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Abstract

Despite the recent successes of large, pre-001
trained neural language models (LLMs), lit-002
tle is known about the representations of lin-003
guistic structure they learn during pretraining,004
leading to unexpected behavior in response to005
small changes in inputs or application contexts.006
To better understand these models and behav-007
iors, we propose a general analysis framework008
to move beyond traditional performance-based009
evaluation of LLMs and instead analyze them010
on the basis of their internal representations.011
Our framework, CALM (Competence-based012
Analysis of Language Models), is designed to013
study and measure the linguistic competence014
of LLMs in the context of specific tasks by015
intervening on models’ internal representations016
of different linguistic properties using causal017
probing, and evaluating models’ alignment un-018
der these interventions with a given ground-019
truth causal model of the task. We also develop020
a novel approach for performing causal prob-021
ing interventions using gradient-based adver-022
sarial attacks, which can target a broader range023
of properties and representations than existing024
techniques. Finally, we carry out a case study025
of CALM using these interventions to analyze026
BERT and RoBERTa’s competence across a027
variety of lexical inference tasks, showing that028
CALM can be used to explain and predict their029
behavior across these tasks.030

1 Introduction031

The rise of large, pretrained neural language mod-032

els (LLMs) has led to rapid progress in a wide va-033

riety of natural language processing tasks (Devlin034

et al., 2019; Brown et al., 2020; Chowdhery et al.,035

2022; Touvron et al., 2023a). However, these mod-036

els can also be quite inconsistent, distractible, and037

sensitive to minor changes in their inputs (Elazar038

et al., 2021a; Kassner and Schütze, 2020; Moradi039

and Samwald, 2021; Wang et al., 2023a). It is usu-040

ally unclear where these limitations come from, as041

LLMs are typically evaluated as “black boxes”, in 042

which case one can only detect limitations that are 043

adequately represented by the benchmark, which 044

cannot cover every possible limitation using a fi- 045

nite dataset (Raji et al., 2021). Understanding the 046

means by which these models can perform as well 047

as they do while exhibiting such limitations is a key 048

question in the science of LLM interpretation and 049

analysis (Rogers et al., 2020), and is likely neces- 050

sary in enabling robust, trustworthy, and socially- 051

responsible LLM-enabled applications (Wang et al., 052

2021; Pruksachatkun et al., 2021; Shin, 2021; Liao 053

and Vaughan, 2023). 054

To better understand the capabilities and limita- 055

tions of current LLMs across various tasks, it will 056

be necessary to complement traditional black-box, 057

performance-based evaluation of LLMs with in- 058

ternal analyses of their representation and use of 059

task-relevant properties. We approach this study 060

in terms of competence, drawing on the traditional 061

competence-performance distinction in linguistic 062

theory (see Section 2.1) to motivate the study of 063

LLMs in terms of their underlying representation 064

of language. We reformulate the notion of compe- 065

tence in the context of LLMs as the causal align- 066

ment between LLMs’ internal representation of 067

the structure of any given linguistic task with the 068

actual ground-truth structure of the task. While 069

such representations are not directly observable, we 070

take inspiration from recent work in causal prob- 071

ing, which damages LLMs’ latent representations 072

of linguistic properties using causal interventions 073

to study how these representations contributed to 074

their behavior (Elazar et al., 2021b; Lasri et al., 075

2022). We propose a general framework, CALM 076

(for Competence-based Analysis of Language Mod- 077

els), to study the competence of LLMs using causal 078

probing and define the first quantitative measure of 079

LLM competence. 080

While CALM can be instantiated using a variety 081

of existing causal probing techniques (e.g., Elazar 082
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et al., 2021b; Ravfogel et al., 2022; Shao et al.,083

2022), we propose a new intervention methodology084

for damaging LLM representations using gradient-085

based adversarial attacks against structural probes,086

extending causal probing to arbitrarily-encoded rep-087

resentations of relational properties and thereby088

enabling the investigation of new questions in lan-089

guage model analysis. We carry out a case study090

of CALM on BERT (Devlin et al., 2019) and091

RoBERTa (Liu et al., 2019) by implementing inter-092

ventions as GBIs in order to measure and compare093

these LLMs’ competence across 14 lexical infer-094

ence tasks, showing that CALM can indeed explain095

and predict important patterns in behavior across096

these tasks by distinguishing between models’ use097

of causal and spurious properties.098

Our primary contributions are as follows:099

1. We propose CALM, a general analysis frame-100

work for studying LLM competence using101

causal probing.102

2. We provide a causal formulation of linguistic103

competence in the context of LLMs, using104

CALM to define the first quantitative measure105

of LLM competence.106

3. We establish a gradient-based intervention107

strategy for causal probing, which directly ad-108

dresses multiple limitations of prior method-109

ologies.110

4. We implement a case study of CALM us-111

ing gradient-based interventions, demonstrat-112

ing its utility in explaining and predicting113

LLM behaviors across several lexical infer-114

ence tasks.115

2 Competence-based Analysis of116

Language Models117

2.1 Linguistic Competence118

Linguistic competence is generally understood as119

the ability to utilize one’s knowledge of a language120

in order to enable language use, and is typically de-121

fined in contrast with linguistic performance, which122

is speakers’ actual use of their language in practice,123

considered independently of the underlying knowl-124

edge that supports it (Marconi, 2020).1 Given a125

1While there has been significant debate in linguistics and
the philosophy of language regarding the precise definition
and nature of competence (Lyons, 1977; Newmeyer, 2001;
Sag and Wasow, 2011; Marconi, 2020), we believe that the
formalization of competence provided in this work is suffi-
ciently general to incorporate most notions of competence,
which may be flexibly specified by instantiating CALM in

linguistic task, we may understand competence 126

in terms of the underlying linguistic knowledge 127

that one draws upon to perform the task. If flu- 128

ent human speakers rely on (implicit or explicit) 129

knowledge of the same set of linguistic properties 130

to perform a given task in any context, then we 131

may understand performance on the task as being 132

causally determined by these properties, and invari- 133

ant to other properties. For example, if we consider 134

the two utterances “the chicken crosses the road” 135

and “the chickens cross the road”, the grammatical 136

number of the subject (i.e., singular and plural, re- 137

spectively) determines whether the verb “(to) cross” 138

should be conjugated as “crosses” or “cross”. As 139

English (root) verb conjugation always depends on 140

the grammatical number of the subject, grammat- 141

ical number may be regarded as having a causal 142

role in the task of English verb conjugation, so we 143

may understand fluent English speakers’ (usually 144

implicit) mental representation of verb tense as hav- 145

ing a causal role in their behavior. In this work, 146

we focus on lexicosemantic competence, the ability 147

to utilize knowledge of word meaning relationships 148

in performing tasks such as lexical inference (Mar- 149

coni, 1997, 2020). 150

While the study of human competence has a rich 151

history in linguistics, there is currently no generally 152

accepted methodology for studying the competence 153

of LLMs (Mahowald et al., 2023; Pavlick, 2023). 154

Designing such a methodology is a challenging 155

scientific task, as it is not obvious how to quantita- 156

tively define or measure LLM competence. Thus, 157

our primary goal in this work is to lay the ground- 158

work for such study. In the following section, we 159

propose a general empirical approach to analyze 160

and evaluate LLM competence at the level of indi- 161

vidual linguistic tasks. 162

2.2 CALM Framework 163

In order to make the study of competence tractable 164

in the context of LLMs, we propose the CALM 165

(Competence-based Analysis of Language Models) 166

framework, which describes an LLM’s competence 167

with respect to a given linguistic task in terms of 168

its latent representation of the causal structure of 169

the task. 170

Task Structure Formally, given supervised task 171

T ∼ P (X ,Y) where the goal is to correctly predict 172

y ∈ Y given x ∈ X , and a collection of latent prop- 173

erties Z = {Zj}mj=1 that are (potentially) involved 174

different ways.
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Figure 1: Structural causal model (SCM) of task T ’s
data-generating process (leftmost box) and how it may
be performed by model M . Shaded and white nodes de-
note observed and unobserved variables, respectively. In
CALM, the goal is to determine which representations
Zj = zj are causally implicated in M ’s predictions ŷ.

Figure 2: SCM of a competent English speaker on the
hypernym prediction task.

in generating x, we formulate the causal structure175

of T in terms of the data-generating process176

x ∼ Pr(x|Zc,Ze), y ∼ P (y|Zc) (1)177

where Z may be decomposed into Z = Zc ∪178

Ze,Zc ∩ Ze = ∅, where Zc contains all prop-179

erties that causally determine y, and Ze are the180

remaining properties that may be involved in gen-181

erating x (cf. Ilse et al., 2021). However, there182

may be an unobserved confounder S that produces183

spurious correlations between y and Ze, which, if184

leveraged by language model M in the course of185

predicting ŷ, can lead to unexpected failures on186

T when the spurious association is broken (Pearl,187

2009). The structural causal model (SCM)2 of this188

data-generating process is visualized on the left189

side of Figure 1.190

For example, suppose a speaker wants to com-191

municate that orangutans are a genus of pri-192

mate. She might say “orangutans are primates”193

or “orangutans, a genus of apes, are primates”. In194

both cases, the conjugation of the root verb would195

be “are” because it is independent of whether the196

subject is complemented by an appositive phrase197

like “a genus of apes”, and this phrase does not198

change the grammatical number of the subject199

“orangutans”; so if we define TVC as English verb200

conjugation, ZNS as the grammatical number of201

2Note that an SCM is a directed acyclic graph where each
node represents a variable and directed edges indicate causal
dependencies (see Bongers et al. 2021).

the subject, and ZAP as the presence of an appos- 202

itive phrase modifying the subject, then it is clear 203

that ZNS ∈ Zc and zAP ∈ Ze. However, if we in- 204

stead consider the task TH of predicting hypernyms 205

– for example, predicting y in “orangutans are ys”, 206

where y = “primate” and y = “ape” would both be 207

correct answers – the causal property ZH ∈ Zc will 208

be the hypernymy relation, and ZNS ∈ Ze (e.g., 209

the same answers will be correct if the question 210

is instead posed as “an orangutan is a y”). Thus, 211

we expect competent English speakers to be in- 212

variant to grammatical number when performing 213

hypernym prediction (see Figure 2). 214

Internal Representation Our principal concern 215

is measuring the extent to which an LLM M ’s be- 216

havior in a given task T is attributable to its repre- 217

sentation of various properties Z = {Z1, ..., Zm}, 218

and how these properties correspond to the causal 219

structure of the task. If M respects the data- 220

generating process of T , then its behavior should 221

be attributable only to causal properties Z ∈ Zc 222

(and not to environmental properties Z ∈ Ze), in 223

which case we say that M is competent with re- 224

spect to T (see Figure 2). We study model M ’s 225

use of each property Zj ∈ Z by performing causal 226

interventions do(Zj) on its representation of Zj in 227

the course of performing task T , and measure the 228

impact that these interventions have on its predic- 229

tions. 230

2.3 Measuring Competence 231

We propose to directly evaluate the competence 232

of M with respect to task T ∼ P (X ,Y) by mea- 233

suring its consistency with a competence graph 234

GT , which we define as a structural causal model 235

(SCM) of T with nodes corresponding to each la- 236

tent variables Zj ∈ Z and an additional node for 237

outputs y ∈ Y and directed edges denoting causal 238

dependencies between these variables. That is, the 239

set of causal properties Zc defined by GT is the set 240

of all properties Zj ∈ Z such that there is an edge 241

or path from Zj to y. 242

To determine the extent to which M ’s behav- 243

ior is correctly explained by the causal dependen- 244

cies (and lack thereof) in GT , we measure their 245

consistency under interventions do(z), where set- 246

ting z = {zj}mj=1 ∼ val(Z) is a combination of 247

values Zj = zj ∈ val(Zj) taken by each cor- 248

responding latent variable Zj ∈ Z. For in- 249

stance, under the hypernym prediction task TH , 250

for input xi =“orangutans are ys” and ground- 251
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truth output y =“primate”, the values taken by252

zi would be ZH = 1, ZNS = 1 (where 1 in-253

dicates the presence of hypernymy and a plural254

noun subject, respectively), and we might define255

an alternative z′ where ZH = 0, ZNS = 1, under256

which a competent model’s prediction would be ex-257

pected to change with the causal variable ZH (i.e.,258

M(x| do(z′)) ̸= M(x)).259

The consistency of M with GT is measured in260

terms of the similarity S of their predictions un-261

der interventions do(z) given input x ∼ P (X ),262

and can be computed using a given similarity met-263

ric S : Y,Y → [0, 1] depending on the SCM GT264

and output space Y (e.g., equality, n-gram over-265

lap, cosine-similarity, etc.). That is, we define266

CT (M |GT ) as M ’s competence with respect to267

task T as a function of its consistency with corre-268

sponding task SCM GT under interventions do(z)269

measured by similarity metric S, as follows:270
271

CT (M |GT ) =272

Ex,z∼P (X ,val(Z))S
(
M(x| do(z)),GT (x|do(z))

)
(2)

273

This CT (M |GT ) metric (bounded by [0, 1]) is274

an adaptation of the Interchange Intervention Ac-275

curacy (IIA) metric (Geiger et al., 2022, 2023) to276

the context of causal probing, where instance-level277

interventions are replaced with concept-level inter-278

ventions enabled by the gradient-based interven-279

tion methodology we introduce in Section 3. (See280

Appendix B.1 for a detailed comparison of the pro-281

posed competence metric with IIA.)282

2.4 Causal Probing283

A key technical challenge in implementing CALM284

(and causal probing more generally) is designing285

an algorithm to perform causal interventions do(Z)286

that maximally damage the representation of a prop-287

erty Z while otherwise minimally damaging repre-288

sentations of other properties Z ′ (Ravfogel et al.,289

2022). For example, amnesic probing (Elazar et al.,290

2021b) uses the INLP algorithm (Ravfogel et al.,291

2020) to produce interventions gZ that remove all292

information that is linearly predictive of property293

Z from a pre-computed set of embedding represen-294

tations H in a way that “minimally damages the295

structure of the representation space,”3 showing296

that BERT makes variable use of parts-of-speech,297

syntactic dependencies, and named-entity types in298

3See Appendix A, Lemma A.2 of Ravfogel et al. (2020)
for a more rigorous description and proof of this property.

Figure 3: Gradient-Based Interventions. Input tokens
x = (x1, ..., x|x|) are passed through layers L = 1, ..., l,
where embedding hl

i (encoding the value Z = z) is
extracted from layer l and given to gZ as input. Next,
the embedding is modified by gradient-based attacks
on gZ to encode the counterfactual value Z = z′, then
fed back into subsequent layers L = l + 1, ..., |L| and
language modeling head fLM to obtain the intervened
predictions M(x|do(Z = z′)).

performing masked language modeling. How- 299

ever, Elazar et al. (2021b) also found that, when 300

INLP is used to remove BERT’s representation of 301

these properties in early layers, it is often able to 302

“recover” this representation in later layers, which 303

is likely due to BERT encoding these properties 304

nonlinearly; and later work has found that the same 305

“recoverability” problem persists even when linear 306

information removal methods like INLP are kernel- 307

ized (Ravfogel et al., 2022). Thus, it is necessary to 308

develop interventions that do not require restrictive 309

assumptions about the structure of LLMs’ repre- 310

sentations (e.g., linearity; see Vargas and Cotterell 311

2020), a problem which we aim to solve in the 312

following section. 313

3 Gradient-Based Interventions 314

Our goal in developing gradient-based interven- 315

tions (GBIs) as a causal probing technique is to 316

enable interventions over arbitrarily-encoded LLM 317

representations. GBIs allow users to flexibly spec- 318

ify the class of representations they wish to target, 319

expanding the scope of causal probing to arbitrarily- 320

encoded properties. We take inspiration from Kos 321

et al. (2018), who developed a technique to perturb 322

latent representations using gradient-based adver- 323

sarial attacks.4 They begin by training probe gZ 324

: h 7→ z to predict image class z ∈ Z from latent 325

representations h = fenc(x) of images x, where 326

fenc is the encoder of a VAE-GAN (Larsen et al., 327

2016) trained on an unsupervised image reconstruc- 328

tion task (i.e., fdec(fenc(x)) = x̂ ≈ x, for decoder 329

4Notably, Tucker et al. (2021) developed a similar method-
ology without explicit use of such attacks (see Section 6).
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fdec and reconstructed image x̂ approximating x).330

Next, gradient-based attacks like FGSM (Goodfel-331

low et al., 2015) and PGD (Madry et al., 2017) are332

performed against gZ in order to minimally manip-333

ulate h such that it resembles encoded representa-334

tions of target image class Z = z′ (where z′ ̸= z,335

the original image class), yielding perturbed repre-336

sentation h′. Finally, h and h′ are each fed into the337

VAE decoder to reconstruct corresponding output338

images x̂ and x̂′ (respectively), where x̂ resembles339

input image class Z = z and x̂′ resembles target340

class Z = z′.341

We reformulate this approach in the context of342

causal LLM probing as visualized in Figure 3, treat-343

ing layers L = 1, ..., l as the encoder and layers344

L = l+1, ..., |L| (composed with language model-345

ing head fLM) as the decoder, allowing us to target346

representations of property Z across embeddings347

hl
i of token xi ∈ x in layer l. We train gZ to pre-348

dict Z from a set of such hl
i, then attack gZ using349

FGSM and PGD to intervene on hl
i (representing350

the original value Z = z), producing hl′
i (repre-351

senting the counterfactual value Z = z′). Finally,352

we replace hl
i with hl′

i in the LLMs’ forward pass353

from layers L = l + 1, ..., |L|, simulating the inter-354

vention do(Z = z′), and observe the impact on its355

word predictions M(x|do(Z = z′)).356

Advantages The key advantage of gradient-based357

interventions (GBIs) as a causal probing methodol-358

ogy is that they may be applied to any differentiable359

probe. For example, if we are investigating the hy-360

pothesis that M ’s representation of Z is captured361

by a linear subspace of representations in a given362

layer (see Vargas and Cotterell, 2020), then we may363

train a linear probe and various nonlinear probes on364

representations and observe whether GBIs against365

the linear probe have a comparable impact to those366

against the nonlinear probes. Alternatively, if we367

believe that a probe’s architecture should mirror368

the architecture of the model it is probing (as pro-369

posed by Pimentel et al., 2022), we may implement370

probes as such. We may also damage representa-371

tions that are distributed across an arbitrary number372

of embeddings (e.g., relational properties between373

multiple words), which is not possible with linear374

interventions such as INLP (Ravfogel et al., 2020).375

Finally, where previous intervention methodologies376

for causal probing have generally focused on “neu-377

tralizing” or “removing” representations (Ravfogel378

et al., 2020, 2022; Shao et al., 2022), GBIs also379

allow one to perform targeted interventions that380

set LLMs’ representations to counterfactual val- 381

ues, effectively “simulating” the model’s behavior 382

under counterfactual inputs, which may be useful 383

for predicting behaviors under various distribution 384

shifts (as discussed in Appendix B.1). However, the 385

benefits associated with GBIs do come with some 386

important limitations, as we discuss in Section 8. 387

4 Experiments 388

In this work, we begin by examining BERT (De- 389

vlin et al., 2019) and RoBERTa (Liu et al., 2019),5 390

two language models which have been extensively 391

studied in the context of model interpretability and 392

analysis (see, e.g., Rogers et al. 2020; Liu et al. 393

2021). Our primary goal in the following experi- 394

ments is to develop and test an experimental im- 395

plementation of CALM using GBIs in the context 396

of comparatively small, well-studied models and 397

tasks in order to validate whether CALM can pre- 398

dict and explain the findings of earlier work in this 399

simplified environment. (We motivate this choice 400

in greater detail in Appendix A.1.) 401

4.1 Tasks 402

Masked language models like BERT and RoBERTa 403

are trained to predict Pr(x[MASK] = w|x) for 404

text input (token sequence) x = (x1, x2, ..., x|x|), 405

mask token x[MASK] ∈ x, and token vocabulary 406

V = {w1, w2, ..., w|V |}. As such, it is common 407

to study them by providing them with “fill-in-the- 408

blank” style masked prompts (e.g., “a cat is a type 409

of [MASK]”) and evaluating their accuracy in pre- 410

dicting the correct answer (e.g., “animal”, “pet”, 411

etc.), a task known cloze prompting (Liu et al., 412

2023). 413

We use the collection of 14 lexical inference 414

tasks included in the ConceptNet (Speer et al., 415

2017) subset of LAMA (Petroni et al., 2019),6 416

each of which are formulated as a collection cloze 417

prompts. For example, the LAMA “IsA” task con- 418

tains ∼2K hypernym prompts corresponding to the 419

“IsA” ConceptNet relation (including, e.g., “A laser 420

is a [MASK] which creates coherent light.”, where 421

the task is to predict that the [MASK] token should 422

be replaced with “device”, a hypernym of “laser”), 423

with the remaining 13 LAMA ConceptNet tasks 424

corresponding to other lexical relations such as 425

5Specifically, BERT-base-uncased and RoBERTa-base
(Wolf et al., 2019).

6Available at https://github.com/
facebookresearch/LAMA.
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“PartOf”, “HasProperty”, and “CapableOf”. (See426

Appendix A.2 for additional details.)427

These task datasets cover a fairly broad set of lex-428

ical relations, allowing us to train probes over each429

relation and, using GBIs (see Section 3), test how430

the representation of each relation is used across431

all other tasks. In the context of a single task Tj , in-432

tervening on a model’s representation of the causal433

task relation Zj ∈ Zc as the task is being performed434

allows us to measure the extent to which its pre-435

dictions are attributable to its representation of the436

task-invariant property Zj (where a large impact437

indicates competence). On the other hand, interven-438

ing on the representations of the other 13 lexical439

relations Zk ∈ Ze allows us (in the aggregate) to440

measure how much the model is performing the441

task by leveraging their representations of general442

lexical information (where a large impact indicates443

incompetence).444

4.2 Experimentally Measuring Competence445

Given LLM M and task T , measuring the com-446

petence CT (M |GT ) of M given GT requires us to447

specify an experimental model E = (Z,GT , S),448

where Z is a set of properties, GT is a competence449

graph for task T , and S is a scoring function that450

compares the predictions of M and GT . Given451

that each task Ti is defined by a single causal lex-452

ical relation Zi (i.e., Zci = {Zi}), we model set-453

tings z as a collection of values Zj = zj taken454

by each property Zj in the context of a specific455

task instance (x,y) ∼ Ti, where Zj = 1 if i = j456

(i.e., where the property Zj is the causal property457

for the task Ti) or Zj = 0 otherwise. That is,458

for each instance (x,y) ∼ Ti, the corresponding459

setting z is a one-hot vector whose i-th element460

zi = 1. We may specify GTi in a similar man-461

ner: for task Ti ∼ P (X ,Y), outputs y ∈ Y are462

causally dependent on the property Zi, and invari-463

ant to other concepts Zj , j ̸= i., meaning that the464

only direct parent node of y in GTi is Zi. Finally,465

as we are dealing with masked language models466

whose output space Y for each task consists only467

of single tokens in M ’s vocabulary VM , our exper-468

imental model can define the scoring function S as469

the overlap overlap(yi,yj) for top-k token predic-470

tions yi = {y1, ..., yk} ⊂ VM , where overlap(·, ·)471

is the size of the intersection of each set of pre-472

dictions divided by the total number of predictions473

overlap(yi,yj) =
|yi∩yj |

k . (See Appendix B.2 for474

additional details on how we compute competence475

in each experiment.)476

4.3 Probes 477

We implement probes gZ as a 2-layer MLP over 478

each language model’s final hidden layer, and train 479

the probe on the task of classifying whether there is 480

a particular relation Z between a final-layer [MASK] 481

token in the context of a cloze prompt (serving 482

as the model’s contextualized “best guess” as to 483

what the object of the relation might be)7 and the 484

final-layer object token from the “unmasked” ver- 485

sion of the same prompt. All reported figures are 486

the average of 10 runs of our experiment, using 487

different randomly-initialized gZ each time. (See 488

Appendix A.3 for more details.) 489

4.4 Interventions 490

We implement GBIs against gZ using two gradient 491

attack strategies, FGSM (Goodfellow et al., 2015) 492

and PGD (Madry et al., 2017). We bound the mag- 493

nitude of each intervention as follows: where h is 494

the input to gZ and h′ is the intervened represen- 495

tation following a GBI, ||h − h′||∞ ≤ ϵ. For all 496

experiments reported in our main paper, we use 497

FGSM with ϵ = 0.1. (See Appendix A.4 for more 498

details and PGD results.) 499

5 Results 500

In Figure 4, we visualize the performance and com- 501

petence of BERT and RoBERTa across the test 502

set of each LAMA ConceptNet task. Performance 503

is measured using (0, 1)-accuracy, competence is 504

measured using the experimental competence met- 505

ric in Equation (3), and both metrics are averaged 506

across the top-k predictions of each model for 507

k ∈ [1, 10]. Specifically, for accuracy, we com- 508

pute 509

1

n

n∑
k=1

1[y ∈ top-k
ŷ

Pr(ŷ|x)] 510

for ground truth (x, y) and n = 10; and for compe- 511

tence, we compute 512

1

n

n∑
k=1

CT (M |GT ) 513

To account for stochasticity in initializing and 514

training probes gZ , scores are also averaged over 10 515

7That is, in the final layer of BERT (i.e., the outputs of
BERT’s final Transformer encoder Vaswani et al., 2017), the
only embedding which is used to compute masked-word prob-
abilities is that of the [MASK] token. Thus, any representation
of the object that is used by BERT in its final layer must be
a part of its representation of the [MASK] token. The same is
true of RoBERTa.
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Figure 4: Performance (top) and competence (bottom)
of BERT (left bars) and RoBERTa (right bars) for all
tasks, using FGSM with ϵ = 0.1. In the competence
plot, y-values are the average competence score and
error bars are the maximum and minimum competence
score, as measured over 10 experimental iterations (each
with a different randomly-initialized probe gZ).

experimental iterations for each target task, where516

in each iteration, the probe for each source task is517

randomly re-initialized and re-trained (resulting in518

different GBIs).519

5.1 Analysis520

Performance While their accuracies on individ-521

ual tasks vary, BERT and RoBERTa have quite522

similar aggregate performance: BERT outperforms523

RoBERTa on just over half (8/14) tasks, also achiev-524

ing very slightly higher performance when aver-525

aged across all tasks (0.3099 versus 0.3094).526

Competence Given our experimental model E527

with m = 14 tasks, we again consider a ran-528

dom baseline language model RC whose predic-529

tions always change in response to each interven-530

tion, making equal use of all properties in each531

task. RC would yield a competence score of532

C(RC |GT ) = 1
m ≈ 0.0714 for each task. Both533

BERT and RoBERTa score above this threshold for534

all tasks, meaning that their competence is consis-535

tently greater than that of a model (RC) that does536

not distinguish between causal and environmental537

properties. However, RoBERTa is consistently538

less competent than BERT (on 12/14 tasks), and539

also has lower competence scores averaged across540

all tasks (0.381 vs. 0.334).541

We also observe that, for the two tasks (Has- 542

Subevent and MotivatedByGoal) where RoBERTa 543

is more competent than BERT, it also achieves 544

substantially higher performance. More generally, 545

relative performance and competence are corre- 546

lated: the Spearman’s Rank correlation coefficient 547

between the average difference in accuracy and av- 548

erage difference in performance is a fairly strong 549

positive correlation ρ = 0.508 with significance 550

p = 0.064. 551

5.2 Discussion 552

A priori, we might guess that a model with nontriv- 553

ial performance to also exhibit greater competence 554

than a random baseline like RC , but this is not 555

necessarily the case: it is not uncommon for neu- 556

ral models to achieve performance well above any 557

reasonable random baseline by exploiting spurious 558

correlations inherent in a given task dataset (Mc- 559

Coy et al., 2019; Feder et al., 2022). Thus, the 560

finding that BERT and RoBERTa’s performance on 561

each task is supported by an intermediate level of 562

competence on the part of both models is meaning- 563

ful: for each task, their behavior is generally more 564

attributable to their representations of causally- 565

invariant properties than to spurious lexical asso- 566

ciations, and this competence varies substantially 567

between tasks. 568

Explananda Prior work has shown that BERT 569

(Devlin et al., 2019) has widely varying perfor- 570

mance in response to lexical inference tasks, de- 571

pending on the specific manner in which it is 572

prompted (Hanna and Mareček, 2021; Ravichander 573

et al., 2020; Ettinger, 2020; see Section 6). Why 574

might this be the case? One possible explanation 575

is that BERT is unable to utilize a consistent rep- 576

resentation of the relevant lexical relations (i.e., it 577

lacks competence for these tasks), instead relying 578

(at least in part) on spurious lexical associations 579

learned from training data. Our results can help 580

explain this finding. We might expect a model 581

with reasonably high peak performance on such a 582

task to possess a nontrivial level of competence;8 583

and given its variability in response to different 584

prompts, we would not expect its competence to 585

be especially high. Therefore, BERT possessing 586

an intermediate degree of competence on LAMA’s 587

hypernym prompting task (IsA) is consistent with 588

these earlier findings. 589

Future Work While the simplified experimen- 590

8Though, as noted above, this is not guaranteed.
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tal context considered in this work is a necessary591

first step in empirically validating our theoretical592

CALM framework, competence metric, and GBI593

methodology, we anticipate a much broader range594

of future research directions and potential applica-595

tions for CALM. First, the CALM framework can596

be easily extended to study how various model597

training and fine-tuning choices impact learned598

representations (see Appendix C.1). CALM can599

also be used to characterize tasks based on mu-600

tual dependency structures, which may be useful601

for predicting model behaviors in the context of602

related tasks or selecting related tasks for multi-603

task learning or intermediate fine-tuning (see Ap-604

pendix C.2). Alternatively, CALM also allows one605

to discover conflicting task dependencies and po-606

tentially protect against negative task interactions607

(see Appendix C.3). Finally, it is also possible to608

discover a causal model describing an LLM’s im-609

plicit task representation, rather than comparing610

against a pre-specified ground truth task structure611

GT , by synthesizing CALM and traditional causal612

graph discovery algorithms (see Appendix C.4).613

6 Related Work614

Hypernym Prompting Hanna and Mareček615

(2021) evaluated BERT on a variety of hypernym616

prompts, finding that its performance in predict-617

ing hypernyms varies considerably with respect618

to the prompt. Ravichander et al. (2020) demon-619

strated that this performance is not consistent even620

for highly similar prompts: for example, making621

plural substitutions (e.g., changing “an apple is a622

[MASK]” to “apples are [MASK]s”), caused BERT’s623

performance to drop precipitously. Finally, Ettinger624

(2020) observed that BERT is almost totally insen-625

sitive to negations in hypernym prompts (e.g., it626

provides very similar predictions for prompts like627

“A(n) x is a(n) [MASK]” and “A(n) x is not a(n)628

[MASK]”). Our findings offer one possible explana-629

tion for such brittle performance: BERT’s partial630

competence in hypernym prediction indicates that631

it should be possible to prompt it in a way that632

will yield high performance, but that its reliance633

on spurious lexical associations may lead it to fail634

when these correlations are broken (e.g., by substi-635

tuting singular terms for plurals or paraphrasing a636

prompt).637

Causal Probing Most related to our work is am-638

nesic probing (Elazar et al., 2021b), which we dis-639

cuss at length in Section 2.4. Lasri et al. (2022)640

applied the amnesic probing methodology (using 641

INLP; Ravfogel et al., 2020) to study the use of 642

grammatical number representations in performing 643

an English verb conjugation prompt task. As this 644

experiment involves intervening on the representa- 645

tion of a property which is causal with respect to 646

the prompt task, it may be understood as informally 647

implementing a minimal CALM experiment (al- 648

beit without considering environmental properties, 649

measuring competence, etc.). 650

Gradient-based Interventions As discussed in 651

Section 2.4, our GBI methodology is inspired by 652

Kos et al. (2018)’s VAE-GAN attack strategy, re- 653

formulated in the context of causal LLM probing. 654

Tucker et al. (2021) developed a similar approach 655

without explicit use of gradient-based adversarial 656

attacks, but their methodology is equivalent to per- 657

forming a targeted, unconstrained9 attack using 658

standard gradient descent. 659

7 Conclusion 660

In this work, we proposed CALM, a general analy- 661

sis framework that enables the study of LLMs’ lin- 662

guistic competence using causal probing, including 663

the first quantitative measure of linguistic compe- 664

tence. We developed the gradient-based interven- 665

tion (GBI) methodology, a novel approach to causal 666

probing that can target a far greater range of repre- 667

sentations than previous techniques, expanding the 668

scope of causal probing to new questions in LLM 669

interpretability and analysis. Finally, using the GBI 670

instantiation of CALM, we carried out a case study 671

of BERT and RoBERTa’s competence across a col- 672

lection of lexical inference tasks, finding that even 673

a simple experimental model is sufficient to explain 674

and predict their behavior across a variety of lexical 675

inference tasks. 676

9I.e., they continue running gradient updates until the
targeted probe loss saturates, irrespective of resulting pertur-
bation magnitude. In such attacks, it is standard practice to
constrain the magnitude of resulting perturbations (Goodfel-
low et al., 2015; Madry et al., 2017; Kos et al., 2018), which
we do here in order to minimize the effect of “collateral dam-
age” done by such attacks (see Section 3); so failing to impose
such constraints may result in indiscriminate damage to repre-
sentations.
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8 Limitations677

Gradient-Based Interventions While GBIs are678

applicable to a more general range of model repre-679

sentations than other interventions (see Section 3),680

this generality comes with a lack of constraints681

on probes (gZ); and as a result, GBIs cannot pro-682

vide the strong theoretical constraints on collateral683

damage as can methods like, e.g., INLP (Ravfogel684

et al., 2020). To minimize collateral damage to rep-685

resentations, the magnitude of perturbations should686

be modulated via constraints on gradient attacks687

against gZ (see Section 4.4) and experimentally688

validated to control the damage done to represen-689

tations (see Appendix A.4). Thus, in cases where690

the structure of representations is known to satisfy691

strong assumptions (e.g., being restricted to a lin-692

ear subspace) or strong upper bounds on collateral693

damage are required, CALM interventions can be694

implemented with methods like INLP rather than695

GBIs.10696

Experiments In our experiments, we modeled the697

14 LAMA ConceptNet tasks as representing fully698

independent properties, which is not necessarily699

true – e.g., knowing that a tree is made of bark or700

contains leaves tells us something about whether701

it’s a type of plant. However, in the aggregate (with702

impacts summed across 14 widely-varying lexical703

relation types in computing the final competence704

score for each task; see Appendix B.2), it may705

nonetheless be appropriate to treat the relations706

which are not causal with respect to a given task as707

collectively capturing spurious lexical associations.708

709

10It may also be possible to control for collateral damage
by developing GBI strategies that offer more principled pro-
tection against damage to non-targeted properties. We leave
this possibility to future work.
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A Experimental Details1045

A.1 Simplified Environment1046

As noted in Section 4, our primary goal in our ex-1047

periments is to validate CALM by testing it in a1048

simplified experimental setting consisting of com-1049

paratively small, well-studied models and tasks. As1050

such, we need models that are just complex enough1051

for CALM to be applicable (i.e., neural language1052

models that are capable of performing the tasks we1053

consider at a nontrivial level of performance), mak-1054

ing BERT and RoBERTa ideal candidates; and in1055

future work plan to scale CALM to more complex1056

contexts covering larger, more powerful models as1057

they perform more difficult tasks (see Appendix C).1058

This is a common setting in the context of substan-1059

tial recent interpretability work: first, a theoretical1060

framework is developed for interpreting an internal1061

representation or mechanism and initially tested1062

in the context of “toy” models or tasks (Elhage1063

et al., 2021; Olsson et al., 2022; Zhong et al., 2023;1064

Geiger et al., 2023), and subsequent work scales1065

these frameworks to the context of larger models1066

“in the wild” (Wang et al., 2023b; Conmy et al.,1067

2023; Wu et al., 2023). We anticipate that all of our1068

major contributions (the CALM framework, com-1069

petence metric, and GBI causal probing method)1070

will in principle be scalable to much larger, more1071

recent LLMs (e.g., Zhang et al. 2022; BigScience1072

et al. 2022; Touvron et al. 2023a,b; Groeneveld et al.1073

2024, etc.), and predict that the main challenge will1074

be in finding an appropriate probing architecture1075

(see Pimentel et al. 2022).1076

A.2 Tasks1077

The full set of LAMA ConceptNet tasks is as fol-1078

lows: IsA, HasA, PartOf, HasSubEvent, MadeOf,1079

HasPrerequisite, MotivatedByGoal, AtLocation,1080

CausesDesire, NotDesires, CapableOf, UsedFor,1081

ReceivesAction, and HasProperty. We split each1082

task dataset into train, validation, and test sets with1083

a random 80%/10%/10% split. Train and valida-1084

tion instances are fed to each model to produce1085

embeddings used to train gZ and select hyperpa-1086

rameters, respectively; and test instances are used1087

to measure LLMs’ competence with respect to each1088

task by observing how predictions change under1089

various interventions. In all experiments, we re-1090

strict each model M ’s output space for each task1091

T to the subset of vocabulary VM that occurs as1092

a ground-truth answer y∗ for at least one instance1093

(x, y∗) ∼ T in the respective task dataset. This1094

lowers the probability of false negatives in evalua- 1095

tion (e.g., penalizing the model for predicting ŷ = 1096

“mammal” for “a dog is a type of y” instead of y∗ = 1097

“animal”). 1098

A.3 Probes 1099

We use BERT’s final layer L to encode hli embed- 1100

dings for each such example, where i is the index 1101

of the [MASK] token or target word in the input 1102

prompt xi. To encode the [MASK] token, we is- 1103

sue BERT masked prompts (as discussed above) 1104

to extract h[MASK], then repeat with the [MASK] to- 1105

ken filled-in with the target word to encode it as 1106

h+ (e.g., “device” in “A laser is a device which 1107

creates coherent light.”), and concatenate matching 1108

embeddings h = (h[MASK];h+) to produce positive 1109

(y = 1) training instances. We also construct one 1110

negative (y = 0) instance, h = (h[MASK];h−), for 1111

each h[MASK] by sampling an incorrect target word 1112

xi corresponding to an answer to a random prompt 1113

from the same task, feeding it into the cloze prompt 1114

in the place of the correct answer, and obtaining 1115

BERT’s contextualized final-layer embedding of 1116

this token (h−). Finally, we train gZ on the set of 1117

all such (h, y). 1118

We implement gZ as a multi-layer perceptron 1119

with 2 hidden layers, each with a width of 768 1120

(which is one half the concatenated input dimen- 1121

sion of 1536), using ReLU activations and dropout 1122

with p = 0.1, training it for 32 epochs using Binary 1123

Cross Entropy with Logits Loss11 and the Adam 1124

optimizer, saving the model from the epoch with 1125

the highest validation-set accuracy for use in all 1126

experiments. 1127

For all competence results reported in Section 5, 1128

we run the same experiment 10 times – each with a 1129

different random initialization of gZ and shuffled 1130

training data – and report each figure as the average 1131

among all 10 runs. 1132

A.4 Interventions 1133

For instance (h, y), classifier gZ , loss function 1134

L, and L∞-bound ϵ ∈ {0.01, 0.03, 0.1, 0.3}12, 1135

each intervention (gradient attack) gz may be 1136

used to produce perturbed representations h′ = 1137

gz(h, y, fcls,L, ϵ) where ||h − h′||∞ ≤ ϵ. In 1138

11https://pytorch.org/docs/stable/generated/
torch.nn.BCEWithLogitsLoss.html

12All reported results use ϵ = 0.1, as greater ϵ resulted
in unacceptably high “collateral damage” across target tasks
(e.g., even random perturbations of magnitude ϵ = 0.3 do
considerable damage), and lesser values meant that predictions
changed on target tasks consisted of only a few test instances.
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Figure 5: Competence of BERT (left bars) and
RoBERTa (right bars) for all tasks, using PGD with
ϵ = 0.1. Y-values are the average competence score and
error bars are the maximum and minimum competence
score, as measured over 10 experimental iterations (each
with a different randomly-initialized probe gZ).

particular, given h = (h[MASK];h±) ∈ R2d, let1139

h′[MASK] be the first d dimensions of h′ (which also1140

satisfies the L∞-bound with respect to h[MASK],1141

||h[MASK] − h′[MASK]||∞ ≤ ϵ). To measure BERT’s1142

use of internal representations of Z on each prompt1143

task, we evaluate its performance when perturbed1144

h′[MASK] is used to compute masked-word predic-1145

tions, compared to unperturbed h[MASK].1146

FGSM We implement Fast Gradient Sign Method1147

(FGSM; Goodfellow et al., 2015) interventions as1148

h′ = h+ ϵ · sgn(∇hL(fcls, x, y))1149

PGD We implement Projected Gradient Descent1150

(PGD; Bubeck et al., 2015; Madry et al., 2017)1151

interventions as h′ = hT where1152

ht+1 = ΠN(h)

(
ht + α · sgn(∇hL(fcls, x, y))

)
1153

for iterations t = 0, 1, ..., T , projection opera-1154

tor Π, and L∞-neighborhood N(h) = {h′ :1155

||h − h′|| ≤ ϵ}. This method also introduces1156

two hyperparameters, the number of PGD itera-1157

tions T and step size α. We use hyperparameter1158

grid search over α ∈ {0.001, 0.003, 0.01, 0.03}1159

and T ∈ {20, 40, 60, 80, 100}, finding that setting1160

α = ϵ
10 and T = 40 produces the most consistent1161

impact on gZ accuracy across all tasks; so we use1162

these values for the results visualized in Figure 5.1163

A.5 Compute Budget1164

BERT-base-uncased has 110 million parameters,1165

and RoBERTa-base has 125M parameters. As our1166

goal is to study the internal representation and use1167

of linguistic properties in existing pre-trained mod-1168

els, and we are not directly concerned with training1169

or fine-tuning such models, we use these models 1170

only for inference (including encoding text inputs, 1171

using embeddings to train probes, and feeding inter- 1172

vened embeddings back into the language models). 1173

The only models we trained were probes gZ , which 1174

each had 1.77M parameters. 1175

Each experimental iteration (including encoding 1176

text inputs, training probes on all 14 tasks, and per- 1177

forming all GBIs) for either BERT or RoBERTa 1178

took less than one hour on a single NVIDIA 1179

GeForce GTX 1080 GPU, meaning that running 1180

all 10 iterations across both language models took 1181

less than 20 hours on a single GPU. Each iteration, 1182

probe, and GBI can easily be parallelized across 1183

GPUs: in our case, running all iterations across 1184

both models took less than 3 hours total across 8 1185

GTX 1080 GPUs. 1186

B Competence Metric 1187

B.1 Comparison With IIA 1188

As noted in Section 2.3, the CT (M |GT ) metric 1189

defined in Equation (2) is an adaptation of the Inter- 1190

change Intervention Accuracy (IIA) metric (Geiger 1191

et al., 2022, 2023), which evaluates the faithfulness 1192

of a causal abstraction like GT as a (potential) ex- 1193

planation of the behavior of a “black box” system 1194

like M . In our case, this is equivalent to evaluating 1195

the competence of M on task T , provided that GT 1196

is the appropriate SCM for T , as an LLM is com- 1197

petent only to the extent that its behavior is deter- 1198

mined by a causally invariant representation of the 1199

task.13 IIA requires performing interchange inter- 1200

ventions M(xi| do(zi)), where the part of M ’s in- 1201

termediate representation of input xi hypothesized 1202

to encode latent variables Z (taking the values zi 1203

when provided input xi) is replaced with that of xj 1204

(which, in the ideal case, causes M ’s representation 1205

to encode the values zj instead of zi), and compute 1206

the accuracy of GT (xi|do(zj)) in predicting M ’s 1207

behavior under these interventions. Thus, given ac- 1208

cess to high-quality interchange interventions over 1209

M , IIA measures the extent to which GT correctly 1210

models M ’s behavior under counterfactuals, and 1211

thus its faithfulness as a causal abstraction of M . 1212

To adapt IIA to the context of causal probing 1213

and define CT (M |GT ), we replace instance-level 1214

13For many tasks, there is more than one valid GT (see,
e.g., the “price tagging game” constructed by Wu et al. (2023)).
In such cases, CT (M |GT ) should be computed with respect
to each valid GT and the highest result should be selected, as
conforming to any such GT carries the same implications.

14



interchange interventions with concept-level inter-1215

ventions: instead of swapping M ’s representation1216

of variables Z given input xi with that of xj , we1217

intervene on representations at the level of arbi-1218

trary concept settings z that need not correspond to1219

previously sampled x, allowing us to simulate the1220

behavior of M under previously-unseen distribu-1221

tion shifts (i.e., settings z representing previously-1222

unseen combinations of property values) and there-1223

fore make broader predictions about M ’s consis-1224

tency with a given causal model GT under such1225

conditions. As one of the key desiderata in study-1226

ing LLM competence is to predict behavior under1227

distribution shifts where spurious correlations are1228

broken, CT is more appropriate than IIA in this1229

setting. However, it also introduces an additional1230

challenge: where interchange interventions only1231

require localizing candidate representations – as1232

counterfactual representations are obtained merely1233

by “plugging in” values from a different input –1234

computing CT instead requires one to both localize1235

representations and directly intervene on them to1236

change the encoded value. Previous causal probing1237

intervention strategies (e.g., Ravfogel et al., 2020,1238

2022) have generally performed interventions by1239

neutralizing concept representations, not modify-1240

ing them to encode specific counterfactual values;1241

so in order to carry out the proposed competence1242

study, it is also necessary to develop a novel ap-1243

proach to perform such interventions. We propose1244

our solution to this problem, gradient-based inter-1245

ventions (GBIs), in Section 3.1246

B.2 Experimental Competence Metric1247

To compute the expectation in Equation (2) for test1248

set {xi,yi, zi}ni=1 ∼ T × Z, we sum the compe-1249

tence score over all samples xi and perform one1250

intervention do(Zj = 0) corresponding to each1251

concept Zj ∈ Z.14 As our goal is to measure the1252

extent to which M ’s behavior is attributable to an1253

underlying representation of the causal property Zc1254

or environmental property Z ∈ Ze, our experimen-1255

tal model defines GT ’s predictions with reference to1256

M ’s original predictions M(xi) = ŷi, according to1257

the following principle: if M is competent, then its1258

prediction M(xi) = ŷi is wholly attributable to its1259

14Note that this intervention changes the prediction
GT (xi) ̸= GT (xi| do(Zj = 0)) if and only if (xi,yi) ∈ Tj

– i.e., where the corresponding (zi)j = 1 – otherwise, (zi)j
is already 0, so the intervention has no effect. Thus, as
CT (M |GT ) measures M ’s consistency with GT , then to the
extent that M is competent, its prediction should change under
all and only the same interventions as GT .

representation of causal property Zc, so its predic- 1260

tions M(xi| do(Zc)) = ŷi
′ will not overlap with 1261

its original predictions ŷi (i.e., overlap(ŷi, ŷi
′) = 1262

0); and conversely, a competent M will make the 1263

same predictions M(xi| do(Zj)) = ŷi
′′ for any 1264

Zj ∈ Ze, because its prediction is not caused by 1265

its representation of these environmental proper- 1266

ties (i.e., overlap(ŷi, ŷi
′′) = 1). Motivated by 1267

this reasoning, our experimental model defines 1268

GT (xi|do(Zj = 0)) = M(xi) for environmen- 1269

tal Zj ∈ Ze; and for causal property Zc, defines 1270

GT (xi|do(Zc = 0)) = {y′ ∈ VM : y′ /∈ M(xi)} 1271

(i.e., the set of all tokens y′ in M ’s vocabulary 1272

that were not in its original prediction M(xi)). 1273

Thus, under experimental model E, we approxi- 1274

mate CT (M |GT ) by computing Equation (3). 1275

Notably, our experimental model E only ac- 1276

counts for the relationship between M ’s inter- 1277

vened and non-intervened predictions, indepen- 1278

dently of ground truth labels – instead, what is 1279

being measured is M ’s consistency under meaning- 1280

preserving interventions do(Zj′) and its mutabil- 1281

ity under meaning-altering interventions do(Zj). 1282

However, as we find in Section 5.1, the resulting 1283

competence metric CT (M |GT ) is nonetheless use- 1284

ful for predicting M ’s accuracy. 1285

C Future Work 1286

C.1 Representation Learning 1287

The CALM framework, competence measure, and 1288

GBI methodology developed in Sections 2 and 3 1289

are sufficiently general to be directly applied to 1290

analyze arbitrary LLMs on any language modeling 1291

task whose causal structure is already well under- 1292

stood (or, for tasks where this is not the case, we 1293

may apply the causal graph discovery approach de- 1294

scribed in Appendix C.4), allowing us to study the 1295

impact of various model architectures, pre-training 1296

regimes, and fine-tuning strategies on the represen- 1297

tations LLMs learn and use for arbitrary tasks of 1298

interest. 1299

C.2 Multitask Learning 1300

Are high competence scores on task T correlated 1301

with an LLMs’ robustness to meaning-preserving 1302

transformations (see, e.g., Elazar et al., 2021a) on 1303

tasks T ′ that share several causal properties Zc 1304

with task T . Through the lens of causally invari- 1305

ant prediction (Peters et al., 2016; Arjovsky et al., 1306

2019; Bühlmann, 2020), this hypothesis is likely 1307

true (however, see Rosenfeld et al. 2020 for appro- 1308

15



CT (M |GT ) ≈
1

n ·m

n∑
i=1

m∑
j=1

overlap
(
M

(
xi| do(Zj = 0)

)
,GT

(
xi|do(Zj = 0)

))
(3)

priate caveats) – if so, this would make it possible1309

to use clusters of related tasks to predict LLMs’1310

robustness (and other behavioral patterns, such as1311

brittleness in the face of distribution shifts intro-1312

duced by spurious dependencies) between related1313

tasks using CALM, given an appropriate experi-1314

mental model. Furthermore, the ability to charac-1315

terize tasks based on mutual (learned) dependency1316

structures could be valuable in transfer learning ap-1317

plications such as guiding the selection of auxiliary1318

tasks in multi-task learning (Ruder, 2017) or pre-1319

dicting the impact of intermediate task fine-tuning1320

on downstream target tasks (Choshen et al., 2022).1321

C.3 Task Dependencies1322

Another possible application of CALM concerns1323

causal invariance under multi-task applications. Ex-1324

isting approaches in invariant representation learn-1325

ing generally require task-specific training (Zhao1326

et al., 2022), as the notion of invariance is inher-1327

ently task-centric (i.e., the properties which are1328

invariant predictors of output values vary by task,1329

and different tasks may have opposite notions of1330

which properties are causal versus environmental;1331

see Section 2.2), so applying such approaches to1332

train models to be causally invariant with respect1333

to a specific downstream task T is expected to1334

come at the cost of performance on other down-1335

stream tasks T ′. Therefore, considering the re-1336

cent rise of open-ended, task-general LLMs (Zhang1337

et al., 2022; BigScience et al., 2022; Touvron et al.,1338

2023a,b; Groeneveld et al., 2024), it is important1339

to find alternative approaches for studying models’1340

causal dependencies in a task-general setting to1341

account for applications involving tasks with differ-1342

ent (and perhaps contradictory) causal structures,1343

such as CALM.1344

C.4 Causal Competence Graph Discovery1345

One of the key benefits of CALM is that, instead1346

of simply measuring consistency with respect to a1347

known, static task description GT , the competence1348

metric in Equation (2) can also be used to discover1349

a competence graph G which most faithfully ex-1350

plains a model M ’s behavior in a given task or1351

context (see Section 2.3) by computing C(M |G)1352

“in-the-loop” of existing causal graph discovery1353

algorithms like IGSP (Yang et al., 2018). Such al- 1354

gorithms can be used both to suggest likely compe- 1355

tence graphs based on interventional data collected 1356

by running CALM experiments, to recommend the 1357

experiments that would yield the most useful inter- 1358

ventional data for the graph discovery algorithm, 1359

and to evaluate candidate graphs G using the pro- 1360

posed competence metric, terminating the graph 1361

discovery algorithm once a competence graph G 1362

that offers sufficiently faithful explanations of M ’s 1363

behavior has been found. In this case, it is still 1364

necessary to define the set of properties Z being 1365

probed and the scoring function S used to com- 1366

pare the predictions of M and G; but no knowledge 1367

of the causal dependencies (or structural functions 1368

F : pa(Zj) 7→ Zj mapping from causal parents 1369

pa(Zj) to causal dependents Zj ; see Bongers et al. 1370

2021) is required. 1371
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