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ABSTRACT

Understanding spatiotemporal relationships among several agents is of consider-
able relevance for many domains. Team sports represent a particularly interesting
real-world proving ground since modeling interacting athletes requires capturing
highly dynamic and complex agent-agent dependencies in addition to temporal
components. However, existing generative methods in this field either entangle
all latent factors into a single variable and are thus constrained in practical appli-
cability, or they focus on uncovering interaction structures, which restricts their
generative ability. To address this gap, we propose a framework for multiagent
trajectories that augments graph-structured sequential generative models with ex-
plicit latent social dependencies. First, we derive a novel objective within the
variational autoencoder family using a disentangled latent space that aims to en-
capsulate inherent data traits. Based on the proposed training criterion, we then
present a model architecture that unifies insights from neural interaction inference
and graph-structured variational recurrent neural networks for generating collec-
tive movements while allocating latent information. We validate our model on
data from professional soccer and basketball. Our framework not only improves
upon existing state-of-the-art approaches in forecasting trajectories, but also infers
semantically meaningful representations that can be used in downstream tasks.

1 INTRODUCTION

The study of agent behavior governed by temporal and spatial dependencies is of great importance
in many different fields, such as autonomous driving (Brown et al., 2020; Rasouli & Tsotsos, 2019),
robot navigation (Rudenko et al., 2020), or sports analytics (Tuyls et al., 2021). In particular, accu-
rate detection of implicit causal social structures offers several advantages by removing confounding
factors for trajectory forecasting tasks and providing practitioners with interpretable dynamics that
can in turn be integrated into downstream decision-making processes or applications.

Modeling the dynamics of multiplayer sports games (Omidshafiei et al., 2022; Le et al., 2017;
Yue et al., 2014; Liu et al., 2020) is particularly challenging since accurate trajectory generation
in this environment requires capturing highly dynamic and complex underlying modular structures
(Makansi et al., 2022). For example, the roles prescribed in a team formation are a poor indicator
of the actual behavior observed in a given situation. Moreover, most of the interacting elements in-
ject noise into the forecasting process because they are either irrelevant (e.g., goal keepers) or their
influential nature changes as the situation evolves. However, existing methods for modeling sports
data rely on graph encoding strategies (Kipf & Welling, 2016; Vaswani et al., 2017) that aggregate
social information into only single variables that need to capture all latent stochasticity (Zhan et al.,
2019; Yeh et al., 2019; Sun et al., 2019; Omidshafiei et al., 2022).

In recent years, a considerable amount of methods have been proposed that aim to infer interactive
components in general multiagent systems via discrete latent variables. These methods are usu-
ally formulated as some form of variational autoencoder (Kingma & Welling, 2013; Sohn et al.,
2015) that learns latent edge categories of an assumed underlying graph structure (Kipf et al., 2018;
Graber & Schwing, 2020; Löwe et al., 2022). However, being the only causal factors specified, the
proposed frameworks neglect other potential latent characteristics not originating in mere interactive
categories but equally affecting multimodal agent behavior, which limits their generative capacity.

To address previous shortcomings, we propose a novel framework for modeling multiagent trajec-
tory data that enhances existing graph-structured latent variable models by explicitly encoding social
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structures in sports games. Since the contemplated spatiotemporal systems are caused by dynamic
dependencies among heterogeneous agents, we define this component as a causal graph compris-
ing categorical agent roles and pairwise interactions. Based on the specified generative setting, we
then introduce an objective function within the variational autoencoder family and instantiate a con-
crete architecture for computing the derived training components. Empirically, our model exceeds
existing state-of-the-art methods in forecasting trajectories on data from professional soccer and
basketball. In addition, we report on extensive quantitative and qualitative analyses wrt. the learned
latent variables that show informative properties in generative tasks and downstream applications.

2 BACKGROUND

Given data D = {x(i)
≤T }Ni=1 consisting of N sequences x≤T = [x1, ...,xT ], our goal is to esti-

mate the underying data distribution via maximizing the likelihood of the collected evidence, i.e,.
max pθ(x≤T ). In practice, pθ(x≤T ) is often highly multimodal, which complicates direct deploy-
ment of MLE. A frequently used modeling paradigm for stochasticity in complex multimodal dis-
tributions is introducing latent variables and optimizing the variational lower bound on the maginal
log-likelihood (Kingma & Welling, 2013; Rezende et al., 2014; Sohn et al., 2015).

Existing conditional variational models for generating highly-structured sequential data x≤T usually
associate a latent variable z1, ...,zT with each timestep of the segment to describe the generative
process (Bayer & Osendorfer, 2014; Goyal et al., 2017; Fraccaro et al., 2016). The variational RNN
(VRNN, (Chung et al., 2015)) is one renowned instantiation in this domain that, assuming specific
dependency structures in the generative and inference parts, arrives at the following lower bound on
log pθ(x≤T ):

Eqφ(z≤T |x≤T )

[∑T

t=1
log pθ(xt|z≤t,x<t)−KL[qφ(zt|x≤t, z<t) ‖ pθ(zt|x<t, z<t)]

]
, (1)

where information x<t, z<t is captured via a recurrent neural network ht = fRNN (xt, zt,ht−1).
Given the temporal and multimodal notion of human movement, sequential generative models con-
stitute a good starting point for designing a framework tailored to multiagent trajectories. However,
such approaches only account for the temporal aspect of the problem, but neglect potential social
dependencies at each timestep.

Adding Graph Structure As a remedy, sequential data can be augmented by a social dimension
x≤T = {x(a)

≤T ,∀a ∈ A}, where x
(a)
t ∈ Rd denotes a d-dimensional feature representation of

agent a ∈ A at time t (e.g., its 2D position). Permutation invariant models are a prerequisite for
processing sequential sets with potentially divergent cardinality, so a direct adoption of Eq. 1 in
multiagent settings would implicitly impose the assumption of social independence across agent
trajectories. This assumption is trivially inappropriate for interactive systems; thus, related work
proposes sensitive solutions - usually in the form of graph encoding strategies - to capture agent-
agent interactions.

Yeh et al. (2019) introduce the graph VRNN (GVRNN), which operates within the VRNN framework
with graph neural networks (GNNs, Battaglia et al. (2018)) representing agents and their interactions
as nodes and edges, respectively. More formally, the architecture for computing the components in
Eq. 1 amounts to the following structure:

pθ(zt|x<t, z<t) = N (zt; GNNprior(ht−1)) (2)
qφ(zt|x≤t, z<t) = N (zt; GNNenc([xt,ht−1])) (3)
pθ(xt|x<t, z≤t) = N (xt; GNNdec([zt,ht−1])), (4)

where ht is the set of recurrent agent states h
(a)
t = fRNN (x

(a)
t , z

(a)
t ,h

(a)
t−1). We emphasize that,

although factorized, the latent space is not marginally independent across agents since each z
(a)
t is

conditioned on information of all other entities via the (assumed) fully-connected graph. However, in
many spatiotemporal patterns, most of the observed elements are irrelevant or even distracting, and
the specific composition of relevant factors can change rapidly. Thus, a better strategy is to explicitly
detect semantic classes that describe the underlying structural component before aggregating social
information into entangled variables.
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Figure 1: Left: Illustration of the output layer of an interaction module (encoder qφ1 or prior pθ2 ) for a target
agent a ∈ A and an neighboring agent j ∈ A, where v and e are node and edge embeddings, respectively.
Right: Illustration of an interaction network (decoder pθ1 , prior pθ2 , or encoder qφ2 ) that is parameterized by
realized elements from the discrete latent subspace: E(a)

t picks from multiple node-to-edge MLPs, and K(a)
t

picks from multiple edge-to-node MLPs run in parallel. Thus, implicit knowledge about fundamentally differ-
ent interaction patterns is encapsulated in the parameters of the edge MLPs associated with the corresponding
class. The encoded neighborhood communication e(a,j) contingent on the predicted interaction type, has dif-
ferent behavioral consequences based on the specific role the target agent is currently adopting.

3 METHOD

In the following, we propose a novel line of thought on how to model the joint distribution of
interactive sequential data pθ(x≤T ) using variational methods. To address shortcomings of existing
methods, our formalization defines disentangled factors of variation that explicitly include a discrete
latent subspace describing causal factors that arise from social perspectives. Having conceptualized
our modeling goal, we instantiate a concrete architecture termed DIA (Detecting Important Agents)
that computes the inferred training components via imposing an inductive bias on the latent space.
Appendix B.2 details how the model is trained in an end-to-end fashion.

3.1 DERIVING THE TRAINING OBJECTIVE

Latent Variables The interactive systems contemplated in this work are caused by implicit and
dynamic structural dependencies that vary both in the type of interaction as well as in the specific
role of the interacting participants. For example, in a turnover sequence in soccer, both the role
performed (e.g., attacker to defender) and the influential nature (e.g., on the ball agent from ball
carrying to pressure exerting) of each player change within a few moments. We propose to explicitly
account for such structures via introducing latent causal graphs Gt = {Kt, Et}, where Kt represents
the set of discrete agent roles at t (e.g., ball, attacker or defender) {K(a)

t , a ∈ A}1, and Et encodes
their (discrete) pairwise strategies in the form of interaction types {E(a,j)t , (a, j) ∈ A×A} (e.g., ball
handler, intended pass receiver, etc.). To enable the model to exclude potential social confounders,
we externally define an interaction type in Et as class “no interaction” while the remaining categories
are learned from the data.

However, the structural state captured in Gt is not sufficiently informative to precisely account for
factors that arise from both individual and social perspectives. Therefore, to improve the genera-
tive capacity of our model, we inheret latent concepts zt that account for all remaining sources of
uncertainty not represented by the inferred causal graphs, yet may vary as a function of Gt.

Generative Process We formally express the generative process by incorporating the above de-
scription of causal factors into the definition of our modeling goal, i.e., the marginal likelihood
pθ(x≤T ):

pθ(x≤T ) =

∫
G≤T

∫
z≤T

pθ(x≤T , z≤T ,G≤T )dz≤T dG≤T

=
∑
G≤T

∫
z≤T

T∏
t=1

pθ1(xt|x<t, z≤t,G≤t)pθ2(zt|x<t, z<t,G≤t)pθ3(Gt|x<t, z<t,G<t)dz≤T ,

1For only a single agent type, we have Kt = A.
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Figure 2: Illustration of the computational dependencies at a timestep for a system with two interacting agents
when using one agent type, i.e., Kt = A. We only show the first layer of the overall two-layer graph network
in the interaction part ( left side) to clarify the injection of the GRU states. Red connections denote the parts
utilized only during training, orange connections used during inference. We use a diamond shape to indicate
the value is deterministic, and use a circle to indicate the variable is stochastic.

where the model likelihood pθ1 is parameterized using a decoder, and pθ2 and pθ3 are the prior
distributions over the specified latent factors.

Inference Model Given the generative model, learning representations of data can be seen as
learning a variational approximation of the posterior using an encoder that constructs the distribution
of latent values for a given observation x≤T . We propose the following factorization:

qφ(z≤T ,G≤T |x≤T ) =

T∏
t=1

qφ1(Gt|x≤T , z<t,G<t)qφ2(zt|x≤T , z<t,G≤t).

Note that, as opposed to the VRNN objective, we do impose restrictions on this approximation when
defining its dependency structure by including also future inputs xt+1:T in the conditions of qφ1 and
qφ2 . This has been shown to be empirically beneficial in sequential settings (Goyal et al., 2017;
Fraccaro et al., 2016).

Objective Function We construct an objective function LDIA(x≤T ;φ, θ) for training the intro-
duced concepts pθ and qφ, by defining a lower-bound on log-likelihood log pθ(x≤T ) :

Eqφ(z≤T ,G≤T |x≤T )

[
T∑
t=1

log
pθ1(xt|x<t, z≤t,G≤t)pθ2(zt|x<t, z<t,G≤t)pθ3(Gt|x<t, z<t,G<t)

qφ1
(Gt|x≤T , z<t,G<t)qφ2

(zt|x≤T , z<t,G≤t)

]
,

(5)

with qφ1
(Gt|x≤T , z<t,G<t) = qφ1

(Kt|x≤T , z<t,G<t)qφ1
(Et|x≤T , z<t,G<t) and

pθ3(Gt|x<t, z<t,G<t) = pθ3(Kt|x<t, z<t,G<t)pθ3(Et|x<T , z<t,G<t) . See Appendix A for
a derivation of Eq. 5 and an elaboration of the relationship to Eq. 1.

3.2 ARCHITECTURAL COMPONENTS

Given past realizations x<t, z<t,G<t, the introduced dependency structure in Eq. 5 requires to first
infer the structural component Gt before subsequently generating variables zt and xt. Hence, we
divide the training procedure at each timestep into two distinct phases, with the first phase addressing
the calculation of components over Gt (pθ3 and qφ1

), while the subsequent second phase infers
components over zt and xt (pθ1 , pθ2 and qφ2

). The overall architecture is illustrated in Figure 2. We
describe the computations in more detail below.
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Interaction Graph Learning First, we uncover the (dynamic) latent graph space by constructing
the encoder (and prior) modules estimating Gt, ∀t ∈ {1, ..., T}. Since we define latent concepts
Gt = {Kt, Et} in discrete terms (cf. Section 3.1), it is natural to model the encoder (and prior) as a
multivariate distribution of independent Categoricals:

qφ1(Kt|x≤T , z<t,G<t) =
∏
a∈A

Cat
(
K(a)
t |f intenc(x≤T , z<t,G<t;φ1)

)
(6)

qφ1
(Et|x≤T , z<t,G<t) =

∏
(i,j)∈A×A

Cat
(
E(i,j)t |f intenc(x≤T , z<t,G<t;φ1)

)
, (7)

where function fenc is an encoder neural net. Since the interaction space contains the defined “no
interaction” label, the derived probability values over Et in a Bernoulli context can be interpreted as
importance values that encode the level of influence of interacting neighbors on target agents.

While elements in Kt are anchored to the elements of the agent set, interactive patterns Et, however,
are defined non-symmetrically over all agent pairs. Thus, we impose a function class on fenc that
enables learning single-agent as well as pairwise representations based on which we can classify
over both node and relation variables. Inspired by Kipf et al. (2018), we employ an adapted variant
of GNNs similar to interaction networks (Gilmer et al., 2017) that operates by learning alternating
node and edge representations through an iterative process where the learned edge embeddings are
used as messages for neighborhood aggregation2. See Appendix B.1 for a formalization of the core
computations of this GNN variant.

We model the input to fenc(x≤T , z<t,G<t) via multiple GRU cells (Chung et al., 2014) defined
over quantities related to the individual agents. More formally, fenc is given by

[vintenc, e
int
enc] = f intenc(x≤T , z<t,G<t) = GNNintenc([

−→
h t−1,

←−
h t],h

int
t−1;φ1), (8)

where [·, ·] denotes concatenation,
−→
h t−1 is a set of forward RNN states fRNN (x

(a)
t , z

(a)
t ,
−→
h

(a)
t−1),

←−
h t is a set of backward RNN states fRNN (x

(a)
t ,
←−
h

(a)
t+1), hintt−1 is a set of hidden states defined

along the edges fRNN (E(a,j)t−1 ,h
(a,j),int
t−1 ) of a fully-connected graph structure, and vintenc, e

int
enc are

the node and edge embeddings of the last/output GNN layer, respectively (cf. Figure 1, left). The
concatenated agent sets [

−→
h t−1,

←−
h t] refer to the initial node representations of the network and the

hidden interaction set hintt−1 is concatenated with the edge embeddings of the first GNN layer (cf.
Figure 2, left). The usage of multiple message passing rounds (≥ 2) in conjunction with a fully-
connected adjacency matrix allows the model to accomodate structural information from the full
input when estimating agent and interaction types.

Finally, we model the distributions comprising Eq. (6) and (7) as qφ1
(Gt|x≤T , z<t,G<t) =

softmax(Linear(f intenc(x≤T , z<t,G<t;φ1))); see Figure 1. The prior distribution
pθ3(Gt|x<t, z<t,G<t) is derived analogously to the interaction encoder, omitting the summa-
rized future

←−
h t as GNN input.

Adapted GVRNN Once Gt ∼ qφ1
is generated, the model needs to reason over the remaining

components of Eq. (5). To achieve this, we observe that the functionality of Gt is grounded in
uncovering latent social dependencies at every timestep t within a multiagent segment. Thus, the
generated Gt implicitly characterizes the computational graph at specific junctures and, since pre-
dictions are carried out autoregressively, encompasses all information required for computing agent
states xt and zt. Motivated by the previous considerations, we assume Gt is Markov and thus dis-
card G<t from the conditions of objects pθ1 , pθ2 and qφ2

.The remaining computations of Eq. (5)
thereby comply with the structure of Gt-conditional VRNN components (cf. Eq. 1 - 4).

In general, we can use any graph encoding strategy performing forecasting on the inferred latent
subspace Gt to model the distributions over xt and zt. An instantiation with interaction networks
constitutes a reasonable design choice in the present context, as there is already empirical evidence

2Other commonly used graph encoding strategies in the multiagent regime such as graph attention networks
(Veličković et al., 2017) or transformers (Vaswani et al., 2017) update node embeddings via learned attention
weights and consequently do not explicitly learn vectorial edge representations, rendering them inappropriate
for the problem at-hand.
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of their effectiveness for modeling sports tracking data (Yeh et al., 2019; Dick et al., 2022). For ease
of exposition, we assume an interactive system consisting of two agents and define computations for
graph i← j, where i ∈ A and j ∈ A as follows.

To accomodate Gt, we parameterize the node and edge functions inherent in each graph network
dependent on the predicted classes E(i,j)t ∈ {1, ...,K} and K(i)

t ∈ {1, ...,M}. More specifically,
we pick corresponding parameters for the edge MLP fe from the set {ψ1, ..., ψK} with ψ1 = ∅
denoting the manually defined “no interaction” label and parameters for the node MLP fv from the
set {γ1, ..., γM}. The message passing operations for target agent i amount to

e(i,j) = fe([v
(i),v(j)];ψk) (9)

u(i) = fv(e
(i,j); γm). (10)

Intuitively, this inductive bias encourages the model to learn semantically meaningful concepts de-
scribing distinct movement and interaction patterns and governs attention towards important pieces
of data when predicting collective movements. See Figure 1 for a detailed visual depiction of the
logic. An overvı́ew over the computational dependencies is given in Figure 5b.

4 EXPERIMENTS

In this section, we empirically validate our proposed model on two challenging real-world datasets:
basketball and soccer data3 . The dataset details, model architectures, and hyperparameters of both
our model and the baseline approaches are discussed in Appendix C.1.

4.1 SETUP

Metrics We adopt the commonly used Average Displacement Error (ADE) and Final Displace-
ment Error (FDE) metrics to assess the generative performance of future predictions. ADE refers to
the l2 error between the predicted locations and the ground truth averaged over the entire trajectory,
while FDE is the l2 error for the last predicted point (Alahi et al., 2014). Following prior works, we
report the minimum over 20 generated samples.

Baselines We compare our method with a variety of SOTA baselines for modeling (i) sports track-
ing data: Weak-Sup (Zhan et al., 2019), GVRNN (Yeh et al., 2019), dNRI (Graber & Schwing, 2020),
DAG-Net (Monti et al., 2021), GRIN (Li et al., 2021b); and (ii) for modeling urban dynamics: Joint-
β-cVAE (Bhattacharyya et al., 2021) and GRIN (Li et al., 2021b). To enable direct comparison
against this diverse set of methods, we benchmark in two experimental configurations.

Firstly, DAG-Net and Weak-Sup are inherently advantageous in generating agent trajectories by in-
corporating future locations in form of heuristically generated labels at prediction time. This renders
a direct comparison to fully unsupervised generative methods (like ours) biased. To minimize this
bias, we report quantitative results on a rather long prediction horizon of Tobs = 10, Tpred = 40
for both methods. Other baselines such as GRIN and dNRI cannot be trivially tested on these long-
term predictions, so we generate results on configuration Tobs = 40, Tpred = 10. Finally, GVRNN,
Joint-β-cVAE and our framework (DIA) can be applied to the full range of prediction scenarios.

4.2 QUANTITATIVE EVALUATION

Baseline Comparisons In the first set of experiments, we benchmark our model against recent
generative methods for the task of trajectory forecasting. Our empirical findings are summarized in
Table 1 and Table 2 (left). DIA emerges as the best generative tool across all tested tasks improving
the best (unsupervised) competitor performance by at least 17.3% minADE and 25.5% minFDE for
basketball. Remarkably, despite their inherent advantages, DIA also outperforms recent supervised
generative methods (Weak-Sup and DAG-Net) by at least 8.3% minADE and 16.8% minFDE. Fur-
thermore, we observe that the methods that learn global latent variables (GRIN and Joint-β-cVAE)
perform significantly worse than the remaining models. Though it may be premature to arrive at a
definite conclusion, however the comparatively dismal performance of such baselines in our results

3The source code will be made publicly available upon acceptance of this manuscript.
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Joint-β-cVAE GVRNN dNRI GRIN DIA (Ours)

min ADE 4.03 2.60 2.77 3.00 2.20
min FDE 6.56 5.66 5.52 6.12 4.51

Joint-β-cVAE GVRNN Weak-Sup DAG-Net DIA (Ours)

min ADE 10.64 9.73 9.47 8.98 8.29
min FDE 14.47 15.80 16.98 14.08 12.05

Table 1: Quantitative results on basketball data (in meters) modeling offensive players for short-term predic-
tions with Tpred = 10 and Tobs = 40 (on top) and long-term predictions with Tpred = 40 and Tobs = 10
(below).

MODEL MINADE MINFDE

JOINT-β-CVA 8.10 10.91
GVRNN 7.48 10.72
DNRI 7.60 10.88
GRIN 7.88 10.54
DIA (OURS) 7.02 9.68

MODEL ACCURACY F1

INTERACTION-RNN-DIAG 0.82 0.85
INTERACTION-RNN-FULL 0.83 0.84
INTERACTION-RNN 0.88 0.91

Table 2: Results on soccer data. Left: Quantitative results for trajectory prediction (in meters) modeling all
players with Tobs = 10 and Tpred = 10. Right: Results for the auxiliary classification task.

tend to suggest limited transferability of such models for sports data. We hypothesize that this is due
to lower inherent social interaction patterns in urban environments in relation to the heterogeneous
and dynamic causal nature of multiagent systems in the sports domain (Makansi et al., 2022).

Investigating Latent Structure To quantify the benefit of augmenting the latent space with an
explicit causal graph Gt, we compare performance metrics of the GVRNN and an adapted DIA
version at varying observation and prediction lengths. For this, we modify the DIA architecture such
that the second part of the training procedure is identical to the GVRNN computations. In this way,
the resulting performance differences capture only influences originating from the proposed graph
mechanism. The left part of figure 3 visualizes the resulting numbers. As can be seen, our DIA
version yields substantial performance gains, with the performance difference increasing with task
complexity, i.e., prediction horizon. We note that an increase in GVRNN complexity is accompanied
by a further increase in performance difference, see Appendix C.3. The results thus highlight that
modeling relations via attention-based aggregation strategies is insufficient to capture decisive social
signals in non-trivial multiagent systems.

The right part of Figure 3 shows predictive results for different agent subgroups when varying the
representational capacity of the latent interaction graph Et ∈ Gt. Since separate function approxima-
tors are parameterized for each selected interaction class, enlarging the interaction space dimension-
ality causes overfitting issues, despite higher model expressivity. Thus, the best results are realized
by the model configuration with the lowest dimensionality, which still sufficiently encapsulates the
underlying system dynamics. Accordingly, this experimental setup can shed light on whether the
proposed interaction mechanism Et behaves according to our theoretical considerations. For ex-
ample, in modeling defensive players, we would expect reactive patterns based on the behavior of
attacking players, resulting in little intra-group dependencies. Indeed, the results in Figure 3 indi-
cate that our model inherits the expected social behaviors, as the best parameter configuration is
in line with the structural complexity of the different player subgroups. Appendix C.4 provides an
analogous discussion for agent types Kt ∈ Gt.

Auxiliary Task Finally, we examine the extent to which learned latent categories Gt serve mean-
ingful semantic contributions beyond trajectory generation tasks. To this end, we report quantitative
metrics on a classification task using soccer data. In the first step, we assemble a dataset in which the
social context at each time step is defined by the estimated agent-ball influences of a DIA training
run. That is, agent locations annotated as “no interaction” when considering influences on the ball
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Figure 3: Left: Quantitative comparison between GVRNN and an adapted version of our method at different
observation and prediction horizons for modeling offensive players. Right: Representational capacity of latent
Gt and performance for modeling different agent subgroups. In particular, we fix Kt and report quantitative
results by changing the dimensionality of interaction space Et.

Figure 4: Left: Trajectories of the offensive players and the ball (blue dots) from a data point in the test set of
the basketball data. Top right: Influence E(b,r) of the red player r on the ball b. Bottom right: Influence of the
ball on the red player.

node are discarded. We then train a spatiotemporal classification network, termed Interaction-RNN,
for event detection over Y on the updated data (more details given in Appendix B.3). We compare
our method quantitatively against a diagonal (i.e., using ball trajectories only) and a fully-connected
(i.e., using all agents for neighborhood aggregation) version of Interaction-RNN in Table 2 (right).
The model configuration trained on the data previously extracted by DIA outperforms both baseline
configurations. The results indicate potential advantages of injecting interaction structures induced
by DIA in downstream applications, as they facilitate detecting key information for learning spa-
tiotemporal classification tasks.

4.3 QUALITATIVE EVALUATION

To provide more insights in the learned sequential graphs G≤T of DIA, we visually depict a multi-
agent segment from the test set and estimated probability values within two interaction categories
(and one “no interaction” category) in Figure 4. The upper right image shows the influencing factors
of the red player on the ball. This interaction structure is mainly characterized by frequent alterna-
tions between the two interaction types with scarce instants of low aggregated influence. Since the
interaction values are determined to accurately reflect the input data, the fluctuating pattern observed
illustrates highly dynamic social structures in our tested setting.

The figure below encodes the influential structure of the ball as the sending agent on the movements
of the red player. Compared to the previous figure, probability values are consistent with one inter-
action type being active over most of the observed time period. The second interaction type becomes
the dominant influential force from the moment the ball is passed to the spatially closest neighbor
(green player), and also remains active when the ball reaches the target agent (red player). Thus,
the first interaction type encodes more holistic influences, while the second type focuses on more
immediate social motion effects. Notably, there are no periods of time in which either of the two in-
teraction modes is inactive. This distinguishes the ball as the central element in basketball and thus
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affects the movement of all offensive players at any time. The qualitative results provide further
evidence for the ability of our model to learn a semantically meaningful discrete latent subspace.
More qualitative results are given in Appendix C.6.

5 RELATED WORK

A conceptual line of work adresses human trajectory forecasting as a deterministic regression prob-
lem by minimizing the negative log-likelihood and assuming bi-variate Gaussian output distributions
Mohamed et al. (2020); Rudenko et al. (2020). While assuming unimodal Gaussians may be suffi-
cient for pedestrian datasets with rather linear trajectories Makansi et al. (2022), they fall short for
multimodal trajectory distributions like in team sports Brefeld et al. (2019); so we do not consider
these models in this work. Instead, recent methods mostly propose some form of latent variable
model, generally formulated as a conditional VAE (Sohn et al., 2015), to capture the stochasticity
inherent in future trajectories. At a higher level, the concrete approaches can be broadly categorized
by how they model temporal and social dependencies, as well as by their latent space characteriza-
tions.

For example, Yeh et al. (2019); Sun et al. (2019); Zhan et al. (2019); Monti et al. (2021) extend
the VRNN to handle agent-agent relations via estimating components of Eq. 1 using graph neural
networks. Casas et al. (2020b); Salzmann et al. (2020); Bhattacharyya et al. (2021) choose a sim-
ilar task formulation as well as interaction encoding strategy (Casas et al., 2020a; Anderson et al.,
2018), but generate future trajectories non-autoregressively by flattening the time axis into a single
dimension. Other conceputally similar approaches (e.g., Girgis et al. (2021); Yuan et al. (2021)) pro-
pose transformer-based architectures to encode spatial and temporal relations. There is a plethora of
work that aims to improve trajectory forecasting by extending latent information with specific types
of agent long-term goals extracted from the trajectory data (Mangalam et al., 2020; 2021; Zhao
et al., 2021; Monti et al., 2021; Zhan et al., 2019; Fan et al., 2021; Choi et al., 2021; Girase et al.,
2021). However, all these approaches model interactions only implicitly by aggregating messages
along the social dimension into spatiotemporal representations. Interestingly, Rudolph et al. (2020)
conclude that graph conditional variational methods for predicting multiagent trajectories are often
too powerful and simplified methods (e.g., MDNs) should be preferred.

Alternatively, our method can be seen as an novel contribution to the line of research that aims to
explicitly infer agent interactions while executing a trajectory prediction task. This task formulation
was originally proposed by Kipf et al. (2018), who introduce the NRI framework, a variational
autoencoder, where the discrete latent code represents edge predictions in a causal graph. Since the
original formulation is limited to learning a single graph for the entire multiagent sequence, several
works propose dynamic extensions where the interaction graph can adapt to the conditions per time
step (Graber & Schwing, 2020; Li et al., 2020; Gong et al., 2021; Li et al., 2021a). Recently, Löwe
et al. (2022) propose to infer causal relations across data points with different underlying interaction
graphs but shared dynamics. Other work (Li et al., 2021b) builds upon the NRI framework but
leverage a continuous latent space that aims to separate interactive factors from agent intentions.

6 CONCLUSION

In this paper, we presented novel framework for modeling the joint distribution of agent trajectories
using latent variables. To alleviate shortcomings of previous works, we described the data genera-
tion process using disentangled factors of variation that explicitly include a discrete latent subspace
reflecting social structures in sports games. We demonstrated that the emerging architecture per-
forms better in predicting trajectories compared to existing strategies and learns informative latent
variables. An interesting future line of research is modeling the underlying dynamics at a group
level to identify unique team strategies (Raman et al., 2021).

AUTHOR CONTRIBUTIONS

If you’d like to, you may include a section for author contributions as is done in many journals. This
is optional and at the discretion of the authors.

9



Under review as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
those to funding agencies, go at the end of the paper.

REFERENCES

Alexandre Alahi, Vignesh Ramanathan, and Li Fei-Fei. Socially-aware large-scale crowd forecast-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2203–2210, 2014.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
ing. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
6077–6086, 2018.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks. arXiv preprint
arXiv:1411.7610, 2014.

Apratim Bhattacharyya, Daniel Olmeda Reino, Mario Fritz, and Bernt Schiele. Euro-pvi: Pedestrian
vehicle interactions in dense urban centers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6408–6417, 2021.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. Generating sentences from a continuous space. In 20th SIGNLL Conference on Compu-
tational Natural Language Learning, CoNLL 2016, pp. 10–21. Association for Computational
Linguistics (ACL), 2016.

Ulf Brefeld, Jan Lasek, and Sebastian Mair. Probabilistic movement models and zones of control.
Machine Learning, 108(1):127–147, 2019.

Kyle Brown, Katherine Driggs-Campbell, and Mykel J Kochenderfer. A taxonomy and review of
algorithms for modeling and predicting human driver behavior. arXiv preprint arXiv:2006.08832,
2020.

Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urtasun. Spagnn: Spatially-aware graph neu-
ral networks for relational behavior forecasting from sensor data. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 9491–9497. IEEE, 2020a.

Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie Liao, and Raquel Urtasun. Implicit latent
variable model for scene-consistent motion forecasting. In European Conference on Computer
Vision, pp. 624–641. Springer, 2020b.

Chiho Choi, Srikanth Malla, Abhishek Patil, and Joon Hee Choi. Drogon: A trajectory prediction
model based on intention-conditioned behavior reasoning. In Conference on Robot Learning, pp.
49–63. PMLR, 2021.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Ben-
gio. A recurrent latent variable model for sequential data. Advances in neural information pro-
cessing systems, 28, 2015.
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Osama Makansi, J von Kügelgen, F Locatello, P Gehler, D Janzing, Thomas Brox, and B Schölkopf.
You mostly walk alone: Analyzing feature attribution in trajectory prediction. In International
Conference on Learning Representations (ICLR), 2022.

Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra
Malik, and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned trajec-
tory prediction. In European conference on computer vision, pp. 759–776. Springer, 2020.

Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, waypoints &
paths to long term human trajectory forecasting. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 15233–15242, 2021.

Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel. Social-stgcnn: A so-
cial spatio-temporal graph convolutional neural network for human trajectory prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14424–
14432, 2020.

Alessio Monti, Alessia Bertugli, Simone Calderara, and Rita Cucchiara. Dag-net: Double attentive
graph neural network for trajectory forecasting. In 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 2551–2558. IEEE, 2021.

Shayegan Omidshafiei, Daniel Hennes, Marta Garnelo, Zhe Wang, Adria Recasens, Eugene
Tarassov, Yi Yang, Romuald Elie, Jerome T Connor, Paul Muller, et al. Multiagent off-screen
behavior prediction in football. Scientific reports, 12(1):1–13, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Chirag Raman, Hayley Hung, and Marco Loog. Social processes: Self-supervised meta-
learning over conversational groups for forecasting nonverbal social cues. arXiv preprint
arXiv:2107.13576, 2021.

Amir Rasouli and John K Tsotsos. Autonomous vehicles that interact with pedestrians: A survey
of theory and practice. IEEE transactions on intelligent transportation systems, 21(3):900–918,
2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila, and Kai O
Arras. Human motion trajectory prediction: A survey. The International Journal of Robotics
Research, 39(8):895–935, 2020.

Yannick Rudolph, Ulf Brefeld, and Uwe Dick. Graph conditional variational models: too complex
for multiagent trajectories? 2020.

12



Under review as a conference paper at ICLR 2023

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In European Conference
on Computer Vision, pp. 683–700. Springer, 2020.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. Advances in neural information processing systems, 29, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Chen Sun, Per Karlsson, Jiajun Wu, Joshua B Tenenbaum, and Kevin Murphy. Stochastic prediction
of multi-agent interactions from partial observations. arXiv preprint arXiv:1902.09641, 2019.

Karl Tuyls, Shayegan Omidshafiei, Paul Muller, Zhe Wang, Jerome Connor, Daniel Hennes, Ian
Graham, William Spearman, Tim Waskett, Dafydd Steel, et al. Game plan: What ai can do for
football, and what football can do for ai. Journal of Artificial Intelligence Research, 71:41–88,
2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.
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A ALTERNATIVE PERSPECTIVE ON THE OBJECTIVE FUNCTION

(a) GVRNN

(b) DIA

(c) DIA

Figure 5: Depicting computational dependencies of (a) GVRNN; (b) the proposed interactive sequential latent
variable model (DIA); and (c) DIA in relation to GVRNN. Dashed lines indicate the encoding procedures, solid
lines the generation process.

Alternatively, Eq. 5 can be written as
T∑
t=1

(
log pθ1(xt|x<t, z≤t,G≤t)−KL[qφ1
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where G≤T , z≤T ∼ qφ(z≤T ,G≤T |x≤T ). See also Figure 5. This can be shown as follows:∫ ∫
qφ(z≤T ,G≤T |x≤T ) log
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B MODEL DETAILS

B.1 GRAPH NEURAL NETWORKS

The core operations of the GNN modules comprising the DIA can be formally expressed as follows:

v → e : e(i,j) = fe([vi,vj ]), (11)

e→ v : o(i) = fv(
∑

j∈N(i)

e(i,j)), (12)

where vi is the input feature representation of agent/node i, oi is the respective node embedding
after 1 GNN layer, N(i) denotes the set of agents/nodes that interact with target agent i, e(i,j) is the
edge embedding of the first GNN layer, and fe and fv are the MLPs described above. For the GNNs
of the interaction encoding phase, we define 2 rounds of message passing and utilize additional
linear layers operating on the node and edge embeddings of the second GNN layer to output Kt and
Et, respectively. For the adapted GVRNN modules, we use 1 layer as described in the main text with
additional MLPs computing the mean and variance vectors of the Gaussians.

B.2 MODEL TRAINING & TESTING

Instead of absolute positions, our model predicts movements ∆x̂t at each timestep. Consequently,
we estimate agent locations via x̂t = xt−1+∆x̂t. For simplicity, xt refers to both relative and abso-
lute positions. For training, the model uses the entire T = Tobs+Tpred timesteps from ground-truth
sequences x≤T . To enable gradient flow through stochastic operations, we use reparametrization
and gumbel-softmax trick (Maddison et al., 2017; Jang et al., 2017) for sampling from the encoders
over the continuous zt and the discrete Gt latent subspace, respectively. .

At test time, we divide the trajectories into an observation and prediction period, where the model
only observes the first portion of the ground-truth trajectory {x1, ...,xTobs} and predicts the remain-
ing Tpred timesteps autoregressively: x̂Tobs+i, i ∈ Z. Latent variables are sampled from the prior
distributions.

B.3 CLASSIFICATION BASELINE

The proposed classification framework for the spatiotemporal multi-agent regime (Interaction-RNN)
is essentially geared towards the functionality of an RNN for capturing temporal dependencies of
player trajectories. Additionally, to encode interactive agent patterns, we update the inferred RNN
states at each time step using an attention-based graph neural network architecture (Veličković et al.,
2017). Thus, the updated feature vectors jointly encode social and temporal information. A final
softmax layer is then used for classification and the model is optimized by minimizing the cross-
entropy loss. Because the labels denote ball-centric events, we use the output of the ball node for
loss computation and evaluation.

C EXPERIMENTS DETAILS

C.1 DATA

The soccer data contains trajectories of soccer players and the ball extracted from 16 professional
soccer matches sampled at 25 frames per second. We assemble a dataset consisting of game excerpts
such that the center frames of the sequences at timestep t = T//2 correspond to an on-ball event
from the set Y = {pass, other ball action, shot, none}. We choose a sequence length of 2s and
downsample the data to 10Hz, i.e., T = 20. This extraction process yields a total of roughly 34000
multiagent segments divided into 70% training, 15% validation, and 15% test data. We center and
normalize the trajectories onto the range [−1, 1] and transform them so that the team in possession
of the ball always plays from left to right.

The STATS SportVU basketball data consists of tracking data recorded from the 2016 NBA regular
season. Every game sequence has two-dimensional positions of 10 players and the ball sampled at 5
frames per second. The data is split into 60% training, 20% validation, and 20% test sets. All data is
translated so that the origin of the underlying coordinate system is mapped onto the top-left corner.
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C.2 IMPLEMENTATION DETAILS

DIA All model variants are implemented using PyTorch (Paszke et al., 2019). Training is carried
out using Adam (Kingma & Ba, 2014) with default parameters and learning rate of 0.001 and teacher
forcing. We select the best performing model using minADE on the validation set. The message
passing operations within our graph networks fe and fv are 2-layer MLPs with batch normalization
(Ioffe & Szegedy, 2015), dropout (Srivastava et al., 2014), and ELU activations (Clevert et al.,
2015). In addition, we leverage 2-layer MLPs with LeakyReLU (Xu et al., 2015) activations as
feature extractors operating on zt, xt, and Gt. All fully-connected layers are initialized using Xavier
initialization (Glorot & Bengio, 2010). For recurrence, we use 2-layer GRU networks (Chung et al.,
2014).

Baselines We used the code from the official repositories for baselines (Zhan et al., 2019; Graber
& Schwing, 2020; Monti et al., 2021; Li et al., 2021b; Bhattacharyya et al., 2021) and chose the best
perfoming hyperparameters from their experiments. For (Yeh et al., 2019), we re-implemented the
model by faithfully following the descriptions in their paper. The overall architecture of GVRNN
was initially designed such that it is comparable in parameter number to DIA. However, we found
that reducing model expressivity led to improved results. If not explicitly stated, the reported num-
bers correspond to a GVRNN version with approx 84% parameters compared to DIA.

C.3 DATA & MODEL EFFICIENCY

Figure 6: DIA versus GVRNN model performance on long-term prediction for varying data fractions of
basketball data. The same data was used across the models. The vertical lines show error bars; the horizontal
lines the previously best reported results for this task.

minADE minFDE # Parameters

GVRNN (best) 9.73 15.80 355588
GVRNN (x2 width) 9.91 16.12 733700
GVRNN (x3 width) 9.94 16.20 1647364
DIA (no structure) 10.27 15.17 400836
DIA 8.29 12.05 421768

Table 3: Importance of structure versus latent capacity.

To demonstrate the importance of our proposed structure, we perform two sets of additional ex-
periments. First, we directly compare the importance of structure versus larger latent capacity by
making adjustments to the GVRNN baseline and our proposed model. To achieve this, we (i) enlarge
the encoder/prior and decoder by increasing latent, hidden and rnn dimensions of the GVRNN mod-
ules and (ii) remove the proposed graph mechanism from our (adjusted) model so that it essentially
resembles a deeper GVRNN. Secondly, we compare generative capabilities of DIA and GVRNN
at different data percentages of 5%, 10%, 20%, and 50% of the training data. The training data
were randomly selected and the same data is used to train the different models. Hence, the purpose
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here is to investigate whether the integrated structure translates into data efficiency by, for example,
governing attention to important pieces of data.

Table 3 shows results to investigate the effect of model size on generative capacities. Clearly, larger
decoders/encoder/priors yield degenerate results compared to the initial (best) GVRNN configura-
tion. Furthermore, the DIA comparisons highlight the significant importance of enforcing a graph
structure since the only difference between both model configurations is our interaction learning
strategy. Figure 6 shows the data learning efficiency experiments results with mean and error. Im-
pressively, our model still significantly outperforms the full GVRNN baseline on both error met-
rics using only 5% (!) of the data. Our model discovers the underlying patterns much faster than
GVRNN, whose min ADE numbers improve significantly between 5% and 100% data partitions.
Although the results may not be conclusive, they do provide further evidence that our realized im-
provements do not originate from increased model complexity, but rather because Gt accurately
captures the latent ground-truth factors that arise from social perspectives.

# Parameters Sampling Speed

DAG-Net 184040 1.4581
GVRNN 355588 0.0764
DIA (Ours) 421768 0.0931

Table 4: Parameter size and sampling speed for SOTA models. Models were benchmarked on a Nvidia V100
GPU. The sampling speed is the average over mini-batch long-term predictions (Tpred = 40) of offensive
players.

Table 4 shows parameter sizes and sampling speeds of SOTA methods expressed as averaging over
mini-batches for modeling offensive players in basketball. While our model is slower than GVRNN,
we emphasize that DIA can reduce runtime by at least 10x compared to GVRNN while maintaining
superior results (cf. Figure 6).

C.4 AGENT TYPES

# Agent Types minADE minFDE

1 9.18 12.87
2 9.06 12.74
3 8.94 11.64
4 9.00 12.71

Table 5: Quantitative results on basketball data (in meters) modeling all players with Tpred = 40 and Tobs =
10 for varying dimensionality of Kt and a dimensionality of 1 for the interaction space Et.

To provide further evidence for potential semantic interpretations of the discrete latent space, we
examine the effect of capacity change in agent types Kt ∈ Gt on the generative performance. Table
5 summarizes the results for modeling the dynamics of all players on basketball data. Intuitively,
we would expect 3 fundamentally different agent types causing the observed movements since the
data consists of attacking and defensive players, and the ball. Similar to Section 4.2, the empirical
results confirm this intuition.
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C.5 CONTINUOUS LATENT VARIABLE

Figure 7: The full training loss LDIA and KL loss
between prior and approximate posterior on z≤T during
a training run on soccer data.

An appropriate local solution in our learning
problem accurately describes the data while
collecting implicit information into latent space
{Gt, zt}. As part of the main paper, we quali-
tatively and quantitatively investigated the dis-
covered relational structure Gt, finding seman-
tically significant patterns, and demonstrated
an accurate approximation of the underlying
multimodal data distributions through baseline
comparisons. Thus, this section is devoted to
quantify the information captured in the contin-
uous subspace zt.

A potential metric to measure the degree of
dependency between x and z i.e., to decide
whether the continuous latent variable encodes
useful information, is by monitoring the KL di-
vergence between the variational posterior and
prior. When naively training VAE architectures
that consist of a decoder exhibiting sufficiently
powerful function approximators with autore-
gressive dependencies (e.g., RNNs), existing sequential latent variable models frequently report a
phenomenon named posterior collapse (Chung et al., 2015), where the model tends to converge to
regions of the loss surface that contain bad local minima (or saddle points) at KL = 0. Since the
latent information the decoder receives is then essentially equivalent to Gaussian noise, the model
remits to a standard unconditional RNN, i.e., it learns to generate the input solely based on the
autoregressive properties independent of the latent information z.

Figure 7 displays (average) values for losses LDIA and KL[qφ1(zt|x≤T , z<t,G≤t) ‖
pθ2(zt|x<t, z<t,G≤t)] during a training run on basketball data. Here we observe a gradual in-
crease in KL loss values that is accompanied by a steady decrease in training loss. Thus, the results
indicate an effective exploitation of the continuous subspace zt to generate future agent movements
without the necessity to rely on common optimization strategies such as cost annealing (Bowman
et al., 2016; Sønderby et al., 2016).

C.6 QUALITATIVE EVALUATION

Figure 8: Top: Influence of the ball on the green player. Bottom: Influence of the green player on the ball.
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Figure 8 shows another example of agent-ball interactions for the multi-agent segment from section
4.3. When considering influences on the ball (upper image), we again see a high frequency with
respect to the dominant interaction type. When reversing the influence direction, we again observe
more constant patterns, where the second interaction type becomes dominant as soon as the ball
arrives at the spatially closest agent.

Figure 9: Left: Trajectories of two agents. The numbers indicate times at which the probability values of the
right graph undergo rapid change. Right:

Figure 9 depicts an exemplary timeline for player-player interactions in a Bernoulli setting. Again,
our model learns an interpretable semantic structure, which we describe below. The sharp drop in
probability values at around t = 10 (right plot) is accompanied with the direction change of the blue
player (indicated by symbol 1) in the left plot. The probability spike between t = 20 and t = 30 is
caused by the change of direction of the orange player (symbol 2) at the right corner on the pitch.
The spike at around t = 40 is caused by the blue player turning towards the orange player (symbol
3); the last increase in probability occurs when the blue player accelerates towards the orange player
(symbol 4).
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