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Abstract

Frontier AI development requires AI supercom-
puters with thousands of AI chips. Yet, analysis
of developments in these systems is limited. We
create a dataset of 500 AI supercomputers from
2019 to 2025 and quantify key trends. We find that
computational performance of AI supercomputers
has doubled every nine months, while hardware
acquisition cost and power needs have doubled
yearly. The leading system in March 2025, xAI’s
Colossus, had a hardware cost of $7B, and re-
quired 300 MW of power—as much as 250,000
households. While the public sector owned 60%
of AI supercomputer performance in 2019, this
share declined to only 20% by 2025, which may
limit access to frontier capabilities for academic
researchers. The United States dominates AI su-
percomputers, owning 75% of performance, sug-
gesting a large degree of geographical concentra-
tion of compute. Our study provides visibility into
AI infrastructure trends, allowing policymakers
to make more informed AI governance decisions.

This is a shortened version accepted at ICML TAIG 2025.
For the full version, see arxiv.org/abs/2504.16026.

1. Introduction
The computing power (compute) used to train notable AI
models has increased at a rate of 4.2× per year since 2010,
enabling new AI capabilities across many domains (Sevilla
& Roldan, 2024). Exponentially increasing training com-
pute relied on larger, higher-performance AI supercomput-
ers (Hobbhahn et al., 2023; Frymire, 2024). Yet, data and
analysis of trends in these systems is scarce. Existing public
resources like the Top500 list or the ML-Perf benchmark
rely on voluntary submissions and thus lack sufficient data
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to reliably analyze trends (Top500; Mattson et al., 2020).1

We attempt to close this gap by collecting a dataset of more
than 500 AI supercomputers between 2019 and 2025 and
analyzing trends in performance, cost, power needs, and
country and public/private distribution.

2. Methods
We define an AI supercomputer as a computer system capa-
ble of supporting large-scale AI model training, deployed
on a contiguous data center campus. To qualify, a system
must contain chips that can accelerate AI workloads such
as NVIDIA’s H100, Google’s TPUv4, or other AI chips
with features like FP16/INT8 precision support, dedicated
matrix multiplication units, high-bandwidth memory, or
documented use in training notable AI models. To limit
the dataset to the most significant systems we additionally
apply a performance threshold and only include systems
that achieved at least 1% of the performance of the most
powerful existing AI supercomputer at that time.

Using the Google Search API, existing compilations of AI
supercomputers, and manual searches, we collected data on
501 leading AI supercomputers between 2019 and Febru-
ary 2025, and an additional 225 pre-2019 systems. For
each AI supercomputer, we documented various features
including chip specifications, the first operational date, re-
ported performance, ownership, and location. Our dataset,
along with regular updates, is available at epoch.ai/data/ai-
supercomputers. We estimate that our dataset covers approx-
imately 10% of aggregate performance across all AI chips
produced through 2025, and about 15% of AI chip stocks
held by major companies as of early 2025. Roughly half of
the 25 largest AI training runs in Epoch AI (2025)’s notable
models dataset as of March 2025 had a corresponding AI
supercomputer in our dataset. Find an assessment of our
data coverage in Appendix C.1.1.

Before analyzing trends, we filter our data to include only
high-certainty operational systems. We then fit lin-log re-
gressions and report 90% confidence intervals (CI) for all
growth rates. For all regressions, we consider only systems
that were among the top-10 leading AI supercomputers

1For a review of other data sources of AI supercomputers, see
Appendix A.
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when they first became operational.

We provide details on our data collection and analysis meth-
ods in Appendix B.

3. Results
3.1. Computational performance has doubled every nine

months

Between 2019 and 2025, the computational performance
of leading AI supercomputers in 16-bit FLOP/s has dou-
bled every 9 months (Figure 1). The most performant AI
supercomputer in March 2025, xAI’s Colossus achieved
1.98 × 1020 16-bit FLOP/s, which was about 60× higher
than Oak Ridge’s Summit’s 3.46×1018 FLOP/s, the leading
AI supercomputer in 2019.

Two key factors drove the rapid performance growth: a
yearly 1.6× (90% CI: 1.5–1.8×) increase in chip quantity
and a 1.6× (90% CI: 1.5–1.7×) annual improvement in per-
formance per chip. While systems with more than 10,000
chips were rare in 2019, companies deployed AI supercom-
puters more than ten times that size in 2024, such as xAI’s
Colossus with 200,000 NVIDIA H100 and H200 chips.

Figure 1. The performance of leading AI supercomputers (in
FLOP/s, for 16-bit precision) has doubled every 9 months (a rate
of 2.5× per year, 90% Confidence Interval (CI): 2.4–2.7×).

3.2. Power requirements have doubled every year

We assess the annual growth rate in power requirements of
the leading AI supercomputers either based on reported
power requirement or, if unavailable, by estimating the
power requirement based on the number and type of AI
chips.

We find that the power need of the leading AI supercom-
puters increased by 2.0× (90% CI: 1.8–2.2×) each year
between 2019 and 2025. In January 2019, Summit at Oak
Ridge National Lab had the highest power requirement with
13 MW. In 2024, the first systems began to cross the 100
MW threshold, and in March 2025, xAI’s Colossus had

the highest power requirement at an estimated 300 MW.
For comparison, this is equivalent to the average power
consumption of 250,000 U.S. households (EIA, 2024).2

3.3. Hardware cost has doubled every 13 months.

We analyze annual growth in the hardware cost for leading
AI supercomputers based on either publicly reported cost
figures or—if those are unavailable—by estimating the total
hardware cost, based on the quantity of chips used and pub-
licly available price data. We adjust all values for inflation
and show our results in 2025 USD.

Hardware cost of the leading AI supercomputers increased
by 1.9× every year between 2019 and 2025 (Figure 2). In
2019, Oak Ridge National Lab’s Summit had the highest
hardware cost with about $200 million. In 2024, the first
systems crossed the $1B threshold and the most expensive
AI supercomputer as of March 2025 was xAI’s Colossus
with an estimated hardware cost of $7 billion.

Figure 2. The hardware cost in 2025 USD of leading AI supercom-
puters has grown at a rate of 1.9× (90% CI: 1.8–2.1× per year)
from 2019 to 2025.

3.4. Companies own the majority of AI supercomputers

For each AI supercomputer in our dataset, we classify the
owner into one of three categories: public, private, and
public/private (meaning the system has owners from both
sectors or a private project received at least 25% of funding
from a government.)

The private sector’s share of total compute in our dataset
rapidly increased from less than 40% in 2019 to about 80%
in 2025 (Figure 3), while the public sector’s share of AI
supercomputers rapidly decreased from about 60% in 2019
to about 15% in 2025. Our data may even underestimate
this shift, given that companies are less likely to publish
data on their systems than public owners. However, note
that public sector entities may still be able to access private

210,800 kWh /8760 h = 1.23 kW; 312 MW/ 1.23 kW = 250,000
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sector AI supercomputers, given that many are available
through cloud services.

Figure 3. Relative performance shares of public and private sectors
based on the owner of the AI supercomputer.

3.5. The United States hosts a dominant share of global
AI supercomputer performance

When analyzing the distribution across countries, we find
that in 2019, 70% of total comptuational performance in our
dataset was in the United States, while 20% was in China
(Figure 4).3 Between 2019 and 2022, the Chinese share
grew considerably, reaching about 40% at the start of 2022,
although this may be an artifact of our incomplete data cov-
erage. China’s share has since diminished; in March 2025,
the United States hosted around 75% of AI supercomputers
by performance while China hosted around 15%.

Figure 4. Share of aggregate 16-bit computing power by country
over time from AI supercomputers in our dataset. We are visualiz-
ing all countries that held a more than 3% share at some point in
time. See Appendix C.1.1 for a discussion of our data coverage.

3Physical location of an AI supercomputer does not directly
determine access, given many of our systems are available through
cloud services. Furthermore, location also does not necessarily
determine ownership since AI supercomputers sometimes belong
to companies headquartered abroad.

4. Discussion
4.1. AI supercomputer growth both relied on and

enabled the increased economic importance of AI

The observed increase in AI supercomputer performance
relied in part on long-standing improvements in chip design
and manufacturing (Roser et al., 2023; Hobbhahn et al.,
2023). However, the rapid 2.5× annual growth between
2019 and 2025 was only possible due to a rapid surge in
investment as AI supercomputers developed from academic
tools for scientific discovery to industrial machines running
economically valuable workloads.

Leading AI supercomputers in 2019, like the U.S. Depart-
ment of Energy’s Summit and Sierra, were designed to han-
dle a variety of workloads across different scientific domains
and advance foundational research (Oak Ridge National
Laboratory, undated). This changed in the early 2020s,
when companies increasingly used AI supercomputers to
train AI models with commercial applications, such as Ope-
nAI’s GPT-3 and GitHub’s Copilot integration (Brown et al.,
2020; Dohmke & GitHub, 2021). These demonstrations of
AI capabilities led to a significant increase in investment,
creating a record demand for AI chips (Our World in Data,
2024; Samborska, 2024; Richter, 2025).

As investments in AI increased, companies were able to
build more performant AI supercomputers with more and
better AI chips. This created a reinforcing cycle: increased
investment enabled better AI infrastructure, which produced
more capable AI systems, which attracted more users and
further investment. The growth of AI supercomputers thus
appears to have been both a result of increased funding
and a driver of continued investment as AI supercomputers
demonstrated their economic value.

4.2. U.S. dominance in global AI supercomputer
distribution

We found that AI supercomputers are heavily concentrated
in one country: Around three quaters of all AI supercom-
puter performance in our data was based in the United States
as of March 2025 (Figure 4). This U.S. dominance likely
resulted from AI supercomputers becoming increasingly
commercialized and dominated by companies instead of
governments or academia. Since U.S. companies dominated
related industries, they were able to capture a large share of
the AI supercomputer market. For instance, in 2019, three
U.S. companies, AWS, Microsoft, and Google alone made
up 68% of the global cloud computing market share (Gart-
ner, 2020). American companies also played leading roles
in key AI advances, including in recommender systems, sci-
entific applications like AlphaFold, and LLM chatbots like
ChatGPT (Dong et al., 2022; Jumper et al., 2021; OpenAI,
2022).
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4.2.1. THE UNITED STATES WILL LIKELY CONTINUE
LEADING IN AI SUPERCOMPUTERS

The United States dominates not only AI supercomputers
but also AI development, cloud services, and critically, the
design and supply chain of AI chips (Sastry et al., 2024).
This position has enabled the U.S. government to impose
export controls on AI chips to China as well as other non-
allied countries (Allen, 2022; Heim, 2025).

Yet, several challenges could reduce U.S. dominance:
rapidly increasing power demands for AI infrastructure (Pilz
et al., 2025; Fist & Datta, 2024; Mahmood et al., 2025),
sovereign AI investments by countries like France, the UK,
and Saudi Arabia (Reuters, 2025; UK DSIT, 2025; Benito,
2024), and China’s significant investments in domestic AI
chip production (Reuters, 2024). However, these challenges
remain limited: Sovereign projects are small compared to
U.S. systems, and Chinese efforts face significant obstacles
due to restricted access to advanced lithography equipment
(Grunewald, 2023).

Given U.S. control over critical semiconductor supply chain
chokepoints and stated government policy to maintain AI
leadership (The White House, 2025), U.S. dominance in AI
supercomputers could continue for the foreseeable future,
giving the United States an outsized role in shaping global
AI development and governance.

4.3. Impacts of increased private sector concentration

Our finding that companies rapidly increased their share of
AI supercomputers aligns with broader trends in AI research.
Besiroglu et al. (2024) found that the share of large-scale AI
models produced by academic institutions rapidly declined
from 65% in 2012 to 10% in 2023. The increased domi-
nance of industry likely resulted from AI models, and the
AI supercomputers that powered them, becoming increas-
ingly economically importan t(Section 4.1). This economic
importance drove major private investments that enabled
systems like xAI’s Colossus with a hardware cost of $7B,
while investment in government projects increased more
slowly, with the hardware for the leading system, El Capi-
tan, costing only $600M.

This private-sector concentration produces two significant
consequences: First, it creates a significant barrier for
academic researchers who have historically played vital
roles in advancing AI methods and providing independent
scrutiny. Although AI supercomputers available through
cloud providers could enable researchers with access to
large-scale compute resources, the costs of renting thou-
sands of AI chips for sufficient durations remain pro-
hibitively expensive for academic budgets (Heim & Egan,
2023). As a consequence, academic researchers are often
forced to work on smaller, less capable models or narrower

problems, potentially limiting the exploration of new algo-
rithmic approaches and independent AI safety and inter-
pretability research (Lohn, 2023; Besiroglu et al., 2024).

Second, as private companies control an increasing share of
AI supercomputers, governments may struggle to monitor
compute trends because companies are often less transpar-
ent about their compute ownership and use than academic
or government labs. Given compute determines both AI de-
velopment and deployment capabilities, limited data on AI
infrastructure could make it more difficult for governments
to track AI progress (Sastry et al., 2024). Additionally, lim-
ited data makes it harder for governments to assess national
competitiveness on AI infrastructure and develop coherent
national AI strategies.

To address these challenges, governments could require
companies to report key AI infrastructure metrics like total
compute capacity and gather intelligence on other coun-
tries’ infrastructure, improving competitive assessment and
potentially laying the groundwork for verifying potential fu-
ture international AI agreements (Sastry et al., 2024; Baker,
2023).

5. Conclusion
We compiled a dataset of 500 AI supercomputers between
2019 and 2025 and found that performance, number of chips,
power requirements, and hardware cost have all grown ex-
ponentially. The 2.5 × annual performance growth of AI
supercomputers has enabled a rapid increase in training com-
pute for frontier AI models, which has fueled significant
advances in AI capabilities and driven further investment in
infrastructure.

Our data also reveals that companies rapidly increased their
share of total AI supercomputer performance from 40% in
2019 to more than 80% in 2025. This compute divide may
hinder independent AI research and scrutiny, and compli-
cate governments’ oversight of AI development. The United
States hosts approximately 75% of global AI supercom-
puter performance and will likely maintain this dominance
through its control over the AI chip supply chain.

AI supercomputers have been a key driver of AI progress
and represent a central component of the AI supply chain
(Sastry et al., 2024). Our analysis provides valuable informa-
tion about AI supercomputers’ growth patterns, distribution,
and resource requirements. Such information will be in-
creasingly important for policymakers, and more generally
for understanding the trajectory of AI.

4



Acknowledgements
We would like to thank the following people for their assis-
tance, feedback, and contributions:

• David Owen for reliable guidance on scope and execu-
tion of this project as well as repeated feedback on the
report.

• Qiong Fang and Veronika Blablová for substantial con-
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A. Review of existing data sources
A.1. The Top500 list and its limitations for AI supercomputers

The Top500 list has been the primary leaderboard for tracking supercomputer performance since its inception in 1993. It
ranks systems based on their performance in solving linear equations using the LINPACK benchmark (Dongarra, 1987).
While this benchmark has provided a consistent, long-term method for comparing traditional high-performance computing
(HPC) systems, it has several significant limitations when applied to AI supercomputers:

• Participation in the Top500 list is voluntary, leading to significant gaps in reporting. Companies, particularly cloud
providers, which own many of the largest AI supercomputers, face limited incentives to report their AI supercomputers.
Running the LINPACK benchmark diverts valuable supercomputer and engineer time from more economically valuable
uses like AI training or deployment. Instead of reporting to the Top500, companies sometimes independently publish
promotional blog posts about their systems (Langston, 2020; Meta, 2022; AWS, 2023), while often maintaining
ambiguity about the number and size of their largest systems to avoid giving competitors unnecessary information about
their strategies. Additionally, Chinese owners stopped reporting any systems to the Top500 list in 2022, presumably to
reduce scrutiny and avoid U.S. sanctions (Shah, 2024).

• LINPACK is not an AI benchmark. It measures performance on linear equations requiring high-precision 64-bit number
formats (Dongarra, 1987), while modern AI workloads run on much lower precision formats (16-bit, 8-bit, or even 4-bit
for some inference workloads4). While performance on different precision formats was formerly highly correlated,
the introduction of tensor cores for lower precision formats on AI accelerators led to drastically faster performance
increases in these formats (Hobbhahn et al., 2023; Rahman & Owen, 2024). This divergence means LINPACK
performance does not accurately capture a supercomputer’s performance for AI workloads.5 New benchmarks like
HPL-MxP and ML-Perf better capture AI-relevant performance but have not been widely adopted (Luszczek, 2024;
Mattson et al., 2020).

Besides the Top500, no major datasets of supercomputers exist, meaning that previous analyses of supercomputers, such as
Hochman (2020), Tekin et al. (2021) and Chang et al. (2024) have exclusively relied on the Top500 list. While these analyses
offer useful insights into changes in components, performance, and energy efficiency of traditional supercomputers, the
limitations of the Top500 lists discussed above mean the observed trends do not comprehensively capture AI supercomputers.

A.2. Commercial databases of AI supercomputers

Some analysts, like SemiAnalysis and The Information, have private databases of AI supercomputers that are available for
paid subscribers. Furthermore, some companies such as Omdia offer trackers of AI chip shipments (SemiAnalysis, 2024;
The Information, 2025; Galabov et al., 2025). These databases are typically focused on providing business intelligence.
Thus, they do not assess historical trends and may not capture data from non-industry sources. Furthermore, these databases
usually do not disclose their methods and sources and do not make the analysis of their data publicly available.

B. Detailed Methods
B.1. Data collection process

We relied on systematic Google searches and publicly available datasets to find potential AI supercomputers. For each
potential AI supercomputer, we conducted an additional search to find and verify all relevant publicly available data about it.

Search methodology:

a) We used the Google Search API to search for terms such as “AI supercomputer” and “GPU cluster” in consecutive
12-day windows (1-1-2019–1-3-2025). We additionally conducted year-by-year country searches (e.g., “Albania AI
supercomputer”).

• Although our study period begins in 2019, we also conducted a similar, pared-down Google search for January

4Or even 4-bit precision for some inference workloads (Ashkboos et al., 2023).
5For instance, Microsoft’s Eagle and Japan’s Fugaku have comparable performances on LINPACK (5.6× 1017 FLOP/s vs 4.4× 1017

FLOP/s), but given that Fugaku does not contain any GPUs or other chips optimized for low-precision performance, they diverge by almost
an order of magnitude on FP8 performance (2.9× 1019 FLOP/s vs 4.3× 1018 FLOP/s) (Lee, 2023; Riken Center for Computational
Science, undated).
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2016–January 2019 in order to be able to determine which AI supercomputers were in the top 10 by computational
performance at the start of 2019. For this, we reduced our search terms by roughly 80% to lower the number of
records to look through.

b) We parsed the top results with the Beautiful Soup Python package and used GPT-4o via the OpenAI API to extract
system names and chip counts of any AI supercomputers mentioned.

c) We grouped entries by name in a spreadsheet, deduplicated, verified all potential AI supercomputers manually, and
added those that fit our inclusion criteria to our dataset.

d) Find additional details about the Google Search methods in Section B.2.

Additional sources:

a) Top500 list, inferring AI chip counts from reported accelerator cores.
• Many systems in the Top500 did not contain AI chips; however, those that did usually listed the ‘Accelerator/Co-

Processor’ type and the total number of ’Accelerator/Co-Processor Cores.’ Since we knew the number of cores for
each AI chip model, we calculated the implied AI chip count for the system by dividing the number of cores by
the cores per AI chip. We verified this method by checking it for AI supercomputers in the Top500 with previously
known AI chip counts.

• We considered all Top500 entries from June 2014 to November 2024 (but included only those that qualified for
our inclusion criteria between 2017 and 2025).

b) Epoch AI’s notable AI models dataset.
c) Published compilations of Chinese AI supercomputers (redacted, please reach out).
d) A small number of entries from a project on sovereign compute resources led by Aris Richardson (publication

forthcoming).
e) MLCommons Results.
f) gpulist.ai (last accessed January 2025).
g) Articles and newsletters shared by colleagues, such as from SemiAnalysis, Transformer, and Import AI.

Remaining components:

• We built our initial dataset via Google Alerts for the keyword ”AI supercomputer” (June 2023–Aug 2024)
• Two Chinese-language analysts conducted targeted searches of systems in China and Hong Kong (see Appendix B.3).
• Our main data collection focused on AI supercomputers that first became operational between 2019 and 2025. However,

we also included AI supercomputers that became operational between 2017 and 2019 if they met the standard inclusion
criteria, or if they were operational before 2017 and were at least 1% as large as the largest known supercomputer in
January 2017.

• We collected various additional sources for details on specific supercomputers using the Perplexity API.
• For over 500 key supercomputers, a team member did an additional verification of the entry (marked as true in the

’Verified Additional Time’ field). This focused on systems that were especially large for their time, most Chinese
systems, and any outliers.

B.2. Google search methodology

We conducted automated Google searches spanning from January 2019 to March 2025 for consecutive 12-day windows,
using various keywords related to AI supercomputers. For each search term, we collected different amounts of results based
on their utility in finding relevant information:

• “AI Supercomputer”: 30 Google results
• “AI Supercomputer cluster”: 30 Google results
• “AI Supercomputer news”: 20 Google results
• “AI Supercomputer cluster news”: 20 Google results
• “GPU Cluster”: 20 Google results
• “Compute Cluster”: 10 Google results
• “V100 Cluster”: 10 Google results
• “A100 Cluster”: 10 Google results
• “H100 Cluster”: 10 Google results

We parsed all websites using the BeautifulSoup (2025) Python library and used GPT-4o from the OpenAI API to search for
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information on all mentioned AI supercomputers (see prompt below).

Our searches yielded over 20,000 unique websites, resulting in approximately 2,500 potential AI supercomputer mentions
after deduplication. For each unique AI supercomputer, we used the Perplexity API to collect additional data sources (see
prompt below).

GPT-4O PROMPT FOR INITIAL EXTRACTION

Here is the text from a webpage that potentially contains some information about AI supercomputers. Please list the names
of any AI supercomputer clusters that are listed in this article, separated by semicolons if there are multiple. If you know the
company/organization name that owns/runs it, you should write the supercomputer name as the company/organization name,
followed by the name of the cluster. If the cluster does not have a name, simply refer to it with ‘UNNAMED’ and include
any identifiable information given. Please include any information about the number and type of AI chips (e.g. GPUs or
TPUs) in square brackets after the cluster name. Say ‘[NOINFO]’ if there is no information in the article about chip type or
quantity. For example, a response might look like ‘OpenAI Stargate [NOINFO]; Frontier [37,632 AMD MI250X]; Microsoft
UNNAMED Arizona H100s [50,000 NVIDIA H100s]’. You should only list AI supercomputer clusters and associated chip
information, nothing else. If there are no supercomputer clusters mentioned in the article, just reply with ‘None’. If you
can’t access or read the article, just reply with ‘Could not access article’. However, this should be rare, and mainly only
happen if the article is paywalled. Do not mention any other details. Article text: {TEXT HERE}

PERPLEXITY PROMPT FOR DETAILED INFORMATION

Tell me all the details you can about the {SUPERCOMPUTER NAME} supercomputer, including but not limited to: What
type of AI accelerator chips (eg GPUs, TPUs, etc) do they use (be as specific about the exact type of chip as possible)? How
many do they have, if any? When was it completed, or when is it expected to be completed? When was it first announced?
What is the timeline for any updates/iterations to this supercomputer? Where is it located? (be as specific as possible)
How many AI FLOP/s could it do? Who operates it? Who uses it? Who owns the supercomputer? Please list several
organizations if it is a joint partnership, and list if these organizations are or part of government, academia, industry,
or something else? Are there multiple supercomputers that could go by roughly this name? Have there been different
versions/iterations of this supercomputer?

B.3. Approach for finding Chinese AI supercomputers

We decided to redact our approach to finding Chinese AI supercomputers and avoid providing identifying information about
them throughout the paper to preserve data sources. We take this step as a precautionary measure because Chinese websites
cited in public reports have been redacted or replaced with malware in the past (Wei, 2023).

B.4. Power requirements

We calculated the peak power demand for each AI supercomputer with the following formula:

Chip TDP × number of chips × system overhead × PUE
We collected Thermal Design Power (TDP) for most chips when publicly available, though we did not find the TDP for
some Chinese chips and custom silicon such as Google’s TPU v5p. We considered both primary and secondary chips when
counting the number and types of chips. We used a 2.03× multiplier for non-GPU hardware to account for system overhead
(additional power needed for other server components like CPUs, network switches, and storage), based on NVIDIA DGX
H100 server specifications (NVIDIA, 2025). We also factored in Power Usage Effectiveness (PUE), which is the ratio of
total data center power use to IT power use (with a minimum value of 1). According to the 2024 United States Data Center
Energy Usage Report (Shehabi et al., 2024), specialized AI datacenter facilities had an average PUE of 1.14 in 2023, which
is 0.29 lower than the overall national average of 1.43. We adjusted the trend for all datacenter facilities to estimate the
average PUE of AI datacenters by subtracting 0.29 from the overall values reported by Shehabi et al. (2024) (Table 1).
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Table 1. AI data center power usage effectiveness (PUE) over time, adapted from (Shehabi et al., 2024).

YEAR 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

PUE 1.31 1.29 1.26 1.22 1.20 1.18 1.17 1.14 1.12 1.10

The full formula we use is:
Power = [(Primary AI chip TDP × Primary AI chip quantity)

+(Secondary AI chip TDP × Secondary AI chip quantity)]

× Server overhead factor × Datacenter PUE

We base some of the reported power values in our dataset on the top 500 list. However, the list reports average power
utilization during the benchmark, rather than peak power requirement. To determine peak power, we compare peak and
average power for supercomputers where we have both, find that they differ on average by a factor of 1.5, and scale all the
Top500 reported power figures by this factor. We then multiply by the PUE in the given year to find peak power demand for
the entire system.

B.4.1. LIMITATIONS WITH OUR POWER DATA

We rely on owner-reported power estimates for 15% of the AI supercomputers in our dataset. These reported figures lack
standardization—some may represent only critical IT load at theoretical maximum utilization, while others include complete
data center infrastructure overhead (accounting for power conversion losses and cooling requirements).

For the remaining 85% of systems, we estimate the power requirements as detailed in the previous section. A key limitation
of our current approach is the application of a uniform 2.03× multiplier for all chip types to account for additional system
hardware. Future analyses would benefit from developing chip-specific overhead multipliers that better reflect the varying
cluster-level power requirements across different AI chip and cluster architectures.

To check for consistency between reported and estimated power values, we plotted the correlation below (Figure 5). The
correlation coefficient of 0.98 indicates our values are highly correlated.
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Figure 5. Comparison of power requirements for AI supercomputers that reported it, versus our calculations of power requirements based
on chip type and count.
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Note that our methods assess theoretical peak power usage when all the processors are fully utilized and not power
consumption. The average power consumption of an AI supercomputer is usually only a fraction of its peak.

B.5. Hardware cost

We use the publicly reported total hardware cost of the AI supercomputer in our analysis whenever it is available. When it is
unavailable, we estimate this cost based on the chip type, quantity, and public chip prices. The procedure used to estimate
costs is adapted from Cottier et al. (2024). Using Epoch AI’s dataset of hardware prices, we select the latest known price of
the chips used in the AI supercomputer, from before the system’s first operational date. For each type of chip, we multiply
the cost per chip by the number of chips, multiply by factors for intra-server and inter-server overhead, and then sum these
costs if there are multiple types of chips. Intra-server cost overhead was estimated in Cottier et al. (2024) for the NVIDIA
P100 (1.54×), V100 (1.69×), and A100 (1.66×), based on known DGX and single-GPU prices near release. We use the
mean of these factors (1.64×) for all chips, to estimate server prices, including interconnect switches and transceivers.
Then, we adjust for the cost of server-to-server networking equipment, which was estimated to be 19% of final hardware
acquisition costs.

Additionally, we apply a discount factor of 15% to the final hardware cost of the AI supercomputer to account for large
purchasers of AI chips often negotiating a discount on their order. We discuss limitations with this estimate and our cost
data in the next section.

Our final formula for estimating hardware cost is as follows:

Hardware acquisition cost = [(Primary AI chip cost × Primary AI chip quantity)

+(Secondary AI chip cost × Secondary AI chip quantity)]

× Intra-server overhead × Inter-server overhead × Discount factor

In this formula, our intra-server overhead, or “chip-to-server” factor, is 1.64×, our inter-server overhead, or “server-to-cluster”
factor, is 1.23×, and our discount factor is 0.85×.

Notably, our cost figures refer only to the hardware acquisition cost of the AI supercomputer, and not costs required for
maintenance, electricity, or the cost of the datacenter hosting it.6

All cost values are adjusted for inflation into 2025 USD, using the producer price index for the Data Processing, Hosting,
and Related Services industry, reported by the Federal Reserve Bank of St. Louis (U.S. Bureau of Labor Statistics, 2025).
We divided pre-2025 cost figures by the price index value at its closest reported date and multiplied by the price index value
in January 2025. Our trends refer to values in 2025 USD.

B.5.1. LIMITATIONS WITH OUR HARDWARE COST DATA

Our cost data for AI supercomputers has several important limitations:

1. We found reported cost figures for only a limited subset of AI supercomputers, with data predominantly from public
sector systems rather than industry deployments.

2. The reported figures may diverge from true costs in multiple ways.

• They sometimes represent planned contract costs rather than final realized expenditures.
• Contract figures may bundle additional expenses, such as multi-year operational costs, that should be excluded from

our analysis.
• When uncertainty about the precise meaning of reported costs is too high, we excluded the data, though some ambiguity

likely remains.

3. We also encountered challenges with estimating hardware costs based on chip quantities and prices.

• Our price dataset lacks information for some GPU types, particularly custom silicon, though it does cover most common
GPUs.

• Google does not sell TPUs, so our price data for them is based on comparison of their performance and manufacturing

6A 2025 estimate of the cost of datacenters puts them at $11.7 million per MW. This could be combined with our power requirement
estimates to get an estimate of hardware plus datacenter acquisition (Cushman & Wakefield, 2025).
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costs with those of NVIDIA chips that have similar technical specifications.
• Most GPU suppliers do not publish wholesale prices, forcing us to rely on third-party retailer prices and reports from

experts that can vary significantly by vendor and time.
• We use the most recent listed price for each GPU, but prices fluctuate substantially with market conditions, so our

limited time-series data means some AI supercomputer costs may be mismatched with the prices actually paid for the
chips.

4. Given limited data, we assume that all AI supercomputers have the same overhead costs, but this is unlikely, particularly
for systems built five years ago.

5. The discount factor is another significant source of uncertainty. Price negotiations generally occur privately, making
reliable estimates difficult, and discounts vary substantially by supplier, purchaser, chip type, and time. For simplicity and
due to data limitations, we apply a constant 15% discount rate across all AI supercomputers, but we expect the true rate to
vary significantly by AI supercomputer. We selected this rate because it best aligns with the difference between our cost
estimates and reported costs, and stated estimates of discount rates.7 However, as stated above, our reported cost data is
itself biased. Our universal discount rate likely overestimates costs for major purchasers like U.S. national labs8 and the
largest GPU buyers while underestimating costs in other scenarios.

As a consequence of these limitations, we estimate that a 90% confidence interval for the true hardware cost value is +/- 0.5
orders of magnitude (within a factor of ∼ 3×) of our estimate.

B.6. Figures and regressions

For all figures and regressions, we filtered the dataset as follows:

1. We excluded 99 AI supercomputers where the ”Exclude” field is marked. 85 of these systems are outside of our
definition because they do not meet our performance threshold. We also excluded 14 systems for other reasons, such as
because we decided the chips they used did not qualify as AI chips.

2. We further excluded 92 AI supercomputers marked as ”Possible duplicates”. (We try to only mark systems as potential
duplicates if we think there is a >25% chance they are a duplicate.)

3. We further excluded 36 AI supercomputers where ”Single cluster” is marked as ”No” or ”Unclear”.

4. We excluded 15 AI supercomputers where ”Certainty” is lower than ”Likely”.

5. We excluded 113 AI supercomputers where ”Status” is ”Planned”, i.e., systems that were not yet operational as of
March 2025.

In total, we include 470 out of the 825 systems in our dataset in the analysis. Of these, 389 became operational in 2019 and
after.

For all regressions, we consider the 57 AI supercomputers that were in the top-10 by 16-bit FLOP/s and became operational
between January 2019 and March 2025.9

For our distribution figures we consider all 470 systems remaining after filtering, including those that became operational
before 2019. We exclude AI supercomputers that were superseded by newer entries after the newer entry’s first operational
date.

B.7. Adequately representing performance gains from using lower precision units

Values in calculations for AI training (such as model weights, gradients, and updates) can be represented in different
precisions. This is analogous to how you may represent the same number as “$15,228,349,053.84” or “$15 billion”,

7Citi Analysts imply that Microsoft received a 33% discount compared to other purchasers, who paid what we would count as the full
price (Shilov, 2024). If these groups buy equal amounts of chips, this implies an average discount of 16% (Morgan, 2021).

8NextPlatform implies that the Oak Ridge National Lab Summit supercomputer got close to a 50% discount on the cost of their GPUs,
and that industry partners have historically paid (Morgan, 2024) 1.5× to 2× more for chips than National Labs.

9In some figures we specify that we are showing trends for the 59 AI supercomputers that were in the top-10 considering highest
performance across 32, 16, and 8-bit precisions.
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depending on the context. In this example, the first representation has a much higher precision than the second, but it also
takes more memory to store.

Until the 2010s, AI training primarily used relatively high-precision 32-bit number formats but moved to 16-bit representation
in the late 2010s10 and began to move to 8-bit in 2024, thanks to new hardware supporting these precisions and algorithmic
innovations to use the new number formats efficiently (Huang et al., 2020; NVIDIA, 2023). Given that working with values
in lower precisions requires less memory and computations, AI chips offer much faster performance for calculations in
lower precisions.

The shift in precision used for training in our study period makes it challenging to adequately display performance trends in
our data.

• If we showed the highest available performance across these three precisions (Max OP/s)11 it may seem like AI
supercomputers that supported 8-bit precision in the early 2020s were more powerful than they actually were in practice,
since 8-bit precision was not widely used to train AI models then.12

• Instead, we limit our analysis to performance in 16-bit precision (16-bit OP/s), which 92% of the AI supercomputers
included in our analysis support.13 However, we acknowledge that only considering 16-bit performance does not
adequately show the performance gains AI companies achieved by moving to lower precision.

In practice, we find that trends in a) Max OP/s and b) 16-bit OP/s are mostly consistent (Appendix D. We thus use 16-bit
OP/s as the default for our trend analysis.14

Meanwhile, we decided to use Max OP/s for our inclusion criteria, i.e., to select whether or not a given system has at least
1% of the performance of the leading operational AI supercomputer.

We include an overview table showing all metrics in each of 16-bit FLOP/s, 8-bit OP/s, and Max OP/s in Appendix D.1.

C. Limitations
This section summarizes some overall limitations of our data. We discuss limitations with specific parts of our data in the
methods section (Appendix B).

C.1. Summary of limitations

C.1.1. WE LIKELY ONLY COVER ABOUT 10-20% OF ALL AI SUPERCOMPUTERS WITHIN OUR DEFINITION

We use four references to assess our coverage:

• Coverage by chip production: Our dataset likely covers 20–37% of all NVIDIA H100s produced until 2025, about
12% of all NVIDIA A100s produced, and about 18% of all AMD MI300X produced. Meanwhile, we estimate we
cover less than 4% of Google’s TPUs and very few custom AI chips designed by AWS, Microsoft, or Meta. We also
only cover about 2% of NVIDIA chips designed to be sold in China (including the A800, H800, and H20). Our average
coverage of the six chip types we assessed is 11%.

• Coverage by company: The coverage of different companies varies considerably, from 43% for Meta and 20% for
Microsoft to 10% for AWS and 0% for Apple. The coverage of Chinese companies is particularly poor. Our average
coverage of 8 major companies is 15%.

• Coverage of total 16-bit FLOP/s in China: Between end of 2020 and end of 2024 we cover between 10-20% of total
Chinese 16-bit FLOP/s based on an estimate by IDC (2025).

• Coverage of largest training runs: Our dataset contains a matching AI supercomputer for about half of the largest
training runs as of March 2025 reported by Epoch AI (2025). However, we only find official confirmation that the

10Micikevicius et al. (2017) is an early example of mixed-precision training which moved the most computationally expensive operations
to 16-bit.

11OP/s stands for operations per second.
12Specifically, we are unsure when 8-bit training first became widespread. Developers usually do not report what precisions they use to

train their models, making it difficult to assess when newly available formats were widely adopted.
13For comparison, 96% of AI supercomputers have a performance for Max OP/s (performance across 32, 16, and 8-bit precisions) The

remaining AI supercomputers either lack performance data or we only found a performance for 64-bit precision.
14Notationally, we generally refer to 16-bit performance as FLOP/s (instead of ”OP/s”), since this is more common terminology.
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system was used for the specific training run for one-third of all models. Coverage of Chinese training runs is slightly
better compared to all training runs.

Overall, we estimate we cover between 10 and 20% of all AI supercomputers as of early 2025. For more details on our
coverage, see Appendix C.3.

C.1.2. WE LACK DATA FOR KEY PROPERTIES

• We cannot reliably determine when an AI supercomputer was first operational. In most cases, we use the date an AI
supercomputer was first reported as existing as the “first operational” date. However, owners may sometimes wait
several months before publicly announcing their AI supercomputer, or they may announce a system even if it is not yet
available. We expect that most of our “first operational” dates will be a few weeks to a few months later than the real
date the AI supercomputer came online.

• We sometimes need to make assumptions about basic system facts. For instance, owners sometimes report vague
chip quantities such as “EC2 UltraClusters are comprised of more than 4,000 latest NVIDIA A100 Tensor Core
GPUs” (AWS, 2020), or “With thousands of MI300X GPUs available, clusters of any size can be deployed for reliable,
high-performance computing.” (Vultr, 2024). To include such AI supercomputers, we try to make reasonable estimates
of the system’s chips and performance and explain our reasoning in the notes field.

• Our data is incomplete. Some fields in our dataset are only filled for a fraction of systems, such as reported power
requirement, reported hardware cost, and location. However, our data captures key statistics like performance and first
operational date for more than 95% of all AI supercomputers that are included in our dataset.

C.1.3. KEY REASONS FOR LOW COVERAGE

Why do we only cover 10–20% of all AI supercomputers? The following factors contribute to our low data coverage:

a) Companies often choose not to report their AI supercomputers publicly. While companies may benefit from increased
public and investor attention when they publish information on large AI supercomputers, they may also prefer to keep
this information private to maintain ambiguity about their competitive position.

b) Companies may only report their largest AI supercomputers. A large fraction of all chips are sold to hyperscalers that
have more limited incentives to publish information about their AI supercomputers. While they may benefit from
publishing information about their largest systems, they have no incentives to publish about the number and size of
smaller AI supercomputers.

c) Even if an owner publishes information about an AI supercomputer, our search methods may not find it, especially if
the information is published in a language other than English or Chinese.

d) Chinese companies may try to avoid scrutiny from U.S. regulators, both for chips that they legally imported, such as
NVIDIA’s A800 and H800, as well as illegally imported chips like NVIDIA’s A100 and H100. Chinese companies may
have smuggled more than 100,000 AI chips last year (Grunewald, 2025). See Appendix C.2.4 for a longer discussion.

C.2. Detailed limitations

This section discusses some of the limitations of our data and analysis in more detail.

C.2.1. DEFINING AI SUPERCOMPUTERS IS CHALLENGING

Ideally, our dataset would only capture systems that can efficiently run large-scale AI training workloads. However,
it is difficult to develop a practical definition that captures only such systems based on limited publicly available data.
Additionally, some companies, including Google DeepMind and OpenAI, have used AI chips distributed across multiple
data center campuses to train large models (Moss, 2023; Dickson, 2025). To adequately include relevant AI supercomputers,
we considered the following four definitions:

a) AI chips within a single building
b) AI chips on a single data center campus
c) AI chips within a fixed proximity (e.g., 2 or 5 miles)
d) No distance limit; an AI supercomputer is any system capable of training large models.

We decided to use definition (b), given the following considerations: The single building (a) may miss cases where well-
connected accelerators span multiple buildings on the same campus. A fixed proximity definition (c) is not feasible in
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practice since we do not know the precise physical location of most of the AI supercomputers in the dataset. Finally, a
functional definition (d) is difficult to scope because assessing if a given AI supercomputer meets certain thresholds for
performance, connectivity, and integrated operation requires data on network architecture and connections between AI
supercomputers that public reports almost never provide. At the same time, we think it is useful to include AI supercomputers
that meet the theoretical performance threshold but lack adequate network infrastructure, given it is comparatively easy to
retrofit the networking equipment (see Appendix C.2.2).

We thus adopt the contiguous campus definition (b), where accelerators on a contiguous campus linked by high-bandwidth
networks operate as a single AI supercomputer. However, there are two remaining limitations to this definition:

• Limited data: Public reports seldom include details on facility boundaries or network topology, making it hard to
verify the contiguous nature of a campus.15 When we are unsure if a reported system may span several campuses, we
mark the field “Single Cluster” as “Unclear” (20 entries). We mark the “Single Cluster” field as “No” if we think the
report most likely refers to a decentralized system (8 entries).

• Decentralized training: Our dataset currently does not capture the fact that AI developers may use multiple AI
supercomputers for a training run. To assess which AI supercomputers may be most suitable for decentralized training,
we would need additional information on the network bandwidth between them.

C.2.2. THEORETICAL PERFORMANCE DOES NOT NECESSARILY CORRESPOND TO USEFULNESS FOR LARGE-SCALE
TRAINING

Systems may lack sufficient networking for efficiently running AI training. Public performance figures do not guarantee
efficient large-scale training. Some AI supercomputers may suffer from inadequate networking, which can reduce utilization
and prolong training runs (Narayanan et al., 2021). However, systems with inadequate networking infrastructure can easily
be upgraded by changing the network fabric, usually at a fraction (∼10–20%) of the total AI supercomputer cost (Lepton
AI, 2024).

Performance on AI training depends on the software stack. Our analysis compares theoretical performance across
hardware types. In practice, actual performance depends on the software stack and how well the hardware supports it. For
instance, despite having a higher theoretical performance, SemiAnalysis assessed that AMD’s MI300X is less useful for
large-scale AI training than NVIDIA’s H100 (Patel et al., 2024). This software ecosystem gap becomes especially significant
when evaluating AI supercomputers across different hardware platforms, as systems based on Chinese AI chips may not
achieve their theoretical potential without the mature software infrastructure that NVIDIA’s CUDA provides.

Theoretical performance does not fully capture AI inference performance. Our database focuses on systems suitable
for AI training. A system’s computation performance is not a good proxy for how well it can run AI inference workloads.
NVIDIA’s H20, for instance, delivers comparable inference performance to the H100 on certain workloads despite having
only 1/7th the raw computational power, due to its high memory bandwidth. We recommend differentiating between FLOP/s
(or OP/s for 8-bit and lower) when assessing training capabilities and memory bandwidth in Byte/s when assessing inference
and long-context capabilities.

C.2.3. LIMITATIONS WITH OUR CHINESE DATA

Despite involving Chinese speakers in our data collection, we encountered several significant challenges in gathering
comprehensive data on Chinese AI supercomputers.

1. Official announcements often lack key data, such as information on chip type and quantity. Furthermore, reported
performance values often do not include precision.

2. Sources sometimes report aggregate data for several AI supercomputers. Computing zones that consist of several
separate data center campuses sometimes report total computing capacity at an aggregate level rather than breaking
down by individual AI supercomputers.

3. Different conventions. Chinese sources sometimes use different metrics and reporting standards than Western
conventions, sometimes reporting the number of server racks that we cannot easily convert to chip numbers.

While we encounter similar issues for AI supercomputers in other countries, they are particularly common in China.
However, we estimate that our database covers 10–20% of Chinese AI supercomputer performance, which is similar to our

15We found it particularly challenging to verify this for reports from companies and for AI supercomputers in China.
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coverage estimate for U.S. data (see Appendix C.3).

C.2.4. CHINESE OWNERS MAY HAVE BECOME MORE SECRETIVE ABOUT THEIR AI SUPERCOMPUTERS, BUT THIS HAS
NOT IMPACTED OUR DATA COVERAGE

In the late 2010s and early 2020s, Chinese supercomputer announcements frequently led to U.S. sanctions, with companies
like Sugon, Phytium, and several national supercomputing centers being added to the Entity List due to concerns about
military use of these systems (U.S. Bureau of Industry and Security, 2019; U.S. Department of Commerce, 2021). This is
likely what caused China to release less information about its AI supercomputers. In 2022, China stopped submitting any
systems to the Top500 list (Chik, 2022).

In October 2022, the United States first introduced export controls on AI chips and semiconductor manufacturing equipment
with the goal of slowing down Chinese advances in AI (Allen, 2022). These export controls were strengthened in October
2023 and December 2024 by fixing loopholes and further restricting Chinese import of chip manufacturing tools (Dohmen
& Feldgoise, 2023; Allen, 2024). These actions may have incentivized Chinese owners to further increase secrecy about
their AI supercomputers to reduce scrutiny from the United States, particularly if they deployed smuggled AI chips.

However, the effects of increased Chinese secrecy on our data coverage are limited. While we see a decrease in the number
of Chinese systems added to our database in 2021 and 2022, the number of Chinese systems increased again in 2024 (Figure
6). Comparing the aggregate performance in our database with IDC (2025)’s estimate of total 16-bit FLOP/s in China
indicates that our coverage was consistently between 10 and 20% of Chinese performance (see Table 4).

Figure 6. Number of Chinese and U.S. systems added each year.

C.3. Comparing our data with public reports

To assess what fraction of AI supercomputer capacity we capture in the dataset and how our coverage differs between chip
types and companies, we compare our data to four sources of public information:

• Estimates of the total production of AI chips.
• Estimates of the total AI chip stock of companies.
• An estimate of the total 16-bit FLOP/s in China by IDC (2025).
• The fraction of the largest publicly known AI models that were likely trained on an AI supercomputer in our dataset.

C.3.1. ESTIMATING THE COVERAGE OF ALL AI SUPERCOMPUTERS BASED ON TOTAL CHIP PRODUCTION

One relevant reference point for our coverage is what fraction of total production we cover for different chip types (Table 2).
While some AI chips may be sold to individuals and small research groups, we expect that the vast majority of all AI chips
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will be used in AI supercomputers that would fall within our definition.

Table 2. Variation of coverage by chip type based on public reports of AI chip production until 2025. Note that the public estimates may
include chips in AI supercomputers that are not yet operational or that are otherwise outside of our inclusion criteria. Our full dataset
includes potentially existing and planned systems and has a higher coverage. Note that we explicitly search for the H100, A100, and V100
in our automated methodology. This may marginally increase our coverage of these three chip types compared to others.

CHIP TYPE PUBLIC ESTIMATE DATASET IMPLIED COVERAGE

H100/H200 2.5M – 4.5M16 830K 36.5% – 20.3%
A100 1.5M – 3M17 234K 16.1% – 8.1%
H20 1M18 – 19 0%
H800/A800 >200K20 2K <1.5%
AMD MI300 400K21 72K 18%
GOOGLE TPUS >4M22 95K <4%
OTHER CUSTOM SILICON ?23 4K ?%

TOTAL 9.6 – 13.1M 1.2M 9.2% – 12.5%

Based on the public sources used in the table, our dataset covers between 20% and 37% of all NVIDIA H100s produced
until late 2024.24 However, coverage is much worse for NVIDIA’s H20, A800 and H800, Google’s TPUs, and other custom
silicon chips. The average coverage is about 10%. (Note that the table above only includes confirmed operational AI
supercomputers. Our dataset also contains planned AI supercomputers that make up another 920k H100s and 33k MI300X.
Some of those may include chips already included in the production volume estimates.)

Table 2 reveals that our dataset likely covers H100, A100, and MI300 equally well, whereas coverage of Google’s TPUs and
other custom silicon chips is significantly worse. This is expected, given that NVIDIA and AMD sell their chips to a wide
range of customers, incentivizing them to report about successful projects to attract more customers. Meanwhile, Google
and other hyperscalers only deploy their chips within the company, offering limited incentives to publish more than a few
large AI supercomputers.

C.3.2. COVERAGE BY COMPANY

Another reference point for our coverage is comparing our chip numbers to the publicly reported numbers of chips acquired
by different companies (Table 3). We expect that hyperscalers deploy most of their AI chips in AI supercomputers covered
by our definition, since even when primarily running inference workloads, they usually deploy thousands of AI chips in
the same data center. (Note that the March 2025 inclusion threshold was at 2,000 H100-equivalents but was below 1,000
H100-equivalents until August 2024.)

16Public sources estimate that NVIDIA shipped about 500k H100s in 2023 and 2 million in 2024, for a total of 2.5 million H100s
(Nolan, 2023; Shilov, 2023b). However, Garreffa (2024) estimates NVIDIA produced up to 1.5 million H100s in Q4 of 2024. Assuming
NVIDIA produced about 1M H100s on average per quarter in 2024 yields a total of 4.5 million H100s.

17Reports on how many A100s NVIDIA produced are limited, but the company reportedly shipped 500k in Q3 2023 (Shilov, 2023a).
The A100 was first produced in 2020 and likely reached peak production in 2023 before demand reduced in 2024. It thus seems plausible
that NVIDIA produced between 1.5 – 3 million A100s until 2025.

18Financial Times (2023)
19We capture 30k H20s that DeepSeek likely owns, but exclude these from the analysis because we are uncertain if they are in the same

location.
20Public reports indicate Chinese companies spent $5 billion on NVIDIA H800 and A800 in 2023 (Pires, 2023a), indicating at least

200k of these chips imported (conservative estimate assuming $25k average price per chip (Champelli et al., 2024) .)
21AMD to ship up to 400,000 new AI GPUs in 2024 (Chen & Chan, 2023).
22Google’s internal TPU production likely reached 2 million TPUs in 2023 (Martin, 2024), although public data is severely limited,

given Google does not sell TPUs to outside companies. Assuming a similar production in 2024, there would be at least 4 million TPUs.
23Microsoft, AWS, and Meta all developed their own custom silicon AI chips deployed in-house (Borkar et al., 2024; AWS, undated;

Tal et al., 2024), but we were unable to find trustworthy public estimates of the total numbers.
24We do not account for H100s produced in 2025, since these would unlikely be installed in any systems before our March 1st cutoff.
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Table 3. Public reports of number of chips owned for various companies at the end of 2024 and comparison with our dataset26

COMPANY PUBLIC CLAIM OUR DATASET IMPLIED COVERAGE

META 350K H100S 149K 42.8%
MICROSOFT 475K – 855K H10027 118K 14% – 25%
AWS 200K H100S (IN 2024) – 0%
GOOGLE 170K H100S (IN 2024) 8K 4.7%
APPLE 180K H100S28 – 0%
COREWEAVE 175K GPUS29 57K 22.8%
BYTEDANCE 310K HOPPERS30 8K 3%
TENCENT 230K HOPPERS (IN 2024) –31 0%

TOTAL 2.09M – 2.47M 0.34 M 13.8 – 16.3%

Note: Public estimates cannot be verified and only serve as an approximate assessment of coverage. Some sources are
inconsistent with others.

Table 3 shows that our coverage differs considerably between companies. While we cover almost half of Meta’s H100s, we
cover only 5% of Google’s and none of Apple’s H100s. Our data is particularly limited for Chinese hyperscalers. However,
Table 3 does not consider AI supercomputers we cover based on reported performance, but for which we lack the specific
chip type. This is especially common for Chinese systems.

C.3.3. COVERAGE OF CHINESE DATA

To assess data coverage of AI supercomputers in China, we compare the aggregate 16-bit performance of all Chinese
systems in our database to the total Chinese 16-bit performance published in a 2025 report by market intelligence firm
International Data Corporation (IDC, 2025). We find that we cover between 10 and 20% of Chinese 16-bit performance
between the end of 2020 and the end of 2024 (Table 4). Not all 16-bit performance would likely fall under the definition of
our database, so actual coverage of AI supercomputers is likely somewhat higher.

Table 4. FP16 Performance

OUR DATA IDC IMPLIED COVERAGE

2020 1.05× 1019 7.50× 1019 14%
2021 1.88× 1019 1.55× 1020 12%
2022 3.46× 1019 2.60× 1020 13%
2023 4.18× 1019 4.17× 1020 10%
2024 1.46× 1020 7.25× 1020 20%

We were unable to find reliable total performance estimates for other countries, so we had to limit our coverage analysis by
FLOP/s to Chinese data.

25Note we only include systems in our analysis if we are confident they exist in a single site rather than a distributed system. E.g., AWS
announced 20k H100 clusters in 2023, but did not explicitly say whether or not those were on the same data center campus.

26Note we only include systems in our analysis if we are confident they exist in a single site rather than a distributed system. E.g., AWS
announced 20k H100 clusters in 2023, but did not explicitly say whether or not those were on the same data center campus.

27Microsoft likely made up 19% of total 2023 NVIDIA revenue (Fox, 2024). We assume they maintained a 19% share of revenue
throughout 2024, and bought a mix of NVIDIA data center products that is approximately equal to NVIDIA’s sales mix. Based on
estimates for H100 shipments in our previous section, this indicates Microsoft owns between 475k and 855k H100s.

28∼2,500 servers in 2023 and 20,000 servers in 2024 * 8 GPUs per server = 180k.
29Estimate, given the claim that most of the 250,000 total GPUs said to be H100s and some H200s (Morgan, 2025).
30About 50k H100 in 2023 and 240k in 2024 (Pires, 2023b; Alexsandar K, 2024).
31We identified two Tencent AI supercomputers but were unable to identify the performance or hardware used.
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C.3.4. COVERAGE OF AI SUPERCOMPUTERS USED IN THE LARGEST TRAINING RUNS

To check how well our dataset covers the AI supercomputers used for known large training runs, we check which of the 25
largest training runs in Epoch AI’s notable AI models dataset (as of 1 March 2025) correspond to AI supercomputers in our
dataset (Epoch AI, 2025). (Note that our dataset uses the models dataset as a data source. To avoid circularity, we distinguish
between systems reported independently from the training run and systems included in our dataset based exclusively on the
reports of the training run.)

We find that for about half of the largest AI training runs, we capture an AI supercomputer that could have plausibly been
used or was confirmed to be used in the training run (Figure 7; Table 5).

Our data coverage is slightly better for Chinese AI supercomputers, where we find plausible AI supercomputers for about
two-thirds of all reported models (Figure 7; Table 6).
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Top 25 AI training runs (all countries)

4

4
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9

Chinese top 25 AI training runs

Coverage of AI supercomputers used for the largest AI training runs

Yes
Yes, from training run
Matching system, but unconfirmed
No

Figure 7. Coverage of AI supercomputers used for the largest AI training runs according to Epoch AI’s notable models dataset. “Yes,
from training run” indicates we cover the AI supercomputer, but only based on reports about the training runs itself. “Matching system,
but unconfirmed” means an AI supercomputer in our dataset was likely used by the model developer but we find no public reports on
whether or not the system was actually used for the training run.
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Table 5. Coverage of largest AI training runs (all countries) according to Epoch AI’s notable model dataset

TRAINING RUN COVERED NOTE

GROK-3 Yes Trained on Colossus in Memphis, Tennessee
GEMINI 1.0 ULTRA Yes, from training run
GPT-4O No
LLAMA 3.1-405B Yes Presumably trained on Meta GenAI 2024a or 2024b (Oldham et al., 2024)
CLAUDE 3.5 SONNET No
GLM-4-PLUS No
CLAUDE 3.7 SONNET No
GROK-2 Matching AI supercomputer, Trained on the Oracle Cloud.

but unconfirmed “Oracle OCI Supercluster H100s” matches
the description of the training details (Trueman, 2024)

DOUBAO-PRO No
GPT-4 TURBO No Possibly trained on same AI supercomputer as GPT-4,

but no confirmation
MISTRAL LARGE 2 No
GPT-4 Yes Likely trained on Iowa AI supercomputer (O’Brien & Fingerhut, 2023).

Entered in the dataset as “Microsoft GPT-4 cluster”
NEMOTRON-4 340B Matching AI supercomputer, “NVIDIA CoreWeave Eos-DFW”

but unconfirmed appears to match the training description
CLAUDE 3 OPUS No
GEMINI 1.5 PRO No We capture several systems from Google,

but none were likely used for this model
GLM-4 (0116) No
MISTRAL LARGE Yes Likely used Leonardo
ARAMCO METABRAIN AL No
INFLECTION-2 Yes, from training run
INFLECTION-2.5 No We capture several of Inflection’s systems,

but none were confirmed
REKA CORE Yes, from training run
LLAMA 3.1-70B Yes Presumably trained on

Meta GenAI 2024a or 2024b (Oldham et al., 2024)
LLAMA 3-70B Yes Trained on Meta GenAI 2024a or 2024b (Oldham et al., 2024)
QWEN2.5-72B Matching AI supercomputer,

but unconfirmed
GPT-4O MINI No
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Table 6. Coverage of AI supercomputers used for the largest AI training runs in China according to Epoch AI (2025) as of March 2025.

MODEL COVERED

GLM-4-PLUS No

DOUBAO-PRO No

GLM-4 (0116) No

QWEN2.5-72B Matching AI supercomputer, but unconfirmed

TELECHAT2-115B Matching AI supercomputer, but unconfirmed

DEEPSEEK-V3 Yes

DEEPSEEK-R1 Yes

MEGASCALE (PRODUCTION) Yes, from training run

SENSECHAT Yes

QWEN2.5-32B Matching AI supercomputer, but unconfirmed

HUNYUAN-LARGE No

QWEN2-72B Matching AI supercomputer, but unconfirmed

YI-LARGE No

DEEPSEEK-V2.5 Matching AI supercomputer, but unconfirmed

YI-LIGHTNING Yes, from training run

QWEN1.5-72B Matching AI supercomputer, but unconfirmed

QWEN-72B Matching AI supercomputer, but unconfirmed

XVERSE-65B-2 No

HUNYUAN No

LUCA 2.0 No

QWEN2.5-CODER (32B) Matching AI supercomputer, but unconfirmed

BLUELM 175B No

ERNIE 3.0 TITAN Yes

MEGASCALE (530B) Yes, from training run

XTRIMOPGLM -100B Yes, from training run
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D. Additional data
D.1. Overview of trends in different precisions and by sector.

Table 7. Overview of key trends between 2019 and March 2025. Square brackets indicate the 90% confidence interval. Note 8-bit trend is
only starting in July 2021.33

LEADING AI SUPERCOMPUTERS (INCLUDING BOTH PUBLIC AND PRIVATE)

16-BIT OP/S 8-BIT OP/S MAX OP/S

PERFORMANCE GROWTH 2.54 [2.35–2.74] 2.60 [2.31–2.93] 2.55 [2.34–2.78]
NUMBER OF CHIPS 1.60 [1.45–1.78] 1.69 [1.47–1.94] 1.46 [1.29–1.64]
PERFORMANCE PER CHIP 1.60 [1.49–1.71] 1.54 [1.42–1.67] 1.77 [1.62–1.94]
HARDWARE COST 1.92 [1.76–2.11] 1.99 [1.72–2.30] 1.76 [1.58–1.97]
COST-PERFORMANCE 1.36 [1.29–1.42] 1.37 [1.29–1.45] 1.51 [1.43–1.60]
POWER 1.95 [1.77–2.15] 2.12 [1.85–2.42] 1.78 [1.60–1.99]
ENERGY EFFICIENCY 1.34 [1.25–1.43] 1.26 [1.20–1.32] 1.51 [1.39–1.63]

LEADING PRIVATE AI SUPERCOMPUTERS

16-BIT OP/S 8-BIT OP/S MAX OP/S

PERFORMANCE GROWTH 2.69 [2.47–2.92] 3.17 [2.78–3.61] 3.00 [2.76–3.27]
NUMBER OF CHIPS 1.82 [1.66–2.00] 2.14 [1.85–2.47] 1.83 [1.65–2.03]
PERFORMANCE PER CHIP 1.50 [1.44–1.57] 1.48 [1.36–1.61] 1.65 [1.55–1.76]
HARDWARE COST 2.06 [1.88–2.26] 2.39 [2.09–2.73] 2.05 [1.86–2.26]
COST-PERFORMANCE 1.33 [1.28–1.39] 1.32 [1.26–1.39] 1.47 [1.41–1.54]
POWER 2.16 [1.98–2.35] 2.57 [2.26–2.93] 2.16 [1.96–2.37]
ENERGY EFFICIENCY 1.27 [1.23–1.31] 1.23 [1.19–1.28] 1.40 [1.34–1.46]

LEADING PUBLIC AI SUPERCOMPUTERS

16-BIT OP/S 8-BIT OP/S MAX OP/S

PERFORMANCE GROWTH 1.86 [1.60–2.15] 1.79 [1.46–2.19] 1.90 [1.63–2.22]
NUMBER OF CHIPS 1.21 [0.98–1.50] 1.20 [0.96–1.49] 1.11 [0.89–1.38]
PERFORMANCE PER CHIP 1.56 [1.34–1.82] 1.48 [1.31–1.67] 1.75 [1.45–2.11]
HARDWARE COST 1.40 [1.25–1.57] 1.34 [1.09–1.65] 1.38 [1.20–1.58]
COST-PERFORMANCE 1.41 [1.28–1.56] 1.48 [1.32–1.66] 1.51 [1.32–1.73]
POWER 1.41 [1.17–1.70] 1.38 [1.10–1.74] 1.31 [1.07–1.61]
ENERGY EFFICIENCY 1.38 [1.19–1.61] 1.33 [1.19–1.47] 1.56 [1.28–1.90]

32We assess this trend only after 50 AI supercomputers in our dataset support 8-bit precision.
33We assess this trend only after 50 AI supercomputers in our dataset support 8-bit precision.
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