
Published in Transactions on Machine Learning Research (10/2023)

Dual Cognitive Architecture: Incorporating Biases and
Multi-Memory Systems for Lifelong Learning

Shruthi Gowda1,2, Bahram Zonooz†2,3, Elahe Arani†2

s.gowda@tue.nl, b.zonooz@tue.nl, e.arani@gmail.com
1NavInfo Europe 2Eindhoven University of Technology 3TomTom
†Contributed equally.

Reviewed on OpenReview: https: // openreview. net/ forum? id= PEyVq0hlO3

Abstract

Artificial neural networks (ANNs) exhibit a narrow scope of expertise on stationary inde-
pendent data. However, the data in the real world is continuous and dynamic, and ANNs
must adapt to novel scenarios while also retaining the learned knowledge to become lifelong
learners. The ability of humans to excel at these tasks can be attributed to multiple factors
ranging from cognitive computational structures, cognitive biases, and the multi-memory
systems in the brain. We incorporate key concepts from each of these to design a novel
framework, Dual Cognitive Architecture (DUCA), which includes multiple sub-systems, im-
plicit and explicit knowledge representation dichotomy, inductive bias, and a multi-memory
system. The inductive bias learner within DUCA is instrumental in encoding shape infor-
mation, effectively countering the tendency of ANNs to learn local textures. Simultaneously,
the inclusion of a semantic memory submodule facilitates the gradual consolidation of knowl-
edge, replicating the dynamics observed in fast and slow learning systems, reminiscent of
the principles underpinning the complementary learning system in human cognition. DUCA
shows improvement across different settings and datasets, and it also exhibits reduced task
recency bias, without the need for extra information. To further test the versatility of
lifelong learning methods on a challenging distribution shift, we introduce a novel domain-
incremental dataset DN4IL. In addition to improving performance on existing benchmarks,
DUCA also demonstrates superior performance on this complex dataset. 1 2

1 Introduction

Deep learning has seen rapid progress in recent years, and supervised learning agents have achieved superior
performance on perception tasks. However, unlike a supervised setting, where data is static and indepen-
dent and identically distributed, real-world data is changing dynamically. Continual learning (CL) aims to
learn multiple tasks when data is streamed sequentially (Parisi et al., 2019). This is crucial in real-world
deployment settings, as the model needs to adapt quickly to novel data (plasticity), while also retaining
previously learned knowledge (stability). Artificial neural networks (ANN), however, are still not effective
lifelong learners, as they often fail to generalize to small changes in distribution and also suffer from forgetting
old information when presented with new data (catastrophic forgetting) (McCloskey & Cohen, 1989).

Humans, on the other hand, show a better ability to acquire new skills while also retaining previously
learned skills to a greater extent. This intelligence can be attributed to different factors in human cognition.
Multiple theories have been proposed to formulate an overall cognitive architecture, which is a broad domain-
generic cognitive computation model that captures the essential structure and process of the mind. Some of
these theories hypothesize that, instead of a single standalone module, multiple modules in the brain share
information to excel at a particular task. CLARION (Connectionist learning with rule induction online)

1Code is public at https://github.com/NeurAI-Lab/DUCA.
2DN4IL dataset is public at https://github.com/NeurAI-Lab/DN4IL-dataset.
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Figure 1: Schematic of Dual Cognitive Architecture (DUCA). The working model in the explicit module
learns direct sensory data. Within the implicit module, the inductive bias learner encodes the prior shape
knowledge and the semantic memory consolidates information from the explicit module. Only one network
(semantic memory) is used during inference as it includes consolidated knowledge across all tasks.

(Sun & Franklin, 2007) is one such theory that postulates an integrative cognitive architecture, consisting
of a number of distinct subsystems. It predicates a dual representational structure (Chaiken & Trope,
1999), where the top level encodes conscious explicit knowledge, while the other encodes indirect implicit
information. The two systems interact, share knowledge, and cooperate to solve tasks. Delving into these
underlying architectures and formulating a new design can help in the quest to build intelligent agents.

Multiple modules can be instituted instead of a single feedforward network: an explicit module responsible
for learning from the standard visual input and an implicit module that specializes in acquiring and sharing
contextual knowledge indirectly. The implicit module can be further divided into more submodules, each
providing different information. Inductive biases and semantic memories can act as different kinds of implicit
knowledge. Inductive biases are pre-stored templates or knowledge that provide some meaningful disposition
toward adapting to the continuously evolving world (Chollet, 2019). Theories postulate that after rapidly
learning information, a gradual consolidation of knowledge transpires in the brain for slow learning of struc-
tured information (Kumaran et al., 2016). Thus, the new design incorporates multiple concepts of cognition
architectures, the dichotomy of implicit and explicit representations, inductive biases, and multi-memory
systems theory.

To this end, we propose Dual Cognitive Architecture (DUCA), a multi-module architecture for CL. The
explicit working module processes the standard input data. Two different submodules are introduced for the
implicit module. The inductive bias learner embeds relevant prior information, and as networks are shown
to be biased toward textural information (unlike humans that are more biased toward global semantics)
(Geirhos et al., 2019), we propose to utilize global shape information as the prior. Both texture and shape
are present in the original image, but ANNs tend to rely more on texture and ignore semantic information.
Hence, we utilize the implicit shape information and share it with the explicit module to learn more generic
and high-level representations. Further, to emulate the consolidation of information in the slow-fast multi-
memory system, a gradual accumulation of knowledge from the explicit working module is embedded in the
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second semantic memory submodule. We show that interacting and leveraging information between these
modules can help alleviate catastrophic forgetting, while also increasing the robustness to the distribution
shift.

DUCA achieves superior performance across all CL settings on various datasets. DUCA outperforms SOTA
CL methods on Seq-CIFAR10 and Seq-CIFAR100 in class-incremental settings. Furthermore, in more real-
istic general class-incremental settings where the task boundary is blurry and the classes are not disjoint,
DUCA shows significant gains. The addition of inductive bias and semantic memory helps to achieve a bet-
ter balance between the plasticity-stability trade-off. The prior in the form of shape helps produce generic
representations, and this results in DUCA exhibiting a reduced task-recency bias. Furthermore, DUCA also
shows greater robustness against natural corruption. Finally, to test the capability of CL methods against
the distribution shift, we introduce a domain-incremental learning dataset, DN4IL, which is a carefully de-
signed subset of the DomainNet dataset (Peng et al., 2019). DUCA shows considerable robustness across all
domains on these challenging data, thus establishing the efficacy of our cognitive-inspired CL architecture.
Our contributions are as follows:

• Dual Cognitive Architecture (DUCA), a novel method that incorporates aspects of cognitive archi-
tectures, multi-memory systems, and inductive bias into the CL framework.

• Introducing DN4IL, a challenging domain-incremental learning dataset.
• Benchmark across different CL settings: class-, task-, generalized class-, and domain-incremental

learning.
• Analyses on the plasticity-stability trade-off, task recency bias, and robustness to natural corrup-

tions.

2 Methodology

2.1 Cognitive Architectures

Cognitive architectures refer to computational models that encapsulate the overall structure of the cognitive
process in the brain. The underlying infrastructure of such a model can be leveraged to develop better
intelligent systems. Global workspace theory (GWT) (Juliani et al., 2022) postulates that human cognition
is composed of a multitude of special-purpose processors and is not a single standalone module. Different
sub-modules might encode different contextual information which, when activated, can transfer knowledge to
the conscious central workspace to influence and help make better decisions. Furthermore, CLARION (Sun
& Franklin, 2007) posits a dual-system cognitive architecture with two levels of knowledge representation.
The explicit module encodes direct knowledge that is externally accessible. The implicit module encodes
indirect knowledge that is not directly accessible, but can be obtained through some intermediate interpretive
or transformational steps. These two modules interact with each other by transferring knowledge between
each other.

Inspired by these theories, we formulate a method that incorporates some of the key aspects of cognitive
architecture into the CL method. A working module, which encodes the direct sensory data, forms the
explicit module. A second module that encodes indirect and interpretive information forms the implicit
module. The implicit module further includes multiple sub-modules to encode different types of knowledge.

2.2 Inductive Bias

The sub-modules in the implicit module need to encapsulate implicit information that can provide more
contextual and high-level supervision. One of such knowledge can be prior knowledge or inductive bias.
Inductive biases are pre-stored templates that exist implicitly even in earlier stages of the human brain
(Pearl & Mackenzie, 2018). For instance, cognitive inductive bias may be one of the reasons why humans
can focus on the global semantics of objects to make predictions. ANNs, on the other hand, are more prone
to rely on local cues and textures (Geirhos et al., 2019). Global semantics or shape information already
exists in the visual data, but in an indirect way. The incorporation of shape-awareness to the networks has
proven to be a more effective approach in acquiring generic representations (Gowda et al., 2022). Hence, we
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utilize shape as indirect information in the implicit module. The sub-module uses a transformation step to
extract the shape and share this inductive bias with the working module. As the standard (RGB) image
and its shape counterpart can be viewed as different perspectives/modalities of the same data, ensuring that
the representation of one modality is consistent with the other increases robustness to spurious correlations
that might exist in only one of them.

2.3 Multi Memory System

Moreover, many theories have postulated that an intelligent agent must possess differentially specialized
learning memory systems (Kumaran et al., 2016). While one system rapidly learns the individual experience,
the other gradually assimilates the knowledge. To emulate this behavior, we establish a second sub-module
that slowly consolidates the knowledge from the working module.

2.4 Formulation

To this end, we propose a novel method Dual Cognitive Architecture (DUCA), which incorporates all these
concepts into the CL paradigm. DUCA consists of two modules, the explicit module, and the implicit
module. The explicit module has a single working model and processes the incoming direct visual data.
The implicit module further consists of two submodules, namely the inductive bias learner and the semantic
memory. They share relevant contextual information and assimilated knowledge with the explicit module,
respectively. Figure 1 shows the overall architecture.

In the implicit module, semantic memory NSM , consolidates knowledge at stochastic intervals from the work-
ing model NW M , in the explicit module. The other submodule, the inductive bias learner NIBL, processes
the data and extracts shape information (Section G). NW M processes the RGB data, NSM consolidates the
information from the working module at an update frequency in a stochastic manner, and NIBL learns from
the shape data. The encoder or the feature extractor network takes an image as the input and produces
latent representations, which are then passed to the linear classifier to do object recognition. f represents
the combination of the encoder and the classifier, and θW M , θSM , and θIBL are the parameters of the three
networks.

A CL classification consists of a sequence of T tasks and, during each task, t ∈ 1, 2...T , samples xc and their
corresponding labels yc are drawn from the current task data Dt. Furthermore, for each subsequent task,
a random batch of exemplars is sampled from episodic memory B as xb. An inductive bias (shape) filter
is applied to generate shape samples, xcs

= IB(xc) and xbs
= IB(xb). Reservoir sampling (Vitter, 1985) is

incorporated to replay previous samples. Each of the networks NW M and NIBL learns in its own modality
with a supervised cross-entropy loss on both the current samples and the buffer samples:

LSupW M
=LCE(f(xc; θW M ), yc) + LCE(f(xb; θW M ), yb)

LSupIBL
=LCE(f(xcs

; θIBL), yc) + LCE(f(xbs
; θIBL), yb)

(1)

The Knowledge Sharing (KS) objectives are designed to transfer and share information between all modules.
KS occurs for current samples and buffered samples. We employ the mean squared error as the objective
function for all KS losses. To provide shape supervision to the working model and vice versa, a bidirectional
decision space similarity constraint (LbiKS) is enforced to align the features of the two modules.

LbiKS = E
x∼Dt∪B

∥f(xs; θIBL) − f(x; θW M )∥2
2 (2)

The consolidated structural information in semantic memory is transferred to both the working model and the
inductive bias learner by aligning the output space on the buffer samples, which further helps in information
retention. The loss functions LKSW M

and LKSIBL
are as follows;

LKSW M
= E

xb∼B
∥f(xb; θSM ) − f(xb; θW M )∥2

2

LKSIBL
= E

xb∼B
∥f(xb; θSM ) − f(xbs

; θIBL)∥2
2

(3)
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Table 1: Comparison of different methods on standard CL benchmarks (Class-IL, Task-IL and GCIL set-
tings). DUCA shows a consistent improvement over all methods for both buffer sizes.

|B| Method Seq-CIFAR10 Seq-CIFAR100 GCIL-CIFAR100
Class-IL Task-IL Class-IL Task-IL Uniform Longtail

- JOINT 92.20±0.15 98.31±0.12 70.62±0.64 86.19±0.43 60.45±1.65 60.10±0.42
SGD 19.62±0.05 61.02±3.33 17.58±0.04 40.46±0.99 10.36±0.13 9.62±0.21

200

ER 44.79±1.86 91.19±0.94 21.40±0.22 61.36±0.39 16.52±0.10 16.20±0.30
DER++ 64.88±1.17 91.92±0.60 29.60±1.14 62.49±0.78 27.73±0.93 26.48±2.04
Co2L 65.57±1.37 93.43±0.78 31.90±0.38 55.02±0.36 - -
ER-ACE 62.08±1.44 92.20±0.57 32.49±0.95 59.77±0.31 27.64±0.76 25.10±2.64
CLS-ER 66.19±0.75 93.90±0.60 43.80±1.89 73.49±1.04 35.88±0.41 35.67±0.72
DUCA 70.04±1.07 94.49±0.38 45.38±1.28 76.62±0.16 38.61±0.83 37.11±0.16

500

ER 57.74±0.27 93.61±0.27 28.02±0.31 68.23±0.16 23.62±0.66 22.36±1.27
DER++ 72.70±1.36 93.88±0.50 41.40±0.96 70.61±0.11 35.80±0.62 34.23±1.19
Co2L 74.26±0.77 95.90±0.26 39.21±0.39 62.98±0.58 - -
ER-ACE 68.45±1.78 93.47±1.00 40.67±0.06 66.45±0.71 30.14±1.11 31.88±0.73
CLS-ER 75.22±0.71 94.94±0.53 51.40±1.00 78.12±0.24 38.94±0.38 38.79±0.67
DUCA 76.20±0.70 95.95±0.14 54.27±1.09 79.80±0.32 43.34±0.32 41.44±0.22

Thus, the overall loss functions for the working model and the inductive bias learner are as follows;

LW M =LSupW M
+ λ(LbiKS + LKSW M

)
LIBL =LSupIBL

+ γ(LbiKS + LKSIBL
)

(4)

The semantic memory of the implicit module is updated with a stochastic momentum update (SMU) of the
weights of the working model at rate r with a decay factor of d,

θSM = d · θSM + (1 − d) · θW M if s ∼ U(0, 1) < r (5)

More details are provided in Algorithm 1. We discuss the computational aspect in Section F. Note that we
use semantic memory (θSM ) for inference, as it contains consolidated knowledge across all tasks.

3 Experimental Settings

ResNet-18 (He et al., 2016) architecture is used for all experiments. All networks are trained using the
SGD optimizer with standard augmentations of random crop and random horizontal flip. The different
hyperparameters, tuned per dataset, are provided in E. The different CL settings are explained in detail
in Section D. We consider CLass-IL, Domain-IL, and also report the Task-IL settings. Seq-CIFAR10 and
Seq-CIFAR100 (Krizhevsky et al., 2009) for the class-incremental learning (Class-IL) settings, which are
divided into 5 tasks each. In addition to Class-IL, we also consider and evaluate general Class-IL (GCIL)
(Mi et al., 2020) on the CIFAR100 dataset. For domain-incremental learning (Domain-IL), we propose a
novel dataset, DN4IL.

4 Results

We provide a comparison of our method with standard baselines and multiple other SOTA CL methods.
The lower and upper bounds are reported as SGD (standard training) and JOINT (training all tasks to-
gether), respectively. We compare with other rehearsal-based methods in the literature, namely ER, DER++
(Buzzega et al., 2020), Co2L (Cha et al., 2021), ER-ACE (Caccia et al., 2021), and CLS-ER (Arani et al.,
2022). Table 1 shows the average performance in different settings over three seeds. Co2L utilizes task
boundary information, and therefore the GCIL setting is not applicable. The results are taken from the
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original works and, if not available, using the original codes, we conducted a hyperparameter search for the
new settings (see Section E for details).

DUCA achieves the best performance across all datasets in all settings. In the challenging Class-IL setting,
we observe a gain of ∼50% over DER++, thus showing the efficacy of adding multiple modules for CL.
Furthermore, we report improvements of ∼6% on both the Seq-CIFAR10 and Seq-CIFAR100 datasets, over
CLS-ER, which utilizes two semantic memories in its design. DUCA has a single semantic memory, and the
additional boost is obtained by prior knowledge from the inductive bias learner. Improvement is prominent
even when the memory budget is low (200 buffer size). GCIL represents a more realistic setting, as the
task boundaries are blurry, and classes can reappear and overlap in any task. GCIL-Longtail version also
introduces an imbalance in the sample distribution. DUCA shows a significant improvement on both versions
of GCIL-CIFAR100. Additional results are provided in Table 4.

Shape information from the inductive bias learner offers the global high-level context, which helps in produc-
ing generic representations that are not biased towards learning only the current task at hand. Furthermore,
sharing of the knowledge that has been assimilated through the appearance of overlapping classes through
the training scheme, further facilities learning in this general setting. The overall results indicate that the
dual knowledge sharing between the explicit working module and the implicit inductive bias and semantic
memory modules enables both better adaptation to new tasks and information retention.

5 Domain-incremental learning

Intelligent agents deployed in real-world applications need to maintain consistent performance through
changes in the data and environment. Domain-IL aims to assess the robustness of the CL methods to
the distribution shift. In Domain-IL, the classes in each task remain the same, but the input distribution
changes, and this makes for a more plausible use case for evaluation. However, the datasets used in the
literature do not fully reflect this setting. For instance, the most common datasets used in the literature are
different variations (Rotated and Permuted) of the MNIST dataset (LeCun et al., 1998). MNIST is a simple
dataset, usually evaluated on MLP networks, and its variations do not reflect the real-world distribution
shift challenges that a CL method faces (the results for R-MNIST are presented in the Table C). Farquhar &
Gal (2018) propose fundamental desiderata for CL evaluations and datasets based on real-world use cases.
One of the criteria is to possess cross-task resemblances, which Permuted-MNIST clearly violates. Thus, a
different dataset is needed to test the overall capability of a CL method to handle the distributional shift.

5.1 DN4IL Dataset

To this end, we propose DN4IL (DomainNet for Domain-IL), which is a well-crafted subset of the standard
DomainNet dataset (Peng et al., 2019), used in domain adaptation. DomainNet consists of common objects
in six different domains - real, clipart, infograph, painting, quickdraw, and sketch. The original DomainNet
consists of 59k samples with 345 classes in each domain. The classes have redundancy, and moreover,
evaluating the whole dataset can be computationally expensive in a CL setting. DN4IL version considers
different criteria such as relevance of classes, uniform sample distribution, computational complexity, and
ease of benchmarking for CL.

All classes were grouped into semantically similar supercategories. Of these, a subset of classes was selected
that had relevance to domain shift, while also having maximum overlap with other standard datasets such
as CIFAR, to facilitate out-of-distribution analyses. 20 supercategories were chosen with 5 classes each
(resulting in a total of 100 classes). In addition, to provide a balanced dataset, we performed a class-wise
sampling. First, we sample images per class in each supercategory and maintain class balance. Second,
we choose samples per domain, so that it results in a dataset that has a near-uniform distribution across
all classes and domains. The final dataset DN4IL is succinct, more balanced, and more computationally
efficient for benchmarking, thus facilitating research in CL. Furthermore, the new dataset is deemed more
plausible for real-world settings and also adheres to all evaluation desiderata by (Farquhar & Gal, 2018). The
challenging distribution shift between domains provides an apt dataset to test the capability of CL methods
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Figure 2: Accuracy (left) and plasticity-stability analysis (right) on DN4IL dataset. DUCA substantially
outperforms other methods and with better plasticity-stability trade-off.

in the Domain-IL setting. More details, statistics, and visual examples of this crafted dataset are provided
in Section H.

5.2 DN4IL Performance

Figure 2 (left) reports the results on DN4IL for two different buffer sizes (values are provided in Table 10).
DUCA shows a considerable performance gain in the average accuracy across all domains, and this can be
primarily attributed to the supervision from the shape data. Standard networks tend to exhibit texture
bias and learn background or spurious cues (Geirhos et al., 2019) that result in performance degradation
when the distribution changes. Learning global shape information of objects, on the other hand, helps in
learning generic features that can translate well to other distributions. Semantic memory further helps to
consolidate information across domains. Maintaining consistent performance to such difficult distribution
shifts prove beneficial in real-world applications, and the proficiency of DUCA in this setting can thus open
up new avenues for research in cognition-inspired multi-module architectures.

6 Model Analyses

6.1 Plasticity-Stability Trade-off

Plasticity refers to the capability of a model to learn new tasks, while stability shows how well it can retain old
information. The plasticity-stability dilemma is a long-standing problem in CL, which requires an optimal
balance between the two. Following Sarfraz et al. (2022), we measure each of these to assess the competence
of the CL methods. Plasticity is computed as the average performance of each task when first learned (e.g.,
the accuracy of the network trained on task T2, evaluated on the test set of T2). Stability is computed as
the average performance of all tasks 1 : T -1, after learning the final task T . Figure 2 (right) reports these
numbers for the DN4IL dataset. As seen, the ER and DER methods exhibit forgetting and lower stability,
and focus only on the newer tasks. CLS-ER shows greater stability, but at the cost of reduced plasticity.
However, DUCA shows the highest stability while maintaining comparable plasticity. The shape knowledge
helps in learning generic solutions that can translate to new tasks, while the semantic consolidation update
at stochastic rates acts as a regularization to maintain stable parameter updates. Thus, DUCA strikes a
better balance between plasticity and stability.

6.2 Recency-Bias Analysis

Recency bias is a behavior in which the model predictions tend to be biased toward the current or the most
recent task (Wu et al., 2019). This is undesirable in a CL model, as it results in a biased solution that
forgets the old tasks. To this end, after the end of the training, we evaluate the models on the test set (of
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Figure 3: DUCA shows reduced task recency bias (left), as well as higher robustness against natural corrup-
tion (right) on Seq-CIFAR10 (|B|=200) dataset.

all tasks) and calculate the probability of predicting each task. The output distribution for each test sample
is calculated for all classes and the probabilities are averaged per task.

Figure 3 (left) shows the probabilities for each task on the Seq-CIFAR10 dataset. As shown, the ER and
DER++ methods tend to incline most of their predictions toward the classes seen in the last task, thus
creating a misguided bias. DUCA shows a lower bias compared to both of these baselines. CLS-ER exhibits
reduced bias due to the presence of multiple memories, but the distribution is still relatively skewed (with
respect to a probability of 0.2). DUCA shows a more uniform distribution across all tasks. The dual
information from the shape data and the consolidated knowledge across tasks helps in breaking away from
Occam’s razor pattern of neural networks to default to the easiest solution.

6.3 Robustness

Lifelong agents, when deployed in real-world settings, must be resistant to various factors, such as lighting
conditions, weather changes, and other effects of digital imaging. Inconsistency in predictions under different
conditions might result in undesirable outcomes, especially in safety-critical applications such as autonomous
driving. To measure the robustness of the CL method against such natural corruptions, we created a dataset
by applying fifteen different corruptions, at varying levels of severity (1- least severe to 5- most severe
corruption).

The performances on the fifteen corruptions are averaged at each severity level and are shown in Figure
3 (right). DUCA outperforms all other techniques at all severity levels. ER, DER++, and CLS-ER show
a fast decline in accuracy as severity increases, while DUCA maintains stable performance throughout.
Implicit shape information provides a different perspective of the same data to the model, which helps to
generate high-level robust representations. DUCA, along with improved continual learning performance,
also exhibits improved robustness to corruption, thus proving to be a better candidate for deployment in
real-world applications.

6.4 Task-wise Performance

The average accuracy across all tasks does not provide a complete measure of the ability of a network to
retain old information while learning new tasks. To better represent the plasticity-stability measure, we
report the task-wise performance at the end of each task. After training each task, we measure the accuracy
on the test set of each of the previous tasks. Figure 4 reports this for all tasks of DN4IL. The last row
represents the performance of each task after the training is completed. ER and DER++ show performance
degradation on earlier tasks, as the model continues to train on newer tasks. Both perform better than
DUCA on the last task, 71.1 and 68.9 respectively, while DUCA has a performance of 61.1.

However, in continual learning settings, the data arrives continuously and the focus is on both retention of
old task performance while performing well on the current task. As seen, the accuracy on the first task (real)
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Figure 4: Task-wise performance on DN4IL (|B|=500), where each task represents a domain. DUCA shows
more retention of old information without compromising much on current accuracy.

Table 2: Analyzing the impact of inductive bias and knowledge sharing on baselines and DUCA. ‘*’ indicates
the use of shape as an augmentation. ‘−X’ indicates the removal of component X. ‘+’ refers to concatenation
in the channel dimension.

Method Specifics Seq-CIFAR100 DN4IL

200 500 200 500

ER Original 21.40 28.02 26.59 31.01
RGB & Shape* 19.47 23.96 27.45 33.44

DER++ Original 29.60 41.40 34.75 41.87
RGB & Shape* 24.40 34.30 36.55 40.99

DUCA original 45.38 54.27 44.23 49.32
−SM (RGB & Shape*) 24.34 32.64 36.80 43.88
−SM −IBL (Shape only) 18.33 21.98 27.89 31.57
−SM −IBL (RGB+Shape) 20.57 25.20 31.52 35.68
−SM −IBL (RGB & Shape*) 19.47 23.96 27.45 33.44
−IBL (RGB & Shape*) 42.01 49.55 40.75 43.99

reduces to 27.6 on ER and 43.5 on DER++ after training the six tasks (domains), while the DUCA maintains
the accuracy of 54.9. Similarly, after the second task, the performance on the first task decreases (44.5 : ER,
54.2 : DER++, 57.2 : CLS-ER and 62.9 : DUCA), but with DUCA the forgetting is lesser. DUCA reports
the highest information retention on older tasks, while also maintaining plasticity. For example, CLS-ER
shows better retention of old information, but at the cost of plasticity. The last task in CLS-ER shows a
lower performance compared to DUCA (52.1 vs. 61.0). The performance of the current task in DUCA is
relatively lesser and can be attributed to the stochastic update rate. Therefore, it’s essential to recognize
that while the shape inductive bias is beneficial to a classification task, the observed high performances are
a consequence of how the inductive bias is thoughtfully integrated into the proposed architecture within the
framework of continual learning, where both stability and plasticity hold equal importance.

To shed more light on the performance of each of the modules in DUCA, we also provide the performance of
the working model and the inductive bias learner, in Appendix Figure 5. The working model shows better
plasticity, while DUCA (semantic memory) displays better stability. Overall, all modules in the proposed
approach present unique attributes that improve the learning process and improve performance.

7 Effect of Inductive Bias and Knowledge Sharing

To assess the impact of the specific inductive bias and various ways of integrating it into the training
framework, we conducted supplementary experiments. In these experiments, we introduced two additional
baselines, ER and DER++, with the utilization of shape as an augmentation technique. Specifically, we
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Table 3: Ablation to analyze the effect of each component of DUCA on Seq-CIFAR10 and DN4IL.
SM IBL KS (WM↔IBL) Seq-CIFAR10 DN4IL

✓ ✓ ✓ 70.04±1.07 44.23±0.05
✓ ✓ ✗ 69.28±1.34 40.35±0.34
✓ ✗ - 69.21±1.46 39.76±0.56
✗ ✓ ✓ 64.61±1.22 37.33±0.01
✗ ✗ ✗ 44.79±1.86 26.59±0.31

included the Sobel filter in the augmentation list, alongside RandomCrop and RandomHorizontalFlip, and
proceeded with continual training. The results presented in Table 2 demonstrate that this approach yields
inferior performance compared to the baseline models trained solely on RGB images. On DN4IL dataset,
the performance is slightly better than baseline, as shape is a more discriminative and important feature
in this dataset. Thus the incorporation of shape as an augmentation strategy appears to yield suboptimal
feature representations, and is also dependent on the dataset.

We also conduct various ablations on the DUCA framework. Specifically, we perform isolations and exclusions
of different elements within DUCA, including IBL and SM. Instead, we subject the base network (DUCA
-SM -IBL) to three distinct training conditions: (1) exclusive training on shape images (Shape only), (2)
concurrent training on both RGB and shape images (RGB+Shape), and (3) training on RGB images with the
incorporation of a shape filter as an augmentation (RGB & Shape*). It is worth noting that shape information
contributes valuable global semantic insights that complement the visually rich RGB data, thus emphasizing
the necessity of both modalities for achieving enhanced generalization. However, training a single network
on both distributions simultaneously may not always yield optimal utilization of this information.

Finally, we train the base model within the framework by excluding one component at a time, namely
SM and IBL. We train the working model with but excluding the IBL, while also introducing shape as an
augmentation. The results (-IBL) show improvement due to the presence of the semantic memory module.
Nevertheless, the best performance is achieved when incorporating shape information through an alternative
supervisory network, namely the IBL.

These experiments underscore the critical importance of the specific method used to induce this knowledge,
highlighting its pivotal role in enhancing the overall training process. In our pursuit to bridge the distribution
gap between RGB and shape images, we have leveraged knowledge distillation as a means of self-teaching,
where distinct networks collaboratively engage in mutual learning and knowledge sharing. This approach
not only sheds light on the significance of effective knowledge sharing but also offers a promising avenue for
improving model performance and generalization in complex (visual) tasks.

8 Ablation Study

DUCA architecture comprises multiple components, each contributing to the efficacy of the method. The
explicit module has the working model, and the implicit module has semantic memory (SM) and inductive
bias learner (IBL). Disentangling different components in the DUCA can provide more insight into the
contribution of each of them to the overall performance.

Table 3 reports the ablation study with respect to each of these components on both the Seq-CIFAR10
and DN4IL datasets. Considering the more complex DN4IL dataset, the ER accuracy without any of our
components is 26.59. Adding cognitive bias (IBL) improves performance by 40%. Shape information plays
a prominent role, as networks need to learn the global semantics of the objects, rather than background or
spurious textural information, to translate performance across domains. Adding the dual-memory component
(SM) shows an increase of approximately 49% over the vanilla baseline. Furthermore, the KS between explicit
and implicit modules on current experiences also plays a key role in performance gain. Combining both of
these cognitive components and, in general, following the multi-module design shows a gain of 66%. A
similar trend is seen on Seq-CIFAR10.
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9 Related Works

Rehearsal-based approaches, which revisit examples from the past to alleviate catastrophic forgetting, have
been effective in challenging CL scenarios (Farquhar & Gal, 2018). Experience Replay (ER) (Riemer et al.,
2018) methods use episodic memory to retain previously seen samples for replay purposes. DER++ (Buzzega
et al., 2020) adds a consistency loss on logits, in addition to the ER strategy. In situations where memory
limitations impose constraints on buffer size, such as in edge devices, it has been observed that rehearsal-
based methods are susceptible to overfitting on the data stored in the buffer (Bhat et al., 2022). To address
this, CO2L (Cha et al., 2021) uses contrastive learning from the self-supervised learning domain to generate
transferable representations. ER-ACE (Caccia et al., 2021) targets the representation drift problem in online
CL and develops a technique to use separate losses for current and buffer samples. All of these methods
limit the architecture to a single stand-alone network, contrary to the biological workings of the brain.

CLS-ER (Arani et al., 2022) proposed a multi-network approach that emulates fast and slow learning systems
by using two semantic memories, each aggregating weights at different times. Though CLS-ER utilizes the
multi-memory design, sharing of different kinds of knowledge is not leveraged, and hence presents a method
with limited scope. DUCA digresses from the standard architectures and proposes a multi-module design
that is inspired by cognitive computational architectures. It incorporates multiple submodules, each sharing
different knowledge to develop an effective continual learner that has better generalization and robustness.

10 Conclusion

We introduced a novel framework for continual learning that incorporates concepts inspired by cognitive ar-
chitectures, high-level cognitive biases, and the multi-memory system. Dual Cognitive Architecture (DUCA),
includes multiple subsystems with dual knowledge representation. DUCA designed a dichotomy of explicit
and implicit modules in which information is selected, maintained, and shared with each other to enable
better generalization and robustness. DUCA outperformed on Seq-CIFAR10 and Seq-CIFAR100 on the
Class-IL setting. In addition, it also showed a significant gain in the more realistic and challenging GCIL
setting. Through different analyses, we showed a better plasticity-stability balance.

Furthermore, shape prior and knowledge consolidation helps to learn more generic solutions, indicated by
the reduced problem of task recency bias and greater robustness against natural corruptions. Furthermore,
we introduced a challenging domain-IL dataset, DN4IL, with six disparate domains. The significant im-
provement of DUCA on this complex distribution shift demonstrates the benefits of shape context, which
helps the network to converge on a generic solution, rather than a simple texture-biased one. The objective
of this work was to develop a framework that incorporates elements of cognitive architecture to mitigate the
forgetting problem and enhance generalization and robustness.

11 Future Work

Here, we delve into the potential for extending our current research, acknowledging its applicability to a
diverse range of modalities. The adaptability of DUCA serves as a robust foundation for further exploration.
As we broaden the scope of DUCA beyond the image domain, an essential consideration is the identification
of pertinent inductive biases tailored to the specific modality in question. For example, when venturing
into the audio domain, a promising avenue involves the utilization of spectrogram representations. These
representations effectively convert audio waveforms into visual data, encompassing both frequency and time-
domain information. The integration of phonemes, the fundamental units of spoken language, holds the
potential to enhance DUCA’s effectiveness in tasks such as speech understanding, speaker identification, and
language processing.

The collaboration between the core DUCA architecture and modality-specific inductive biases creates a syn-
ergy that drives knowledge sharing and learning capabilities. This collaborative architecture yields more
generic and robust representations, substantially enhancing overall performance. Furthermore, the gradual
accumulation of semantic memory emerges as a valuable asset, particularly in scenarios involving the contin-
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uous influx of data from various modalities. It mitigates the risk of forgetting and empowers the framework
to maintain its adaptability over time.

These modality-specific adaptations, guided by the intrinsic principles and mechanisms of DUCA, open the
door to exciting future directions. They offer the potential to advance lifelong learning and adaptability in a
multitude of domains. We anticipate that our preliminary work will serve as a cornerstone for future research
endeavors, including investigations into various cognitive biases and more efficient design methodologies.
Ultimately, we hope to pave the way for the advancement of lifelong learning methods for ANNs.
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A DUCA Algorithm

Algorithm 1 Dual Cognitive Architecture (DUCA)
1: Input: Dataset Dt, Buffer B
2: Initialize: Three networks: Encoder and classifier f parameterized by θW M , θSM , and θIBL

3: for all tasks t ∈ 1, 2...T do
4: Sample mini-batch: (xc, yc) ∼ Dt

5: Extract shape images: xcs
= IB(xc) where IB is a Sobel filter

6: LSupW M
= LCE(f(xc; θW M ), yc)

7: LSupIBL
= LCE(f(xcs ; θIBL), yc)

8: if B ̸= ∅ then
9: Sample mini-batch: (xb, yb) ∼ B

10: Extract shape images: xbs
= IB(xb)

11: Calculate the supervised loss:
12: LSupW M

+= LCE(f(xb; θW M ), yb)
13: LSupIBL

+= LCE(f(xbs ; θIBL), yb)
14: Knowledge sharing from semantic memory to working model and inductive bias learner:
15: LKSW M

= E∥f(xb; θSM ) − f(xb; θW M )∥2
2

16: LKSIBL
= E∥f(xb; θSM ) − f(xbs

; θIBL)∥2
2

17: Bidirectional knowledge sharing between working model and inductive bias learner:
18: LbiKS = E

x∼Dt∪B
∥f(x; θW M ) − f(xs; θIBL)∥2

2

19: Calculate total loss:
20: LW M = LSupW M

+ λ(LbiKS + LKSW M
)

21: LIBL = LSupIBL
+ γ(LbiKS + LKSIBL

)
22: Update both working model and inductive bias learner: θW M , θIBL

23: Stochastically update semantic memory:
24: Sample s ∼ U(0, 1);
25: if s < r then
26: θSM = d · θSM + (1 − d) · θW M

27: Update memory buffer B
28: Return: model θSM

B Effect of Task Sequence

Figure 5 presents the task-wise performance of all the three networks in the DUCA architecture, on DN4IL
dataset. Semantic memory helps to retain information by maintaining high accuracy on older tasks and is
more stable. The performance of the current task is relatively lower than that of the working model and
could be due to the stochastic update rate of this model. The working model has better performance on
new tasks and is more plastic. Inductive bias leaner is evaluated on the transformed data (shape) and also
achieves a balance between plasticity and stability. In general, all modules in our proposed method present
unique attributes that improve the learning process by improving performance and reducing catastrophic
forgetting. Table 4 reports the results of CIFAR100 on different numbers of tasks. Even when the number
of tasks increases, our method consistently improves over the baselines.

Table 4: Comparison on Seq-CIFAR100 dataset for different number of tasks on 500 buffer size.
Method 5-Tasks 10-Tasks 20-Tasks
ER 28.02±0.31 21.49±0.47 16.52±0.86
DER++ 41.40±0.96 36.20±0.52 22.25±5.87
DUCA 53.23±1.62 41.09±0.72 33.60±0.25
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T1 T2 T3 T4 T5 T6

After T1

After T2

After T3

After T4

After T5

After T6

60.5

62.9 61.4

59.0 62.1 26.9

60.1 60.7 26.6 52.8

59.7 63.2 23.7 51.8 61.3

54.9 61.4 19.0 44.5 56.6 61.0

Semantic Memory (Default)

T1 T2 T3 T4 T5 T6

66.5

57.0 71.2

50.8 54.3 30.4

55.2 54.8 21.5 55.5

54.3 60.8 20.1 45.6 64.7

47.3 54.2 14.3 36.6 47.7 71.4

Working Model

T1 T2 T3 T4 T5 T6

54.5

46.5 65.4

39.7 47.1 22.3

42.0 44.8 15.4 40.3

44.6 53.1 15.1 36.6 61.9

38.2 48.4 11.5 29.0 46.2 71.2

Inductive Bias Learner

Figure 5: Task probability analysis of all DUCA components on DN4IL dataset with 500 buffer size. Semantic
memory displays better stability while the working model displays better plasticity.

Table 5: Comparison on R-MNIST dataset with different buffer sizes.
Method 200 500
ER 85.01±1.90 88.91±1.44
DER++ 90.43±1.87 92.77±1.05
CLS-ER 92.26±0.18 94.06±0.07
DUCA 93.53±0.21 94.98±0.04

C Evaluation on R-MNIST

The Rotated MNIST (R-MNIST) dataset is a variant of the MNIST dataset, which is widely used for domain-
incremental learning in continual learning. In the R-MNIST dataset, the digits are rotated by fixed degrees.
This rotation introduces variations in the orientation of the digits, making it a more challenging task for
machine learning algorithms to accurately classify them. It tests the robustness and adaptability of models,
as they need to recognize and classify the digits regardless of their orientation. The results, as presented in
Table 5, indicate that DUCA performs better than other methods in this domain-incremental setting.

D Setting and Datasets

We evaluate all methods in different CL settings. Van de Ven & Tolias (2019) describes three different
settings based on increasing difficulty: task-incremental learning (Task-IL), domain-incremental learning
(Domain-IL), and class-incremental learning (Class-IL). In Class-IL, each new task consists of novel classes,
and the network must learn both new classes while retaining information about the old ones. Task-IL is
similar to Class-IL but assumes that task labels are accessible in both training and inference. In Domain-IL,
the classes remain the same for each task, but the distribution varies for each task. We report the results for
all three settings on the relevant datasets. CLass-IL is the most complex setting of the three and is widely
studied. However, contemporary research tends to adopt simplifications when exploring CLass-IL setting,
such as the assumption of the same number of classes across different tasks, the absence of reappearance of
classes, and the sample distribution per class being well balanced. In Generalized Class-IL (GCIL) Mi et al.
(2020), the number of classes in each task is not fixed, and the classes can reappear with varying sample
sizes. GCIL samples the number of classes and samples from a probabilistic distribution. The two variations
are Uniform (fixed uniform sample distribution over all classes) and Longtail (with class imbalance). We
report results on all three settings: Task-IL, Domain-IL, and CLass-IL. Furthermore, we also consider the
GCIL setting for one of the datasets as an additional evaluation setting. All reported results are averaged
over three random seeds.
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Table 6: Search ranges for tuning hyperparameters.
Method Hyperparam Search Range Method Hyperparam Search Range

ER lr [0.01, 0.03, 0.1, 0.5]

CLS-ER

lr [0.01, 0.03, 0.1]

DER++
lr [0.01, 0.03, 0.1] λ [0.1, 0.2, 0.3]
α [0.1, 0.2, 0.5] rp [0:1:0.1]
β [0.5, 1.0] rs [0:1:0.1]

CO2L

lr [0.01, 0.03, 0.1] αp [0.99,0.999]
τ [0.01, 0.1, 0.5] αs [0.99, 0.999]

k [0.2, 0.5]

DUCA

lr [0.01, 0.03, 0.1]
k∗ [0.01, 0.05] r [0:1:0.1]
e [100, 150] λ [0.01, 0.1]

ER-ACE lr [0.01, 0.03, 0.1, 0.5] γ [0.01, 0.1]

E Hyperparameters

For the settings and datasets for which the results are not available in the original papers, using their original
codes, we conducted a hyperparameter search for each of the new settings. To this end, we utilize a small
validation set from the training set to tune the hyperparameters. We adopted this tuning scheme because it
aligns with the approach employed in the baseline methods with which we conducted comparisons (Buzzega
et al., 2020; Cha et al., 2021; Caccia et al., 2021; Arani et al., 2022).

For Seq-CIFAR10, the results are taken from the original articles (Buzzega et al., 2020; Cha et al., 2021;
Caccia et al., 2021; Arani et al., 2022). For the other datasets (and for each buffer size), we ran a grid search
over the hyperparameters reported in the paper. For Seq-CIFAR100 and GCIL-CIFAR100, we based the
search range using Seq-CIFAR10 hyperparameters as a reference point. The search ranges are reported in
Table 6. Once we find the right hyperparameter, we train the whole training set and report the test set
accuracy.

DN4IL dataset is more complex compared to the CIFAR versions and includes images of larger sizes. Hence,
we consider the Seq-TinyImagenet hyperparameters in the respective paper as a reference point for further
tuning. The learning rate lr, the number of epochs, and the batch size are similar across the datasets. The
ema update rate r is lower for more complex datasets, as shown in CLS-ER. r is chosen in the range of
[0.01, 0.1] with a step size of 0.02 for CLS-ER and DUCA. The different hyperparameters chosen for the
baselines, after tuning, are reported in Table 7.

The different hyperparameters chosen for DUCA are shown in Table 8. Hyperparameters: lr, batch size,
number of epochs and decay factor are uniform across all datasets. The stochastic update rate is similar to
those of CLS-ER. The hyperparameters are stable across settings and datasets and also complement each
other. The loss balancing weights (λ and γ respectively) are also similar across all datasets. Therefore,
DUCA does not require extensive fine-tuning across different datasets and settings.

F Model Complexity

We discuss the computational complexity aspect of our proposed method. DUCA involves three networks
during training; however, in inference, only one network is used (SM module). Therefore, for inference
purposes, the MAC count, the number of parameters, and the computational capacity remain the same as
in the other single-network methods.

The training cost requires three forward passes, as it consists of three different modules. ER, DER++, CO2L
and ER-ACE have a single network. CLS-ER also has three networks and therefore requires 3 forward passes.
DUCA has training complexity similar to that of CLS-ER; however, it outperforms CLS-ER in all provided
metrics. On the memory front, similar to all methods, we save memory samples based on the memory budget
allotted (200 and 500 in the experiments). There are no additional memory requirements, as we do not save
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Table 7: Selected hyperparameters for all baselines.
Dataset |B| Method Hyperparameters

Seq-CIFAR100

200

ER lr=0.1
DER++ lr=0.03, α=0.1, β=0.5
CO2L lr:0.5, τ :0.5, κ:0.2, κ∗:0.01, e:100
ER-ACE lr=0.01
CLS-ER lr=0.1 λ=0.15, rp=0.1, rs=0.05, αp=0.999, αs=0.999

500

ER lr=0.1
DER++ lr=0.03, α=0.1, β=0.5
CO2L lr:0.5, τ :0.5, κ:0.2, κ∗:0.01, e:100
ER-ACE lr=0.01
CLS-ER lr=0.1 λ=0.15, rp=0.1, rs=0.05, αp=0.999, αs=0.999

GCIL-CIFAR100

200

ER lr=0.1
DER++ lr=0.03, α=0.5, β=0.1
ER-ACE lr=0.1
CLS-ER lr=0.1 λ=0.1, rp=0.7, rs=0.6, αp=0.999, αs=0.999

500

ER lr=0.1
DER++ lr=0.03, α=0.2, β=0.1
ER-ACE lr=0.1
CLS-ER lr=0.1 λ=0.1, rp=0.7, rs=0.6, αp=0.999, αs=0.999

DN4IL

200
ER lr=0.1
DER++ lr=0.03, α=0.1, β=1.0
CLS-ER lr=0.05 λ=0.1, rp=0.08, rs=0.04, αp=0.999, αs=0.999

500
ER lr=0.1
DER++ lr=0.03, α=0.5, β=0.1
CLS-ER lr=0.05 λ=0.1, rp=0.08, rs=0.05, αp=0.999, αs=0.999

Table 8: Selected hyperparameters for DUCA across different settings. The learning rate is set to 0.03, batch
size to 32, and epochs to 50 respectively for all the datasets. The decay factor d is always set to 0.999.

Dataset |B| r λ γ Dataset |B| r λ γ

Seq-CIFAR10 200 0.2 0.1 0.1 GCIL-CIFAR100 200 0.09 0.1 0.01
500 0.2 0.1 0.1 500 0.09 0.1 0.01

Seq-CIFAR100 200 0.1 0.1 0.01 DN4IL 200 0.06 0.1 0.01
500 0.06 0.1 0.01 500 0.08 0.1 0.01

any extra information (such as logits in DER++) to be used later in our objectives. Additionally, there are
no additional data requirements. The number of parameters is reported in Table 9.

We considered the human brain, or cognition, as the most intelligent agent and wanted to incorporate some of
the underlying workings into the neural network architecture. Therefore, our goal was to design a framework
inspired by elements of cognitive architecture that reduce forgetting while exhibiting better generalization
and robustness. Our work is a preliminary attempt to incorporate elements based on cognitive architecture
into the CL algorithm to gauge the gain in reducing forgetting. We hope the promising results result in
future work that explores different kinds of cognitive biases and interactions and moves towards more efficient
designs.
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Table 9: Comparison of the number of parameters for different methods using ResNet18 architecture and
trained on SeqCIFAR100 dataset.

Method Training Inference
ER 11 11
DER++ 11 11
CO2L 23 11
ER-ACE 11 11
CLS-ER 33 11
DUCA 33 11

Algorithm 2 Sobel Algorithm - Shape Extraction
1: Up-sample the images to twice the original size: xrgb = us(xrgb)
2: Reduce noisy edges: xg = Gaussian_Blur(xrgb, kernel_size = 3)

3: Get Sobel kernels: Sx =

−1 0 +1
−2 0 +2
−1 0 +1

 and Sy =

−1 −2 −1
0 0 0

+1 +2 +1


4: Apply Sobel kernels: xdx = xg ∗ Sx and xdy = xg ∗ Sy (∗ is 2-D convolution operation)
5: The edge magnitude: xshape =

√
x2

dx + x2
dy

6: Down-sample to original image size: xshape = ds(xshape)

G Inductive Bias

The shape extraction is performed by applying a filter on the input image. Multiple filters (such as Canny
(Ding & Goshtasby, 2001), Prewitt) were considered, but the Sobel filter (Sobel & Feldman, 1968) was
chosen because it produces a more realistic output by being precise and also smoothing the edges (Gowda
et al., 2022); see Algorithm 2. Figure 6 shows a few examples of applying the Sobel operator on the original
RGB images. The Sobel output is fed to the IBL model.

The DUCA framework can be extended to other domains by selecting appropriate inductive biases relevant
to those domains. For example, in the audio domain, one viable option involves leveraging spectrogram
representations, which transform audio waveforms into visual data capturing both frequency and time-
domain information. Alternatively, the incorporation of phonemes, representing the fundamental sound units
in spoken language and carrying essential linguistic information, can enhance the framework’s capabilities
for speech understanding, speaker identification, and language processing. Additionally, the extraction of
pitch and timbre features proves valuable for tasks like melody extraction, intonation analysis, and various
music-related applications, providing insights into the acoustic characteristics of audio signals.

H DN4IL Dataset

We introduce a new dataset for the Domain-IL setting. It is a subset of the standard DomainNet dataset
(Peng et al., 2019) used in domain adaptation. It consists of six different domains: real, clipart, infograph,
painting, quickdraw, and sketch. The shift in distribution between domains is challenging. A few examples
can be seen in Figure 7.

Each domain includes 345 classes, and the overall dataset consists of ∼59000 samples. The classes have
redundancy, and also evaluating on the whole dataset can be computationally expensive for CL settings.
Therefore, we create a subset by grouping semantically similar classes into 20 supercategories (considering
the class overlap between other standard datasets can also facilitate OOD analysis). Each super category has
five classes each, which results in a total of 100 classes. The specifications of the classes are given in Table
11. The dataset consists of 67080 training images and 19464 test images. The image size for all experiments
is chosen as 64×64 (the normalize transform is not applied in augmentations).
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Figure 6: Visual examples of the shape images using Sobel operator

Table 10: Accuracy on the proposed DN4IL dataset for the Domain-IL setting. DUCA shows a significant
improvement in all disparate and challenging domains.

|B| Method real clipart infograph painting sketch quickdraw Acc

JOINT 59.93±1.07
- SGD 9.98±0.54 19.97±0.31 2.32±0.20 6.58±0.34 14.91±0.04 71.23±0.17 20.83±0.24

200

ER 20.08±0.45 26.37±0.35 5.56±0.39 13.92±0.91 23.69±1.54 69.95±0.56 26.59±0.31
DER++ 33.66±1.65 37.24±0.64 9.80±0.63 24.16±1.17 34.37±2.00 69.26±0.79 34.75±0.87
CLS-ER 45.53±0.88 49.17±1.12 15.79±0.48 35.80±0.64 48.03±0.85 54.40±1.25 40.83±1.07
DUCA 47.52±0.25 54.69±0.10 15.70±0.33 37.54±0.30 51.98±0.96 58.80±0.18 44.23±0.05

500

ER 27.54±0.05 31.89±0.93 7.89±0.45 19.39±1.02 28.36±1.35 70.96±0.10 31.01±0.62
DER++ 44.49±1.39 46.17±0.35 14.01±0.23 33.44±0.90 43.59±1.11 69.53±0.29 41.87±0.63
CLS-ER 49.85±0.88 51.41±0.34 18.17±0.08 37.94±0.94 49.02±1.57 55.63±0.71 43.41±0.80
DUCA 54.77±0.15 60.37±0.75 19.35±0.39 44.50±0.43 56.34±0.53 60.61±1.73 49.32±0.23

Figure 7: Visual examples of DN4IL dataset
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Figure 8: Number of samples per domain and per supercategory in DN4IL dataset.

Table 11: Details on supercategory and classes in DN4IL dataset.
supercategory class

1 small animals mouse squirrel rabbit dog raccoon
2 medium animals tiger bear lion panda zebra
3 large animals camel horse kangaroo elephant cow
4 aquatic mammals whale shark fish dolphin octopus
5 non-insect invertebrates snail scorpion spider lobster crab
6 insects bee butterfly mosquito bird bat
7 vehicle bus bicycle motorbike train pickup_truck
8 sky-vehicle airplane flying_saucer aircraft_carrier helicopter hot_air_balloon
9 fruits strawberry banana pear apple watermelon
10 vegetables carrot asparagus mushroom onion broccoli
11 music trombone violin cello guitar clarinet
12 furniture chair dresser table couch bed
13 household electrical devices clock floor_lamp telephone television keyboard
14 tools saw axe hammer screwdriver scissors
15 clothes & accessories bowtie pants jacket sock shorts
16 man-made outdoor skyscraper windmill house castle bridge
17 nature cloud bush ocean river mountain
18 food birthday_cake hamburger ice_cream sandwich pizza
19 stationary calendar marker map eraser pencil
20 household items wine_bottle cup teapot frying_pan wine_glass
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Figure 9: Number of overall samples per class in DN4IL dataset.
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Figure 10: Number of samples per supercategory for each domain in DN4IL dataset.
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