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Abstract
Large Language Models (LLMs) employ auto-
regressive decoding that requires sequential com-
putation, with each step reliant on the previous
one’s output. This creates a bottleneck as each
step necessitates moving the full model param-
eters from High-Bandwidth Memory (HBM) to
the accelerator’s cache. While methods such as
speculative decoding have been suggested to ad-
dress this issue, their implementation is impeded
by the challenges associated with acquiring and
maintaining a separate draft model. In this pa-
per, we present MEDUSA, an efficient method
that augments LLM inference by adding extra
decoding heads to predict multiple subsequent
tokens in parallel. Using a tree-based attention
mechanism, MEDUSA constructs multiple can-
didate continuations and verifies them simulta-
neously in each decoding step. By leveraging
parallel processing, MEDUSA substantially re-
duces the number of decoding steps required. We
present two levels of fine-tuning procedures for
MEDUSA to meet the needs of different use cases:
MEDUSA-1: MEDUSA is directly fine-tuned on
top of a frozen backbone LLM, enabling lossless
inference acceleration. MEDUSA-2: MEDUSA
is fine-tuned together with the backbone LLM,
enabling better prediction accuracy of MEDUSA
heads and higher speedup but needing a special
training recipe that preserves the model’s capabil-
ities. Moreover, we propose several extensions
that improve or expand the utility of MEDUSA,
including a self-distillation to handle situations
where no training data is available and a typical
acceptance scheme to boost the acceptance rate
while maintaining generation quality. We evaluate
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MEDUSA on models of various sizes and train-
ing procedures. Our experiments demonstrate
that MEDUSA-1 can achieve over 2.2× speedup
without compromising generation quality, while
MEDUSA-2 further improves the speedup to 2.3-
2.8×.

1. Introduction
The recent advancements in Large Language Models
(LLMs) have demonstrated that the quality of language
generation significantly improves with an increase in model
size, reaching billions of parameters (Brown et al., 2020;
Chowdhery et al., 2022; Zhang et al., 2022; Hoffmann et al.,
2022; OpenAI, 2023; Google, 2023; Touvron et al., 2023).
However, this growth has led to an increase in inference
latency, which poses a significant challenge in practical ap-
plications. From a system perspective, LLM inference is
predominantly memory-bandwidth-bound (Shazeer, 2019;
Kim et al., 2023), with the main latency bottleneck stem-
ming from accelerators’ memory bandwidth rather than
arithmetic computations. This bottleneck is inherent to
the sequential nature of auto-regressive decoding, where
each forward pass requires transferring the complete model
parameters from High-Bandwidth Memory (HBM) to the
accelerator’s cache. This process, which generates only a
single token, underutilizes the arithmetic computation po-
tential of modern accelerators, leading to inefficiency.

To address this, one approach to speed up LLM inference
involves increasing the arithmetic intensity (the ratio of total
floating-point operations (FLOPs) to total data movement)
of the decoding process and reducing the number of decod-
ing steps. In line with this idea, speculative decoding has
been proposed (Leviathan et al., 2022; Chen et al., 2023;
Xia et al., 2023; Miao et al., 2023). This method uses a
smaller draft model to generate a token sequence, which is
then refined by the original, larger model for acceptable con-
tinuation. However, obtaining an appropriate draft model
remains challenging, and it’s even harder to integrate the
draft model into a distributed system (Chen et al., 2023).

Instead of using a separate draft model to sequentially gen-
erate candidate outputs, in this paper, we revisit and re-
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fine the concept of using multiple decoding heads on top
of the backbone model to expedite inference (Stern et al.,
2018). We find that when applied effectively, this tech-
nique can overcome the challenges of speculative decoding,
allowing for seamless integration into existing LLM sys-
tems. Specifically, we introduce MEDUSA, a method that
enhances LLM inference by integrating additional decoding
heads to concurrently predict multiple tokens. These heads
are fine-tuned in a parameter-efficient manner and can be
added to any existing model. With no requirement for a
draft model, MEDUSA offers easy integration into current
LLM systems, including those in distributed environments,
ensuring a user-friendly experience.

We further enhance MEDUSA with two key insights. Firstly,
the current approach of generating a single candidate con-
tinuation at each decoding step leads to inefficient use of
computational resources. To address this, we propose gener-
ating multiple candidate continuations using the MEDUSA
heads and verifying them concurrently through a simple
adjustment to the attention mask. Secondly, we can reuse
the rejection sampling scheme as used in speculative de-
coding (Leviathan et al., 2022; Chen et al., 2023) to gener-
ate consistent responses with the same distribution as the
original model. However, it cannot further enhance the
acceleration rate. Alternatively, we introduce a typical ac-
ceptance scheme that selects reasonable candidates from the
MEDUSA head outputs. We use temperature as a threshold
to manage deviation from the original model’s predictions,
providing an efficient alternative to the rejection sampling
method. Our results suggest that the proposed typical ac-
ceptance scheme can accelerate the decoding speed further
while maintaining a similar generation quality.

To equip LLMs with predictive MEDUSA heads, we propose
two distinct fine-tuning procedures tailored to various sce-
narios. For situations with limited computational resources
or when the objective is to incorporate MEDUSA into an
existing model without affecting its performance, we recom-
mend MEDUSA-1. This method requires minimal memory
and can be further optimized with quantization techniques
akin to those in QLoRA (Dettmers et al., 2023), without
compromising the generation quality due to the fixed back-
bone model. However, in MEDUSA-1, the full potential of
the backbone model is not utilized. We can further fine-tune
it to enhance the prediction accuracy of MEDUSA heads,
which can directly lead to a greater speedup. Therefore,
we introduce MEDUSA-2, which is suitable for scenarios
with ample computational resources or for direct Super-
vised Fine-Tuning (SFT) from a base model. The key to
MEDUSA-2 is a training protocol that enables joint training
of the MEDUSA heads and the backbone model without
compromising the model’s next-token prediction capabil-
ity and output quality. We propose different strategies for
obtaining the training datasets depending on the model’s

training recipe and dataset availability. When the model is
fine-tuned on a public dataset, it can be directly used for
MEDUSA. If the dataset is unavailable or the model un-
derwent a Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022) process, we suggest a self-
distillation approach to generate a training dataset for the
MEDUSA heads.

Our experiments primarily focus on scenarios with a batch
size of one, which is representative of the use case where
LLMs are locally hosted for personal use. We test MEDUSA
on models of varying sizes and training settings, including
Vicuna-7B, 13B (trained with a public dataset), Vicuna-
33B (Chiang et al., 2023) (trained with a private dataset1),
and Zephyr-7B (trained with both supervised fine-tuning and
alignment). MEDUSA can achieve a speedup of 2.3 to 2.8
times across different prompt types without compromising
on the quality of generation.
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Figure 1. MEDUSA introduces multiple heads on top of the last
hidden states of the LLM, enabling the prediction of several sub-
sequent tokens in parallel (Section 2.1.1). During inference, each
head generates multiple top predictions for its designated posi-
tion. These predictions are assembled into candidates, which are
processed in parallel using a tree-based attention mechanism (Sec-
tion 2.1.2). The final step is to verify the candidates and accept a
continuation. Besides the standard rejection sampling scheme, a
typical acceptance scheme (Section 2.3.1) can also be used here
to select reasonable continuations, and the longest accepted candi-
date prefix will be used for the next decoding phase.

2. Methodology
MEDUSA follows the same framework as speculative decod-
ing, where each decoding step primarily consists of three
substeps: (1) generating candidates, (2) processing candi-
dates, and (3) accepting candidates. For MEDUSA, (1) is

1Upon contacting the authors, this version is experimental and
used some different data than Vicuna 7B and 13B.

2



MEDUSA: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads

achieved by MEDUSA heads, (2) is realized by tree attention,
and since MEDUSA heads are on top of the original model,
the logits calculated in (2) can be used for substep (1) for
the next decoding step. The final step (3) can be realized by
either rejection sampling (Leviathan et al., 2022; Chen et al.,
2023) or typical acceptance (Section 2.3.1). The overall
pipeline is illustrated in Figure 1.

In this section, we first introduce the key components of
MEDUSA, including MEDUSA heads, and tree attention.
Then, we present two levels of fine-tuning procedures for
MEDUSA to meet the needs of different use cases. Fi-
nally, we propose two extensions to MEDUSA, including
self-distillation and typical acceptance, to handle situations
where no training data is available for MEDUSA and to
improve the efficiency of the decoding process, respectively.

2.1. Key Components

2.1.1. MEDUSA HEADS

In speculative decoding, subsequent tokens are predicted by
an auxiliary draft model. This draft model must be small yet
effective enough to generate continuations that the original
model will accept. Fulfilling these requirements is a chal-
lenging task, and existing approaches (Spector & Re, 2023;
Miao et al., 2023) often resort to separately pre-training
a smaller model. This pre-training process demands sub-
stantial additional computational resources. For example,
in (Miao et al., 2023), a reported 275 NVIDIA A100 GPU
hours were used. Additionally, separate pre-training can po-
tentially create a distribution shift between the draft model
and the original model, leading to continuations that the
original model may not favor. Chen et al. (2023) have also
highlighted the complexities of serving multiple models in
a distributed environment.

To streamline and democratize the acceleration of LLM in-
ference, we take inspiration from Stern et al. (2018), which
utilizes parallel decoding for tasks such as machine transla-
tion and image super-resolution. MEDUSA heads are addi-
tional decoding heads appended to the last hidden states of
the original model. Specifically, given the original model’s
last hidden states ht at position t, we add K decoding heads
to ht. The k-th head is used to predict the token in the
(t+ k + 1)-th position of the next tokens (the original lan-
guage model head is used to predict the (t+ 1)-th position).
The prediction of the k-th head is denoted as p(k)t , represent-
ing a distribution over the vocabulary, while the prediction
of the original model is denoted as p(0)t . Following the ap-
proach of Stern et al. (2018), we utilize a single layer of
feed-forward network with a residual connection for each
head. We find that this simple design is sufficient to achieve
satisfactory performance. The definition of the k-th head is
outlined as:

p
(k)
t = softmax

(
W

(k)
2 ·

(
SiLU(W

(k)
1 · ht) + ht

))
,

where W
(k)
2 ∈ Rd×V ,W

(k)
1 ∈ Rd×d.

d is the output dimension of the LLM’s last hidden layer
and V is the vocabulary size. We initialize W (k)

2 identically
to the original language model head, and W

(k)
1 to zero. This

aligns the initial prediction of MEDUSA heads with that of
the original model. The SiLU activation function (Elfwing
et al., 2017) is employed following the Llama models (Tou-
vron et al., 2023).

Unlike a draft model, MEDUSA heads are trained in conjunc-
tion with the original backbone model, which can remain
frozen during training (MEDUSA-1) or be trained together
(MEDUSA-2). This method allows for fine-tuning large mod-
els even on a single GPU, taking advantage of the powerful
base model’s learned representations. Furthermore, it en-
sures that the distribution of the MEDUSA heads aligns with
that of the original model, thereby mitigating the distribution
shift problem. Additionally, since the new heads consist of
just a single layer akin to the original language model head,
MEDUSA does not add complexity to the serving system
design and is friendly to distributed settings. We will discuss
the training recipe for MEDUSA heads in Section 2.2.

2.1.2. TREE ATTENTION

Through MEDUSA heads, we obtain probability predictions
for the subsequent K+1 tokens. These predictions enable us
to create length-K + 1 continuations as candidates. While
the speculative decoding studies (Leviathan et al., 2022;
Chen et al., 2023) suggest sampling a single continuation
as the candidate, leveraging multiple candidates during de-
coding can enhance the expected acceptance length within a
decoding step. Nevertheless, more candidates can also raise
computational demands. To strike a balance, we employ
a tree-structured attention mechanism to process multiple
candidates concurrently. This attention mechanism diverges
from the traditional causal attention paradigm. Within this
framework, only tokens from the same continuation are
regarded as historical data. Drawing inspiration from the
concept of embedding graph structures into attention as
proposed in the graph neural network domain (Ying et al.,
2021), we incorporate the tree structure into our attention
mask, visualized in Figure 2. Remarkably, similar ideas
have also been explored in independent works like Miao
et al. (2023); Spector & Re (2023), where they follow a
bottom-up approach and construct the tree by merging mul-
tiple candidates generated by a draft model. In our method,
we instead take a top-down approach to build the tree thanks
to the structure of candidates generated by MEDUSA heads.
For a given k-th head, its top-sk predictions serve as the
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Figure 2. We demonstrates the use of tree attention to process mul-
tiple candidates concurrently. As exemplified, the top-2 predictions
from the first MEDUSA head and the top-3 from the second result
in a total of 2 × 3 = 6 candidates. Each of these candidates
corresponds to a distinct branch within the tree structure. To guar-
antee that each token only accesses its predecessors, we devise
an attention mask that exclusively permits attention flow from the
current token back to its antecedent tokens. The positional indices
for positional encoding are adjusted in line with this structure.

basis for candidate formation, where sk is a designated
hyperparameter. These candidates are established by de-
termining the Cartesian product of the top-sk predictions
from each head. For instance, in Figure 2, with s1 = 2 and
s2 = 3, each first head prediction can be succeeded by any
prediction from the second head. This leads to a tree struc-
ture where sk branches exist at the k-th level (considering a
virtual root as the 0-level, in practice, this 0-level is for the
prediction of the language model head of the original model,
which can be sampled independently). Within this tree, only
a token’s predecessors are seen as historical context, and our
attention mask ensures that the attention is only applied on a
token’s predecessors. By employing this mask and properly
setting the positional indices for positional encoding, we
can process numerous candidates simultaneously without
the need to expand the batch size. The cumulative number
of new tokens is calculated as

∑K
k=1

∏k
i=1 si.

In this section, we demonstrate the most simple and regular
way to construct the tree structure by taking the Cartesian
product. However, it is possible to construct the tree struc-
ture in a more sophisticated way and exploit the unbalanced
accuracy of different top predictions of different heads. We
will discuss this in Section 2.3.3.

2.2. Training Strategies

At the most basic level, we can train MEDUSA heads by
freezing the backbone model and fine-tuning MEDUSA
heads. However, training the backbone in conjunction with
the MEDUSA heads can significantly enhance the accuracy
of the MEDUSA heads. Depending on the computational

resources and the specific reqirements of the use case, we
propose two levels of training strategies for MEDUSA heads.

In this section, we assume the availability of a training
dataset that aligns with the target model’s output distribution.
This could be the dataset used for Supervised Fine-Tuning
(SFT) of the target model. We will discuss eliminating the
need for such a dataset using a self-distillation approach in
Section 2.3.2.

2.2.1. MEDUSA-1: FROZEN BACKBONE

To train MEDUSA heads with a frozen backbone model, we
can use the cross-entropy loss between the prediction of
MEDUSA heads and the ground truth. Specifically, given
the ground truth token yt+k+1 at position t + k + 1, the
loss for the k-th head is Lk = − log p

(k)
t (yt+k+1) where

p
(k)
t (y) denotes the probability of token y predicted by the

k-th head. We also observe that Lk is larger when k is larger,
which is reasonable since the prediction of the k-th head is
more uncertain when k is larger. Therefore, we can add a
weight λk to Lk to balance the loss of different heads. And
the total MEDUSA loss is:

LMEDUSA-1 =

K∑
k=1

−λk log p
(k)
t (yt+k+1). (1)

In practice, we set λk as the k-th power of a constant like
0.8. Since we only use the backbone model for providing
the hidden states, we can use a quantized version of the
backbone model to reduce the memory consumption. This
introduces a more democratized way to accelerate LLM
inference, as with the quantization, MEDUSA can be trained
for a large model on a single consumer GPU similar to
QLoRA (Dettmers et al., 2023). The training only takes
a few hours (e.g., 5 hours for MEDUSA-1 on Vicuna 7B
model with a single NVIDIA A100 PCIE GPU to train on
60k ShareGPT samples).

2.2.2. MEDUSA-2: JOINT TRAINING

To further improve the accuracy of MEDUSA heads, we can
train MEDUSA heads together with the backbone model.
However, this requires a special training recipe to preserve
the backbone model’s next-token prediction capability and
output quality. To achieve this, we propose three strategies:

• Combined loss: To keep the backbone model’s
next-token prediction capability, we need to add the
cross-entropy loss of the backbone model LLM =

− log p
(0)
t (yt+1) to the MEDUSA loss. We also add

a weight λ0 to balance the loss of the backbone model
and the MEDUSA heads. Therefore, the total loss is:

LMEDUSA-2 = LLM + λ0LMEDUSA-1. (2)
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• Differential learning rates: Since the backbone model
is already well-trained and the MEDUSA heads need
more training, we can use separate learning rates for
them to enable faster convergence of MEDUSA heads
while preserving the backbone model’s capability.

• Heads warmup: Noticing that at the beginning of
training, the MEDUSA heads have a large loss, which
leads to a large gradient and may distort the backbone
model’s parameters. Following the idea from Kumar
et al. (2022), we can employ a two-stage training pro-
cess. In the first stage, we only train the MEDUSA
heads as MEDUSA-1. In the second stage, we train the
backbone model and MEDUSA heads together with a
warmup strategy. Specifically, we first train the back-
bone model for a few epochs, then train the MEDUSA
heads together with the backbone model. Besides this
simple strategy, we can also use a more sophisticated
warmup strategy by gradually increasing the weight λ0

of the backbone model’s loss. We find both strategies
work well in practice.

Putting these strategies together, we can train MEDUSA
heads together with the backbone model without hurting
the backbone model’s capability. Moreover, this recipe can
be applied together with Supervised Fine-Tuning (SFT),
enabling us to get a model with native MEDUSA support.

2.2.3. HOW TO SELECT THE NUMBER OF HEADS

Empirically, we found that five heads are sufficient at most.
Therefore, we recommend training with five heads and refer-
ring to the strategy described in Section 2.3.3 to determine
the optimal configuration of the tree attention. With opti-
mized tree attention, sometimes three or four heads may
be enough for inference. In this case, we can ignore the
redundant heads without overhead.

2.3. Extensions

2.3.1. TYPICAL ACCEPTANCE

In speculative decoding papers (Leviathan et al., 2022; Chen
et al., 2023), authors employ rejection sampling to yield di-
verse outputs that align with the distribution of the original
model. However, subsequent implementations (Joao Gante,
2023; Spector & Re, 2023) reveal that this sampling strategy
results in diminished efficiency as the sampling tempera-
ture increases. Intuitively, this can be comprehended in the
extreme instance where the draft model is the same as the
original one: Using greedy decoding, all output of the draft
model will be accepted, therefore maximizing the efficiency.
Conversely, rejection sampling introduces extra overhead,
as the draft model and the original model are sampled in-
dependently. Even if their distributions align perfectly, the
output of the draft model may still be rejected.

However, in real-world scenarios, sampling from language
models is often employed to generate diverse responses,
and the temperature parameter is used merely to modulate
the “creativity” of the response. Therefore, higher temper-
atures should result in more opportunities for the original
model to accept the draft model’s output. We ascertain that
it is typically unnecessary to match the distribution of the
original model. Thus, we propose employing a typical ac-
ceptance scheme to select plausible candidates rather than
using rejection sampling. This approach draws inspiration
from truncation sampling studies (Hewitt et al., 2022) (refer
to Appendix A for an in-depth explanation). Our objective
is to choose candidates that are typical, meaning they are
not exceedingly improbable to be produced by the original
model. We use the prediction probability from the original
model as a natural gauge for this and establish a threshold
based on the prediction distribution to determine acceptance.
Specifically, given x1, x2, · · · , xn as context, when eval-
uating the candidate sequence (xn+1, xn+2, · · · , xn+K+1)
(composed by top predictions of the original language model
head and MEDUSA heads), we consider the condition

poriginal(xn+k|x1, x2, · · · , xn+k−1) >

min (ϵ, δ exp (−H(poriginal(·|x1, x2, · · · , xn+k−1)))) ,

where H(·) denotes the entropy function, and ϵ, δ are the
hard threshold and the entropy-dependent threshold respec-
tively. This criterion is adapted from Hewitt et al. (2022)
and rests on two observations: (1) tokens with relatively
high probability are meaningful, and (2) when the distribu-
tion’s entropy is high, various continuations may be deemed
reasonable. During decoding, every candidate is evaluated
using this criterion, and a prefix of the candidate is accepted
if it satisfies the condition. To guarantee the generation of
at least one token at each step, we apply greedy decoding
for the first token and unconditionally accept it while em-
ploying typical acceptance for subsequent tokens. The final
prediction for the current step is determined by the longest
accepted prefix among all candidates.

Examining this scheme leads to several insights. Firstly,
when the temperature is set to 0, it reverts to greedy decod-
ing, as only the most probable token possesses non-zero
probability. As the temperature surpasses 0, the outcome
of greedy decoding will consistently be accepted with ap-
propriate ϵ, δ, since those tokens have the maximum prob-
ability, yielding maximal speedup. Likewise, in general
scenarios, an increased temperature will correspondingly
result in longer accepted sequences, as corroborated by our
experimental findings.

Empirically, we verify that typical acceptance can achieve
a better speedup while maintaining a similar generation
quality as shown in Figure 5.
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2.3.2. SELF-DISTILLATION

In Section 2.2, we assume the existence of a training dataset
that matches the target model’s output distribution. However,
this is not always the case. For example, the model owners
may only release the model without the training data, or the
model may have gone through a Reinforcement Learning
with Human Feedback (RLHF) procedure, which makes the
output distribution of the model different from the training
dataset. To tackle this issue, we propose an automated self-
distillation pipeline to use the model itself to generate the
training dataset for MEDUSA heads, which matches the
output distribution of the model.

The dataset generation process is straightforward. We first
take a public seed dataset from a domain similar to the target
model; for example, using the ShareGPT (ShareGPT, 2023)
dataset for chat models. Then, we simply take the prompts
from the dataset and ask the model to reply to the prompts.
In order to obtain multi-turn conversation samples, we can
sequentially feed the prompts from the seed dataset to the
model. Or, for models like Zephyr 7B (Tunstall et al., 2023),
which are trained on both roles of the conversation, they
have the ability to self-talk, and we can simply feed the
first prompt and let the model generate multiple rounds of
conversation.

For MEDUSA-1, this dataset is sufficient for training
MEDUSA heads. However, for MEDUSA-2, we observe
that solely using this dataset for training the backbone and
MEDUSA heads usually leads to a lower generation quality.
In fact, even without training MEDUSA heads, training the
backbone model with this dataset will lead to performance
degradation. This suggests that we also need to use the
original model’s probability prediction instead of using the
ground truth token as the label for the backbone model, sim-
ilar to classic knowledge distillation works (Kim & Rush,
2016). Concretely, the loss for the backbone model is:

LLM-distill = KL(p
(0)
original,t||p

(0)
t ),

where p
(0)
original,t denotes the probability distribution of the

original model’s prediction at position t.

However, naively, to obtain the original model’s probability
prediction, we need to maintain two models during training,
increasing the memory requirements. To further alleviate
this issue, we propose a simple yet effective way to exploit
the self-distillation setup. We can use a parameter-efficient
adapter like LoRA (Hu et al., 2021) for fine-tuning the back-
bone model. In this way, the original model is simply the
model with the adapter turned off. Therefore, the distillation
does not require additional memory consumption. Together,
this self-distillation pipeline can be used to train MEDUSA-2
without hurting the backbone model’s capability and intro-
duce almost no additional memory consumption. Lastly,

one tip about using self-distillation is that it is preferable to
use LoRA without quantization in this case, otherwise, the
teacher model will be the quantized model, which may lead
to a lower generation quality.

2.3.3. SEARCHING FOR THE OPTIMIZED TREE
CONSTRUCTION

In Section 2.1.2, we present the simplest way to construct
the tree structure by taking the Cartesian product. However,
with a fixed budget for the number of total nodes in the
tree, a regular tree structure may not be the best choice.
Intuitively, those candidates composed of the top predictions
of different heads may have different accuracies. Therefore,
we can leverage an estimation of the accuracy to construct
the tree structure.

Specifically, we can use a calibration dataset and calculate
the accuracies of the top predictions of different heads. Let
a
(i)
k denote the accuracy of the i-th top prediction of the k-th

head2. Assuming the accuracies are independent, we can
estimate the accuracy of a candidate sequence composed
by the top [i1, i2, · · · , ik] predictions of different heads as∏k

j=1 a
(ij)
j . Let I denote the set of all possible combinations

of [i1, i2, · · · , ik] and each element of I can be mapped to
a node of the tree (not only leaf nodes but all nodes are
included). Then, the expectation of the acceptance length of
a candidate sequence is:

∑
[i1,i2,··· ,ik]∈I

k∏
j=1

a
(ij)
j .

Thinking about building a tree by adding nodes one by one,
the contribution of a new node to the expectation is exactly
the accuracy associated with the node. Therefore, we can
greedily add nodes to the tree by choosing the node that is
connected to the current tree and has the highest accuracy.
This process can be repeated until the total number of nodes
reaches the desired number. In this way, we can construct a
tree that maximizes the expectation of the acceptance length.
Further details can be found in Appendix C.

3. Experiments
In this section, we present experiments to demonstrate the
effectiveness of MEDUSA under different settings. First, we
evaluate MEDUSA on the Vicuna-7B and 13B models (Chi-
ang et al., 2023) to show the performance of MEDUSA-1
and MEDUSA-2. Then, we assess our method using the
Vicuna-33B and Zephyr-7B models to demonstrate self-
distillation’s viability in scenarios where direct access to
the fine-tuning recipe is unavailable, as with Vicuna-33B,

2Here, the accuracy is defined for the single top i-th token, i.e.,
this accuracy is equal to top-i accuracy minus top-(i−1) accuracy.
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Figure 3. Left: Speed comparison of baseline, MEDUSA-1 and MEDUSA-2 on Vicuna-7B/13B. MEDUSA-1 achieves more than 2×
wall-time speedup compared to the baseline implementation while MEDUSA-2 further improves the speedup by a significant margin.
Right: Detailed speedup performance of Vicuna-7B with MEDUSA-2 on 8 categories from MT-Bench.

and in models like Zephyr-7B that employ Reinforcement
Learning from Human Feedback (RLHF). The evaluation is
conducted on MT-Bench (Zheng et al., 2023), a multi-turn,
conversational-format benchmark. Detailed settings can be
found in Appendix B.

3.1. Case Study: MEDUSA-1 v.s. MEDUSA-2 on Vicuna
7B and 13B

Experimental Setup. We use the Vicuna model class (Chi-
ang et al., 2023), which encompasses chat models of vary-
ing sizes (7B, 13B, 33B) that are fine-tuned from the Llama
model (Touvron et al., 2023). Among them, the 7B and
13B models are trained on the ShareGPT (ShareGPT, 2023)
dataset, while the 33B model is an experimental model and
is trained on a private dataset. In this section, we use the
ShareGPT dataset to train the MEDUSA heads on the 7B
and 13B models for 2 epochs. We use the v1.5 version of
Vicuna models, which are fine-tuned from Llama-2 models
with sequence length 4096.

Results. We collect the results and show them in Fig. 3.
The baseline is the default Huggingface implementation.
In Fig. 3a, we can see that for the 7B models, MEDUSA-
1 and MEDUSA-2 configurations lead to a significant in-
crease in speed, measuring in tokens processed per second.
MEDUSA-1 shows a 2.18× speedup, while MEDUSA-2 fur-
ther improves this to a 2.83×. When applied to the larger
13B model, MEDUSA-1 results in a 2.33× speed increase,
while MEDUSA-2 maintains a similar performance gain of
2.83× over the baseline. We also plot the speedup per cate-
gory for MEDUSA-2 Vicuna-7B model. We observe that the
coding category benefits from a 3.29× speedup, suggesting
that MEDUSA is particularly effective for tasks in this do-
main. This points to a significant potential for optimizing
coding LLMs, which are widely used in software develop-

ment and other programming-related tasks. The “Extraction”
category shows the highest speedup at 3.62×, indicating
that this task is highly optimized by the MEDUSA. Overall,
the results suggest that the MEDUSA significantly enhances
inference speed across different model sizes and tasks.

3.2. Case Study: Training with Self-Distillation on
Vicuna-33B and Zephyr-7B

Experimental Setup. In this case study, we focus on
the cases where self-distillation is needed. We use the
Vicuna-33B model (Chiang et al., 2023) and the Zephyr-
7B model (Tunstall et al., 2023) as examples. Follow-
ing the procedure described in Section 2.3.2, we first
generate the datasets with some seed prompts. We use
ShareGPT (ShareGPT, 2023) and UltraChat (Ding et al.,
2023) as the seed datasets and collect a dataset at about
100k samples for both cases. Interestingly, we find that the
Zephyr model can continue to generate multiple rounds of
conversation with a single prompt, which makes it easy to
collect a large dataset. For Vicuna-33B, we generate the
multi-turn conversations by iteratively feeding the prompts
from each multi-turn seed conversation using random sam-
pling with temperature 0.3. Both models are trained with
sequence length 2048 and batch size 128.

Results. Table 1 complements these findings by comparing
various MEDUSA-2 models in terms of their acceleration
rate, overhead, and quality on MT-Bench with GPT-4 acting
as the evaluator to assign performance scores ranging from
0 to 10. We report the quality differences of MEDUSA com-
pared to the original model. Notably, while the MEDUSA-2
Vicuna-33B model shows a lower acceleration rate, it main-
tains a comparable quality. We hypothesize that this is due
to a mismatch between the hidden training dataset and the
dataset we used for self-distillation. Hence, the model’s gen-
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Figure 4. Effectiveness of numbers of candidate tokens for decoding introduced by trees (default number of candidate token for decoding
is 1 when using KV cache). Left: The acceleration rate for randomly sampled dense tree settings (blue dots) and optimized sparse tree
settings (red stars). Right: The speed (tokens/s) for both settings. The trend lines indicate that while the acceleration rate remains relatively
stable for sparse trees, there is a notable decrease in speed as the candidate tokens increases.

Model Name Vicuna-7B Zephyr-7B Vicuna-13B Vicuna-33B

Acc. rate 3.47 3.14 3.51 3.01
Overhead 1.22 1.18 1.23 1.27
Quality 6.18 (+0.01) 7.25 (-0.07) 6.43 (-0.14) 7.18 (+0.05)

SSpecDecoding 1.47 - 1.56 1.60
SMEDUSA 2.83 2.66 2.83 2.35

Table 1. Comparison of various MEDUSA-2 models. The first
section reports the details of MEDUSA-2, including accelerate rate,
overhead, and quality that denoted the average scores on the MT-
Bench compared to the original models. The second section lists
the speedup (S) of SpecDecoding and MEDUSA, respectively.

eration quality can be well aligned by self-distillation while
MEDUSA heads learn distribution from the self-distillation
that potentially shifts from the training set. In our study,
we also applied speculative decoding (Chen et al., 2023;
Leviathan et al., 2022) to the Vicuna lineup using open-
source draft models (details can be found in Appendix D).

These results underscore the complex interplay between
speed and performance when scaling up model sizes and
applying self-distillation techniques. The findings also high-
light the potential of the MEDUSA-2 configuration to boost
efficiency in processing while carefully preserving the qual-
ity of the model’s outputs, suggesting a promising direction
for co-optimizing LLMs with MEDUSA heads.

3.3. Ablation Study

3.3.1. CONFIGURATION OF TREE ATTENTION

The study of tree attention is conducted on the writing
and roleplay categories from the MT-Bench dataset using
MEDUSA-2 Vicuna-7B. We target to depict tree attention’s
motivation and its performance.

Fig. 4a compares the acceleration rate of randomly sampled
dense tree configurations (Section. 2.1.2, depicted by blue
dots) against optimized sparse tree settings (Section. 2.3.3,

shown with red stars). The sparse tree configuration with 64
nodes shows a better acceleration rate than the dense tree
settings with 256 nodes. The decline in speed in Fig. 4b
is attributed to the increased overhead introduced by the
compute-bound. While a more complex tree can improve
acceleration, it does so at the cost of speed due to intensive
matrix multiplications for linear layers and self-attention.
The acceleration rate increase follows a logarithmic trend
and slows down when the tree size grows as shown in Fig. 4a.
However, the initial gains are substantial, allowing Medusa
to achieve significant speedups. If the acceleration increase
is less than the overhead, it will slow down overall perfor-
mance. For detailed study, please refer to Appendix G.
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Figure 5. Performance comparison of MEDUSA using proposed
typical sampling. The model is fully fine-tuned from Vicuna-7B.
The plot illustrates the acceleration rate and average scores on the
writing and roleplay (MT-Bench) with a fixed temperature of 0.7
for 3 different settings: greedy sampling and random sampling
(RS) plotted as the star and the dot, and typical sampling curves
under different thresholds.

3.3.2. THRESHOLDS OF TYPICAL ACCEPTANCE

The thresholds of typical acceptance are studied on
the writing and roleplay categories from the MT-Bench
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dataset (Zheng et al., 2023) using MEDUSA-2 Vicuna 7B.
Utilizing the Vicuna 7B model, we aligned our methodology
with the approach delineated by (Hewitt et al., 2022) set-
ting the α =

√
ϵ. Fig. 5 presents a comparative analysis of

our model’s performance across various sampling settings.
These settings range from a threshold ϵ starting at 0.01 and
incrementally increasing to 0.25 in steps of 0.01. Our obser-
vations indicate a discernible trade-off: as ϵ increases, there
is an elevation in quality at the expense of a reduced accel-
eration rate. Furthermore, for tasks demanding creativity, it
is noted that the default random sampling surpasses greedy
sampling in performance, and the proposed typical sampling
is comparable with random sampling when ϵ increases.

Baseline Direct Fine-tuning MEDUSA-1 MEDUSA-2

Quality 6.17 5.925 6.23 6.18
Speedup N/A N/A 2.18 2.83

Table 2. Comparison of Different Settings of Vicuna-7B. Quality
is obtained by evaluating models on MT-Bench using GPT-4 as
the judge (higher the better).

3.3.3. EFFECTIVENESS OF TWO-STAGE FINE-TUNING

Table 2 shows the performance differences between various
fine-tuning strategies for the Vicuna-7B model. MEDUSA-
1, which fine-tunes only the MEDUSA heads, achieves
a 2.18x speedup without compromising generation qual-
ity. MEDUSA-2, which employs two-stage fine-tuning
(Section 2.2.2), maintains generation quality and provides
greater speedup (2.83x) compared to MEDUSA-1. In con-
trast, direct fine-tuning the model with the MEDUSA heads
results in degraded generation quality. The findings in-
dicate that implementing our MEDUSA-2 for fine-tuning
maintains the model’s quality and concurrently improves
the speedup versus MEDUSA-1.

Table 3. Impact of Techniques on Speedup

Technique Speedup

Medusa-1 heads without tree attention ∼1.5x
Adding tree attention ∼1.9x
Using optimized tree configuration ∼2.2x
Training heads with Medusa-2 ∼2.8x

4. Discussion
In conclusion, MEDUSA enhances LLM inference speed by
2.3-2.8 times by equipping models with additional predic-
tive decoding heads, allowing for generating multiple tokens
simultaneously and bypassing the sequential decoding limi-
tation. Key advantages of MEDUSA include its simplicity,
parameter efficiency, and ease of integration into existing
systems. MEDUSA avoids the need for specialized draft

models. The typical acceptance scheme removes complica-
tions from rejection sampling while providing reasonable
outputs. Our approach including two efficient training pro-
cedures, ensures high-quality output across various models
and prompt types. We summarize the development of each
technique and their impact on the speedup in Table 3.

In the paper, we focus on the setting with batch size 1 for
simplicity. Yet, we want to emphasize that the ideas pre-
sented in our paper can be generalized to larger batch-size
settings, which are now supported by libraries like TensorRT
and Huggingface TGI following our paper.
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Impact Statement
The introduction of MEDUSA, an innovative method to
improve the inference speed of Large Language Models
(LLMs), presents a range of broader implications for so-
ciety, technology, and ethics. This section explores these
implications in detail.

Societal and Technological Implications

• Accessibility and Democratization of AI: By signif-
icantly enhancing the efficiency of LLMs, MEDUSA
makes advanced AI technologies more accessible to
a wider range of users and organizations. Democrati-
zation can spur innovation across various sectors, in-
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cluding education, healthcare, and entertainment, po-
tentially leading to breakthroughs that benefit society
at large.

• Environmental Impact: The acceleration for LLM
inference due to MEDUSA could lead to decreased
energy consumption and a smaller carbon footprint.
This aligns with the growing need for sustainable AI
practices, contributing to environmental conservation
efforts.

• Economic Implications: The increased efficiency
brought about by MEDUSA may lower the cost barrier
to deploying state-of-the-art AI models, enabling small
and medium-sized enterprises to leverage advanced AI
capabilities. This could stimulate economic growth,
foster competition, and drive technological innovation.

Ethical Considerations

• Bias and Fairness: While MEDUSA aims to improve
LLM efficiency, it inherits the ethical considerations
of its backbone models, including issues related to
bias and fairness. The method’s ability to maintain
generation quality necessitates investigation to ensure
that the models do not perpetuate or amplify existing
biases.

• Transparency and Accountability: The complexity
of MEDUSA, particularly with its tree-based attention
mechanism and multiple decoding heads, may pose
challenges in terms of model interpretability. Ensuring
transparency in how decisions are made and maintain-
ing accountability for those decisions are crucial for
building trust in AI systems.

• Security and Privacy: The accelerated capabilities of
LLMs augmented by MEDUSA could potentially be
exploited for malicious purposes, such as generating
disinformation at scale or automating cyber-attacks. It
is imperative to develop and enforce ethical guidelines
and security measures to prevent misuse.
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A. Related Work
A.1. LLM Inference Acceleration

The inefficiency of Large Language Model (LLM) inference is primarily attributed to the memory-bandwidth-bound nature
of the auto-regressive decoding process. Several methods have been proposed to alleviate this issue, improving inference
latency and throughput. Traditionally, batch inference has been employed as a straightforward method to enhance arithmetic
intensity and escape memory-bandwidth-bound limitations. However, with LLMs, both model parameters and the Key-Value
(KV) cache consume substantial accelerator memory, hindering the utilization of large batch sizes. Existing methods to
tackle this problem can be conceptually divided into two main categories: (1) Reducing memory consumption, thereby
minimizing memory transfer overhead and enabling larger batch sizes, and (2) Minimizing the number of decoding steps to
decrease latency directly.

Reducing KV Cache. Methods such as Multi-query attention (Shazeer, 2019) and Grouped-query attention (Ainslie et al.,
2023) adopt a direct approach to diminish the KV cache. By utilizing fewer key and value heads in the attention modules
relative to query heads, these strategies substantially cut the KV’s memory consumption, thereby facilitating larger batch
sizes and enhanced accelerator utilization (Pope et al., 2022). Additionally, Zhang et al. (2023) proposes to selectively retain
the most critical KV tokens, further reducing the KV cache. From a system perspective, Kwon et al. (2023) introduces a
paged memory management scheme for reducing fragmentation of the KV cache.

Quantization. Quantization techniques are extensively used to shrink LLMs’ memory consumption. Xiao et al. (2023a)
apply rescaling between activations and parameters to eliminate outliers and simplify the quantization process. Dettmers
et al. (2022) breaks down matrix multiplications into predominantly 8-bit and a minority of 16-bit operations. Frantar
et al. (2022) iteratively round weight columns into 3/4 bits, while Lin et al. (2023) present an activation-aware quantization
scheme to protect salient weights and compress LLMs to 3/4 bits. Kim et al. (2023) introduce a sparse plus low-precision
pattern to handle a minor portion of vital weights, among other techniques.

Speculative Decoding. As an approach orthogonal to the aforementioned methods, speculative decoding (Leviathan et al.,
2022; Chen et al., 2023) aims to execute several decoding steps in parallel, thus reducing the total number of steps required.
This parallelization is realized by employing a smaller draft model to conjecture several subsequent words, which the LLMs
then collectively evaluate and accept as appropriate. While resonating with non-autoregressive generation literature (Xiao
et al., 2023b), this method is specifically tailored for LLMs to address the aforementioned inefficiency. Unlike previous
works, we propose leveraging the original model to make predictions rather than introducing an additional draft model. This
approach is more straightforward and seamlessly integrates into existing systems without the complexities of managing two
models. Independently, Miao et al. (2023); Spector & Re (2023) propose the use of tree-structured attention to generate
multiple candidates in parallel, where Miao et al. (2023) suggest employing an ensemble of models to propose candidates,
and Spector & Re (2023) advocate adding another hierarchy for the draft model. However, draft models require specialized
pretraining and alignment with the target models. While employing multiple draft models can be cumbersome and involves
the complexity of managing parallelism, our approach, which relies solely on decoding heads, offers a simpler alternative.
Miao et al. (2023) employ multiple draft models to generate tokens and merge them using tree attention, while Spector &
Re (2023) utilize a small draft model to process each level of the tree in batches. In contrast, our method directly uses the
top predicted tokens from each of MEDUSA heads to create a static sparse tree without autoregression or adjusting the tree
structure. This approach simplifies the process and improves efficiency. Additionally, we demonstrate through a detailed
ablation study how the nodes of the tree can affect decoding speed.

A.2. Sampling Scheme

The manner in which text is sampled from Large Language Models (LLMs) can significantly influence the quality of the
generated output. Recent studies have revealed that direct sampling from a language model may lead to incoherent or
nonsensical results (Pillutla et al., 2021; Holtzman et al., 2020). In response to this challenge, truncation sampling schemes
have been introduced (Fan et al., 2018; Basu et al., 2021; Meister et al., 2022; Hewitt et al., 2022; Meister et al., 2023).
These approaches aim to produce high-quality and diverse samples by performing sampling on a truncated distribution over
a specific allowed set at each decoding step.

Different strategies define this allowed set in various ways. For example, top-k sampling (Fan et al., 2018) retains the k
most likely words, whereas top-p sampling (Holtzman et al., 2020) incorporates the minimal set of words that account for p
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percent of the probability. Another method, known as typical decoding (Meister et al., 2023), employs the entropy of the
predicted distribution to establish the threshold for inclusion. Hewitt et al. (2022) offers a unified framework to understand
truncation sampling techniques comprehensively.

Drawing inspiration from these methods, our typical acceptance scheme aligns with the concept of defining an allowed set
to exclude improbable candidates from the sampling process. However, we diverge because we do not insist on an exact
correspondence between the output and language model distribution. This deviation allows us to facilitate more diverse yet
high-quality outputs, achieving greater efficiency without compromising the integrity of the generated text.

B. Experiment Settings
B.1. Common Terms

We clarify three commonly used terms: a) Acceleration rate: This refers to the average number of tokens decoded per
decoding step. In a standard auto-regressive model, this rate is 1.0. b) Overhead: This is used to characterize the per
decoding step overhead compared to classic decoding, and is calculated by dividing the average per step latency of the
MEDUSA models by that of the vanilla model. c) Speedup: This refers to the wall-time acceleration rate. Following these
definitions, we have the relation: Speedup = Acceleration rate / Overhead.

B.2. Shared Settings

For all the experiments, we use the Axolotl (Axolotl, 2023) framework for training. We use a cosine learning rate scheduler
with warmup and use 8-bit AdamW (Dettmers et al., 2021) optimizer. We train 5 MEDUSA heads with 1 layer and set λk in
Eq. (1) to be 0.8k. For MEDUSA-2, we use either LoRA (Hu et al., 2021) or QLoRA (Dettmers et al., 2023) for fine-tuning
and set the learning rate of MEDUSA heads to be 4 times larger than the backbone model. LoRA is applied to all the linear
layers of the backbone model, including the language model head. The rank of LoRA adapter is set to 32, and α is set to 16.
A dropout of 0.05 is added to the LoRA adapter.

B.3. MEDUSA-1 v.s. MEDUSA-2 on Vicuna 7B and 13B

We use a global batch size of 64 and a peak learning rate of 5e−4 for the backbone and 2e−3 for MEDUSA heads and
warmup for 40 steps. We use 4-bit quantized backbone models for both models. We first train the models with MEDUSA-1
and use these trained models as initialization to train MEDUSA-2. We employ QLoRA for MEDUSA-2 and the λ0 in Eq. (2)
is set to be 0.2.

B.4. Training with Self-Distillation on Vicuna-33B and Zephyr-7B

We use MEDUSA-2 for both models instead of using a two-stage training procedure. We use a sine schedule for the θ0 to
gradually increase the value to its peak at the end of the training. We find this approach is equally effective. We set the
peak learning rate of the backbone LoRA adapter to be 1e−4 and the warmup steps to be 20 since the self-distillation loss is
relatively small. We set the λ0 in Eq. (2) to be 0.01.

C. Visualization of optimized tree attention
Fig. 6 illustrates the structure of a sparsely constructed tree for the MEDUSA-2 Vicuna-7B model. This tree structure extends
four levels deep, indicating the engagement of four MEDUSA heads in the computation. The tree is initially formed through a
Cartesian product approach and subsequently refined by pruning based on the statistical expectations of the top-k predictions
from each MEDUSA head measured on the Alpaca-eval dataset (Dubois et al., 2023). The tree’s lean towards the left visually
represents the algorithm’s preference for nodes with higher probabilities on each head.

D. Results of Speculative Decoding
In this study, speculative decoding was applied to Vicuna models (Chiang et al., 2023) with varying sizes, specifically 7B,
13B, and 33B. The preliminary framework utilized open-source models such as Llama-68M and 160M (Miao et al., 2023),
alongside Tiny-Llama (Zhang et al., 2024) and Tiny-Vicuna (Pan, 2023), fine-tuned from Tiny-Llama with the Vicuna-style
instructional tuning strategy. Due to the proprietary nature of speculative decoding methods (Chen et al., 2023; Leviathan
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Figure 6. Visualization of a sparse tree setting for MEDUSA-2 Vicuna-7B. The tree has 64 nodes representing candidate tokens and a
depth of 4 which indicates 4 MEDUSA heads involved in calculation. Each node indicates a token from a top-k prediction of a MEDUSA

head, and the edges show the connections between them. The red lines highlight the path that correctly predicts the future tokens.

et al., 2022), open-source alternatives3 were deployed for evaluation. Additionally, we utilize torch.compile() to
accelerate the inference speed of draft models.

Our results shown in Fig. 7, reveal that the optimal settings of the draft model vary with the Vicuna model sizes. Specifically,
the Llama-68M, with a setting of the draft token number γ = 4, yielded the best performance for Vicuna-7B, while the same
draft model with γ = 3 was most effective for Vicuna-13B. For the larger Vicuna-33B, the Tiny-Vicuna (Vicuna-1B), with
γ = 3, provided the greatest acceleration. These results suggest that the choice and setting of the drafting model should be
tailored to the size of the LLMs, presenting an area for further exploration in the field.
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Figure 7. Inference speed of various models using speculative decoding on MT-Bench. Baseline model speeds are presented by grey
dotted lines for comparison. γ denotes the draft token number.

E. Additional Results for All Models
We show speedup on various models in Fig. 8.

F. Additional Results on AlpacalEval Dataset
We conduct further experiments on the AlpacaEval (Li et al., 2023) dataset. MEDUSA-2 achieves consistent speedup similar
to the results on MT-Bench.

3https://github.com/feifeibear/LLMSpeculativeSampling
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Figure 8. Speedup of various models with MEDUSA-2. MEDUSA-2 shows significant speed improvement over all the models, while
models trained with self-distillation (Zephyr-7B, Vicuna-13/33B) have weaker speedup due to the trade-off between preserving quality
and boosting speed.

Model Base speed (tokens/s) MEDUSA speed (tokens/s) Acc. rate Speedup

Vicuna-7b 37.07 106.76 3.23 2.88
Vicuna-13b 29.01 91.54 3.28 3.16
Vicuna-33b 17.87 40.43 2.85 2.26
Zephyr-7b 34.21 99.50 3.08 2.91

Table 4. Speedup results on AlpacaEval (Li et al., 2023) dataset.

G. Exploration and Modeling of Hardware Constraints and MEDUSA

We explore the hardware constraints, specifically memory-bandwidth bound, and their impact on MEDUSA-style parallel
decoding by incorporating a simplified Llama-series model. First, we identify that the operators involving matrix multi-
plications, such as linear layers and attention matrix multiplications, are the primary sources of overhead. We profile the
performance of FLOP/s vs. Operational Intensity which is the ratio of FLOP/s to bandwidth (bytes/s), across various GPUs,
including the A100-80GB-PCIe, A40, and A6000. Next, we examine the changes in FLOP/s vs. Operational Intensity when
using MEDUSA for different operators. Finally, we apply a straightforward analytical model to calculate acceleration rates
and combine it with hardware benchmarks. This provides insights into the effects under different model sizes, sequence
lengths, and batch sizes.

G.1. Roofline Model of Operators

We present an analysis of the roofline model for various operators in large language models (LLMs), specifically focusing
on Llama-7B, Llama-13B, and Llama-33B (Touvron et al., 2023). These models were benchmarked on different GPUs,
including the A100-80GB-PCIe, A40, and A6000. We looked into the three categories of matrix multiplication operators
since they represent the primary sources of computational overhead in these models. Our study follows the report (Chen,
2023) which investigates the effectiveness of batch size but ours focuses more on decoding and parallel decoding.

Table 5 details the computation and space complexity for each operator during the prefill, decoding, and MEDUSA decoding
phases. The operators include the linear layers for query, key, and value matrices (XWQ, XWK , XWV ), the attention
matrix multiplications (QKT , PV ), and the up/gate/down linear layers (XWu, XWg , XWd). b stands for the batch size, s
stands for the sequence length, h stands for the hidden dimension, i stands for the intermediate dimension, n stands for the
number of attention heads, d stands for the head dimension and q stands for the candidate length for MEDUSA. For more
details of these operators please refer to the articles (Touvron et al., 2023; Chen, 2023).

Figures 9-17 show the benchmark of three categories of operators on different models (7/13/33B) under various settings. To
evaluate each operator’s performance and throughput, we chose the combination of settings including batch sizes from 1 to
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Table 5. Computational and space complexity of the main operators in different phases. The table is based on Table 2 in the report (Chen,
2023).

Operator Input Shape Output Shape Comp. Complexity Space Complexity

Prefill

XWQ, XWK , XWV (b, s, h) (b, s, h) O(bsh2) O(2bsh + h2)

QKT , PV (b, n, s, d), (b, n, s, s) (b, n, s, s), (b, n, s, d) O(bs2nd) O(2bsnd + bs2n)
XWu, XWg , XWd (b, s, h), (b, s, h), (b, s, i) (b, s, i), (b, s, i), (b, s, h) O(bshi) O(bs(h + i) + hi)

Decoding

XWQ, XWK , XWV (b, 1, h) (b, 1, h) O(bh2) O(2bh + h2)

QKT , PV (b, n, 1, d), (b, n, s, 1) (b, n, s, 1), (b, n, 1, d) O(bsnd) O(bsn + bsnd + bnd)
XWu, XWg , XWd (b, 1, h), (b, 1, h), (b, 1, i) (b, 1, i), (b, 1, i), (b, 1, h) O(bhi) O(b(h + i) + hi)

Parallel decoding

XWQ, XWK , XWV (b, q, h) (b, q, h) O(bqh2) O(2bqh + h2)

QKT , PV (b, n, q, d), (b, n, s, q) (b, n, s, q), (b, n, q, d) O(bsqnd) O(bsqn + b(s + q)nd)
XWu, XWg , XWd (b, q, h), (b, q, h), (b, q, i) (b, q, i), (b, q, i), (b, q, h) O(bqhi) O(bq(h + i) + hi)

64 in powers of 2 and sequence lengths from 128 to 8192 in powers of 2 (49 settings for each operator). From all the figures,
we observe that the datapoints of each operator in the prefill and decoding stages cluster at very similar positions across all
GPUs and for various model sizes.

During the prefill phase, increasing the batch size changes the FLOP/s of the attention matrix multiplications (see ‘qk/pv
init‘) but does not affect the Operational Intensity (refer to the vertical dashed arrow in Fig. 9). In contrast, increasing
the sequence length impacts both FLOP/s and Operational Intensity in the prefill phase (refer to the diagonal dashed arrow
in Fig. 9). During the decoding phase, the attention matrix multiplications are significantly limited by memory bandwidth.
Despite an increase in FLOP/s with changes in batch size and sequence length, the Operational Intensity remains nearly
unchanged (see ‘qk/pv ar‘). This indicates suboptimal resource utilization in the self-attention mechanism.

The linear layers in the prefill phase are mostly compute-bound (see ‘qkv mlp init‘ and ‘up/gate/down init‘).
During the decoding phase, the datapoints of the linear layer form a line with the same slope as the GPU’s memory
bandwidth (see ‘qkv mlp ar‘ and ‘up/gate/down ar‘). This indicates the linear layers in the decoding stage are
also bounded by memory bandwidth. Increasing the batch size improves the achieved FLOP/s and Operational Intensity
under memory bandwidth constraints through better parallelism. Note that linear layers only process the new token and are
independent of sequence length (See ‘Decoding‘ section in Table 5).
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qk/pv init
Increase bs

qk/pv init

Increase seq_len

Figure 9. The figure shows the relationship between FLOP/s and Operational Intensity for all benchmarked datapoints of Llama-7B
operators on A100-80GB-PCIe. The dashed lines represent the HBM bandwidth limit (1,935GB/s) and the peak performance limit (312
TFLOP/s) (NVIDIA). ‘qkv mlp’ stands for the linear layers projecting hidden features to query/key/value features. ‘up/gate/down’
stands for the linear layers following the attention block. ‘qk/pv’ stands for the two steps of attention matrix multiplications. ‘ar’ stands
for the decoding (autoregressive) and ‘init’ stands for the prefill phase.
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Figure 10. Llama-13B operators on A100-80GB-PCIe.
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Figure 11. Llama-33B operators on A100-80GB-PCIe.
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Figure 12. Llama-7B operators on A40.
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Figure 13. Llama-13B operators on A40.
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Figure 14. Llama-33B operators on A40.
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Figure 15. Llama-7B operators on A6000.
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Figure 16. Llama-13B operators on A6000.

21



MEDUSA: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads

1 10 100 1k 10k
Operational Intensity (FLOP/Byte)

10G

100G

1T

10T

100T

Pe
rfo

rm
an

ce
 (F

LO
P/

s)

Roofline Model (Llama 33B, A6000)

768GB/s
181 TFLOP/s
qkv mlp init
qkv mlp ar
up/gate/down init
up/gate/down ar
qk/pv init
qk/pv ar

Figure 17. Llama-33B operators on A6000.
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G.2. FLOP/s vs. Operational Intensity Variations in MEDUSA

We investigate how Medusa can change Operational Intensity and elevate the FLOP/s. We choose Llama 33B on A100-
80GB-PCIe as the setting.

First, we examine the attention matrix multiplication. Fig. 18 and Table 6 illustrate the effects of MEDUSA while keeping the
batch size fixed at 16. We observe increased FLOP/s and Operational Intensity as more candidate tokens are added (original
decoding results are plotted as grey dots). This indicates that MEDUSA can leverage additional candidate tokens to improve
computational throughput. Compared to regular decoding, MEDUSA achieves 44× FLOP/s and 41× Operational Intensity
under the setting of batch size 16 and sequence length 1024 with 64 candidate tokens. Fig. 19 and Table 7 illustrate the
effects of MEDUSA decoding while keeping the sequence length fixed at 1024. Increasing the batch size does not improve
Operational Intensity in this scenario.

Next, we examine the linear layer, focusing on the up/gate/down linear layers. The results are shown in Fig. 20 and
Table 8. Since the linear layers in the decoding phase only process the future tokens while the past tokens are cached,
they are independent of the sequence length. We vary the batch size to observe the effects. As MEDUSA increases the
number of candidate tokens with the increasing batch size, we observe a shift from a memory-bandwidth-bound region to a
computation-bound region. This shift demonstrates how MEDUSA can transition the performance characteristics of the
linear layers from being limited by memory bandwidth to being limited by computational capacity.
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Figure 18. FLOP/s vs. Operational Intensity of attention matrix multiplication with batch size 16.
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Figure 19. FLOP/s vs. Operational Intensity of attention matrix multiplication with sequence length 1024.
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Figure 20. FLOP/s vs. Operational Intensity of Linear layers.
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Seq. Length Number of Candidate Tokens

1 16 32 48 64 80 96 112

128 0.54 & 0.98 7.87 & 12.8 14.73 & 21.33 19.78 & 27.43 25.25 & 32.0 28.63 & 35.56 32.58 & 38.4 36.57 & 40.73
256 0.75 & 0.99 11.2 & 13.47 21.29 & 23.27 28.69 & 30.72 36.59 & 36.57 41.2 & 41.29 45.99 & 45.18 52.33 & 48.43
512 1.02 & 0.99 14.69 & 13.84 27.47 & 24.38 37.35 & 32.68 47.09 & 39.38 52.24 & 44.91 59.55 & 49.55 66.35 & 53.49
1024 1.24 & 0.99 17.42 & 14.03 32.15 & 24.98 43.89 & 33.76 54.8 & 40.96 60.19 & 46.97 68.28 & 52.07 75.45 & 56.44
2048 1.39 & 0.99 19.03 & 14.12 35.05 & 25.28 48.03 & 34.32 59.66 & 41.8 63.91 & 48.08 72.83 & 53.43 80.05 & 58.04
4096 1.48 & 0.99 19.8 & 14.17 36.59 & 25.44 50.4 & 34.61 62.29 & 42.23 65.84 & 48.65 74.86 & 54.13 82.06 & 58.87
8192 1.53 & 0.99 20.08 & 14.2 36.89 & 25.52 50.44 & 34.76 62.11 & 42.45 67.5 & 48.94 76.97 & 54.49 84.5 & 59.3

Table 6. TFLOP/s & Operational Intensity of attention matrix multiplication with batch size 16 for Llama 33B on an A100 80GB PCIe.

Batch Size Number of Candidate Tokens

1 16 32 48 64 80 96 112

1 0.37 & 0.99 5.22 & 14.03 10.15 & 24.98 15.02 & 33.76 19.79 & 40.96 21.52 & 46.97 25.65 & 52.07 29.4 & 56.44
2 0.54 & 0.99 8.25 & 14.03 16.0 & 24.98 21.62 & 33.76 28.24 & 40.96 31.84 & 46.97 37.49 & 52.07 43.04 & 56.44
4 0.75 & 0.99 11.41 & 14.03 21.97 & 24.98 30.02 & 33.76 38.71 & 40.96 43.41 & 46.97 50.06 & 52.07 56.77 & 56.44
8 1.02 & 0.99 14.78 & 14.03 27.78 & 24.98 38.09 & 33.76 47.99 & 40.96 53.32 & 46.97 61.0 & 52.07 68.11 & 56.44
16 1.24 & 0.99 17.42 & 14.03 32.15 & 24.98 43.89 & 33.76 54.8 & 40.96 60.19 & 46.97 68.28 & 52.07 75.45 & 56.44
32 1.39 & 0.99 18.89 & 14.03 34.67 & 24.98 47.57 & 33.76 58.89 & 40.96 63.61 & 46.97 72.17 & 52.07 79.21 & 56.44
64 1.48 & 0.99 19.58 & 14.03 35.87 & 24.98 49.45 & 33.76 61.13 & 40.96 64.84 & 46.97 73.73 & 52.07 81.02 & 56.44

Table 7. TFLOP/s & Operational Intensity of attention matrix multiplication with sequence length 1024 for Llama 33B on an A100 80GB
PCIe.

Batch Size Number of Candidate Tokens

1 16 32 48 64 80 96 112

1 1.26 & 1.0 19.95 & 15.95 39.69 & 31.79 58.4 & 47.53 76.57 & 63.17 94.4 & 78.7 111.91 & 94.14 128.64 & 109.47
2 2.51 & 2.0 39.66 & 31.79 76.53 & 63.17 112.05 & 94.14 145.73 & 124.71 130.67 & 154.89 129.1 & 184.69 148.56 & 214.12
4 5.03 & 4.0 76.44 & 63.17 145.8 & 124.71 128.85 & 184.69 167.85 & 243.17 201.19 & 300.21 236.93 & 355.85 195.91 & 410.14
8 10.06 & 7.99 145.72 & 124.71 168.26 & 243.17 236.83 & 355.85 221.11 & 463.14 207.79 & 565.44 236.95 & 663.07 227.8 & 756.36
16 19.96 & 15.95 168.35 & 243.17 221.41 & 463.14 237.5 & 663.07 224.71 & 845.59 232.49 & 1012.87 241.12 & 1166.74 229.25 & 1308.76
32 39.69 & 31.79 221.74 & 463.14 224.88 & 845.59 241.33 & 1166.74 239.02 & 1440.25 245.83 & 1675.97 243.55 & 1881.24 240.33 & 2061.59
64 76.57 & 63.17 225.19 & 845.59 239.2 & 1440.25 243.26 & 1881.24 246.16 & 2221.31 246.91 & 2491.55 244.52 & 2711.46 246.14 & 2893.91

Table 8. TFLOP/s & Operational Intensity of linear layers (up/gate/down) for Llama 33B on an A100 80GB PCIe.

G.3. Predicting MEDUSA Performance

We further employ a straightforward analytical model for the acceleration rate. The ablation study results in Sec. 3.3.1
indicate that the acceleration rate can be approximated by a simple logarithmic function. Using the results from Fig. 4a,
we model the curve as acc rate = 0.477 log(num candidate). We simulate the latency of one simplified block of
the Llama-7B model (sequentially processing XWQ, XWK , XWV , QKT , PV , XWu, XWg, XWd) by first fixing the
batch size at 1 and the sequence length at 1024. The candidate tokens are processed parallelly by constructing the tree
attention described in Section 2.1.2. We omit the latency of the post-processing steps including verification and acceptance
for MEDUSA since they introduce marginal overhead. Fig. 21 illustrates the simulated acceleration rate and speedup
for different numbers of candidate tokens under these settings. As the number of candidate tokens increases, both the
acceleration rate and speedup initially show improvements. However, beyond 64, the speedup starts to decline, indicating
diminishing returns with further increases in candidate length. This aligns with the experimental results in Fig. 4b and
suggests that there is an optimal range for the numbers of candidate tokens where MEDUSA provides the most significant
performance gains.

We plot the simulated speedup under different batch size settings with a fixed sequence length of 1024 in Fig. 22. The
results indicate that when the batch size exceeds 32, the speedup decreases and may even have a negative effect. This occurs
because the linear layers shift from being memory-bandwidth-bound to computationally bound.

We conduct another experiment using a batch size of 4 and different sequence lengths. As shown in Fig. 23, the optimal
number of candidate tokens remains relatively consistent across different sequence lengths. However, as the sequence length
increases, the overall performance decreases. This performance drop is primarily due to the overhead from attention matrix
multiplication, while the linear layer computation remains constant since the computation of linear layers is independent of
the sequence length.
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Our simulations show that the optimal number of candidate tokens is key for model scaling with MEDUSA, as benefits
decrease beyond a certain range. Initially, increasing batch size improves performance through parallelism, but too large a
batch size shifts linear layers from memory-bandwidth-bound to compute-bound, reducing speedup. Longer sequences
increase attention matrix multiplication overhead, lowering performance, and emphasizing the need to optimize attention
mechanisms. Effective model scaling requires balancing the number of candidate tokens, adjusting batch sizes to avoid
compute-bound transitions, and enhancing attention mechanisms for longer sequences. These strategies ensure better
resource utilization and higher performance, demonstrating the value of simulations in predicting performance and guiding
acceleration strategy design.
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Figure 21. Simulated acceleration rate, speedup, and normalized latency ablation using different numbers of candidate tokens under the
setting of batch size 1 and sequence length 1024 for Llama-7B on an A100 80GB PCIe.
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Figure 22. Simulated speedup with sequence length 1024 for Llama-7B.
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Figure 23. Simulated speedup with batch size 4 for Llama-7B.
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