ones—and the
functions ϕℓ and ψℓ are called the update and message functions respectively. However, as we discuss
next, message passing neural networks (MPNNs) can be hindered in their ability to capture patterns
in certain kinds of graph structures that leads to sub-optimal performance in various applications.

Learning on heterophilic graphs. One challenge that has received much attention is MPNNs’
mixed performance on heterophilic graphs [8–10]. Homophily and heterophily measure the tendency
of nodes to connect to other nodes who are, respectively, similar and dissimilar to them. Empirically it
has been shown that MPNNs perform badly on graphs with lower homophily (i.e. heterophilic graphs),
which has heuristically been attributed to a homophilic inductive bias inherent to the message-passing
framework. However, the theoretical underpinnings of this phenomenon are still unclear, with recent
work suggesting that some cases of heterophily are not necessarily detrimental to MPNN performance
[8]. In this regard, the characterisation of harmful heterophily is still an open problem.

Graphs with informational bottlenecks. Another major problem that MPNNs face is of graph
bottlenecks [7, 11] that capture the difficulty of propagating information between distant nodes in
the graph, owing to their method of local message aggregation. This problem is caused by the
“oversquashing” of information—into fixed-size vectors due to the exponentially growing receptive
field size of the MPNN when aggregating messages across a long path—and underreaching in the
MPNN—wherein the limited receptive field size prevents the MPNN from spreading information
sufficiently to distant nodes. In this context, a “graph bottleneck” between two nodes is conceptualised
as some topological properties of the graph that leads to poor information propagation between
them—because of oversquashing and underreaching. For MPNNs, such a graph bottleneck has been
previously defined through the Jacobian of the GNN between pairs of nodes, with low values of the
Jacobian indicating poor information flow. As the full Jacobian of an ℓ-layer MPNN is proportional
to the powers of the graph shift operator [7, 12], powers of the operator capture the topological
properties of the graph that lead to bottlenecking.

Prior work. There has been extensive research into both the problem of learning on heterophilic
graphs and the graph bottleneck problem, but in separate research strands following disparate
approaches. Recent work studying the effects of bottlenecking has primarily employed spectral
methods—like using effective resistance and commute times [12, 13]—and mostly targeted graph
classification tasks involving small graphs with short diameters. Meanwhile, theoretical accounts of
the effects of homophily on MPNNs have been of a statistical nature—for example, by modelling
graphs as stochastic block models (SBMs) [8]—and are restricted to node classification tasks since
homophily is inherently a measure of class-wise connectivity. In node classification tasks the graphs
are typically large and sparse, which limits the tightness of spectrum-derived bounds in Refs. [12, 13].
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Our contributions. In this paper we present a consistent theoretical account of the combined
effects of heterophily and bottlenecking on MPNN performance through a phenomenon we refer to
as homophilic bottlenecking—bottlenecking between nodes of the same type. More specifically, we
focus on the asymptotically large and sparse regime—where spectral approaches are inadequate—
and demonstrate that homophilic bottlenecking restricts the expressive power of MPNNs in node
classification tasks. We do so by pursuing a statistical framework that allows us to quantify feature
expressivity through the “signal sensitivity” of the MPNN, which is its maximal sensitivity to coherent
changes in the node feature distribution, that we show is related to graph homophily; see Sec. 2.
Modelling the graph itself as a sample from a large family of general random graphs enables a
bound for the sensitivity in expectation, providing analytic approximations of bottlenecking that we
show tracks empirical classification accuracy very closely; see Sec. 3. We achieve this by using the
shortest path length distribution (SPLD) in sparse general graph ensembles [14] to decompose the
bottlenecking in terms of oversquashing—that has been previously studied in the literature—and
underreaching—in an interpretable geodesic-based formulation that has not appeared in previous
analyses [7, 11]—thus providing a complete characterisation of bottlenecking in MPNNs. Appendices
B, C, and D provide a complete set of definitions, theorems, and proofs, respectively.

2 Signal sensitivity determines expressivity and is related to homophily
Signal sensitivity of an MPNN. Consider class-wise attributed graphs (G,X) wherein each node i
has an associated class variable ci ∈ C := {1, 2, . . . , k} such that conditional on it features have the
mean vector µci ∈ Rdin , and features of a node pair (i, j) have the din × din covariance matrix Σij :

E [Xi | ci = c] := µc, (3a)

E
[
(Xi − µc) (Xj − µb)

T
∣∣∣ ci = c, cj = b

]
:= Σij , (3b)

that is, Xi are from an arbitrary distribution with finite mean and covariance. Then signal sensitivity
S(ℓ)
µ (i) of the ℓth MPNN layer for node i is defined as the maximal change in its hidden representation

due to changes in the mean input representation of the k classes; see Definition 3 for further detail. It
can be shown that this definition has an equivalent formulation in terms of graph homophily due to
the class structure {ci}ni=1. Let δxy be the Kronecker delta function, i.e. δxy = 1 if x = y, then:

S(ℓ)
µ (i) = sup

X∈Rn×din

n∑
j,l=1

dout∑
p=1

din∑
q=1

∂H
(ℓ)
ip

∂Xjq

∂H
(ℓ)
ip

∂Xlq
δcjcl . (4)

This provides an initial intuition behind the link between homophily and information propagation

through the graph: the product of derivatives
∂H

(ℓ)
ip

∂Xjq

∂H
(ℓ)
ip

∂Xlq
measures whether the output dimension p

of node i changes in the same or different direction with changes to input dimension q of nodes j and
l, while δcjcl collects terms corresponding to the same class. That is, signal sensitivity is equivalent
to the maximal sensitivity to coherent changes among features of input nodes of the same class.
Importantly, Theorem 1 in Appendix C shows that, for node classification tasks, an ideal model would
be the one that maximises signal sensitivity (Definition 3) while minimising a related notion of noise
sensitivity (Definition 4), that captures the trade-off between generalisation and expressive power.

Higher-order graph homophily. Lemma 1, that shows how the Jacobian matrix of the output
of an MPNN (Eq. (1)) is upper bounded by a function of Â, alongside Eq. (4) shows that mean
signal sensitivity over all nodes, denoted by S̄(ℓ)

µ , is upper bounded by a higher-order generalisation
of graph homophily (Definition 5); see Theorem 2. Let ∥·∥ be the Euclidean norm, and ∇1f and
∇2f be the Jacobian matrices of some function f(x1,x2) with respect to x1 and x2, respectively.
Say there exist constants α1, α2, β1, β2 such that ∀r ∈ [ℓ] the message and update functions satisfy
∥∇1ϕr∥ ≤ α1, ∥∇2ϕr∥ ≤ α2, ∥∇1ψr∥ ≤ β1, and ∥∇2ψr∥ ≤ β2. Then, assuming symmetric
Â—as in Eq. (2)—and an isotropic MPNN—for which β1 = 0—yields a simpler bound for S(ℓ)

µ :

S̄(ℓ)
µ ≤

2ℓ∑
r=0

(
2ℓ

r

)
α2ℓ−r
1 (α2β2)

rhr
(
Âsym

)
, (5)
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where hr (·) is a special case of higher-order weighted homophily (Definition 5):

hr
(
Â
)
:=

1

n

∑
i,j∈V

[
Âr
]
ij
δcicj , (6)

that we term as r-order homophily. (We remark that the usual notion of node and edge homophily
[9] are special cases of h1 (·).) Topping et al. [7] have previously shown how ℓth power of the
graph shift operator relate to performance of the ℓth MPNN layer—here we show that considering
distributional sensitivity globally implicates 2ℓ-order homophily, and that performance is adversely
affected by bottlenecks (as characterised by small entries of powers of the operator) between nodes
of the same class, a phenomenon we refer to as homophilic bottlenecking. If we further assume
no self-dependence, as in GCNs, then α1 = 0 which yields S̄(ℓ)

µ ≤ (α2β2)
2ℓh2ℓ

(
Âsym

)
. This

offers new theoretical insight into the phenomenon of oversmoothing often observed in GCNs: as the
number of layers increases, the performance of the GCN deteriorates [15, 16].

3 Analytic estimates of signal sensitivity track empirical performance
Analytic approximations using the SPLD. Consider the (undirected and simple) graph G to be a
sample from a general random graph family with conditionally independent edges, that is, without
loss of generality for node indices i < j : Aij ∼ Bernoulli

(
[E [A]]ij

)
and Aji = Aij . In other

words, the graph ensemble is completely characterised by the expected adjacency matrix E [A] and
includes many random graph models like stochastic block models (SBMs [17]), random dot product
graphs [18], etc. From Eqs. (5) and (6) we can bound the mean signal sensitivity in expectation:

E
[
S̄(ℓ)
µ

]
≤

2ℓ∑
r=0

(
2ℓ

r

)
α2ℓ−r
1 (α2β2)

rE
[
hr
(
Âsym

)]
, E

[
hr
(
Â
)]

=
1

n

∑
i,j∈V

E
[
Âr
]
ij
δcicj .

(7)
Let λij ∈ Z denote the shortest path length between nodes i, j. The ensemble endows the lengths
with a distribution, allowing us to decompose the expectation of powers of the graph shift operator as:

E
[
Âr
]
ij
= E

[[
Âr
]
ij

∣∣∣∣λij ≤ r

]
︸ ︷︷ ︸

oversquashing

P (λij ≤ r)︸ ︷︷ ︸
underreaching

, (8)

where we use the fact that λij > r =⇒
[
Âr
]
ij

= 0. The first factor on the RHS measures a

form of density within the receptive field of node i while the second factor measures the probability
that the target node j is within the receptive field of i, and therefore the two factors can be seen as
encoding oversquashing and underreaching, respectively. Assuming that the network is sparse, i.e.
E [A] = O

(
n−1

)
implying asymptotically (as n → ∞) bounded node degrees, we can use prior

results on the asymptotic SPLD [14] in sparse graph ensembles to yield, assuming each node is on
the giant component with probability 1− o (1), the underreaching factor in Eq. (8) purely in terms
of E [A]; see Lemma 2. The oversquashing factor is more difficult to calculate, however, similar to
Topping et al. [7], we can calculate a tight bound for oversquashing at the boundary of the receptive

field E
[[
Âr
]
ij

∣∣∣∣λij = r

]
[7] purely in terms of E [A]; see Theorem 3 for when Â := Âsym. For

ℓ = 1 Eq. (7) suggests that we only need first and second order homophily to determine the MPNN’s
performance which—using Eq. (8), Lemma 2 and Theorem 3—we can derive (tight) analytic bounds
for any such graph ensemble; see Corollary 3.1 for the case of sparse SBMs. For simplicity, consider
a 2-block “planted partition” sparse SBM with two equi-sized classes such that E [A]ij :=

Bcicj

n

where B := 2d
[

h (1−h)
(1−h) h

]
and d > 0 controls the mean degree of every node while 0 ≤ h ≤ 1

controls the (edge) homophily [9]. Application of Corollary 3.1 yields:

E
[
h1
(
Âsym

)]
⪅ h, E

[
h2
(
Âsym

)]
⪅

1

d
+

(
1− 1− e−d

d

)(
2h2 − 2h+ 1

)
. (9)

Figure 1 shows that our analytic estimates strongly track empirical node classification performance.
Notable is the quadratic variation of performance with homophily (Eq. (9)): In the case of GCNs
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performance is symmetric around “ambiphily” (h = 0.5), and almost equal for extremely heterophilic
(h = 0) and homophilic (h = 1) graphs. We also validate on real-world graphs in Figure 2.

4 Conclusion
In this paper we have presented a statistical framework to show that classification accuracy is
theoretically determined by the sensitivity of MPNN to changes to the class-wise mean of node
features, as measured through signal sensitivity (Eq. (4)), that we validate empirically. We proved
that signal sensitivity is in turn adversely impacted by information bottlenecks between nodes of the
same class (Eqs. (7), (6)), in a phenomenon we termed as homophilic bottlenecking, which provides
a theoretical explanation for empirically poor MPNN performance on heterophilic graphs. We were
able to decompose signal sensitivity into oversquashing and underreaching factors (Eq. (8)) using
shortest path length distribution which we used to derive analytic expressions for signal sensitivity
(Eq. (9)) that were empirically validated. Overall, our work combines homophily, bottlenecks and
feature expressivity in MPNNs within a unifying theoretical framework that we hope enables new
MPNN design choices motivated from analytic principles.

5



Geodesic Distributions Reveal How Heterophily and Bottlenecks Limit the Expressive Power of MPNNs

Disclosure of Funding
J. R. is supported by the UK Research and Innovation (UKRI Centre for Doctoral Training in AI for
Healthcare grant number EP/S023283/1).

References
[1] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehen-

sive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):
4–24, 2020. URL https://arxiv.org/abs/1901.00596. 1

[2] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,
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Jacobian norm: empirical Eq. (4)
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Figure 1: Empirical and analytic estimates of (root) mean signal sensitivity accurately track
empirical node classification performance for a 2-block planted partition SBM. For a GCN
without self-dependence (a, b; α1 = 0 in Eq. (5)) and linear isotropic MPNN with self-dependence
(c, d; α1 > 0 in Eq. (5)) in the update function (Eq. (1)) while assuming Âsym (Eq. (2)) as the
graph shift operator, when varying the edge homophily while keeping the mean degree fixed at d = 5
(a, c) and when varying the mean degree while keeping the edge homophily fixed at h = 0.7 (b,
d). The graph with n = 3000 nodes was sampled from a 2-block equi-sized SBM [17] with block
matrix B := 2d

[
h (1−h)

(1−h) h

]
and the class-wise feature distribution (Eq. (3)) was assumed to be a

bivariate normal with class-wise means (1, 0) and (0, 1) respectively, and class-wise covariance [ 1 0
0 1 ]

for both blocks. The MPNN models (yellow) were trained with a weight decay of 10−3 to minimise
generalisation error and ensure the performance difference was due to variation in expressive power.
The Jacobian norm (green) was empirically calculated, as the argument to the sup in Eq. (4), for
each experiment instance using the PyTorch Autograd package [19]. The analytic (root) mean signal
sensitivity was computed for the full graph (red) using Eqs. (5) and (6) and for the corresponding
SBM (blue) using Eqs. (7) and (9). For an analysis of real-world graphs see Figure 2.
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Figure 2: Analytic estimates of (root) mean signal sensitivity positively covary with empirical
node classification performance for multiple real-world graphs. Stochastic block models (SBMs)
were inferred for the given real-world graphs via maximum likelihood estimation, given the node
classes. The analytic (root) mean signal sensitivity was computed for the full graph (blue) using Eqs.
(5) and (6) and for the corresponding SBM (red) using Eqs. (7) and (9). Both are strongly correlated
with each other and with the empirical test classification accuracy for a GCN, but we note a few
deviations. First, the analytics from the SBM vs. the full graph for Chameleon and Squirrel have
small differences, that can be partly explained due to the SBM not being as good a model fit as for
the other datasets. (We remark that the log-likelihood of the real-world datasets under their assumed
SBMs are -0.076, -0.066, -0.011, -0.009, -0.008, and -0.002 for the Squirrel, Chameleon, Cora, Actor,
Citeseer, and Pubmed datasets, respectively.) Second, the analytics deviate from the empirical test
accuracies for Citeseer and Cora—that appear to have a lower accuracy than what would be predicted
by signal sensitivity alone—which can be explained by noting that noise sensitivity also contributes
to model performance, as captured by Theorem 1 and supported by additional analyses in Figure 3.
(In the real-world datasets considered, noise sensitivity plays a significant role when the total feature
variance is higher, say as a result of a large number of feature dimensions when compared to the
synthetic datasets considered in Figure 1.)

B Definitions

An MPNN’s sensitivity is typically measured by the Jacobian with respect to input features.

Definition 1 (MPNN Jacobian; Topping et al. [7]). Let (G,X) be an attributed graph, i.e. a graph G
of n nodes with node feature matrix X ∈ Rn×din . Let H(ℓ) ∈ Rn×dout be the matrix of output node
embeddings of the ℓth MPNN layer then the n × n × din × dout Jacobian tensor of the ℓth MPNN
layer is defined as:

[
J (ℓ)

]
ijpq

:=
∂H

(ℓ)
ip

∂Xjq
,

where the index i refers to the output node, j refers to the input node, p and q refer to the output and
input feature dimensions respectively, and ℓ refers to the layer.

Remark on tensor indexing. Indexing into a four-dimensional tensor T as [T ]i corresponds to a
three-dimensional tensor and as [T ]ij corresponds to a two-dimensional tensor (i.e. matrix).

Consider a reparameterisation of node i’s feature vector in terms of its class-wise mean vector and
corresponding residual or “noise” vector Xi = µci + ϵi, akin to the reparameterisation used in
variational autoencoders to learn latent data distributions in a differentiable manner [20]. Analysing

9
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(a) Real-world graphs
(b) Synthetically generated graphs using features
and labels from Cora dataset

Figure 3: Together, signal sensitivity and noise sensitivity can account for empirically observed
variations in node classification performance of MPNNs. The x-axis measures signal sensitivity
as in Eq. (5), the y-axis measures noise sensitivity as in Eq. (14), while the colour encodes node
classification test accuracy i.e. empirical model performance for a graph. Figure 3a highlights,
for the real-world graphs used in Figure 2, that the lower-than-expected model performance for
Citeseer and Cora can be explained by a large noise sensitivity, as predicted by Theorem 1. Figure
3b provides further evidence by considering 400 synthetic graphs of varying mean signal and noise
sensitivities—generated under a planted partition SBM with different levels of mean degree and edge
homophily but with node features and labels corresponding to those in Cora to match its variance. The
emerging trend corroborates the prediction of Theorem 1—superior model performance is associated
with heightened signal sensitivity and lowered noise sensitivity.

the Jacobian with respect to the noise—by using ∂Xi

∂ϵj
= δij and the chain rule—yields:

∂H
(ℓ)
ip

∂ϵjq
=

n∑
l=1

∂H
(ℓ)
ip

∂Xlq
δlj =

∂H
(ℓ)
ip

∂Xjq
. (10)

In other words, the sensitivity of the MPNN’s output for node i with respect to the features of node
j is—at least in part—due to the residual noise in the feature distribution. Therefore, in this paper,
we argue that MPNN performance can be better understood using the Jacobian with respect to the
class-wise means instead.
Definition 2 (Class-reduced Jacobian). Let (G,X) be a class-wise attributed graph with k classes
following Eq. (3). Let H(ℓ) ∈ Rn×dout be the matrix of output node embeddings of the ℓth MPNN
layer then the n× k × din × dout class-reduced Jacobian tensor of the ℓth MPNN layer is defined as:[

J (ℓ)
µ

]
iupq

:=
∂H

(ℓ)
ip

∂µuq
,

where index i refers to the output node, u refers to the class of the input node, p and q refer to the
output and input feature dimensions respectively, and ℓ refers to the layer.

Using the mean-residual decomposition from above and the chain rule yields:[
J (ℓ)
µ

]
iupq

=

n∑
j=1

∂H
(ℓ)
ip

∂Xjq
δcju, (11)

which can now be used to study the distributional sensitivity of MPNNs, by defining what we term as
signal sensitivity.
Definition 3 (Signal sensitivity). Let (G,X) be a class-wise attributed graph with k classes following
Eq. (3) and J (ℓ)

µ be the class-reduced Jacobian of the ℓth MPNN layer (Definition 2) then the signal
sensitivity of the ℓth MPNN layer for node i is defined as:

S(ℓ)
µ (i) := sup

M∈Rk×din

∥∥∥[J (ℓ)
µ

]
i

∥∥∥2 ,
10
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where ∥·∥ is the Euclidean norm and M refers to the k× din matrix of class-wise mean input vectors.
Furthermore, the mean signal sensitivity of the ℓth MPNN layer is defined as:

S̄(ℓ)
µ :=

1

n

n∑
i=1

S(ℓ)
µ (i).

We similarly define the notion of noise sensitivity.
Definition 4 (Noise sensitivity). Let (G,X) be a class-wise attributed graph with k classes following
Eq. (3) and J (ℓ) be the Jacobian of the ℓth MPNN layer (Definition 1) then the noise sensitivity of the
ℓth MPNN layer for node i is defined as:

S(ℓ)
ϵ (i) := sup

E∈Rn×din

∥∥∥[J (ℓ)
]
i

∥∥∥2 ,
where ∥·∥ is the Euclidean norm and E refers to the n× din matrix of the difference of each node’s
input feature vector from its class’s mean input vector. Furthermore, the mean noise sensitivity of the
ℓth MPNN layer is defined as:

S̄(ℓ)
ϵ :=

1

n

n∑
i=1

S(ℓ)
ϵ (i).

We show that the graph structural determinants of MPNN performance in node classification tasks
can be succinctly captured by the following higher-order weighted generalisation of homophily.
Definition 5 ((r, s)-order (u, v)-weighted homophily). Let Â be a choice of graph shift operator of
graph G = (V,E) with n nodes and w be a vector of node weights used to define the matrix:

Hr
u

(
Â,w

)
:=

(
r + u

r

)−1 ∑
p∈{0,1}r+u∑

a pa=r

r+u∏
a=1

Âpa [diag (w)]
1−pa , (12)

then (r, s)-order (u, v)-weighted homophily is an (appropriately weighted) average proportion of
nodes of the same class that are respectively in the r-order and s-order neighbourhoods of a node:

hr,su,v

(
Â,w

)
:=

1

n

∑
i,j∈V

[
Hr

u

(
ÂT ,w

)
Hs

v

(
Â,w

)]
ij
δcicj ,

where δci,cj is the Kronecker delta function. In particular, if w = c1n for some c ≥ 0, where 1n is
the vector of ones of size n, then

Hr
u

(
Â, c1n

)
= cuÂr.

C Theorems
This section states the key results while Appendix D.1 provides their proofs.
Theorem 1 (Signal sensitivity bounds MPNN performance). Let (G,X) and (G, X̃) be class-wise
attributed graphs—with k classes following Eq. (3)—consisting of the same graphG with n nodes but
different input features X and X̃, corresponding to (potentially different) class-wise means {µu}ku=1,
{µ̃u}ku=1 and node-wise covariances {Σii}ni=1, {Σ̃ii}ni=1. Let the hidden feature representation for
node i be considered as a differentiable function H(ℓ)

i : Rn×din → Rdout of the input features matrix.
Then the expected squared distance between the output embeddings of the ℓth MPNN layer, given the
graph G, is bounded by:

E
[∥∥∥H(ℓ)

i (X)−H
(ℓ)
i (X̃)

∥∥∥2 ∣∣∣∣G] ≤ S(ℓ)
µ (i)

k∑
u=1

∥µu − µ̃u∥
2
+ S(ℓ)

ϵ (i)

n∑
j=1

Tr
(
Σjj + Σ̃jj

)
,

(13)

where S(ℓ)
µ (i) and S(ℓ)

ϵ (i) refer to the signal sensitivity (Definition 3) and noise sensitivity (Definition
4) of the ℓth MPNN layer for node i, respectively.

11
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Interpretation for Theorem 1. Consider X and X̃ sampled from two different class-wise dis-
tributions with class-wise means µu and µ̃u being very close. Then, ideally, the resulting output
embeddings should also be close, and the bound in Theorem 1 enforces a small distance between
the output embeddings when the noise sensitivity S(ℓ)

ϵ (i) is small provided—thus, minimising noise
sensitivity would ensure that the output embeddings would be close. On the other hand, when X

and X̃ are sampled from two distributions with very different class-wise means µu and µ̃u, then
the resulting output embeddings should ideally also be distant. However, the bound in Theorem 1
means that when both S(ℓ)

ϵ (i) and S(ℓ)
µ (i) are small then the output embeddings are close together,

which is undesirable when X and X̃ are sampled from two very different distributions. Therefore,
an ideal model minimises S(ℓ)

ϵ (i) whilst maximising S(ℓ)
µ (i) to have the best discriminative power.

The trade-off described here precisely reflects the trade-off between generalisation and expressive
power of a given model—between sensitivity to noise which indicates overfitting and sensitivity to
true changes in the feature distribution which indicates an expressive model.
Lemma 1 (Bound for MPNN Jacobian). Let J (ℓ) be the Jacobian of the ℓth layer of an MPNN
(Definition 1) that uses the graph shift operator Â with message and update functions {ψk(·, ·)}ℓk=1

and {ϕk(·, ·)}ℓk=1, as in Eq. (1). Let ∥·∥ be the Euclidean norm, and ∇1f and ∇2f be the Jacobian
matrices of some function f(x1,x2) with respect to x1 and x2, respectively. Assuming that there exist
constants α1, α2, β1, β2 such that ∀r ∈ [ℓ] the message and update functions satisfy ∥∇1ϕr∥ ≤ α1,
∥∇2ϕr∥ ≤ α2, ∥∇1ψr∥ ≤ β1, and ∥∇2ψr∥ ≤ β2 then:∥∥∥∥[J (ℓ)

]
ij

∥∥∥∥ ≤
[(
α2β2Â+ α2β1diag

(
Â1n

)
+ α1In

)ℓ]
ij

,

where 1n is the size-n vector of ones and In is the identity matrix of size n.
Theorem 2 (Higher-order weighted homophily bounds signal sensitivity). Let (G,X) be a class-wise
attributed graph with k classes following Eq. (3) and S̄(ℓ)

µ be the mean signal sensitivity of the ℓth

layer (Definition 3) of an MPNN that uses the graph shift operator Â with message and update
functions {ψk(·, ·)}ℓk=1 and {ϕk(·, ·)}ℓk=1, as in Eq. (1). Let ∥·∥ be the Euclidean norm, ∇1f and
∇2f be the Jacobian matrices of some function f(x1,x2) with respect to x1 and x2, respectively.
Assuming that there exist constants α1, α2, β1, β2 such that ∀r ∈ [ℓ] the message and update functions
satisfy ∥∇1ϕr∥ ≤ α1, ∥∇2ϕr∥ ≤ α2, ∥∇1ψr∥ ≤ β1, and ∥∇2ψr∥ ≤ β2 then:

S̄(ℓ)
µ ≤

ℓ∑
r,s=0

r∑
u=0

s∑
v=0

(
ℓ

r

)(
ℓ

s

)(
r

u

)(
s

v

)
α2ℓ−r−s
1 (α2β2)

r+s
hr−u,s−v
u,v

(
Â, β1β

−1
2 Â1n

)
,

where hr,su,v (·, ·) is the (r, s)-order (u, v)-weighted homophily given by Definition 5.

Interpretation for Theorem 2. This theorem shows how the signal sensitivity of an MPNN—which
by Theorem 1 would determine its node classification performance—depends on the graph structure
as encoded by the graph shift operator Â—in particular by a higher-order homophily that accounts
for an appropriately weighted sum of walks between nodes of the same class.
Corollary 2.1 (r-order homophily bounds signal sensitivity in isotropic MPNNs with a symmetric
graph shift operator). Let (G,X) be a class-wise attributed graph with k classes following Eq. (3)
and S̄(ℓ)

µ be the mean signal sensitivity of the ℓth layer (Definition 3) of an MPNN that uses a symmetric
graph shift operator Â with message and update functions {ψk(·, ·)}ℓk=1 and {ϕk(·, ·)}ℓk=1, as in Eq.
(1), that satisfy the conditions in Theorem 2 with the additional constraint that β1 = 0 (for isotropic
MPNNs), then:

S̄(ℓ)
µ ≤

2ℓ∑
r=0

(
2ℓ

r

)
α2ℓ−r
1 (α2β2)

r
hr
(
Â
)
,

where hr (·) is the r-order homophily defined in Eq. (6).
Corollary 2.2 (Weighted sum of closed walks bounds noise sensitivity in isotropic MPNNs with a
symmetric graph shift operator). Let (G,X) be a class-wise attributed graph with k classes following
Eq. (3) and S̄(ℓ)

ϵ be the mean noise sensitivity of the ℓth layer (Definition 4) of an MPNN that
uses a symmetric graph shift operator Â with message and update functions {ψk(·, ·)}ℓk=1 and

12
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{ϕk(·, ·)}ℓk=1, as in Eq. (1), that satisfy the conditions in Theorem 2 with the additional constraint
that β1 = 0 (for isotropic MPNNs), then:

S̄(ℓ)
ϵ ≤ 1

n

2ℓ∑
r=0

(
2ℓ

r

)
α2ℓ−r
1 (α2β2)

r
Tr
(
Âr
)
, (14)

where Tr (·) is the matrix trace.
Lemma 2 (Underreaching in MPNNs for sparse graph ensembles; Loomba and Jones [14]). For
an undirected and simple graph G with n nodes encoded by the adjacency matrix A, sampled
from a general random graph family with conditionally independent edges and expected adjacency
matrix E [A], if the network is sparse in the sense that E [A] = O

(
n−1

)
, each node is on the giant

component with probability 1− o (1), then asymptotically the cumulative distribution function of the
length of the shortest path λij between nodes i and j ̸= i is given by:

P (λij ≤ r) ≈

[
r∑

s=1

E [A]
s

]
ij

where “≈” indicates an asymptotic first-order approximation as n→ ∞.
Theorem 3 (Boundary oversquashing in MPNNs for sparse graph ensembles). Assume the same
conditions as in Lemma 2, and additionally assume large expected node degrees encoded in the
diagonal matrix ⟨D⟩ := diag (E [A]1n) where 1n is the length-n vector of ones. Then for the
symmetric normalised adjacency matrix Âsym(Eq. (2)) the boundary oversquashing between nodes i
and j ̸= i, where λij is the shortest path distance from i to j, is asymptotically bounded by:

E
[[

Âr
sym

]
ij

∣∣∣∣λij = r

]
⪅

[
⟨D⟩−

1
2 E [A]

({
⟨D⟩−1 − ⟨D⟩−2 (

In − e−⟨D⟩)}E [A]
)r−1

⟨D⟩−
1
2

]
ij

[E [A]
r
]ij

,

(15)
where In is the size-n identity matrix, and the bound gets tighter with larger mean degrees.

Interpretation for Theorem 3. This theorem provides an alternate bound to the bound given in
Theorem 4 in Topping et al. [7] where, instead of an absolute bound in terms of edge curvature,
we bound the boundary oversquashing in expectation. It can effectively lend itself to an efficient
variational rewiring procedure for alleviating oversquashing, by inferring a random graph model
that maximises the likelihood of observing the given graph whilst also minimsing oversquashing
through maximising Eq. (15). We emphasise that as the mean node degrees and network size become
appropriately large then the bound becomes an asymptotic equality.
Corollary 3.1 (Bound for first and second order homophily in sparse SBMs). Consider an undirected
and simple graph G with n nodes encoded by the adjacency matrix A sampled from a sparse
stochastic block model (SBM) such that node classes are i.i.d. as per c ∼ Categorical (π) where
π = (π1, π2, . . . , πk)

T is the probability distribution over the k node classes and nodes connect

with probability E [A]ij :=
Bcicj

n encoded in the k × k block matrix B. Let Π := diag (π) and
D := diag (Bπ) be diagonal matrices encoding the probability of class membership and mean
class-wise degrees respectively. Then, assuming that the other conditions of Lemma 2 hold, the first
and second order homophily (Eq. (6)) with the symmetric normalised adjacency matrix Âsym as the
graph shift operator (Eq. (2)) can be tightly bounded in expectation by:

E
[
h1
(
Âsym

)]
⪅ Tr

(
D−1ΠBΠ

)
,

E
[
h2
(
Âsym

)]
⪅ πTD−1BD−1π +Tr

(
D−1ΠB

{
D−1 −D−2

(
Ik − e−D

)}
ΠBΠ

)
,

where Ik is the size-k identity matrix, and the bound gets tighter with larger class-wise mean degrees.

Interpretation for Corollary 3.1. This corollary provides a fully analytic characterisation of first
and second order homophily in terms of parameters of a graph model, which can be used with
Eq. (7) to bound the mean signal sensitivity of a single MPNN layer in expectation. In particular,
using an SBM to model the graph ensemble, one can analyse how class-wise connectivity affects
the emergence of homophilic bottlenecks. We demonstrate the validity of these bounds and their
tightness in Figure 1.
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D Proofs

D.1 Main

In this section we restate the key results and provide their proofs.

Theorem 1 (Signal sensitivity bounds MPNN performance). Let (G,X) and (G, X̃) be class-wise
attributed graphs—with k classes following Eq. (3)—consisting of the same graphG with n nodes but
different input features X and X̃, corresponding to (potentially different) class-wise means {µu}ku=1,
{µ̃u}ku=1 and node-wise covariances {Σii}ni=1, {Σ̃ii}ni=1. Let the hidden feature representation for
node i be considered as a differentiable function H(ℓ)

i : Rn×din → Rdout of the input features matrix.
Then the expected squared distance between the output embeddings of the ℓth MPNN layer, given the
graph G, is bounded by:

E
[∥∥∥H(ℓ)

i (X)−H
(ℓ)
i (X̃)

∥∥∥2 ∣∣∣∣G] ≤ S(ℓ)
µ (i)

k∑
u=1

∥µu − µ̃u∥
2
+ S(ℓ)

ϵ (i)

n∑
j=1

Tr
(
Σjj + Σ̃jj

)
,

(13)

where S(ℓ)
µ (i) and S(ℓ)

ϵ (i) refer to the signal sensitivity (Definition 3) and noise sensitivity (Definition
4) of the ℓth MPNN layer for node i, respectively.

Proof. We begin by separating the variation in input features due to the class-wise means and
residuals. Let C be an n× k assignment matrix such that Ciu := 1 if ci = u and Ciu := 0 otherwise.
Let M := (µ1, . . . ,µk)

T and M̃ := (µ̃1, . . . , µ̃k)
T be matrices of size k × din that collect the

class-wise means and E := (ϵ1, . . . , ϵn)
T and Ẽ := (ϵ̃1, . . . , ϵ̃n)

T be matrices of size n× din that
collect the residuals such that X = CM+E and X̃ = CM̃+ Ẽ. Then we can write:∥∥∥H(ℓ)

i (X)−H
(ℓ)
i (X̃)

∥∥∥2 =
∥∥∥H(ℓ)

i (CM+E)−H
(ℓ)
i (CM̃+ Ẽ)

∥∥∥2
≤
∥∥∥H(ℓ)

i (CM+E)−H
(ℓ)
i (CM̃+E)

∥∥∥2 + ∥∥∥H(ℓ)
i (CM̃+E)−H

(ℓ)
i (CM̃+ Ẽ)

∥∥∥2 . (16)

Considering H
(ℓ)
i (CM + E) first as a function of M and then as a function of E we can use

the mean value theorem to bound both terms in Eq. (16) using the signal sensitivity and noise
sensitivity of the GNN. In particular, consider the function Ĥ

(ℓ)
i : Rk×din → Rdout given by

Ĥ
(ℓ)
i (M) = H

(ℓ)
i (CM+E). Assuming continuous differentiability of Ĥ(ℓ)

i over Rk×din , we apply
the mean value inequality for matrices from Proposition 2:∥∥∥Ĥ(ℓ)

i (M)− Ĥ
(ℓ)
i (M̃)

∥∥∥2 ≤
∥∥∥M− M̃

∥∥∥2 sup
M∈Rk×din

∥∥∥∇Ĥ(ℓ)
i (M)

∥∥∥2 =⇒

∥∥∥H(ℓ)
i (CM+E)−H

(ℓ)
i (CM̃+E)

∥∥∥2 ≤
∥∥∥M− M̃

∥∥∥2 sup
M∈Rk×din

dout∑
q=1

∥∥∥∥CT
[
∇H(ℓ)

i (CM+E)
]
q

∥∥∥∥2 .
By the definition of C we have:

[
CT∇Hi (CM+E)

]
q
]up =

n∑
j=1

∂Hip

∂Xjq
δju =

[
J (ℓ)
µ

]
iupq

=⇒ sup
M∈Rk×din

dout∑
q=1

∥∥∥∥CT
[
∇H(ℓ)

i (CM+E)
]
q

∥∥∥∥2 = sup
M∈Rk×din

∥∥∥[J (ℓ)
µ

]
i

∥∥∥2 = S(ℓ)
µ (i),

where we use the definition of the class-reduced Jacobian (Definition 2) and signal sensitivity
(Definition 3), and Eq. (11).
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Similarly, consider the function H̃(ℓ)
i : Rn×din → Rdout given by H̃(ℓ)

i (E) = H
(ℓ)
i (CM̃+E), then

by the mean value inequality for matrices in Proposition 2 we have:∥∥∥H̃(ℓ)
i (E)− H̃

(ℓ)
i (Ẽ)

∥∥∥2 ≤
∥∥∥E− Ẽ

∥∥∥2 sup
E∈Rn×din

∥∥∥∇H̃(ℓ)
i (E)

∥∥∥2
=⇒

∥∥∥H(ℓ)
i (CM̃+E)−H

(ℓ)
i (CM̃+ Ẽ)

∥∥∥2 ≤
∥∥∥E− Ẽ

∥∥∥2 sup
E∈Rn×din

∇H(ℓ)
i

(
CM̃+E

)
=
∥∥∥E− Ẽ

∥∥∥2 S(ℓ)
ϵ (i),

where we use the definition of noise sensitivity (Definition 4) and Eq. (10). Substituting both these
bounds into Eq. (16) yields:∥∥∥H(ℓ)

i (X)−H
(ℓ)
i (X̃)

∥∥∥2 ≤ S(ℓ)
µ (i)

∥∥∥M− M̃
∥∥∥2 + S(ℓ)

ϵ (i)
∥∥∥E− Ẽ

∥∥∥2 .
For a given graph G the terms S(ℓ)

µ (i) and S(ℓ)
ϵ (i) are deterministic, then taking the expectation

conditioned on G gives:

E
[∥∥∥H(ℓ)

i (X)−H
(ℓ)
i (X̃)

∥∥∥2 ∣∣∣∣G] ≤ S(ℓ)
µ (i)

∥∥∥M− M̃
∥∥∥2 + S(ℓ)

ϵ (i)E
[∥∥∥E− Ẽ

∥∥∥2] . (17)

Let σ := {Tr(Σii)}ni=1 and σ̃ := {Tr(Σ̃ii)}ni=1 be length-n vectors encoding node-wise variances
then:

E
[∥∥∥E− Ẽ

∥∥∥2] = E
[
Tr
(
(E− Ẽ)(E− Ẽ)T

)]
=
(
E
[
Tr(EET )

]
+ E

[
Tr(ẼẼ)T

])
=

n∑
i=1

E
[
ϵTi ϵi

]
+ E

[
ϵ̃Ti ϵ̃i

]
=

n∑
i=1

(σi + σ̃i) ,

where we use Eq. (3). Substituting in Eq. (17) yields the RHS of Eq. (13).

Lemma 1 (Bound for MPNN Jacobian). Let J (ℓ) be the Jacobian of the ℓth layer of an MPNN
(Definition 1) that uses the graph shift operator Â with message and update functions {ψk(·, ·)}ℓk=1

and {ϕk(·, ·)}ℓk=1, as in Eq. (1). Let ∥·∥ be the Euclidean norm, and ∇1f and ∇2f be the Jacobian
matrices of some function f(x1,x2) with respect to x1 and x2, respectively. Assuming that there exist
constants α1, α2, β1, β2 such that ∀r ∈ [ℓ] the message and update functions satisfy ∥∇1ϕr∥ ≤ α1,
∥∇2ϕr∥ ≤ α2, ∥∇1ψr∥ ≤ β1, and ∥∇2ψr∥ ≤ β2 then:∥∥∥∥[J (ℓ)

]
ij

∥∥∥∥ ≤
[(
α2β2Â+ α2β1diag

(
Â1n

)
+ α1In

)ℓ]
ij

,

where 1n is the size-n vector of ones and In is the identity matrix of size n.

Proof. By applying the chain rule to Eq. (1) the Jacobian of the ℓth MPNN layer is given by:[
J (ℓ)

]
ij
= ∇1ϕℓ

[
∇H

(ℓ−1)
i

]
j
+∇2ϕℓ

∑
l∈N(i)

Âil

(
∇1ψℓ

[
∇H

(ℓ−1)
i

]
j
+∇2ψℓ

[
∇H

(ℓ−1)
l

]
j

)
,

=

∇1ϕℓ +∇2ϕℓ∇1ψℓ

∑
l∈N(i)

Âil

[J (ℓ−1)
]
ij
+∇2ϕℓ

∑
l∈N(i)

Âil∇2ψℓ

[
J (ℓ−1)

]
lj
.
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By norm sub-additivity and sub-multiplicativity we have:∥∥∥∥[J (ℓ)
]
ij

∥∥∥∥ ≤

∥∇1ϕℓ∥+ ∥∇2ϕℓ∥ ∥∇1ψℓ∥
∑

l∈N(i)

Âil

∥∥∥∥[J (ℓ−1)
]
ij

∥∥∥∥
+ ∥∇2ϕℓ∥ ∥∇2ψℓ∥

∑
l∈N(i)

Âil

∥∥∥∥[J (ℓ−1)
]
lj

∥∥∥∥
≤

α1 + α2β1
∑

l∈N(i)

Âil

∥∥∥∥[J (ℓ−1)
]
ij

∥∥∥∥+ α2β2
∑

l∈N(i)

Âil

∥∥∥∥[J (ℓ−1)
]
lj

∥∥∥∥
=

n∑
l=1

[
α2β2Â+ α2β1diag

(
Â1n

)
+ α1In

]
il

∥∥∥∥[J (ℓ−1)
]
lj

∥∥∥∥
=⇒ J(ℓ) ≤

(
α2β2Â+ α2β1diag

(
Â1n

)
+ α1In

)
J(ℓ−1),

where J
(ℓ)
ij :=

∥∥∥[J (ℓ)
]
ij

∥∥∥. Applying this bound recursively yields J(ℓ) ≤(
α2β2Â+ α2β1diag

(
Â1n

)
+ α1In

)ℓ
, where we use the initial condition

[
J (0)

]
ijpq

:=

∂Xip

∂Xjq
= δijδpq =⇒

∥∥∥[J (0)
]
ij

∥∥∥ = δij .

Theorem 2 (Higher-order weighted homophily bounds signal sensitivity). Let (G,X) be a class-wise
attributed graph with k classes following Eq. (3) and S̄(ℓ)

µ be the mean signal sensitivity of the ℓth

layer (Definition 3) of an MPNN that uses the graph shift operator Â with message and update
functions {ψk(·, ·)}ℓk=1 and {ϕk(·, ·)}ℓk=1, as in Eq. (1). Let ∥·∥ be the Euclidean norm, ∇1f and
∇2f be the Jacobian matrices of some function f(x1,x2) with respect to x1 and x2, respectively.
Assuming that there exist constants α1, α2, β1, β2 such that ∀r ∈ [ℓ] the message and update functions
satisfy ∥∇1ϕr∥ ≤ α1, ∥∇2ϕr∥ ≤ α2, ∥∇1ψr∥ ≤ β1, and ∥∇2ψr∥ ≤ β2 then:

S̄(ℓ)
µ ≤

ℓ∑
r,s=0

r∑
u=0

s∑
v=0

(
ℓ

r

)(
ℓ

s

)(
r

u

)(
s

v

)
α2ℓ−r−s
1 (α2β2)

r+s
hr−u,s−v
u,v

(
Â, β1β

−1
2 Â1n

)
,

where hr,su,v (·, ·) is the (r, s)-order (u, v)-weighted homophily given by Definition 5.

Proof. Applying the Cauchy–Schwarz inequality to the input to the sup on the RHS of Eq. (4) yields:∥∥∥[J (ℓ)
µ

]
i

∥∥∥2 =

n∑
j,l=1

dout∑
p=1

din∑
q=1

∂H
(ℓ)
ip

∂Xjq

∂H
(ℓ)
ip

∂Xlq
δcjcl ≤

n∑
j,l=1

∥∥∥∥[J (ℓ)
]
ij

∥∥∥∥∥∥∥[J (ℓ)
]
il

∥∥∥ δcjcl .
Since the conditions of Lemma 1 are satisfied, applying it above and summing over i yields:
n∑

i=1

∥∥∥[J (ℓ)
µ

]
i

∥∥∥2 ≤
n∑

i,j,l=1

[(
α2β2Â+ α2β1D̂+ α1In

)ℓ]
ij

[(
α2β2Â+ α2β1D̂+ α1In

)ℓ]
il

δcjcl

=

n∑
j,l=1

[(
α2β2Â

T + α2β1D̂+ α1In

)ℓ (
α2β2Â+ α2β1D̂+ α1In

)ℓ]
jl

δcjcl ,

(18)

where we define D̂ := diag
(
Â1n

)
. Consider the matrix series expansion:

(
α2β2Â

T + α2β1D̂+ α1In

)ℓ
=

ℓ∑
r=0

(
ℓ

r

)
αℓ−r
1 (α2β2)

ℓ
(
ÂT + β1β

−1
2 D

)r
=

ℓ∑
r=0

r∑
u=0

(
ℓ

r

)(
r

u

)
αℓ−r
1 (α2β2)

r
Hr−u

u

(
ÂT , β1β

−1
2 Â1n

)
,
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where in the first equality we use the binomial expansion and in the second equality we use the
definition in Eq. (12). A similar expansion can be derived using Â which, upon substitution in Eq.
(18) and dividing by n yields:

1

n

n∑
i=1

∥∥∥[J (ℓ)
µ

]
i

∥∥∥2 ≤ 1

n

n∑
j,l=1

ℓ∑
r,s=0

r∑
u=0

s∑
v=0

(
ℓ

r

)(
ℓ

s

)(
r

u

)(
s

v

)
α2ℓ−r−s
1 (α2β2)

r+s

×
[
Hr−u

u

(
ÂT , β1β

−1
2 Â1n

)
Hs−v

v

(
Â, β1β

−1
2 Â1n

)]
jl
δcjcl

=

ℓ∑
r,s=0

r∑
u=0

s∑
v=0

(
ℓ

r

)(
ℓ

s

)(
r

u

)(
s

v

)
α2ℓ−r−s
1 (α2β2)

r+s
hr−u,s−v
u,v

(
Â, β1β

−1
2 Â1n

)
,

where we use Definition 5 for higher-order weighted homophily. Note that the RHS does not depend
on the features or their means. Therefore, taking the supremum of the LHS over the space of mean
matrices gives, alongside the definition of mean signal sensitivity (Definition 3), produces the desired
result.

Corollary 2.1 (r-order homophily bounds signal sensitivity in isotropic MPNNs with a symmetric
graph shift operator). Let (G,X) be a class-wise attributed graph with k classes following Eq. (3)
and S̄(ℓ)

µ be the mean signal sensitivity of the ℓth layer (Definition 3) of an MPNN that uses a symmetric
graph shift operator Â with message and update functions {ψk(·, ·)}ℓk=1 and {ϕk(·, ·)}ℓk=1, as in Eq.
(1), that satisfy the conditions in Theorem 2 with the additional constraint that β1 = 0 (for isotropic
MPNNs), then:

S̄(ℓ)
µ ≤

2ℓ∑
r=0

(
2ℓ

r

)
α2ℓ−r
1 (α2β2)

r
hr
(
Â
)
,

where hr (·) is the r-order homophily defined in Eq. (6).

Proof. The proof follows from the result in Theorem 2 by setting β1 = 0, using the symmetry of Â,
i.e. Â = ÂT , and applying Vandermonde’s identity in the form

∑
r+s=t

(
ℓ
r

)(
ℓ
s

)
=
(
2ℓ
t

)
.

Corollary 2.2 (Weighted sum of closed walks bounds noise sensitivity in isotropic MPNNs with a
symmetric graph shift operator). Let (G,X) be a class-wise attributed graph with k classes following
Eq. (3) and S̄(ℓ)

ϵ be the mean noise sensitivity of the ℓth layer (Definition 4) of an MPNN that
uses a symmetric graph shift operator Â with message and update functions {ψk(·, ·)}ℓk=1 and
{ϕk(·, ·)}ℓk=1, as in Eq. (1), that satisfy the conditions in Theorem 2 with the additional constraint
that β1 = 0 (for isotropic MPNNs), then:

S̄(ℓ)
ϵ ≤ 1

n

2ℓ∑
r=0

(
2ℓ

r

)
α2ℓ−r
1 (α2β2)

r
Tr
(
Âr
)
, (14)

where Tr (·) is the matrix trace.

Proof. Using Definition 4, one has the following:

S(ℓ)
ϵ (i) = sup

X∈Rn×din

n∑
j=1

dout∑
p=1

din∑
q=1

(
∂H

(ℓ)
ip

∂Xjq

)2

= sup
X∈Rn×din

n∑
j,l=1

dout∑
p=1

din∑
q=1

∂H
(ℓ)
ip

∂Xjq

∂H
(ℓ)
ip

∂Xlq
δjl. (19)

By noting the similarity to Eq. (4), the proof follows similarly to that of Theorem 2, except by
replacing every instance of δcicj with δij .

Lemma 2 (Underreaching in MPNNs for sparse graph ensembles; Loomba and Jones [14]). For
an undirected and simple graph G with n nodes encoded by the adjacency matrix A, sampled
from a general random graph family with conditionally independent edges and expected adjacency
matrix E [A], if the network is sparse in the sense that E [A] = O

(
n−1

)
, each node is on the giant
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component with probability 1− o (1), then asymptotically the cumulative distribution function of the
length of the shortest path λij between nodes i and j ̸= i is given by:

P (λij ≤ r) ≈

[
r∑

s=1

E [A]
s

]
ij

where “≈” indicates an asymptotic first-order approximation as n→ ∞.

Proof. The proof follows by considering the first-order asymptotic approximation of Eq. (30) in
Loomba and Jones [14] and computing the matrix series sum by assuming E [A]−In is invertible.

Theorem 3 (Boundary oversquashing in MPNNs for sparse graph ensembles). Assume the same
conditions as in Lemma 2, and additionally assume large expected node degrees encoded in the
diagonal matrix ⟨D⟩ := diag (E [A]1n) where 1n is the length-n vector of ones. Then for the
symmetric normalised adjacency matrix Âsym(Eq. (2)) the boundary oversquashing between nodes i
and j ̸= i, where λij is the shortest path distance from i to j, is asymptotically bounded by:

E
[[

Âr
sym

]
ij

∣∣∣∣λij = r

]
⪅

[
⟨D⟩−

1
2 E [A]

({
⟨D⟩−1 − ⟨D⟩−2 (

In − e−⟨D⟩)}E [A]
)r−1

⟨D⟩−
1
2

]
ij

[E [A]
r
]ij

,

(15)

where In is the size-n identity matrix, and the bound gets tighter with larger mean degrees.

Proof. Using Eq. (2), the LHS of Eq. (15) we can be written as:

E
[[

Âr
sym

]
ij

∣∣∣∣λij = r

]
= E

 1√
DiiDjj

n∑
k1,k2,...,kr−1=1

Aik1
Ak1k2

. . . Akr−1j

Dk1k1
Dk2k2

. . . Dkr−1kr−1

∣∣∣∣∣∣λij = r


=

n∑
k1,k2,...,kr−1=1

i ̸=k1 ̸=k2...̸=kr−1 ̸=j

E

[
1√

DiiDjj

Aik1
Ak1k2

. . . Akr−1j

Dk1k1
Dk2k2

. . . Dkr−1kr−1

∣∣∣∣∣λij = r

]
,

(20)

where we use the linearity of expectation and the fact that if the shortest path distance from i to j is r
then a walk of length r from i to j via nodes k1, k2, . . . kr−1 must be a path, i.e. i ̸= k1 ̸= k2 . . . ̸=
kr−1 ̸= j. For brevity we will define k0 := i, kr := j and refer to the sequence {kl}rl=0 as the
length-r path of interest. Given the definition of the adjacency matrix, we can write the conditional
expectation on the RHS of Eq. (20) as:

E

(√DiiDjj

r−1∏
l=1

Dll

)−1
∣∣∣∣∣∣
r−1∏
l=0

Aklkl+1
= 1, λij = r

P

(
r−1∏
l=0

Aklkl+1
= 1

∣∣∣∣∣λij = r

)
. (21)

Consider the first factor in Eq. (21). Knowing that
∏r−1

l=0 Aklkl+1
= 1 tell us that there must exist

edges between nodes kl and kl+1. Knowing further that λij = r tell us that the path {kl}rl=0 is
a shortest path, i.e. there cannot exist paths shorter than length m between nodes kl and kl+m.
Asymptotically, the probability of paths shorter than length m (for any finite m) not existing between
any two nodes in a sparse graph is already 1− o (1) (see Lemma 2 or Loomba and Jones [14]), i.e.
the latter asymptotically does not inform the expectation of our quantity of interest. Furthermore,
since edges are added between every node pair (conditionally) independently they affect—and can
only affect—the degree of the nodes to which the edges are attached. This, alongside the fact that
every node in the path {kl}rl=0 is unique, permits us to asymptotically approximate the first factor in
Eq. (21) as:

E
[
D

− 1
2

ii

∣∣∣Aik1

]
E
[
D

− 1
2

jj

∣∣∣Akr−1j

] r−1∏
l=1

E
[
D−1

klkl

∣∣Akl−1kl
Aklkl+1

]
.
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Asymptotically, ignoring a single or two nodes has a vanishing effect on the degree of another node in
a sparse graph with (conditionally) independent edges. In other words, knowing about the existence
of a single or two edges attached to a given node merely shifts its degree distribution by one or two,
respectively:

E
[
D

− 1
2

ii

∣∣∣Aik1

]
≈ E

[
(Dii + 1)

− 1
2

]
,

E
[
D

− 1
2

jj

∣∣∣Akl−1j

]
≈ E

[
(Djj + 1)

− 1
2

]
,

E
[
D−1

klkl

∣∣Akl−1kl
Aklkl+1

]
≈ E

[
(Dklkl

+ 2)
−1
]
.

Asymptotically, the degree of a given node in a sparse graph with (conditionally) independent edges
is Poisson distributed whose rate is given by its mean degree [14]. This allows us to apply the results
in Eqs. (30b) and (30c) in Proposition 3 to write the first factor of Eq. (21) as:

E

(√DiiDjj

r−1∏
l=1

Dll

)−1
∣∣∣∣∣∣
r−1∏
l=0

Aklkl+1
= 1, λij = r

 ⪅ (⟨Dii⟩ ⟨Djj⟩)−
1
2

×
r−1∏
l=1

(
⟨Dklkl

⟩−1 − ⟨Dklkl
⟩−2

(
1− e−⟨Dklkl⟩

))
,

(22)

and the bound is tight for large node mean degrees. Consider the second factor in Eq. (21) that can
be rewritten as:

P

(
λij = r

∣∣∣∣∣
r−1∏
l=0

Aklkl+1
= 1

)
P
(∏r−1

l=0 Aklkl+1
= 1
)

P (λij = r)
.

Knowing that
∏r−1

l=0 Aklkl+1
= 1, i.e. there exists a path of length r between i and j, tell us that

the shortest path between i and j cannot be longer than r. Asymptotically, it tells us nothing about
whether there exists a path shorter than length r between them. Since, a priori, the probability of the
shortest path being less than length r is asymptotically vanishing (see Lemma 2 or Loomba and Jones
[14]), this implies that P

(
λij = r

∣∣∣∏r−1
l=0 Aklkl+1

= 1
)
= 1 − o (1). Finally, due to conditional

independence of edges, and considering the first-order approximation of Eq. (30) in Loomba and
Jones [14], allows us to write the second factor of Eq. (21) as:

P

(
r−1∏
l=0

Aklkl+1
= 1

∣∣∣∣∣λij = r

)
≈
∏r−1

l=0 E
[
Aklkl+1

]
[E [A]

r
]ij

. (23)

Putting Eqs. (22) and (23) in Eq. (20) yields:

E
[[
Âr

sym

]
ij

∣∣∣∣λij = r

]
⪅

(⟨Dii⟩ ⟨Djj⟩)−
1
2

[E [A]
r
]ij

n∑
k1,k2,...,kr−1=1

i ̸=k1 ̸=k2...̸=kr−1 ̸=j

S
(
i, j, {kl}r−1

l=1

)
, where (24a)

S
(
i, j, {kl}r−1

l=1

)
:= E [Aik1

]

r−1∏
l=1

(
⟨Dklkl

⟩−1 − ⟨Dklkl
⟩−2

(
1− e−⟨Dklkl⟩

))
E
[
Aklkl+1

]
.

(24b)

Consider the term on the RHS of Eq. (24b). Due to the sparsity assumption E [A] = O
(
n−1

)
we

have S
(
i, j, {kl}r−1

l=1

)
= O (n−r). We separately consider what happens when S(i, j, {kl}rl=1 − 1)

is summed over different kinds of index combinations {kl}r−1
l=1 .

First, consider unique index combinations {kl}r−1
l=1 of size r − 1 from [n] \ {i, j}, as in the RHS

of Eq. (24a) since {kl}rl=0 encodes a shortest path. There are (n−2)!
(n−r−1)! = O

(
nr−1

)
such index

combinations which yields a total contribution of order O
(
n−1

)
to the RHS of Eq. (24a).

Next, consider unique index combinations {kl}r−1
l=1 of size r − 1 from [n], such that exactly one

of the r − 1 indices is either i or j, which do not contribute to the RHS of Eq. (24a). There are
2(r − 1) (n−2)!

(n−r)! = O
(
nr−2

)
such index combinations which yields a total contribution of O

(
n−2

)
.
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Now, consider unique index combinations {kl}r−1
l=1 of size r− 1 from [n], such that exactly one of the

r−1 indices is i and exactly another one is j, which do not contribute to the RHS of Eq. (24a). There
are (r − 1)(r − 2) (n−2)!

(n−r+1)! = O
(
nr−3

)
such index combinations which yields a total contribution

of O
(
n−3

)
.

Finally, consider non-unique index combinations {kl}r−1
l=1 of size r − 1 from n, such that there are

1 ≤ m < r− 1 unique indices in the sequence {kl}r−1
l=1 repeated t1, t2, . . . , tm number of times such

that ∀l ∈ [m] : tl ≥ 1 and
∑m

l=1 tl = r − 1, which do not contribute to the RHS of Eq. (24a). There
can be (r−1)!

t1!t2!...tm!
n!

(n−m)! = O (nm) such index combinations which yields a total contribution of
O (n−r+m). Since 1 ≤ m < r − 1, considering a sum over all possible values of m yields a total
contribution of all non-unique index combinations as O

(
n−2

)
.

This exhausts all possible index combinations, which leads us to conclude that asymptotically only the
unique index combinations contribute relatively non-vanishingly. In other words, replacing the sum
over unique index combinations by a sum over all index combinations makes a vanishing difference
to the RHS of Eq. (24a), allowing us to rewrite it as a product of matrices which yields the RHS of
Eq. (20).

Corollary 3.1 (Bound for first and second order homophily in sparse SBMs). Consider an undirected
and simple graph G with n nodes encoded by the adjacency matrix A sampled from a sparse
stochastic block model (SBM) such that node classes are i.i.d. as per c ∼ Categorical (π) where
π = (π1, π2, . . . , πk)

T is the probability distribution over the k node classes and nodes connect

with probability E [A]ij :=
Bcicj

n encoded in the k × k block matrix B. Let Π := diag (π) and
D := diag (Bπ) be diagonal matrices encoding the probability of class membership and mean
class-wise degrees respectively. Then, assuming that the other conditions of Lemma 2 hold, the first
and second order homophily (Eq. (6)) with the symmetric normalised adjacency matrix Âsym as the
graph shift operator (Eq. (2)) can be tightly bounded in expectation by:

E
[
h1
(
Âsym

)]
⪅ Tr

(
D−1ΠBΠ

)
,

E
[
h2
(
Âsym

)]
⪅ πTD−1BD−1π +Tr

(
D−1ΠB

{
D−1 −D−2

(
Ik − e−D

)}
ΠBΠ

)
,

where Ik is the size-k identity matrix, and the bound gets tighter with larger class-wise mean degrees.

Proof. For brevity throughout the proof, we drop the subscript sym and use Â to refer to Âsym.
Given the block membership ci, cj of nodes i ̸= j, we have [E [A]

r
]ij =

[
B(ΠB)r−1

]
ij
/n. First,

consider Eq. (8) with r = 1, i.e. E
[
Â
]

which is given by:

E
[
Âij

]
= E

[
Âij

∣∣∣λij = 0
]
P (λij = 0) + E

[
Âij

∣∣∣λij = 1
]
P (λij = 1) ⪅ n−1D

− 1
2

ciciBcicjD
− 1

2
cjcj ,

where (a) for λij = 0 =⇒ i = j we use the fact that there are no self-loops i.e. Aij = 0 =⇒
Âij = 0, and (b) for λij = 1 =⇒ i ̸= j we use Lemma 2 and Theorem 3 with r = 1, and the bound
gets tighter for larger class-wise mean degrees. Substituting in Eq. (7) yields the desired expression
for h1

(
Âsym

)
.

Next, consider Eq. (8) with r = 2, i.e. E
[
Â2
]

which is given by:

E
[[
Â2
]
ij

]
=

2∑
s=0

E
[[
Â2
]
ij

∣∣∣∣λij = s

]
P (λij = s) . (25)
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For λij = 0 =⇒ i = j, using di to denote the degree of node i, we get

E
[[
Â2
]
ii

]
= E

∑
j

(didj)
−1Aij

 =
∑
j

E
[
(didj)

−1Aij

]
=
∑
j

E
[
(didj)

−1
∣∣Aij = 1

]
P (Aij = 1)

≈
∑
j

E
[
(di + 1)−1

]
E
[
(dj + 1)−1

]
P (Aij = 1) ⪅

∑
j

E [di]
−1 E [dj ]

−1 P (Aij = 1)

= D−1
cici [B]ci,:D

−1π,
(26)

where the second equality makes use of the linearity of expectation, the asymptotic approximation
is due to an identical argument as in the proof for Theorem 3 for sparse networks, the bound is due
to Eq. (30a) in Proposition 3 which becomes tighter for larger class-wise mean degrees, and [X]u,:
indicates the uth row-vector of a matrix X. For λij = 1 =⇒ i ̸= j we get:

E
[[

Â2
]
ij

∣∣∣∣λij = 1

]
= E

[[
Â2
]
ij

∣∣∣∣Aij = 1

]
= E

[∑
l

(didj)
− 1

2 d−1
l AilAlj

∣∣∣∣∣Aij = 1

]
=
∑
l

E
[
(didj)

− 1
2 d−1

l

∣∣∣AilAljAij = 1
]
P (Ail = 1, Alj = 1 |Aij = 1)

=
∑
l

E
[
(didj)

− 1
2 d−1

l

∣∣∣AilAljAij = 1
]
P (Ail = 1)P (Alj = 1) ,

(27)

where the third equality makes use of the linearity of expectation, and the fourth equality uses the
assumption of conditionally independent edges. We emphasise that, due to sparsity, the RHS of Eq.
(27) is of the order O

(
n−1

)
. For λij = 2 =⇒ i ̸= j we get, using Eq. (15) from Theorem 3:

E
[[
Â2
]
ij

∣∣∣∣λij = 2

]
⪅

(
DciciDcjcj

)− 1
2
[
B
{
D−1 −D−2

(
Ik − e−D

)}
ΠB

]
cicj

[BΠB]cicj
, (28)

and the bound gets tighter for larger degrees. The RHS of Eq. (28) is of the order Ω (1). That is,
asymptotically, Eq. (27) contributes vanishingly to Eq. (25) when compared to Eq. (28). It then
follows from Eqs. (25), (26), and (28) that asymptotically:

E
[[
Â2
]
ij

]
⪅ D−1

cici [B]ci,:D
−1πδij+

(
DciciDcjcj

)− 1
2
[
B
{
D−1 −D−2

(
Ik − e−D

)}
ΠB

]
cicj

n
(1−δij),

which is a tighter bound for larger class-wise mean degrees. Substituting in Eq. (6) yields the desired
expression for h2

(
Âsym

)
.

D.2 Supplementary

In this section we state some technical results and provide their proofs.
Proposition 1 (Mean value inequality; Rudin [21]). Let f : [a, b] → RN be a continuous vector-
valued function that is differentiable on (a, b) ⊂ R then ∃c ∈ (a, b) such that:

∥f(b)− f(a)∥ ≤ (b− a) ∥f ′(c)∥ .

Proposition 2 (Mean value inequality for matrices). Let f : Z → RN be a continuous vector-valued
function that is differentiable on a convex subset Z ⊂ RM×L then for A ∈ Z,B ∈ Z:

∥f(B)− f(A)∥ ≤ ∥B−A∥ sup
C∈Z

∥∇f(C)∥ . (29)
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Proof. Define g : [0, 1] → Rn as g(x) = f(xA+ (1− x)B) which will be continuous on [0, 1] and
differentiable on (0, 1) due to the continuous differentiability of f at every point xA+(1−x)B ∈ Z.
We note that f ′(x) =

{
Tr
(
[∇f(xA+ (1− x)B)]i(B−A)T

)}N
i=1

where ∇f(·) is theN×M×L
Jacobian tensor of f . Then applying the mean value inequality from Proposition 1 to g we obtain that
∃c ∈ (0, 1) such that

∥g(1)− g(0)∥ ≤ ∥g′(c)∥ =⇒ ∥f(B)− f(A)∥ ≤
∥∥∥{Tr ([∇f(cA+ (1− c)B)]i(B−A)T

)}N
i=1

∥∥∥ .
By the Cauchy–Schwarz inequality

[
Tr
(
[∇f(cA+ (1− c)B)]i(B−A)T

)]2 ≤
∥[∇f(cA+ (1− c)B)]i∥2 ∥B−A∥2 which when substituted above yields

∥f(B)− f(A)∥ ≤ ∥B−A∥

√√√√ N∑
i=1

∥[∇f(cA+ (1− c)B)]i∥2 = ∥B−A∥ ∥∇f(cA+ (1− c)B)∥ .

Since cA+ (1− c)B ∈ Z taking a supremum over Z gives us the RHS of Eq. (29).

Proposition 3 (Expectation of transformation of Poisson distributed random variable). Let X ∼
Poisson (λ) be a Poisson distributed random variable with rate parameter λ > 0, then:

E
[

1

X + 1

]
=

1− e−λ

λ
, (30a)

E
[

1

X + 2

]
=
λ− 1 + e−λ

λ2
, (30b)√

1

λ
− 1

2λ2
< E

[
1√
X + 1

]
<

1√
λ
. (30c)

Proof. Consider the LHS of Eq. (30a):

E
[

1

X + 1

]
=

∞∑
k=0

P(X = k)

k + 1
=

∞∑
k=0

e−λλk

(k + 1)!
=
e−λ

λ

∞∑
k=0

λk+1

(k + 1)!
=

1− e−λ

λ
,

where we use the fact that X is Poisson distributed and the series expansion of the exponential.

Similarly, consider the LHS of Eq. (30b):

E
[

1

X + 2

]
=

∞∑
k=0

P(X = k)

k + 2
=

∞∑
k=0

e−λλk(k + 1)

(k + 2)!
= e−λ d

dλ

∞∑
k=0

λk+1

(k + 2)!

= e−λ d

dλ

1

λ

∞∑
k=0

λk+2

(k + 2)!
= e−λ d

dλ

eλ − 1− λ

λ
=
λ− 1 + e−λ

λ2
.

Next, consider the upper bound in Eq. (30c). Due to concavity of the square root, Jensen’s inequality
yields:

E
[

1√
X + 1

]
≤

√
E
[

1

X + 1

]
=

√
1− e−λ

λ
<

1√
λ
,

for λ > 0, and using Eq. (30a).

Finally, consider another random variable Y independent and identically distributed (i.i.d.) as X , i.e.
with the rate parameter λ. Then the AM–GM inequality for X + 1 and Y + 1 implies:√

(X + 1)(Y + 1) ≤ X + Y + 2

2
=⇒ E

[
1√

(X + 1)(Y + 1)

]
≥ 2E

[
1

X + Y + 2

]
.

Since X and Y are i.i.d. Poisson, X + 1 ⊥⊥ Y + 1 and X + Y ∼ Poisson (λ), which when used
above alongside Eq. (30b) yields:

E
[

1√
X + 1

]
E
[

1√
Y + 1

]
≥ 2λ− 1 + e−2λ

2λ2
=⇒ E

[
1√
X + 1

]2
>

1

λ
− 1

2λ2
,

for λ > 0, which yields the lower bound in Eq. (30c).
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