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ABSTRACT

The symmetric generalized eigenvalue problem (SGEP) is a fundamental concept
in numerical linear algebra. It captures the solution of many classical machine
learning problems such as canonical correlation analysis, independent compo-
nents analysis, partial least squares, linear discriminant analysis, principal com-
ponents and others. Despite this, most general solvers are prohibitively expensive
when dealing with streaming data sets (i.e., minibatches) and research has instead
concentrated on finding efficient solutions to specific problem instances. In this
work, we develop a game-theoretic formulation of the top-k SGEP whose Nash
equilibrium is the set of generalized eigenvectors. We also present a parallelizable
algorithm with guaranteed asymptotic convergence to the Nash. Current state-of-
the-art methods require O(d2k) runtime complexity per iteration which is pro-
hibitively expensive when the number of dimensions (d) is large. We show how to
modify this parallel approach to achieve O(dk) runtime complexity. Empirically
we demonstrate that this resulting algorithm is able to solve a variety of SGEP
problem instances including a large-scale analysis of neural network activations.

1 INTRODUCTION

This work considers the symmetric generalized eigenvalue problem (SGEP),

Av = �Bv (1)

where A is symmetric and B is symmetric, positive definite. While the SGEP is not a common sight
in modern machine learning literature, remarkably, it underlies several fundamental problems. Most
obviously, when A = X

>
X , B = I , and X is a data matrix, we recover the ubiquitous SVD/PCA.

However, by considering other forms of A and B we recover other well known problems. In general,
we assume A and B consist of sums or expectations over outerproducts (e.g., X>

Y or E[xy>]) to
enable efficient matrix-vector products. These include, but are not limited to:

Canonical Correlation Analysis (CCA): Given a dataset of paired observations (or views)
x 2 Rdx and y 2 Rdy (e.g., gene expressions x and medical imaging y corresponding to the
same patient), CCA returns the linear projections of x and y that are maximally correlated. CCA
is particularly useful for learning multi-modal representations of data and in semi-supervised learn-
ing (McWilliams et al., 2013); it is effectively the multi-view generalization of PCA (Guo & Wu,
2019) where A and B contain the cross- and auto-covariances of the two views respectively:

A =

"
0 E[xy>]

E[yx>] 0

#
B =

"
E[xx>] 0

0 E[yy>]

#
. (2)

⇤Asterisk denotes equal contribution.
†Work done while at DeepMind.
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Independent Component Analysis (ICA): ICA seeks the directions in the data which are most
structured, or alternatively, appear least Gaussian (Hyvärinen & Oja, 2000). A common SGEP
formulation of ICA uncovers latent variables which maximize the non-Gaussianity of the data as
defined by its excess kurtosis. ICA has famously been proposed as a solution to the so-called cocktail
party source-separation problem in audio processing and has been used for denoising and more
generally, the discovery of explanatory latent factors in data. Here A and B are the excess kurtosis
and the covariance of the data respectively (Parra & Sajda, 2003):

A = E[hx, xixx>]� tr(B)B � 2B2
B = E[xx>]. (3)

Normalized Graph Laplacians: The graph Laplacian matrix (L) is central to tasks such as spec-
tral clustering (A = L, B = I) where its eigenvectors are known to solve a relaxation of min-
cut (Von Luxburg, 2007). Alternatives, such as the random walk normalized Laplacian (A = L,
B is the diagonal node-degree matrix), approximate other min-cut objectives. These normalized
variants, in particular, are important to computing representations for learning value functions in
reinforcement learning such as successor features (Machado et al., 2017a; Stachenfeld et al., 2014;
Machado et al., 2017b), an extension of proto-value functions (Mahadevan, 2005) which uses the
un-normalized graph Laplacian (A = L, B = I).

Partial least squares (PLS) can be formualted similarly to CCA and finds extensive use in chemo-
metrics (Boucher et al., 2015), medical domains (Altmann et al., 2021) and beyond (McWilliams &
Montana, 2010). Likewise, linear discriminant analysis (LDA) can be formulated as a SGEP and
learns a label-aware projection of the data that separates classes well (Rao, 1948). More examples
and uses of the SGEP can be found in (Bie et al., 2005; Borga et al., 1997). We now shift focus to
the mathematical properties and challenges of the corresponding SGEP.

In this work, we assume the matrices A and B above can either be defined using expectations under
a data distribution (e.g., Ex⇠p(x)[xx

>]) or means over a finite sample dataset (e.g., 1
nX

>
X where

X 2 Rn⇥dx ). In either case, we typically assume the data has mean zero unless specified otherwise.

Note that the SGEP, Av = �Bv, is similar to the eigenvalue problem B
�1

Av = �v. There are
two reasons for working with the SGEP instead: 1) inverting B is prohibitively expensive for a large
matrix and 2) while A and B � 0 are symmetric, B�1

A is not, which hides useful information about
the eigenvalues and eigenvectors (they are necessarily real and B-orthogonal). This also highlights
that the SGEP is a fundamentally more challenging problem than SVD and why a direct application
of previous game-theoretic approaches such as (Gemp et al., 2021; 2022) is not possible.

The complexity of solving the SGEP is O(d3) where d is the dimension of the square matrix A

(equiv. B). Several libraries exist for solving the SGEP in-memory (Tzounas et al., 2020). There is
also a vast numerics literature we cannot do justice that considers large matrices (Sorensen, 2002).

We specifically focus on the stochastic, streaming data setting which is of particular interest to
machine learning methods which learn by iterating over small minibatches of data (e.g., stochastic
gradient descent). Under this setting, machine learning research has developed simple approximate
solvers for singular value decomposition (SVD) that scale to very large datasets (Allen-Zhu & Li,
2017b). Similarly, in this work, we contribute a simple, elegant solution to the SGEP, including

• A game whose Nash equilibrium is the top-k SGEP solution,

• An easily parallelizable algorithm with O(dk) per-iteration complexity relying only on
matrix-vector products,

• An empirical analysis of neural similarity on activations 1000⇥ larger than prior work.

The game and accompanying algorithm are developed synergistically to achieve a formulation that
is amenable to analysis and naturally leads to an elegant and efficient algorithm.

2 GENERALIZED EIGENGAME: PLAYERS, STRATEGIES, AND UTILITIES

In this work, we take the approach of defining the top-k SGEP as a k-player game. It is an open
question how to define a k-player game appropriately such that key properties of the SGEP are
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captured1. As argued in previous work (Gemp et al., 2021; 2022), game formulations make obvious
how computation can be distributed over players, leading to high parallelization, which is critical
for processing large datasets. They have also clarified geometrical properties of the problem.

Specifically, we are interested in solving the top-k SGEP which means we are interested in finding
the (unit-norm) generalized eigenvectors vi associated with the top-k largest generalized eigenval-
ues �i. Therefore, let there be k players denoted i 2 {1, . . . , k}, and let each select a vector v̂i
(strategy) from the unit-sphere S

d�1 (strategy space). We define player i’s utility function condi-
tioned on its parents (players j < i) as follows:

ui(v̂i|v̂j<i) =

generalized
Rayleigh Quotientz }| {
hv̂i, Av̂ii

hv̂i, Bv̂ii
�

X

j<i

hv̂j , Av̂jihv̂i, Bv̂ji
2

hv̂j , Bv̂ji
2hv̂i, Bv̂ii

(4)

= �̂i|{z}
reward

�

X

j<i

�̂jhŷi, Bŷji
2

| {z }
penalty

where ŷi =
v̂i

||v̂i||B
, (5)

�̂i =
hv̂i,Av̂ii
hv̂i,Bv̂ii

, and ||z||B =
p
hz,Bzi.

Player i’s utility has an intuitive explanation. The first term is recognized as the generalized Rayleigh
quotient which can be derived by left multiplying both sides of the SGEP (v>Av = �v

>
Bv)

and solving for �. Note that the generalized eigenvectors are guaranteed to be B-orthogonal, i.e.,
v
>

i Bvj = 0 for all i 6= j (Appx. A Lemma 3). Therefore, the reward term incentivizes players to
find directions that result in large eigenvalues, but are simultaneously penalized for choosing direc-
tions that align with their parents (players with index less than i, higher in the hierarchy). Finally,
the penalty coefficient �̂j serves to balance the magnitude of the penalty terms with the reward term
such that players have no incentive to “overlap” with parents. In Appx. B Proposition 4, we derive
these same utilities via a deflation perspective. Next, we formally prove these utilities are well-posed
in the sense that, given exact parents, their optima coincide with the top-k SGEP solution.
Lemma 1 (Well-posed Utilities). Given exact parents and assuming the top-k eigenvalues of B�1

A

are distinct and positive, the maximizer of player i’s utility is the unique generalized eigenvector vi
(up to sign, i.e., �vi is also valid).

Note that �̂i =
hv̂i,Av̂ii
hv̂i,Bv̂ii

= hv̂i/||v̂i||B ,Av̂i/||v̂i||Bi

hv̂i/||v̂i||B ,Bv̂i/||v̂i||Bi
= hŷi,Aŷii

hŷi,Bŷii
, therefore, the results above still hold

for utilities defined using vectors constrained to the unit ellipsoid, ||ŷi||B = 1, rather than the unit-
sphere, ||v̂i||I = 1. However, in our setting, B is a massive matrix which can never be explicitly
constructed and instead only observed via minibatches. It is then not clear how to handle the con-
straint ||ŷi||B = 1. We therefore only consider an approach that assumes ||v̂i||I = 1.

Next, we provide intuition for the shape of these utilities. Surprisingly, while non-concave, we prove
analytically in Appx. B that they have a simple sinusoidal shape. A numerical illustration is given
in Figure 1 to help the reader visualize this property.
Proposition 1 (Utility Shape). Each player’s utility is periodic in the angular deviation (✓) along
the sphere. Its shape is sinusoidal, but with its angular axis (✓) smoothly deformed as a function of
B. Most importantly, every local maximum is a global maximum.

Figure 1 illustrates a primary difficulty of solving the SGEP over SVD. Due to the extreme differ-
ences in curvature caused by the B matrix, the SGEP should benefit from optimizers employing
adaptive per-dimension learning rates. To our knowledge, this 1-d visualization of the difficulty of
the SGEP is novel and we exploit this insight in experiments.

Finally, we formally define our proposed game and prove its equilibrium constitutes the top-k SGEP
solution. We use the Greek letter gamma to denote generalized, and we differentiate between the
game and the algorithm with upper � and lower case � respectively.
Definition 1 (�-EigenGame). Let �-EigenGame be the game with players i 2 {1, . . . , k}, their
strategy spaces v̂i 2 S

d�1, and their utilities ui as defined in equation (48).
1The Courant-Fischer min-max principle poses the ith generalized eigenvalue as the solution to a two-player,

zero-sum game (Parlett, 1998)—see Appx. A.2 for further discussion.
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Figure 1: Each player’s utility is a sinusoid on the sphere warped tangentially along the axis of
angular deviation according to B; values for A and B used in this example are given in Appx. B.
Three mathematical representations of the utility are plotted; their equivalence is supported by the
overlapping curves. If player 2 aligns with the top eigenvector (dashed vertical), they receive zero
utility. If they align with the second eigenvector (solid vertical), they receive �2 (optimal) as reward.
If B = I as in SVD/PCA, the vertical lines indicating the minima and maxima would be separated
by exactly 90�. In this case, the matrix B redefines what it means for two vectors to be orthogonal
(hv̂i, Bv̂ji = 0), so that the vectors are 71� (equivalently, 180� � 71� = 109�) from each other.

Theorem 1 (Nash Property). Assuming the top-k generalized eigenvalues of the generalized eigen-
value problem Av = �Bv are positive and distinct, their corresponding generalized eigenvectors
form the unique, strict Nash equilibrium of �-EigenGame.

Proof. Lemma 1 proves that each generalized eigenvector vi (i 2 {1, . . . , k}) is the unique best
response to v�i, which implies the entire set constitutes the unique Nash equilibrium.

3 ALGORITHM: UNBIASED PLAYER UPDATES AND AUXILIARY VARIABLES

Given that �-EigenGame suitably captures the top-k SGEP, we now develop an iterative algorithm
to approximate its solution. The basic approach we take is to perform parallel gradient ascent on
all player utilities simultaneously. We focus on this approach in particular because it aligns with
the predominant machine learning paradigm and hardware. We will first write down the gradient of
each player’s utility and then introduce several simplifications for the purpose of enabling unbiased
estimates in the stochastic setting.

Up to scaling factors, the gradient of player i’s utility function with respect to v̂i is

(v̂>i Bv̂i)Av̂i � (v̂>i Av̂i)Bv̂i

hv̂i, Bv̂ii
2

�

X

j<i

�̂j

hv̂j , Bv̂ji
(v̂>i Bv̂j)

⇥
hv̂i, Bv̂iiBv̂j � hv̂i, Bv̂jiBv̂i

⇤

hv̂i, Bv̂ii
2

. (6)

See Lemma 5 in Appx. B for a derivation of the gradient. Recall that B is a matrix that we intend to
estimate with samples, i.e., it is a random variable, and it appears several times in the denominator
of the gradient. Obtaining unbiased estimates of inverses of random variables is difficult (e.g., the
naive approach gives an overestimate; E[1/x] � 1/E[x] by Jensen’s inequality). We can remove
the scalar hv̂i, Bv̂ii

2 in the denominator because it is common to all terms and will not change the
direction of the gradient nor the location of fixed points; this step is critical to the design of our
stochastic algorithm which we will explain later. We also use the following two additional relations:

(i) �̂jhv̂i, Bv̂ji = hv̂i, Av̂ji if player i’s parents match their true solutions, i.e., v̂j<i = vj<i,

(ii)
p
hv̂j , Bv̂ji = ||v̂j ||B is strictly positive and real-valued because B � 0,

to arrive at the simplified update direction

r̃i =

rewardz }| {
(v̂>i Bv̂i)Av̂i � (v̂>i Av̂i)Bv̂i�

X

j<i

penaltyz }| {
(v̂>i Aŷj)

⇥
hv̂i, Bv̂iiBŷj � hv̂i, BŷjiBv̂i

⇤
. (7)
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Algorithm 1 Deterministic / Full-batch �-EigenGame

1: Given: A 2 Rd⇥d and B 2 Rd⇥d, step size sequence ⌘t, and number of iterations T .
2: v̂i ⇠ S

d�1, i.e., v̂i ⇠ N (0d, Id); v̂i  v̂i/||v̂i| for all i
3: for t = 1 : T do
4: parfor i = 1 : k do
5: ŷj =

v̂jp
hv̂j ,Bv̂ji

6: rewards (v̂>i Bv̂i)Av̂i � (v̂>i Av̂i)Bv̂i

7: penalties 
P

j<i(v̂
>

i Aŷj)
⇥
hv̂i, Bv̂iiBŷj � hv̂i, BŷjiBv̂i

⇤

8: r̃i  rewards� penalties
9: v̂

0

i  v̂i + ⌘tr̃i

10: v̂i  
v̂0
i

||v̂0
i||

11: end parfor
12: end for
13: return all v̂i

Simplifying the gradient using (i) is sound because the hierarchy of players ensures the parents will
be learned exactly asymptotically. For instance, player 1’s update has no penalty terms and so will
converge asymptotically. The argument then proceeds by induction.

Note that B still appears in the denominator via the ŷj terms (recall equation (48)). We will revisit
this issue later, but for now we will show this update converges to the desired solution given exact
estimates of expectations (full-batch setting). Lemma 2 is a stepping stone to proving convergence
with arbitrary parents in Theorem 2.

Lemma 2. The direction r̃i defined in equation (7) is a steepest ascent direction on utility
ui(v̂i|v̂j<i) given exact parents v̂j<i = vj<i.

Proof. This fact follows from the above argument that removing a positive scalar multiplier does
not change the direction of the gradient of ui w.r.t. v̂i and applying relation (i).

We present the deterministic version of �-EigenGame in Algorithm 1 where k players use r̃i in (7)
to maximize their utilities in parallel (see parfor-loop below). While simultaneous gradient ascent
fails to converge to Nash equilibria in games in general, it succeeds in this case because the hierarchy
we impose ensures each player has a unique best response (Lemma 1); this type of procedure is
known as iterative strict dominance in the game theory literature. Theorem 2, proven in Appx. E,
guarantees it converges asymptotically to the true solution.
Theorem 2 (Deterministic / Full-batch Global Convergence). Given a symmetric matrix A and
symmetric positive definite matrix B where the top-k eigengaps of B�1

A are positive along with
a square-summable, not summable step size sequence ⌘t (e.g., 1/t), Algorithm 1 converges to the
top-k generalized eigenvectors asymptotically (limT!1) with probability 1.

In the big data setting, A and B are statistical estimates, i.e., expectations of quantities over large
datasets. Precomputing exact estimates is computationally expensive, so we assume a data model
that allows drawing small minibatches of data at a time. Under such a model, stochastic approxi-
mation theory typically guarantees that as long as the update directions are unbiased, i.e., equal in
expectation to the updates with exact estimates, then an appropriate algorithm will converge to the
true solution.

In order to construct an unbiased update direction given access to minibatches of data, we need
to draw multiple minibatches independently at random. We can construct an unbiased estimate of
products of expectations, e.g., (v̂>i Bv̂i)Av̂i, by drawing an independent batch for each, e.g., one for
B and one for A. However, the B that appears in the denominator of ŷj is problematic; we cannot
construct an unbiased estimate of the inverse of a random variable.

These problematic ŷj terms only appear in the penalties, which are a function of the parents’ eigen-
vector approximations. The first eigenvector has no parents, and so we can easily construct an
unbiased estimate for it using multiple minibatches. We can then construct an unbiased estimate for
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Algorithm 2 Stochastic �-EigenGame

1: Given: paired data streams Xt 2 Rb⇥dx and Yt 2 Rb⇥dy , number of parallel machines M

per player (minibatch size per machine b
0 = b

M ), step size sequences ⌘t and �t, scalar ⇢ lower
bounding �min(B), and number of iterations T .

2: v̂i ⇠ S
d�1, i.e., v̂i ⇠ N (0d, Id); v̂i  v̂i/||v̂i| for all i

3: [Bv̂]i  v̂
0
i for all i

4: for t = 1 : T do
5: parfor i = 1 : k do
6: parfor m = 1 : M do
7: Construct Atm and Btm (*unbiased estimates using independent data batches)
8: ŷj =

v̂jp
max(hv̂j ,[Bv̂]ji,⇢)

9: [Bŷ]j =
[Bv̂]jp

max(hv̂j ,[Bv̂]ji,⇢)

10: rewards (v̂>i Btmv̂i)Atmv̂i � (v̂>i Atmv̂i)Btmv̂i

11: penalties 
P

j<i(v̂
>

i Atmŷj)
⇥
hv̂i, Btmv̂ii[Bŷ]j � hv̂i, [Bŷ]jiBtmv̂i

⇤

12: r̃im  rewards� penalties
13: r

Bv
im = (Btmv̂i � [Bv̂]i)

14: end parfor
15: r̃i  

1
M

P
m[r̃im]

16: v̂
0

i  v̂i + ⌘tr̃i

17: v̂i  
v̂0
i

||v̂0
i||

18: r
Bv
i  

1
M

P
m[rBv

im ]
19: [Bv̂]i  [Bv̂]i + �tr

Bv
i

20: end parfor
21: end for
22: return all v̂i

each subsequent player by inductive reasoning. Intuitively, once the parents have been learned, v̂j
should be stable and so it should be possible to estimate Bv̂j from a running average, and in turn,
ŷj . This suggests introducing an auxiliary variable, denoted [Bv̂]j to track the running averages of
Bv̂j (a similar approach is employed in (Pfau et al., 2018)). This effectively replaces Bŷj with a
non-random variable, avoiding the bias dilemma, at the expense of doubling the number of vari-
ables. Note that introducing this auxiliary variable implies the inner product hv̂j , [Bv̂]ji may not be
positive definite, therefore, we manually clip the result to be greater than or equal to ⇢, the minimum
singular value of B.

Precise pseudocode is given in Algorithm 2. Differences to Algorithm 1 are highlighted in color
(auxiliary differences in blue, clipping in red). We point out that introducing an auxiliary variable
for player i to track [Bv̂]i is not feasible because unlike player i’s parents’ variables, v̂i cannot be as-
sumed non-stationary. This is why removing hv̂i, Bv̂ii

2 earlier from the denominator of equation (6)
was critical. Lastly, note that these modifications to the update are derived using an understanding
of the intended computation and theoretical considerations; put shortly, autograd libraries will not
uncover this solution. See Appx. E.2 for more discussion and analysis of Algorithm 2.

Computational Complexity and Parallelization. The naive, per-iteration runtime and work costs
of this update are O(bdk2) with batch size b, but due to the simplicty of the update (i.e., purely
matrix-vector products), there are several opportunities for both model and data parallelism to reduce
runtime cost to O(dk) (see Appx. I for steps). Note that low aggregate batch sizes can induce high
gradient variance, slowing convergence (Durmus et al., 2021), making data parallelism desireable.

To give a concrete example, if each player (model) parallelizes over M = b machines (data) as
indicated by the two parfor-loops, the complexity reduces to O(dk). This is easy to implement
with modern libraries, e.g., pmap using Jax, and as in prior work (Gemp et al., 2021), the com-
munication of parents vj<i between machines is efficient in systems with fast interconnects (e.g.,
TPUs) although this presents a bottleneck we hope to alleviate in future work. Alternative par-
allel implementations are discussed in Appx. F. Lastly, the update consists purely of inexpensive
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Figure 2: Blind Source Separation. Algorithm 2 (�-EigenGame) run for 1000 epochs with mini-
batches of size n

4 subsampled i.i.d. from the dataset recovers the three original signals from the
linearly mixed signals. Scikit-learn’s FastICA2also recovers the signals by maximizing an alterna-
tive measure of non-Gaussianity. Directly solving the SGEP using scipy.linalg.eigh(A,
B) fails to cleanly recover the gray sinusoid (black circle highlights a discontinuity) due to overfit-
ting to the sample dataset. We confirm this by training �-EigenGame for many more iterations and
show it exhibits similar artifacts in Appx. G.
elementwise operations and matrix-vector products that can be computed quickly on deep learning
hardware (e.g., GPUs and TPUs); unlike previous state-of-the-art in (Meng et al., 2021), no calls to
CPU-bound linear algebra subroutines are necessary.

4 RELATED WORK

The SGEP is a fundamental problem in numerical linear algebra with numerous applications in
machine learning and statistics. There is a long history in numerical computing of solving large
SGEP problems (Sorensen, 2002; Knyazev & Skorokhodov, 1994; Golub & Ye, 2002; Aliaga et al.,
2012; Klinvex et al., 2013). Many methods iterate with what can be viewed as “gradient-like” up-
dates (D’yakonov & Knyazev, 1982; D’yakonov & Knyazev, 1992), however, they are not immedi-
ately applicable in the stochastic, streaming data setting. To our knowledge, efficient approaches for
the SGEP or specific sub-problems (e.g., CCA) scale at best O(d2k) in the streaming data setting.

Ge et al. (2016) give an algorithm for top-k SGEP that makes repeated use of a linear system solver
to approximate the subspace of the true generalized eigenvectors, but may return an arbitrary rotation
of the solution. While their method is theoretically efficient, it requires precomputing A and B which
prohibits its use in a streaming data setting. The sequential least squares CCA algorithm proposed
by Wang et al. (2016) similarly requires access to the full dataset up front, however, in their case, it
is to ensure the generalized eigenvectors are exactly unit-norm relative to the matrix B. Allen-Zhu
& Li (2017a) develop a SGEP algorithm that is theoretically linear in the size of the input (nd) and
k, however, they assume access to the entire dataset (non-streaming). LOBPCG (Knyazev, 2017) is
a non-streaming, Rayleigh maximizing technique with line-search and a preconditioned gradient.

Arora et al. (2017) propose a convex relaxation of the CCA problem along with a streaming algo-
rithm with convergence guarantees. However, instead of learning Vx 2 Rdx and Vy 2 Rdy directly,
it learns M = VxV

>
y 2 Rdx⇥dy which is prohibitively expensive to store in memory for high-

dimensional problems. Moreover, the complexity of this algorithm is O(d3) due to an expensive
projection step requiring an SVD of M . They propose an alternative version without guarantees that
reduces the cost per iteration to O(dk2).

2Run with logcosh approximation to negentropy (see (Hyvärinen & Oja, 2000) for explanation).
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Figure 3: Top: �-EigenGame converges to the true SGEP solution regardless of minibatch size
in support of the unbiased nature of the derived update scheme (Algorithm 2). See Appx. G.2 for
additional experiments showing learning in sequence performs worse than its parallel counterpart
above. Bottom: �-EigenGame compared to (Meng et al., 2021) on proportion of correlations cap-
tured—

Pk
i �̂i/

Pk
i �i. Shading indicates ±1 stdev. Markers indicate runtime in seconds.

Gao et al. (2019) also consider the streaming setting, but instead focuse on top-1 CCA and
like (Wang et al., 2016) and (Allen-Zhu & Li, 2017a), use shift-invert preconditioning to accelerate
convergence. Bhatia et al. (2018) solves top-1 SGEP in the streaming setting.

Most recently, Meng et al. (2021) proposed a method to estimate top-k CCA in a streaming set-
ting. Their algorithm requires several expensive Riemmanian optimization subroutines, giving a
per iteration complexity of O(d2k). Their convergence guarantee is in terms of subspace error, so
as mentioned above, the projection matrices Vx and Vy may be rotations of their ordered (by cor-
relation) counterparts. Their approach is the current state-of-the-art when considering CCA in the
streaming setting for large datasets.

5 EXPERIMENTS

We demonstrate our proposed stochastic approach, Algorithm 2, on solving ICA and CCA via their
SGEP formulations, and provide empirical support for its veracity. A Jax implementation is available
at github.com/deepmind/eigengame. Scipy’s linalg.eigh(A, B)(Virtanen et al., 2020)
is treated as ground truth when the data size permits. Hyperparameters are listed in Appx. H.

Independent Components Analysis. ICA can be used to disentangle mixed signals such as in the
cocktail party problem. Here, we use the SGEP formulation to unmix three linearly mixed signals.
Note that because the SGEP learns a linear unmixing of the data, the magnitude (and sign) of the
original signals cannot be learned. Any change in the magnitude of a signal extracted by the SGEP
can be offset by adjusting the magnitude and sign of a mixing weight.

We replicate a synthetic experiment from scikit-learn(Pedregosa et al., 2011) and compare
Algorithm 2 to several approaches. Figure 2 shows our stochastic approach (�-EigenGame) is able
to recover the shapes of the original signals (length n = 2000 time series).

Implicit Regularization via Fixed Step Size Updates. Note that if we run Algorithm 2 for 100⇥
more iterations with 1/10th the step size, we converge to the exact SGEP solution (as found by
scipy) and see similar artifacts in the extracted signals due to overfitting. Recently, Durmus et al.
(2021) proved that fixed step size Riemannian approximation schemes converge to a stationary distri-
bution around their solutions, which suggests �-EigenGame enjoys a natural regularization property
and explains its high performance on this the unmixing task. In Appx. G, we show that it is difficult
to achieve similar results with scipy by regularizing A or B directly (e.g., A+ ✏I) prior to calling
scipy.linalg.eigh.
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Figure 4: �-EigenGame compares the representation (activations) of a deep network trained on
CIFAR-10 for t steps to that of its final learned representation (25k or 100k steps). Curves with
higher correlation coefficients indicate more similar representations.

Unbiased Updates. We empirically support our claim that the fixed point of Algorithm 2 is un-
biased regardless of minibatch size.3 Not only does �-EigenGame recover the same generalized
eigenvalues, but the top row of figure 3 also suggests that the algorithm takes a similar trajectory for
each minibatch size.

Canonical Correlations Analysis. Here, we use �-EigenGame to linearly project multimodal
datasets into lower-dimensional spaces such that they are maximally correlated. As discussed in re-
lated work, several approaches have been developed to extend CCA to streaming, high-dimensional
datasets. Recall that our approach has per-iteration complexity O(bdk) with the previous state-of-
the-art in the streaming setting having O(d2k) (Meng et al., 2021). We replicate the experiments of
(Meng et al., 2021) and compare against their approach on three datasets.

The bottom row of figure 3 shows our approach is competitive with (Meng et al., 2021). We also
point out that while the previous approach by Meng et al. (2021) enjoys theoretical convergence
guarantees with rates, it appears to slow in progress near a biased solution. These datasets are low
dimensional (d  3072), so we are able to obtain ground truth eigenvectors efficiently using scipy.
Our next set of experiments considers much higher dimensional where a naive call to scipy fails.

Large-scale Neural Network Analysis. Recently, CCA has been used to aid in interpreting the rep-
resentations of deep neural networks (Raghu et al., 2017; Morcos et al., 2018; Kornblith et al.,
2019). These approaches are restricted to layer-wise comparisons of representations, reduced-
dimensionality views of representations (via PCA), or small dataset sizes to accomodate current
limits of CCA approaches. We replicate one of their analyses (specifically Fig. 1a of (Morcos et al.,
2018)) on the activations of an entire network (not just a layer), unblocking this type of analysis for
larger deep learning models.

The largest dimensions handled in (Raghu et al., 2017) are O(103). Figure 4 demonstrates our
approach (parallelized over 8 TPU chips) on O(103) dimensions (left), O(105) dimensions (middle),
and O(106) dimensions (right). Note that in these experiments, we are loading minibatches of
CIFAR-10 images, running them through a deep convolutional network, harvesting the activations,
and then passing them to our distributed �-EigenGame solver. As mentioned in Section 2, our
understanding of the geometry of the utilities suggests replacing the standard gradient ascent on v̂i

with Adam (Kingma & Ba, 2014); Adam exhibits behavior that implicitly improves stability around
equilibria (Gemp & McWilliams, 2019). For the smaller O(103) setting, where we can exactly
compute ground truth using scipy, we confirm that our approach converges to the top-1024 (out
of 2048 possible) eigenvectors with a subspace error of 0.002 (see Appx. A).

6 CONCLUSION

We presented �-EigenGame, a game-theoretic formulation of the generalized eigenvalue problem
(SGEP). Our formulation enabled the development of a novel algorithm that scales to massive
streaming datasets. The SGEP underlies many classical data processing tools across the sciences,
and we believe our proposed approach unblocks its use on the ever-growing size of modern datasets
in the streaming setting. In particular, it achieves this by parallelizing computation using modern
AI-centric distributed compute infrastructure such as GPUs and TPUs.

3The gray line converges last because we chose to minimize rather than maximize kurtosis.
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