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Abstract

Despite the recent successes of large, pre-
trained neural language models (LLMs), lit-
tle is known about the representations of lin-
guistic structure they learn during pretraining,
leading to unexpected behavior in response to
small changes in inputs or application contexts.
To better understand these models and behav-
iors, we propose a general analysis framework
to move beyond traditional performance-based
evaluation of LLMs and instead analyze them
on the basis of their internal representations.
Our framework, CALM (Competence-based
Analysis of Language Models), is designed to
study and measure the linguistic competence
of LLMs in the context of specific tasks by
intervening on models’ internal representations
of different linguistic properties using causal
probing, and evaluating models’ alignment un-
der these interventions with a given ground-
truth causal model of the task. We also develop
a novel approach for performing causal prob-
ing interventions using gradient-based adver-
sarial attacks, which can target a broader range
of properties and representations than existing
techniques. Finally, we carry out a case study
of CALM using these interventions to analyze
BERT and RoBERTa’s competence across a
variety of lexical inference tasks, showing that
CALM can be used to explain and predict their
behavior across these tasks.

1 Introduction

The rise of large, pretrained neural language mod-
els (LLMs) has led to rapid progress in a wide va-
riety of natural language processing tasks (Devlin
et al., 2019; Brown et al., 2020; Chowdhery et al.,
2022; Touvron et al., 2023a). However, these mod-
els can also be quite inconsistent, distractible, and
sensitive to minor changes in their inputs (Elazar
et al., 2021a; Kassner and Schiitze, 2020; Moradi
and Samwald, 2021; Wang et al., 2023a). It is usu-
ally unclear where these limitations come from, as

LLMs are typically evaluated as “black boxes”, in
which case one can only detect limitations that are
adequately represented by the benchmark, which
cannot cover every possible limitation using a fi-
nite dataset (Raji et al., 2021). Understanding the
means by which these models can perform as well
as they do while exhibiting such limitations is a key
question in the science of LLM interpretation and
analysis (Rogers et al., 2020), and is likely neces-
sary in enabling robust, trustworthy, and socially-
responsible LLM-enabled applications (Wang et al.,
2021; Pruksachatkun et al., 2021; Shin, 2021; Liao
and Vaughan, 2023).

To better understand the capabilities and limita-
tions of current LLMs across various tasks, it will
be necessary to complement traditional black-box,
performance-based evaluation of LLMs with in-
ternal analyses of their representation and use of
task-relevant properties. We approach this study
in terms of competence, drawing on the traditional
competence-performance distinction in linguistic
theory (see Section 2.1) to motivate the study of
LLMs in terms of their underlying representation
of language. We reformulate the notion of compe-
tence in the context of LLMs as the causal align-
ment between LLMs’ internal representation of
the structure of any given linguistic task with the
actual ground-truth structure of the task. While
such representations are not directly observable, we
take inspiration from recent work in causal prob-
ing, which damages LLLMs’ latent representations
of linguistic properties using causal interventions
to study how these representations contributed to
their behavior (Elazar et al., 2021b; Lasri et al.,
2022). We propose a general framework, CALM
(for Competence-based Analysis of Language Mod-
els), to study the competence of LLMs using causal
probing and define the first quantitative measure of
LLM competence.

While CALM can be instantiated using a variety
of existing causal probing techniques (e.g., Elazar



et al., 2021b; Ravfogel et al., 2022; Shao et al.,
2022), we propose a new intervention methodology
for damaging LLLM representations using gradient-
based adversarial attacks against structural probes,
extending causal probing to arbitrarily-encoded rep-
resentations of relational properties and thereby
enabling the investigation of new questions in lan-
guage model analysis. We carry out a case study
of CALM on BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) by implementing inter-
ventions as GBIs in order to measure and compare
these LLMs’ competence across 14 lexical infer-
ence tasks, showing that CALM can indeed explain
and predict important patterns in behavior across
these tasks by distinguishing between models’ use
of causal and spurious properties.
Our primary contributions are as follows:

1. We propose CALM, a general analysis frame-
work for studying LLM competence using
causal probing.

2. We provide a causal formulation of linguistic
competence in the context of LLMs, using
CALM to define the first quantitative measure
of LLM competence.

3. We establish a gradient-based intervention
strategy for causal probing, which directly ad-
dresses multiple limitations of prior method-
ologies.

4. We implement a case study of CALM us-
ing gradient-based interventions, demonstrat-
ing its utility in explaining and predicting
LLM behaviors across several lexical infer-
ence tasks.

2 Competence-based Analysis of
Language Models

2.1 Linguistic Competence

Linguistic competence is generally understood as
the ability to utilize one’s knowledge of a language
in order to enable language use, and is typically de-
fined in contrast with linguistic performance, which
is speakers’ actual use of their language in practice,
considered independently of the underlying knowl-
edge that supports it (Marconi, 2020)." Given a

'While there has been significant debate in linguistics and
the philosophy of language regarding the precise definition
and nature of competence (Lyons, 1977; Newmeyer, 2001;
Sag and Wasow, 2011; Marconi, 2020), we believe that the
formalization of competence provided in this work is suffi-
ciently general to incorporate most notions of competence,
which may be flexibly specified by instantiating CALM in

linguistic task, we may understand competence
in terms of the underlying linguistic knowledge
that one draws upon to perform the task. If flu-
ent human speakers rely on (implicit or explicit)
knowledge of the same set of linguistic properties
to perform a given task in any context, then we
may understand performance on the task as being
causally determined by these properties, and invari-
ant to other properties. For example, if we consider
the two utterances “the chicken crosses the road”
and “the chickens cross the road”, the grammatical
number of the subject (i.e., singular and plural, re-
spectively) determines whether the verb “(to) cross”
should be conjugated as “crosses” or “cross”. As
English (root) verb conjugation always depends on
the grammatical number of the subject, grammat-
ical number may be regarded as having a causal
role in the task of English verb conjugation, so we
may understand fluent English speakers’ (usually
implicit) mental representation of verb tense as hav-
ing a causal role in their behavior. In this work,
we focus on lexicosemantic competence, the ability
to utilize knowledge of word meaning relationships
in performing tasks such as lexical inference (Mar-
coni, 1997, 2020).

While the study of human competence has a rich
history in linguistics, there is currently no generally
accepted methodology for studying the competence
of LLMs (Mahowald et al., 2023; Pavlick, 2023).
Designing such a methodology is a challenging
scientific task, as it is not obvious how to quantita-
tively define or measure LLM competence. Thus,
our primary goal in this work is to lay the ground-
work for such study. In the following section, we
propose a general empirical approach to analyze
and evaluate LLM competence at the level of indi-
vidual linguistic tasks.

2.2 CALM Framework

In order to make the study of competence tractable
in the context of LLMs, we propose the CALM
(Competence-based Analysis of Language Models)
framework, which describes an LLM’s competence
with respect to a given linguistic task in terms of
its latent representation of the causal structure of
the task.

Task Structure Formally, given supervised task
T ~ P(X,)) where the goal is to correctly predict
y € Ygivenx € X, and a collection of latent prop-
erties Z = {Z;}7" ; that are (potentially) involved

different ways.
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Figure 1: Structural causal model (SCM) of task T’s
data-generating process (leftmost box) and how it may
be performed by model M. Shaded and white nodes de-
note observed and unobserved variables, respectively. In
CALM, the goal is to determine which representations
Z; = z; are causally implicated in M ’s predictions y.
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Figure 2: SCM of a competent English speaker on the
hypernym prediction task.

in generating x, we formulate the causal structure
of 7 in terms of the data-generating process

x ~ Pr(x|Z¢,Z.), y~ P(y|Z.) (1)

where Z may be decomposed into Z = Z. U
Z.,Z. " 7Z. = @, where Z. contains all prop-
erties that causally determine y, and Z, are the
remaining properties that may be involved in gen-
erating x (cf. Ilse et al., 2021). However, there
may be an unobserved confounder S that produces
spurious correlations between y and Z., which, if
leveraged by language model M in the course of
predicting ¥, can lead to unexpected failures on
T when the spurious association is broken (Pearl,
2009). The structural causal model (SCM)? of this
data-generating process is visualized on the left
side of Figure 1.

For example, suppose a speaker wants to com-
municate that orangutans are a genus of pri-
mate. She might say “orangutans are primates”
or “orangutans, a genus of apes, are primates”. In
both cases, the conjugation of the root verb would
be “are” because it is independent of whether the
subject is complemented by an appositive phrase
like “a genus of apes”, and this phrase does not
change the grammatical number of the subject
“orangutans”; so if we define Tyc as English verb
conjugation, Zns as the grammatical number of

’Note that an SCM is a directed acyclic graph where each
node represents a variable and directed edges indicate causal
dependencies (see Bongers et al. 2021).

the subject, and Zap as the presence of an appos-
itive phrase modifying the subject, then it is clear
that Zns € Z. and zap € Z.. However, if we in-
stead consider the task 75y of predicting hypernyms
— for example, predicting y in “orangutans are ys”,
where y = “primate” and y = “ape” would both be
correct answers — the causal property Zy € Z,. will
be the hypernymy relation, and Zns € Z. (e.g.,
the same answers will be correct if the question
is instead posed as “an orangutan is a y”’). Thus,
we expect competent English speakers to be in-
variant to grammatical number when performing
hypernym prediction (see Figure 2).

Internal Representation Our principal concern
is measuring the extent to which an LLM M’s be-
havior in a given task 7 is attributable to its repre-
sentation of various properties Z = {Z1, ..., Z }
and how these properties correspond to the causal
structure of the task. If M respects the data-
generating process of 7, then its behavior should
be attributable only to causal properties Z € Z.
(and not to environmental properties Z € Z.), in
which case we say that M is competent with re-
spect to 7 (see Figure 2). We study model M’s
use of each property Z; € Z by performing causal
interventions do(Z;) on its representation of Z; in
the course of performing task 7, and measure the
impact that these interventions have on its predic-
tions.

2.3 Measuring Competence

We propose to directly evaluate the competence
of M with respect to task 7 ~ P(X,)) by mea-
suring its consistency with a competence graph
G7, which we define as a structural causal model
(SCM) of T with nodes corresponding to each la-
tent variables Z; € Z and an additional node for
outputs y € Y and directed edges denoting causal
dependencies between these variables. That is, the
set of causal properties Z. defined by G is the set
of all properties Z; € Z such that there is an edge
or path from Z; to y.

To determine the extent to which M’s behav-
ior is correctly explained by the causal dependen-
cies (and lack thereof) in Gy, we measure their
consistency under interventions do(z), where set-
ting z = {z;}].; ~ val(Z) is a combination of
values Z; = z; € val(Z;) taken by each cor-
responding latent variable Z; € Z. For in-
stance, under the hypernym prediction task 7,
for input x; =“orangutans are ys” and ground-



truth output y =“primate”, the values taken by
z; would be Zy = 1,Zns = 1 (where 1 in-
dicates the presence of hypernymy and a plural
noun subject, respectively), and we might define
an alternative z’ where Zy = 0, Zns = 1, under
which a competent model’s prediction would be ex-
pected to change with the causal variable Zy (i.e.,
M (x| do(z')) # M (x)).

The consistency of M with Gy is measured in
terms of the similarity .S of their predictions un-
der interventions do(z) given input x ~ P(X),
and can be computed using a given similarity met-
ric S : ),) — [0, 1] depending on the SCM G
and output space ) (e.g., equality, n-gram over-
lap, cosine-similarity, etc.). That is, we define
Cr(M|Gr) as M’s competence with respect to
task 7 as a function of its consistency with corre-
sponding task SCM G under interventions do(z)
measured by similarity metric S, as follows:

Cr(M|GT) =
Ex 2 P2 val(z))S (M (x| do(z)), G(x| do(z)))
2)

This C7(M|G7) metric (bounded by [0, 1]) is
an adaptation of the Interchange Intervention Ac-
curacy (ITA) metric (Geiger et al., 2022, 2023) to
the context of causal probing, where instance-level
interventions are replaced with concept-level inter-
ventions enabled by the gradient-based interven-
tion methodology we introduce in Section 3. (See
Appendix B.1 for a detailed comparison of the pro-
posed competence metric with ITA.)

2.4 Causal Probing

A key technical challenge in implementing CALM
(and causal probing more generally) is designing
an algorithm to perform causal interventions do(2)
that maximally damage the representation of a prop-
erty Z while otherwise minimally damaging repre-
sentations of other properties Z’ (Ravfogel et al.,
2022). For example, amnesic probing (Elazar et al.,
2021b) uses the INLP algorithm (Ravfogel et al.,
2020) to produce interventions gz that remove all
information that is linearly predictive of property
Z from a pre-computed set of embedding represen-
tations H in a way that “minimally damages the
structure of the representation space,”> showing
that BERT makes variable use of parts-of-speech,
syntactic dependencies, and named-entity types in

3See Appendix A, Lemma A.2 of Ravfogel et al. (2020)
for a more rigorous description and proof of this property.
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Figure 3: Gradient-Based Interventions. Input tokens
X = (o1, ..., T|x|) are passed through layers L = 1, ..., [,
where embedding h! (encoding the value Z = 2) is
extracted from layer [ and given to gz as input. Next,
the embedding is modified by gradient-based attacks
on gz to encode the counterfactual value Z = 2/, then
fed back into subsequent layers L = [ + 1, ..., |L| and
language modeling head f1y to obtain the intervened
predictions M (x| do(Z = 2')).

performing masked language modeling. How-
ever, Elazar et al. (2021b) also found that, when
INLP is used to remove BERT’s representation of
these properties in early layers, it is often able to
“recover” this representation in later layers, which
is likely due to BERT encoding these properties
nonlinearly; and later work has found that the same
“recoverability” problem persists even when linear
information removal methods like INLP are kernel-
ized (Ravfogel et al., 2022). Thus, it is necessary to
develop interventions that do not require restrictive
assumptions about the structure of LLMs’ repre-
sentations (e.g., linearity; see Vargas and Cotterell
2020), a problem which we aim to solve in the
following section.

3 Gradient-Based Interventions

Our goal in developing gradient-based interven-
tions (GBIs) as a causal probing technique is to
enable interventions over arbitrarily-encoded LLM
representations. GBIs allow users to flexibly spec-
ify the class of representations they wish to target,
expanding the scope of causal probing to arbitrarily-
encoded properties. We take inspiration from Kos
et al. (2018), who developed a technique to perturb
latent representations using gradient-based adver-
sarial attacks.* They begin by training probe gz
: h — z to predict image class z € Z from latent
representations h = fenc(x) of images x, where
fenc 18 the encoder of a VAE-GAN (Larsen et al.,
2016) trained on an unsupervised image reconstruc-
tion task (i.e., fgec(fenc(X)) = X & x, for decoder

“Notably, Tucker et al. (2021) developed a similar method-
ology without explicit use of such attacks (see Section 6).



faec and reconstructed image X approximating x).
Next, gradient-based attacks like FGSM (Goodfel-
low et al., 2015) and PGD (Madry et al., 2017) are
performed against gz in order to minimally manip-
ulate h such that it resembles encoded representa-
tions of target image class Z = 2’ (where 2’ # z,
the original image class), yielding perturbed repre-
sentation h’. Finally, h and h’ are each fed into the
VAE decoder to reconstruct corresponding output
images x and X’ (respectively), where X resembles
input image class Z = z and X’ resembles target
class Z = 2/

We reformulate this approach in the context of
causal LLM probing as visualized in Figure 3, treat-
ing layers . = 1,...,[ as the encoder and layers
L =1+1,...,|L| (composed with language model-
ing head fin) as the decoder, allowing us to target
representations of property Z across embeddings
hﬁ of token x; € x in layer [. We train gz to pre-
dict Z from a set of such hé, then attack gz using
FGSM and PGD to intervene on hﬁ (representing
the original value Z = z), producing hé/ (repre-
senting the counterfactual value Z = 2’). Finally,
we replace h! with h! in the LLMs’ forward pass
from layers L = [ + 1, ..., |L|, simulating the inter-
vention do(Z = 2’), and observe the impact on its
word predictions M (x| do(Z = 2')).

Advantages The key advantage of gradient-based
interventions (GBIs) as a causal probing methodol-
ogy is that they may be applied to any differentiable
probe. For example, if we are investigating the hy-
pothesis that M’s representation of Z is captured
by a linear subspace of representations in a given
layer (see Vargas and Cotterell, 2020), then we may
train a linear probe and various nonlinear probes on
representations and observe whether GBIs against
the linear probe have a comparable impact to those
against the nonlinear probes. Alternatively, if we
believe that a probe’s architecture should mirror
the architecture of the model it is probing (as pro-
posed by Pimentel et al., 2022), we may implement
probes as such. We may also damage representa-
tions that are distributed across an arbitrary number
of embeddings (e.g., relational properties between
multiple words), which is not possible with linear
interventions such as INLP (Ravfogel et al., 2020).
Finally, where previous intervention methodologies
for causal probing have generally focused on “neu-
tralizing” or “removing” representations (Ravfogel
et al., 2020, 2022; Shao et al., 2022), GBIs also
allow one to perform targeted interventions that

set LLMs’ representations to counterfactual val-
ues, effectively “simulating” the model’s behavior
under counterfactual inputs, which may be useful
for predicting behaviors under various distribution
shifts (as discussed in Appendix B.1). However, the
benefits associated with GBIs do come with some
important limitations, as we discuss in Section 8.

4 Experiments

In this work, we begin by examining BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),]
two language models which have been extensively
studied in the context of model interpretability and
analysis (see, e.g., Rogers et al. 2020; Liu et al.
2021). Our primary goal in the following experi-
ments is to develop and test an experimental im-
plementation of CALM using GBIs in the context
of comparatively small, well-studied models and
tasks in order to validate whether CALM can pre-
dict and explain the findings of earlier work in this
simplified environment. (We motivate this choice
in greater detail in Appendix A.1.)

4.1 Tasks
Masked language models like BERT and RoBERTa
are trained to predict Pr(zpmsk; = wix) for

text input (token sequence) x = (1, T2, ..., Tx|),
mask token xwask; € X, and token vocabulary
V' = {w1,wa, ..., wpy|}. As such, it is common
to study them by providing them with “fill-in-the-
blank” style masked prompts (e.g., “a cat is a type
of [MASK]”) and evaluating their accuracy in pre-
dicting the correct answer (e.g., “animal”, “pet”,
etc.), a task known cloze prompting (Liu et al.,
2023).

We use the collection of 14 lexical inference
tasks included in the ConceptNet (Speer et al.,
2017) subset of LAMA (Petroni et al., 2019),°
each of which are formulated as a collection cloze
prompts. For example, the LAMA “IsA” task con-
tains ~2K hypernym prompts corresponding to the
“IsA” ConceptNet relation (including, e.g., “A laser
is a [MASK] which creates coherent light.”, where
the task is to predict that the [MASK] token should
be replaced with “device”, a hypernym of “laser”),
with the remaining 13 LAMA ConceptNet tasks
corresponding to other lexical relations such as

SSpecifically, BERT-base-uncased and RoBERTa-base
(Wolf et al., 2019).

®Available at
facebookresearch/LAMA.

https://github.com/
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“PartOf”, “HasProperty”, and “CapableOf”. (See
Appendix A.2 for additional details.)

These task datasets cover a fairly broad set of lex-
ical relations, allowing us to train probes over each
relation and, using GBIs (see Section 3), test how
the representation of each relation is used across
all other tasks. In the context of a single task 7, in-
tervening on a model’s representation of the causal
task relation Z; € Z, as the task is being performed
allows us to measure the extent to which its pre-
dictions are attributable to its representation of the
task-invariant property Z; (where a large impact
indicates competence). On the other hand, interven-
ing on the representations of the other 13 lexical
relations 7, € Z. allows us (in the aggregate) to
measure how much the model is performing the
task by leveraging their representations of general
lexical information (where a large impact indicates
incompetence).

4.2 Experimentally Measuring Competence

Given LLM M and task 7, measuring the com-
petence C7(M|Gr) of M given G requires us to
specify an experimental model £ = (Z, G, S),
where Z is a set of properties, Gy is a competence
graph for task 7, and S is a scoring function that
compares the predictions of M and Gyr. Given
that each task 7; is defined by a single causal lex-
ical relation Z; (i.e., Z., = {Z;}), we model set-
tings z as a collection of values Z; = z; taken
by each property Z; in the context of a specific
task instance (x,y) ~ 7;, where Z; = 1if i = j
(i.e., where the property Z; is the causal property
for the task 7;) or Z; = 0 otherwise. That is,
for each instance (x,y) ~ 7;, the corresponding
setting z is a one-hot vector whose i-th element
z; = 1. 'We may specify G7; in a similar man-
ner: for task 7; ~ P(X,)), outputs y € ) are
causally dependent on the property Z;, and invari-
ant to other concepts Z;, j # ., meaning that the
only direct parent node of y in G7; is Z;. Finally,
as we are dealing with masked language models
whose output space Y for each task consists only
of single tokens in M’s vocabulary V};, our exper-
imental model can define the scoring function .S as
the overlap overlap(y;,y;) for top-k token predic-
tions y; = {y1, ..., yx} C Vs, where overlap(-, -)
is the size of the intersection of each set of pre-
dictions divided by the total number of predictions
overlap(y;, y;) = w (See Appendix B.2 for
additional details on how we compute competence
in each experiment.)

4.3 Probes

We implement probes gz as a 2-layer MLP over
each language model’s final hidden layer, and train
the probe on the task of classifying whether there is
a particular relation Z between a final-layer [MASK]
token in the context of a cloze prompt (serving
as the model’s contextualized “best guess” as to
what the object of the relation might be)” and the
final-layer object token from the “unmasked” ver-
sion of the same prompt. All reported figures are
the average of 10 runs of our experiment, using
different randomly-initialized gz each time. (See
Appendix A.3 for more details.)

4.4 Interventions

We implement GBIs against gz using two gradient
attack strategies, FGSM (Goodfellow et al., 2015)
and PGD (Madry et al., 2017). We bound the mag-
nitude of each intervention as follows: where h is
the input to gz and 1’ is the intervened represen-
tation following a GBI ||h — h/||c < €. For all
experiments reported in our main paper, we use
FGSM with € = 0.1. (See Appendix A.4 for more
details and PGD results.)

5 Results

In Figure 4, we visualize the performance and com-
petence of BERT and RoBERTa across the test
set of each LAMA ConceptNet task. Performance
is measured using (0, 1)-accuracy, competence is
measured using the experimental competence met-
ric in Equation (3), and both metrics are averaged
across the top-k predictions of each model for
k € [1,10]. Specifically, for accuracy, we com-
pute

1 n
— > 1[y € top-k Pr(g|x)]
n g

k=1

for ground truth (x,y) and n = 10; and for compe-
tence, we compute

S er(Migr)

k=1

To account for stochasticity in initializing and
training probes gz, scores are also averaged over 10

"That is, in the final layer of BERT (i.e., the outputs of
BERT’s final Transformer encoder Vaswani et al., 2017), the
only embedding which is used to compute masked-word prob-
abilities is that of the [MASK] token. Thus, any representation
of the object that is used by BERT in its final layer must be
a part of its representation of the [MASK] token. The same is
true of RoOBERTa.
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Figure 4: Performance (top) and competence (bottom)
of BERT (left bars) and RoBERTa (right bars) for all
tasks, using FGSM with e = 0.1. In the competence
plot, y-values are the average competence score and
error bars are the maximum and minimum competence
score, as measured over 10 experimental iterations (each
with a different randomly-initialized probe gz).

experimental iterations for each target task, where
in each iteration, the probe for each source task is
randomly re-initialized and re-trained (resulting in
different GBISs).

5.1 Analysis

Performance While their accuracies on individ-
ual tasks vary, BERT and RoBERTa have quite
similar aggregate performance: BERT outperforms
RoBERTa on just over half (8/14) tasks, also achiev-
ing very slightly higher performance when aver-
aged across all tasks (0.3099 versus 0.3094).

Competence Given our experimental model E
with m = 14 tasks, we again consider a ran-
dom baseline language model R whose predic-
tions always change in response to each interven-
tion, making equal use of all properties in each
task. R¢ would yield a competence score of
C(Rc|Gr) = & =~ 0.0714 for each task. Both
BERT and RoBERTa score above this threshold for
all tasks, meaning that their competence is consis-
tently greater than that of a model (R¢) that does
not distinguish between causal and environmental
properties. However, RoBERTa is consistently
less competent than BERT (on 12/14 tasks), and
also has lower competence scores averaged across
all tasks (0.381 vs. 0.334).

We also observe that, for the two tasks (Has-
Subevent and MotivatedByGoal) where RoBERTa
is more competent than BERT, it also achieves
substantially higher performance. More generally,
relative performance and competence are corre-
lated: the Spearman’s Rank correlation coefficient
between the average difference in accuracy and av-
erage difference in performance is a fairly strong
positive correlation p = 0.508 with significance
p = 0.064.

5.2 Discussion

A priori, we might guess that a model with nontriv-
ial performance to also exhibit greater competence
than a random baseline like R, but this is not
necessarily the case: it is not uncommon for neu-
ral models to achieve performance well above any
reasonable random baseline by exploiting spurious
correlations inherent in a given task dataset (Mc-
Coy et al., 2019; Feder et al., 2022). Thus, the
finding that BERT and RoBERTa’s performance on
each task is supported by an intermediate level of
competence on the part of both models is meaning-
ful: for each task, their behavior is generally more
attributable to their representations of causally-
invariant properties than to spurious lexical asso-
ciations, and this competence varies substantially
between tasks.

Explananda Prior work has shown that BERT
(Devlin et al., 2019) has widely varying perfor-
mance in response to lexical inference tasks, de-
pending on the specific manner in which it is
prompted (Hanna and Marecek, 2021; Ravichander
et al., 2020; Ettinger, 2020; see Section 6). Why
might this be the case? One possible explanation
is that BERT is unable to utilize a consistent rep-
resentation of the relevant lexical relations (i.e., it
lacks competence for these tasks), instead relying
(at least in part) on spurious lexical associations
learned from training data. Our results can help
explain this finding. We might expect a model
with reasonably high peak performance on such a
task to possess a nontrivial level of competence;?
and given its variability in response to different
prompts, we would not expect its competence to
be especially high. Therefore, BERT possessing
an intermediate degree of competence on LAMA’s
hypernym prompting task (IsA) is consistent with
these earlier findings.

Future Work While the simplified experimen-

$Though, as noted above, this is not guaranteed.



tal context considered in this work is a necessary
first step in empirically validating our theoretical
CALM framework, competence metric, and GBI
methodology, we anticipate a much broader range
of future research directions and potential applica-
tions for CALM. First, the CALM framework can
be easily extended to study how various model
training and fine-tuning choices impact learned
representations (see Appendix C.1). CALM can
also be used to characterize tasks based on mu-
tual dependency structures, which may be useful
for predicting model behaviors in the context of
related tasks or selecting related tasks for multi-
task learning or intermediate fine-tuning (see Ap-
pendix C.2). Alternatively, CALM also allows one
to discover conflicting task dependencies and po-
tentially protect against negative task interactions
(see Appendix C.3). Finally, it is also possible to
discover a causal model describing an LLM’s im-
plicit task representation, rather than comparing
against a pre-specified ground truth task structure
Gr, by synthesizing CALM and traditional causal
graph discovery algorithms (see Appendix C.4).

6 Related Work

Hypernym Prompting Hanna and Marecek
(2021) evaluated BERT on a variety of hypernym
prompts, finding that its performance in predict-
ing hypernyms varies considerably with respect
to the prompt. Ravichander et al. (2020) demon-
strated that this performance is not consistent even
for highly similar prompts: for example, making
plural substitutions (e.g., changing “an apple is a
[MASK]” to “apples are [MASK]s”), caused BERT’s
performance to drop precipitously. Finally, Ettinger
(2020) observed that BERT is almost totally insen-
sitive to negations in hypernym prompts (e.g., it
provides very similar predictions for prompts like
“A(n) z is a(n) [MASK]” and “A(n) x is not a(n)
[MASK]”). Our findings offer one possible explana-
tion for such brittle performance: BERT’s partial
competence in hypernym prediction indicates that
it should be possible to prompt it in a way that
will yield high performance, but that its reliance
on spurious lexical associations may lead it to fail
when these correlations are broken (e.g., by substi-
tuting singular terms for plurals or paraphrasing a
prompt).

Causal Probing Most related to our work is am-
nesic probing (Elazar et al., 2021b), which we dis-
cuss at length in Section 2.4. Lasri et al. (2022)

applied the amnesic probing methodology (using
INLP; Ravfogel et al., 2020) to study the use of
grammatical number representations in performing
an English verb conjugation prompt task. As this
experiment involves intervening on the representa-
tion of a property which is causal with respect to
the prompt task, it may be understood as informally
implementing a minimal CALM experiment (al-
beit without considering environmental properties,
measuring competence, etc.).

Gradient-based Interventions As discussed in
Section 2.4, our GBI methodology is inspired by
Kos et al. (2018)’s VAE-GAN attack strategy, re-
formulated in the context of causal LLM probing.
Tucker et al. (2021) developed a similar approach
without explicit use of gradient-based adversarial
attacks, but their methodology is equivalent to per-
forming a targeted, unconstrained’ attack using
standard gradient descent.

7 Conclusion

In this work, we proposed CALM, a general analy-
sis framework that enables the study of LLMs’ lin-
guistic competence using causal probing, including
the first quantitative measure of linguistic compe-
tence. We developed the gradient-based interven-
tion (GBI) methodology, a novel approach to causal
probing that can target a far greater range of repre-
sentations than previous techniques, expanding the
scope of causal probing to new questions in LLM
interpretability and analysis. Finally, using the GBI
instantiation of CALM, we carried out a case study
of BERT and RoBERTa’s competence across a col-
lection of lexical inference tasks, finding that even
a simple experimental model is sufficient to explain
and predict their behavior across a variety of lexical
inference tasks.

°Ie., they continue running gradient updates until the
targeted probe loss saturates, irrespective of resulting pertur-
bation magnitude. In such attacks, it is standard practice to
constrain the magnitude of resulting perturbations (Goodfel-
low et al., 2015; Madry et al., 2017; Kos et al., 2018), which
we do here in order to minimize the effect of “collateral dam-
age” done by such attacks (see Section 3); so failing to impose
such constraints may result in indiscriminate damage to repre-
sentations.



8 Limitations

Gradient-Based Interventions While GBIs are
applicable to a more general range of model repre-
sentations than other interventions (see Section 3),
this generality comes with a lack of constraints
on probes (gz); and as a result, GBIs cannot pro-
vide the strong theoretical constraints on collateral
damage as can methods like, e.g., INLP (Ravfogel
et al., 2020). To minimize collateral damage to rep-
resentations, the magnitude of perturbations should
be modulated via constraints on gradient attacks
against gz (see Section 4.4) and experimentally
validated to control the damage done to represen-
tations (see Appendix A.4). Thus, in cases where
the structure of representations is known to satisfy
strong assumptions (e.g., being restricted to a lin-
ear subspace) or strong upper bounds on collateral
damage are required, CALM interventions can be
implemented with methods like INLP rather than
GBIs.!?

Experiments In our experiments, we modeled the
14 LAMA ConceptNet tasks as representing fully
independent properties, which is not necessarily
true — e.g., knowing that a tree is made of bark or
contains leaves tells us something about whether
it’s a type of plant. However, in the aggregate (with
impacts summed across 14 widely-varying lexical
relation types in computing the final competence
score for each task; see Appendix B.2), it may
nonetheless be appropriate to treat the relations
which are not causal with respect to a given task as
collectively capturing spurious lexical associations.

19Tt may also be possible to control for collateral damage
by developing GBI strategies that offer more principled pro-
tection against damage to non-targeted properties. We leave
this possibility to future work.
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A Experimental Details

A.1 Simplified Environment

As noted in Section 4, our primary goal in our ex-
periments is to validate CALM by testing it in a
simplified experimental setting consisting of com-
paratively small, well-studied models and tasks. As
such, we need models that are just complex enough
for CALM to be applicable (i.e., neural language
models that are capable of performing the tasks we
consider at a nontrivial level of performance), mak-
ing BERT and RoBERTa ideal candidates; and in
future work plan to scale CALM to more complex
contexts covering larger, more powerful models as
they perform more difficult tasks (see Appendix C).
This is a common setting in the context of substan-
tial recent interpretability work: first, a theoretical
framework is developed for interpreting an internal
representation or mechanism and initially tested
in the context of “toy” models or tasks (Elhage
etal., 2021; Olsson et al., 2022; Zhong et al., 2023;
Geiger et al., 2023), and subsequent work scales
these frameworks to the context of larger models
“in the wild” (Wang et al., 2023b; Conmy et al.,
2023; Wu et al., 2023). We anticipate that all of our
major contributions (the CALM framework, com-
petence metric, and GBI causal probing method)
will in principle be scalable to much larger, more
recent LLMs (e.g., Zhang et al. 2022; BigScience
et al. 2022; Touvron et al. 2023a,b; Groeneveld et al.
2024, etc.), and predict that the main challenge will
be in finding an appropriate probing architecture
(see Pimentel et al. 2022).

A.2 Tasks

The full set of LAMA ConceptNet tasks is as fol-
lows: IsA, HasA, PartOf, HasSubEvent, MadeOf,
HasPrerequisite, MotivatedByGoal, AtLocation,
CausesDesire, NotDesires, CapableOf, UsedFor,
ReceivesAction, and HasProperty. We split each
task dataset into train, validation, and test sets with
a random 80%,/10%/10% split. Train and valida-
tion instances are fed to each model to produce
embeddings used to train gz and select hyperpa-
rameters, respectively; and test instances are used
to measure LLMs’ competence with respect to each
task by observing how predictions change under
various interventions. In all experiments, we re-
strict each model M’s output space for each task
T to the subset of vocabulary V), that occurs as
a ground-truth answer y* for at least one instance
(x,y*) ~ T in the respective task dataset. This
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lowers the probability of false negatives in evalua-
tion (e.g., penalizing the model for predicting § =
“mammal” for “a dog is a type of y” instead of y* =
“animal”).

A.3 Probes

We use BERT’s final layer L to encode hé embed-
dings for each such example, where 7 is the index
of the [MASK] token or target word in the input
prompt z;. To encode the [MASK] token, we is-
sue BERT masked prompts (as discussed above)
to extract hrwask], then repeat with the [MASK] to-
ken filled-in with the target word to encode it as
hy (e.g., “device” in “A laser is a device which
creates coherent light.”), and concatenate matching
embeddings h = (hwask3; h+) to produce positive
(y = 1) training instances. We also construct one
negative (y = 0) instance, h = (hpwask1; h—), for
each hpwasky by sampling an incorrect target word
x; corresponding to an answer to a random prompt
from the same task, feeding it into the cloze prompt
in the place of the correct answer, and obtaining
BERT’s contextualized final-layer embedding of
this token (h_). Finally, we train gz on the set of
all such (h,y).

We implement gz as a multi-layer perceptron
with 2 hidden layers, each with a width of 768
(which is one half the concatenated input dimen-
sion of 1536), using ReL.U activations and dropout
with p = 0.1, training it for 32 epochs using Binary
Cross Entropy with Logits Loss!! and the Adam
optimizer, saving the model from the epoch with
the highest validation-set accuracy for use in all
experiments.

For all competence results reported in Section 5,
we run the same experiment 10 times — each with a
different random initialization of gz and shuffled
training data — and report each figure as the average
among all 10 runs.

A.4 Interventions

For instance (h,y), classifier gz, loss function
L, and Lo-bound ¢ € {0.01,0.03,0.1,0.3}'2,
each intervention (gradient attack) g, may be
used to produce perturbed representations i’ =
9:(h,y, fas, L,€) where ||h — W||oo < € In

"https://pytorch.org/docs/stable/generated/
torch.nn.BCEWithLogitsLoss.html

12All reported results use € = 0.1, as greater ¢ resulted
in unacceptably high “collateral damage” across target tasks
(e.g., even random perturbations of magnitude ¢ = 0.3 do
considerable damage), and lesser values meant that predictions
changed on target tasks consisted of only a few test instances.


https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
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Task Competence: BERT and RoBERTa

Competence Score
s o o ©
N w s w

=]
-

o
o

Task

Figure 5: Competence of BERT (left bars) and
RoBERTa (right bars) for all tasks, using PGD with
€ = 0.1. Y-values are the average competence score and
error bars are the maximum and minimum competence
score, as measured over 10 experimental iterations (each
with a different randomly-initialized probe gz).

particular, given b = (hpwsky; he) € R2%, let
hiwasky be the first d dimensions of 2’ (which also
satisfies the L,,-bound with respect to hpwaski,
|[hrmask] — Prwaskallos < €). To measure BERT’s
use of internal representations of Z on each prompt
task, we evaluate its performance when perturbed
Riwask 18 used to compute masked-word predic-
tions, compared to unperturbed Auasky.

FGSM We implement Fast Gradient Sign Method
(FGSM; Goodfellow et al., 2015) interventions as

W =h+e- sgn(VpL( fas, x,y))

PGD We implement Projected Gradient Descent
(PGD; Bubeck et al., 2015; Madry et al., 2017)
interventions as o’ = h’ where

Rl — ) (ht + a - sgn(ViL( fas, 2, y)))

for iterations ¢ = 0,1,...,7T, projection opera-
tor II, and L-neighborhood N(h) = {h’
||h — 1/|| < €}. This method also introduces
two hyperparameters, the number of PGD itera-
tions 7' and step size . We use hyperparameter
grid search over a € {0.001,0.003,0.01,0.03}
and T' € {20, 40, 60, 80, 100}, finding that setting
a = {5 and T' = 40 produces the most consistent
impact on gz accuracy across all tasks; so we use
these values for the results visualized in Figure 5.

A.5 Compute Budget

BERT-base-uncased has 110 million parameters,
and RoBERTa-base has 125M parameters. As our
goal is to study the internal representation and use
of linguistic properties in existing pre-trained mod-
els, and we are not directly concerned with training
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or fine-tuning such models, we use these models
only for inference (including encoding text inputs,
using embeddings to train probes, and feeding inter-
vened embeddings back into the language models).
The only models we trained were probes gz, which
each had 1.77M parameters.

Each experimental iteration (including encoding
text inputs, training probes on all 14 tasks, and per-
forming all GBIs) for either BERT or RoBERTa
took less than one hour on a single NVIDIA
GeForce GTX 1080 GPU, meaning that running
all 10 iterations across both language models took
less than 20 hours on a single GPU. Each iteration,
probe, and GBI can easily be parallelized across
GPUs: in our case, running all iterations across
both models took less than 3 hours total across 8
GTX 1080 GPUs.

B Competence Metric

B.1 Comparison With ITA

As noted in Section 2.3, the C7(M|Gr) metric
defined in Equation (2) is an adaptation of the Inter-
change Intervention Accuracy (IIA) metric (Geiger
et al., 2022, 2023), which evaluates the faithfulness
of a causal abstraction like G as a (potential) ex-
planation of the behavior of a “black box” system
like M. In our case, this is equivalent to evaluating
the competence of M on task T, provided that G
is the appropriate SCM for T, as an LLM is com-
petent only to the extent that its behavior is deter-
mined by a causally invariant representation of the
task.'® IIA requires performing interchange inter-
ventions M (x;| do(z;)), where the part of M’s in-
termediate representation of input x; hypothesized
to encode latent variables Z (taking the values z;
when provided input x;) is replaced with that of x;
(which, in the ideal case, causes M ’s representation
to encode the values z; instead of z;), and compute
the accuracy of G7(x;| do(z;)) in predicting M’s
behavior under these interventions. Thus, given ac-
cess to high-quality interchange interventions over
M, ITA measures the extent to which G correctly
models M’s behavior under counterfactuals, and
thus its faithfulness as a causal abstraction of M.
To adapt IIA to the context of causal probing
and define C7(M|Gr), we replace instance-level

BFor many tasks, there is more than one valid G7 (see,
e.g., the “price tagging game” constructed by Wu et al. (2023)).
In such cases, C+(M|G7) should be computed with respect
to each valid G and the highest result should be selected, as
conforming to any such G carries the same implications.



interchange interventions with concept-level inter-
ventions: instead of swapping M’s representation
of variables Z given input x; with that of x;, we
intervene on representations at the level of arbi-
trary concept settings z that need not correspond to
previously sampled x, allowing us to simulate the
behavior of M under previously-unseen distribu-
tion shifts (i.e., settings z representing previously-
unseen combinations of property values) and there-
fore make broader predictions about M’s consis-
tency with a given causal model G under such
conditions. As one of the key desiderata in study-
ing LLM competence is to predict behavior under
distribution shifts where spurious correlations are
broken, Cy is more appropriate than ITA in this
setting. However, it also introduces an additional
challenge: where interchange interventions only
require localizing candidate representations — as
counterfactual representations are obtained merely
by “plugging in” values from a different input —
computing C instead requires one to both localize
representations and directly intervene on them to
change the encoded value. Previous causal probing
intervention strategies (e.g., Ravfogel et al., 2020,
2022) have generally performed interventions by
neutralizing concept representations, not modify-
ing them to encode specific counterfactual values;
so in order to carry out the proposed competence
study, it is also necessary to develop a novel ap-
proach to perform such interventions. We propose
our solution to this problem, gradient-based inter-
ventions (GBIs), in Section 3.

B.2 Experimental Competence Metric

To compute the expectation in Equation (2) for test
set {X;,yi,2z;}I"q ~ T x Z, we sum the compe-
tence score over all samples x; and perform one
intervention do(Z; = 0) corresponding to each
concept Z; € Z.'* As our goal is to measure the
extent to which M’s behavior is attributable to an
underlying representation of the causal property Z.
or environmental property Z € Z., our experimen-
tal model defines G7’s predictions with reference to
M’s original predictions M (x;) = y;, according to
the following principle: if M is competent, then its
prediction M (x;) = y; is wholly attributable to its

“Note that this intervention changes the prediction
G7(x3i) # G7(x4|do(Z; = 0)) if and only if (x;,y:) € T;
—i.e., where the corresponding (z;); = 1 — otherwise, (2;);
is already 0, so the intervention has no effect. Thus, as
C7(M|G7) measures M’s consistency with G, then to the
extent that M is competent, its prediction should change under
all and only the same interventions as G
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representation of causal property Z,, so its predic-
tions M (x;| do(Z.)) = y;’ will not overlap with
its original predictions y; (i.e., overlap(y;, ¥;')
0); and conversely, a competent M will make the
same predictions M (x;|do(Z;)) = y;” for any
Z; € Ze, because its prediction is not caused by
its representation of these environmental proper-
ties (i.e., overlap(y;, yi") 1). Motivated by
this reasoning, our experimental model defines
G7(xi|do(Z; = 0)) = M(x;) for environmen-
tal Z; € Z.; and for causal property Z., defines
Gr(xi| do(Ze = 0)) = {y/ € Vas : ¢/ & M(x;)}
(i.e., the set of all tokens ¢’ in M’s vocabulary
that were not in its original prediction M (x;)).
Thus, under experimental model F, we approxi-
mate C7(M|Gy) by computing Equation (3).

Notably, our experimental model E only ac-
counts for the relationship between M’s inter-
vened and non-intervened predictions, indepen-
dently of ground truth labels — instead, what is
being measured is M ’s consistency under meaning-
preserving interventions do(Z;/) and its mutabil-
ity under meaning-altering interventions do(Z;).
However, as we find in Section 5.1, the resulting
competence metric C7(M|Gr) is nonetheless use-
ful for predicting M’s accuracy.

C Future Work

C.1 Representation Learning

The CALM framework, competence measure, and
GBI methodology developed in Sections 2 and 3
are sufficiently general to be directly applied to
analyze arbitrary LLMs on any language modeling
task whose causal structure is already well under-
stood (or, for tasks where this is not the case, we
may apply the causal graph discovery approach de-
scribed in Appendix C.4), allowing us to study the
impact of various model architectures, pre-training
regimes, and fine-tuning strategies on the represen-
tations LLMs learn and use for arbitrary tasks of
interest.

C.2 Multitask Learning

Are high competence scores on task 7 correlated
with an LLMs’ robustness to meaning-preserving
transformations (see, e.g., Elazar et al., 2021a) on
tasks 7 that share several causal properties Z.
with task 7. Through the lens of causally invari-
ant prediction (Peters et al., 2016; Arjovsky et al.,
2019; Biihlmann, 2020), this hypothesis is likely
true (however, see Rosenfeld et al. 2020 for appro-



Cr(M|Gr) ~ ﬁ = overlap (M (xi| do(Z; = 0)), 67 (x] do(Z; = 0))

i=1 j=1

priate caveats) — if so, this would make it possible
to use clusters of related tasks to predict LLMs’
robustness (and other behavioral patterns, such as
brittleness in the face of distribution shifts intro-
duced by spurious dependencies) between related
tasks using CALM, given an appropriate experi-
mental model. Furthermore, the ability to charac-
terize tasks based on mutual (learned) dependency
structures could be valuable in transfer learning ap-
plications such as guiding the selection of auxiliary
tasks in multi-task learning (Ruder, 2017) or pre-
dicting the impact of intermediate task fine-tuning
on downstream target tasks (Choshen et al., 2022).

C.3 Task Dependencies

Another possible application of CALM concerns
causal invariance under multi-task applications. Ex-
isting approaches in invariant representation learn-
ing generally require task-specific training (Zhao
et al., 2022), as the notion of invariance is inher-
ently task-centric (i.e., the properties which are
invariant predictors of output values vary by task,
and different tasks may have opposite notions of
which properties are causal versus environmental;
see Section 2.2), so applying such approaches to
train models to be causally invariant with respect
to a specific downstream task 7 is expected to
come at the cost of performance on other down-
stream tasks 7’. Therefore, considering the re-
cent rise of open-ended, task-general LLMs (Zhang
et al., 2022; BigScience et al., 2022; Touvron et al.,
2023a,b; Groeneveld et al., 2024), it is important
to find alternative approaches for studying models’
causal dependencies in a task-general setting to
account for applications involving tasks with differ-
ent (and perhaps contradictory) causal structures,
such as CALM.

C.4 Causal Competence Graph Discovery

One of the key benefits of CALM is that, instead
of simply measuring consistency with respect to a
known, static task description G, the competence
metric in Equation (2) can also be used to discover
a competence graph G which most faithfully ex-
plains a model M’s behavior in a given task or
context (see Section 2.3) by computing C(M|G)
“in-the-loop” of existing causal graph discovery
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3)

algorithms like IGSP (Yang et al., 2018). Such al-
gorithms can be used both to suggest likely compe-
tence graphs based on interventional data collected
by running CALM experiments, to recommend the
experiments that would yield the most useful inter-
ventional data for the graph discovery algorithm,
and to evaluate candidate graphs G using the pro-
posed competence metric, terminating the graph
discovery algorithm once a competence graph G
that offers sufficiently faithful explanations of M’s
behavior has been found. In this case, it is still
necessary to define the set of properties Z being
probed and the scoring function S used to com-
pare the predictions of M and G; but no knowledge
of the causal dependencies (or structural functions
F : pa(Z;) — Z; mapping from causal parents
pa(Z;) to causal dependents Z;; see Bongers et al.
2021) is required.
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