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Abstract

The high cost of obtaining accurate annotations for image segmentation and lo-1

calization makes the use of one and few shot algorithms attractive. Several state-2

of-the-art methods for few-shot segmentation have emerged, including text-based3

prompting for the task but suffer from sub-optimal performance for medical images.4

Leveraging sub-pixel level features of existing Vision Transformer (ViT) based5

foundation models for identifying similar region of interest (RoI) based on a single6

template image have been shown to be very effective for one shot segmentation and7

localization in medical images across modalities. However, such methods rely on8

assumption that template image and test image are well matched and simple correla-9

tion is sufficient to obtain correspondences. In practice, however such an approach10

can fail to generalize in clinical data due to patient pose changes, inter-protocol11

variations even within a single modality or extend to 3D data using single template12

image. Moreover, for multi-label tasks, the RoI identification has to be performed13

sequentially. In this work, we propose foundation model(FM) based adapters for14

single label, multi-label localization and segmentation to address these concerns.15

We demonstrate the efficacy of the proposed method for multiple segmentation and16

localization tasks for both 2D and 3D data as we well as clinical data with different17

poses and evaluate against the state of the art few shot segmentation methods.18

1 Introduction19

Most of radiology tasks necessitate localization of anatomy or landmark, and lesion, which is20

laborious, repetitive and prone to errors, especially due to variations in patient pose, conditions, and21

disease. Advances in Artificial Intelligence(AI) has simplified the effort by utilizing various deep22

learning paradigms (supervised training, transfer learning, active learning) to automate the tasks for23

localization and landmarking. Most of these approaches are data driven and the burden and associated24

risks have shifted from end-application user to AI developer for getting data manually annotated for25

further usage.26

There is emerging body of work on performing few shot segmentation aiming to train Deep Learn-27

ing(DL) network with only few annotated datasets. Recent advancements in the ability of ViT based28

and Diffusion based models [1] for obtaining point correspondences have shown great promise in29

leveraging pixel level similarity for region correspondences between pairs of images [2]. A recent30

work [3] demonstrates the utility of using such feature correspondences for localization of landmarks31

in medical images as well as obtaining organ segmentation by chaining it with SAM [4].32

However, most of these one-shot methods are based on 2D images and expect that the template33

or exemplar image are well matched to the new test image for correspondence matching. In our34

experience, such methods do not scale well for 3D imaging volume nor in cases where image35

representation between exemplars and test data are mismatched due to geometric changes, protocol36
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changes or disease conditions. To overcome these limitations, in this paper, we propose to leverage37

sub-image level features derived from fine-tuned foundation models and by training a lightweight38

task adapter, using the derived pixel-features for obtaining multi-label localization which generalizes39

well across these challenges.40

2 Method41

Previous work [3], [1] on few-shot segmentation or localization have relied on template and target42

images being similar in structure and contrast as captured in feature semantics. To segment similar43

regions as marked in template, the features obtained at pixel level from ViT models are correlated44

using similarity metric and further thresholded to localize the region of interest [5]. However,45

obtaining this threshold is not trivial due to large variations in image intensity (including across46

slices) (See Fig. 1) and contrast (due to site based intra-protocol changes) observed in imaging47

data in clinical practice. This impacts the segmentation results in multiple ways: a) For given48

imaging volume in a subject, multiple templates have to be chosen to get reliable segmentation to49

accommodate intensity changes across slices and b) Inability to scale segmentation reliably across the50

diverse pool of imaging data due to various patient conditions or site specific imaging protocols. The51

need for manual tuning hinders practical adoption of template based few shot region segmentation52

and a method is acutely needed to overcome this.53

In this work, we designed a contrastive learning based adapter which is trained to automatically54

determine which of the pixel level feature vectors in target image are similar to the template pixel55

level feature vector for given set of ground-truth label(s); thereby obviating the need for user to fix56

any threshold. We hypothesize that the proposed contrastive adapter is better at discriminating learnt57

representation even when intensity appearance/ViT features are almost homogeneous.58

The main contribution of our work is to utilize the features provided by foundation models (fine-tuned59

DINOv2) to enable accurate segmentation/localization using one or few template images. To enable60

this in clinical settings we do the following a) train a Siamese architecture based contrastive learning61

adapter to learn robust feature matching metric b) ability to enable multi distinct region localization62

simultaneously using a single model, c) Ability to generate automatic prompts for SAM model to63

obtain refined segmentation and d) by virtue of this, ability to annotate 3D volumes with minimal64

templates.65

Figure 1: The differences in image intensity distributions of a cohort of MRI data for knee and
shoulder is shown here. We observe heterogeneity in distributions across cases which will necessitate
manual threshold adaptation, which is overcome with our proposed approach.

Transformer architectures enable deriving patch level features for images, which can be interpolated66

to pixel level features [3]. Next, we utilize these pixel level features to correlate the region marked in67

template image with similar region in target image.68

Basic adapter: A straightforward approach to obtain this would be to correlate template image pixel69

feature vector with the feature vectors for each of the pixels in the target image using cosine similarity70

measure and threshold the correlation map at a fixed heuristic threshold (= 0.5) to obtain the binary71

localization mask. This is referred to as basic adapter and involves no training. The basic adapter is72

not well suited to account for variations in clinical data or multi-label tasks and hence we design two73

more sophisticated trained adapters to handle these limitations, as described below.74
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Classification adapter: The Classification adapter is a lightweight feed-forward three layer neural75

network, taking as input the pixel features and trained with a cross-entropy loss function. During76

inference, pixel level features for all pixels in the target image are fed to the model to obtain the pixel-77

wise binary or multi-label localization mask. The localization mask is subject to connected component78

analysis to remove any stray/isolated pixels.We find that following this simple classification approach79

leads to sub-optimal results (especially in MRI data) as discussed in the experimental section.80

We have trained both binary and multi-label localization classifiers as described below: a) Binary81

localization: We train a binary classifier to label pixels within an ROI as foreground and randomly82

selected pixels outside the ROI (matching the number of pixels in foreground to maintain class83

balance) as background shown in Fig. 2. b) Multi-label localization: We define a background as set of84

pixels not belonging to any of the multi-label ROI. We then train a multi-class classifier to label pixels85

belonging to different ROI labels and background (i.e number of classes = number of labels+1).86

Figure 2: The pixels within the RoI are considered as label 1 and outside as label 0. A simple classifier
is trained to predict the labels of the pixels from the feature vectors, derived from the trained DINOv2
model.

Contrastive adapter: We follow the Siamese architecture with a contrastive loss (cross-entropy loss)87

as described in Eq [8] from [6]. The network design is shown in Fig. 4(a) for binary localization and88

in Fig 4(b) for multi-label localization. It consists of two fully connected lightweight feed-forward89

neural network (Fig. 4) with shared weights. The outputs of the two sub-networks are concatenated90

and fed to the softmax layer.91

Figure 3: We choose pairs of pixels from the RoI (red markers) as positive pair pixels. Whereas
we choose a pixel from the RoI (red) and a pixel outside the RoI (blue) and pair them as negative
pixels for contrastive learning. In our experiments, we have chosen the negative pixel 10 pixel away
from the RoI but in our further experiments we found that choosing negative pixels anywhere in the
non-RoI region do not hamper the results.

a) Binary localization: We consider pairs of pixels to be positive if both belong to the same RoI. We92

create negative pair pixels by choosing one pixel from RoI and another random pixel from outside93

the RoI as shown in Fig. 3. Feature vectors corresponding to pairs of positive and negative pixels are94

passed through the sub-networks, as shown in the Fig. 4 (a), to predict how similar the input pair95

feature vectors are with each other. This is achieved by minimizing the distance between positive96

pairs and maximizing distance between negative pairs. We train the model with cross-entropy loss97

function to obtain the binary mask as localization map.98

b) Multi-label localization (Fig. 4 (b)): For a given label RoI, we consider pairs of pixels to99

be positive if both belong to the same RoI. Negative pairs are created by choosing one-pixel in100

chosen label ROI and one outside the chosen label ROI. This process is repeated for all the labels101

in consideration. We train the contrastive model with these paired pixel features using contrastive102
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Figure 4: Contrastive similarity model for binary label localization (a): The contrastive model consists
of two subnetworks. Pairs of positive pixels (red markers) are chosen from the RoI (shoulder tibia)
and negative pairs - one from RoI and the other from outside the RoI (green marker). Feature vectors
for pairs of pixels are derived from the finetuned DINOv2 ViT model. Feature vector pairs are passed
to the network to learn the similarity measure for localization by minimizing the distance between
the positive pairs and maximizing the distance between the negative pairs. The model is trained with
cross-entropy loss function to obtain localization map to alleviate the thresholding. (b) Extension
of proposed approach for multi-label localization: Multiple -labels for knee localization are shown
here: TT (red box), patella (green box), and UPT (blue box). For each landmark paired positive and
negative pixel pairs are sampled. The contrastive model is trained with these paired pixel features
using cross-entropy loss.

loss to obtain the softmax probability distribution. The index of the softmax distribution with highest103

probability is associated with the corresponding label.104

Figure 5: Inference procedure for localization and segmentation: Feature vectors for pixels from
RoI in template image are derived using ViT and treated as template/reference pixel feature vectors.
Similarly, feature vectors for all pixels in target image are computed. Reference and target feature
vectors are paired and given as input to contrastive model to obtain localization region. The output
undergoes a connected component analysis to remove stray/isolated pixels. From the localized region,
ten pixels are randomly chosen and used as prompts to SAM for refined segmentation

During inference for Contrastive adapter, as shown in Fig. 5, we choose reference pixels from each105

label RoI and compute the feature vectors and treat them as template feature vectors for that RoI.106

Similarly, for the target slice, we compute the feature vectors for all the pixels. We pair each template107

feature vector with all the feature vectors from the target image and pass the pairs to the appropriate108

contrastive model (binary or multi-label), which then assigns label(s) to each pixel in target image109
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according to the highest probability value from the softmax distribution. Note from Fig. 5 that110

reference pixel feature vector is fed to the upper Feed Forward Neural network (FFN) while target111

pixel feature vector is fed to the lower FFN. The localization mask is subject to connected component112

analysis to remove any stray/isolated pixels. If the task is landmark localization, this is the final113

output. If the task is segmentation of structure, we randomly choose ten pixels from localized region114

and prompt the SAM to refine the segmentation of the object of interest. The output of SAM is the115

final segmentation task output.116

The simultaneous multi-label localization using a single model using the proposed contrastive method117

is shown in the Fig. 6, using a single adapter by comparison with pixel from RoI in source image.118

Figure 6: Multi-label localization inference: During inference, each pixel feature in the target image
along with the features from the RoI from source are passed to the adapter. The result is the probability
distribution over all the labels - the highest probable label is chosen as the label per pixel.

3 Experiments and Results119

We evaluate the efficacy of the proposed few-shot method for five different medical 3D image tasks,120

two of them for segmentation and three for localization. To benchmark the performance, we compare121

the results with recently proposed and popular few shot methods such as UniverSeg [7] and PerSAM122

[4]. Both of these methods enable users to tackle new segmentation task without the need to train or123

fine-tune a model, adapting to a new segmentation task at inference based on few sample examples.124

For PerSAM and basic adapter based localization methods (which are designed for binary tasks), for125

multi-label tasks, we aggregate the predictions using each label in the template pool.126

3.1 Datasets & Metrics127

DINOv2 training: DINOv2 model was trained on a pool of 12000 MRI image volumes, acquired128

in-house on a range of MRI scanners (1.5T, 3T) and across anatomies. This model was used to extract129

pixel-level features for the proposed methods described in the paper.130

Proposed Experiments: We evaluate the trained different customized adopters on five datasets. a)131

Shoulder segmentation on MRI 3-plane stack (in house): A set of 43 image volumes comprising132

of axial, coronal and sagittal orientations are used for segmentation task. For few shot prediction133

using the proposed approach and parallel methods, five volumes were used for training the binary134

adapters. b) CT Liver 3D segmentation [8]: 10 volumes chosen from TotalSegmentator dataset135

were used along with their liver mask for evaluation. All axial images containing liver from five136

CT volumes were used for training the binary adapters. c) Whole Body MRI Localizer Images (in137

house): A set of five whole-body image volumes were evaluated for identification of three different138

landmark points across slices: i) Wholebody interface between lung and neck (WILN) ii) inferior139

to costophrenic angle (WICA) iii) top of illiac crest (WIC). Four volumes were used for training140

the binary adapters d) MRI Knee Sagittal multi-label Localization (clinical site data): A set of 8141

sagittal knee volumes were evaluated for localization of three specific landmarks: i) Knee Patella142

Base(KPB), ii) Knee Apex Lateral (KAL), iii) Knee patellar ligament insertion point (KPLIP). This143

is a task where multiple types of landmarks were detected and hence as a multi-label contrastive144
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learning approach was adopted. Seven slices containing the landmarks were used for training the145

multi-label adapters. e) CT Headneck [9]: We perform localization of the i) pairs of eyes (HNEye),146

ii) pairs of optic nerve (HNON) and iii) optic chiasm (HNOC) on CT head-neck 3D image volumes.147

Five axial CT images were used for training multi-label adapters. 10 CT axial volumes were used for148

testing landmark localization.149

3.2 Details on Training and Inference150

The above tasks have been chosen to demonstrate fairly good generalization of approach across151

modalities (MR & CT) and tasks (segmentation & localization). For the in-house datasets the ground-152

truth (GT) was generated by a trained radiologist. To evaluate performance for segmentation tasks,153

we compute the intersection over union (IoU) measure [10] between GT and predictions and for154

localization task we use localization accuracy Eq. [11] - which measures the ratio of cases for which155

the euclidean distance between the ground truth and the predicted landmarks are below ten pixels.156

Method KPB KAL KPLIP WILN WICA WIC HNEye HNON HNOC
Universeg 0.75 0.375 0.521 0.71 0.462 0.265 0.728 0.198 0.35
PerSAM 0.21 0.248 0.276 0.319 0.358 0.212 0.54 0.34 0.31
Basic Adapter 0.5 0 0 0.71 0.312 0.422 0.212 0.310 0.127
Classification Adapter 0.25 0.375 0.375 0.562 0.187 0.322 0.761 0.811 0.684
Contrastive Adapter 0.88 0.88 0.77 0.812 0.45 0.733 0.813 0.534 0.631

Table 1: Comparison of localization accuracy for MR Knee, MR WholeBody (WB) and CT HeadNeck
(HN) landmarks detection tasks via different methods.

3.3 Results157

The qualitative visualization of the proposed contrastive adapter for multiple-label localization and158

segmentation is shown in Figs 7 and 8, respectively. We notice that there are no false positives on159

slices which do not contain the anatomy of interest in the image stack (shown using green arrows)160

and the localization are sharp and constrained within the RoI.161

Figure 7: Output of localization of the 3 knee landmark points obtained from contrastive multi-label
adapter based on landmarks on template image (left panel). Notice excellent localization of landmarks
across knee slices and capability to prevent localization on slices which do not contain knee anatomy
(green arrows). All the landmarks are predicted in single shot by the proposed method.

Fig. 9 shows results of localization of different landmarks for wholebody and CT Headneck anatomies162

and accurate localization results are observed in all cases.163

We show the differences in the qualitative results obtained using basic adapter and classification164

adapter as compared to the contrastive adapter, using the MRI shoulder as an example. Considering165

3D volumes, where the appearance of a desired RoI can vary across slices and taper towards the ends,166

Fig. 10 shows the localization masks obtained using the classification adapter on the entire shoulder167

volume. Multiple false positives on slices are observed as described in the Fig. 10.168
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Figure 8: The left panel shows the output of localization obtained from contrastive adapter. We notice
excellent localization capability across slices and orientations (1st row = sagittal and 2nd row = axial),
including true negative capabilities (not localizing regions which are not part of template for that
anatomy) as indicated by green arrows. However as indicated by red arrows, the localization does not
cover the entire anatomy. Therefore, we chain the output of localization mask as prompts to SAM
model, which generates complete anatomy segmentation.

Figure 9: Localization outputs for wholebody(WIC,WILN) and CT Headneck(HNEye) using the
proposed contrastive adapter

The qualitative comparison between localization obtained through basic adapter and the contrastive169

adapter localization is shown in the Fig. 11. We can see the vast improvement in avoiding false170

positive and negative using contrastive adapter as compared to basic adapter.171

We explored several prompting strategies for SAM from the RoI obtained through the proposed172

approach. Fig. 12 shows a quantitative comparison of the different strategies. It was found that 10173

randomly chosen pixels from localized region prompts was the optimal in terms of quality of results174

and was adopted for all our experiments.175

Table 1 shows the results of evaluation of the different approaches for localization tasks, for nine176

different landmarks across multiple anatomies and modalities. Localization accuracy is a measure of177

average binary agreement for the given predicted landmark to be within 10 pixels of GT pixels. In most178

of the landmarks, we notice that our proposed contrastive adapter outperforms other methods except179

for WICA, where it is marginally lower than Universeg. We notice that basic adapter performs poorly180

since it is based primarily on simple cosine distance-based similarity metric which is thresholded181

at a fixed value (=0.5). Changing the threshold can improve the accuracy, but also results in large182

false-positives and is automatically discarded by the post-processing scheme. Classification adapter183

performs reliably in CT datasets which have standardized intensity values and hence therefore less184

impact on feature variability. However, in MRI datasets, the intensity variations are large (as seen in185
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Figure 10: Localization masks obtained by the classification adapter for shoulder localization on
the entire shoulder volume is shown in this figure. We observe that the classification adapter results
in false positives by localizing on the slices where shoulder bone is not present (slice 1, 4, 5, 6, 7).
Further, prompting the SAM with the wrong pixels from the false positive pixels results in wrong
segmentation.

Figure 11: Qualitative comparison between simple cosine similarity measure and proposed contrastive
method is shown here for MR Shoulder. The cosine similarity measure for localization results in false
positives and false negatives as highlighted. The proposed contrastive method, trained to contrast
between positive and negative pair of pixels results in improved localization quality.

Fig 1) and consequently we notice poor performance in all the MRI tasks. We reason that this is due186

to inability of classification adapter to impose similarity matching condition for pixels belonging to187

same ROI. The contrastive adapter on virtue of being able to cluster semantically similar features188

vectors results in robust performance in most of the cases; especially in MRI datasets.189

Table 2 presents the results for segmentation tasks. As is evident from the IoU metric, the proposed190

method performs the best for both the tasks across anatomies and modalities (MR, multi-orientation191

for shoulder segmentation and CT-axial for liver segmentation). This is due to ability of our proposed192

contrastive adapter to leverage the localization capabilities of ViT and learn the ROI similarities for a193

given task by pulling the similar pixel feature vectors closer despite intensity variations in images194

and pushing the non-ROI pixel feature vectors away; despite similarities of regions in intensity space195

(See Fig. 11 ). Without the contrastive adapter, we notice that the localization capabilities of ViT196

alone cannot reliably avoid false positives and negatives due to overlap of intensity or contrast of197

structures (e.g. fat in bone marrow vs fat in skin layer) (See Fig. 11).198

Method Liver IoU Shoulder IoU
Universeg 57.75 61.3
PerSAM 43.03 55.8
Basic Adapter 35 51.5
Classification Adapter 57 49.1
Contrastive Adapter 82 86.6

Table 2: Comparison of IoU for segmentation tasks among different methods across liver and shoulder
anatomies.
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Figure 12: Comparison of multiple strategies adopted for prompting SAM after obtaining localization.
We can see that the SAM prompted by box prompt created by creating a box around the predicted
localization results in poor segmentation compared to randomly choosing ten pixels as prompts with
in the automatically localized regions. Empirically we found that ten pixels are more than sufficient
to obtain the acceptable segmentation.

4 Conclusion199

We introduce a method for few-shot multi-label localization and segmentation of medical image200

volumes, utilizing robust contextual feature vectors extracted from transformer models trained on201

medical data. These models use a few template image for localization of all volumes to produce202

segmentation or localization outputs. To account for variability within the data and consequently203

feature vectors which impact heuristic threshold based methods, for initial localization of images,204

we proposed a contrastive similarity metric learning model, extending it by adopting a multi-label205

contrastive strategy for enabling tasks with multiple labels. As compared to the state-of-the-art206

methods for few-shot segmentation/localization not requiring in-domain training, the proposed207

contrastive adapter approach is superior for both segmentation and localization tasks.208
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