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Abstract

‘Bigger the better’ has been the predominant001
trend in recent Large Language Models (LLMs)002
development. However, LLMs do not suit well003
for scenarios that require on-device process-004
ing, energy efficiency, low memory footprint,005
and response efficiency. These requisites are006
crucial for privacy, security, and sustainable007
deployment. This paper explores the ‘less is008
more’ paradigm by addressing the challenge009
of designing accurate yet efficient Small Lan-010
guage Models (SLMs) for resource constrained011
devices. Our primary contribution is the in-012
troduction of an accurate and fully transpar-013
ent open-source 0.5 billion (0.5B) parameter014
SLM, named MobiLlama, catering to the spe-015
cific needs of resource-constrained computing016
with an emphasis on enhanced performance017
with reduced resource demands. MobiLlama018
is a SLM design that initiates from a larger019
model and applies a careful parameter sharing020
scheme to reduce both the pre-training and the021
deployment cost. Our work strives to not only022
bridge the gap in open-source SLMs but also023
ensures full transparency, where complete train-024
ing data pipeline, training code, model weights,025
and over 300 checkpoints along with evaluation026
codes will be publicly released.027

1 Introduction028

Recent years have witnessed a tremendous surge029

in the development of Large Language Models030

(LLMs) with the emergence of prominent closed-031

source commercial models such as ChatGPT, Bard,032

and Claude. These LLMs exhibit surprising ca-033

pabilities, typically called emergent abilities, to-034

wards solving complex tasks. Most existing pop-035

ular LLMs follow a similar trend that bigger is al-036

ways better, where scaling model size or data size037

typically provides improved model capacity and038

performance on downstream tasks. For instance,039

the recent Llama-2 70 billion (70B) model (Tou-040

vron et al., 2023) is considered more favorable041

in different chat applications due to its effective- 042

ness towards handling dialogues, logical reason- 043

ing, coding, compared to its 7B counterpart which 044

is typically better suited for basic tasks such as 045

categorization or summaries. While these LLMs 046

demonstrate impressive performance in handling 047

complex language tasks, a key limitation is their 048

size and computational requirements. For instance, 049

the large-scale Falcon (Almazrouei et al., 2023) 050

180B model was trained using 4096 A100 GPUs 051

and requires large memory and compute for deploy- 052

ment with dedicated high-performance servers and 053

scalable storage systems. 054

Recently, Small Language Models (SLMs) have 055

shown potential in terms of providing decent perfor- 056

mance with emergent abilities achieved at a signifi- 057

cantly smaller scale compared to their large-scale 058

LLM counterparts. Modern SLMs like Microsoft’s 059

Phi-2 2.7 billion (Li et al., 2023b) highlight the 060

growing focus in the community on achieving more 061

with less. SLMs offer advantages in terms of effi- 062

ciency, cost, flexibility, and customizability. With 063

fewer parameters, SLMs offer significant compu- 064

tational efficiency in terms of fast pre-training and 065

inference with reduced memory and storage re- 066

quirements. This is critical in real-world applica- 067

tions where efficient resource utilization is highly 068

desired. It particularly opens up possibilities in 069

resource-constrained computing, where the models 070

are required to be memory efficient to operate on 071

low-powered devices (e.g., edge). SLMs support 072

on-device processing that enhances privacy, secu- 073

rity, response time, and personalization. Such an 074

integration can lead to advanced personal assistants, 075

cloud-independent applications, and improved en- 076

ergy efficiency with a reduced carbon footprint. 077

The landscape of language models, especially 078

SLMs, is currently marked by a notable lack of 079

open-source availability. While LLMs have gar- 080

nered significant attention, the proprietary nature of 081

most models has led to limited transparency and ac- 082
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cessibility, particularly in the realm of SLMs. This083

gap hinders the scientific and technological explo-084

ration of these more efficient, compact and perfor-085

mant models. Recognizing this, there’s a growing086

need in the community for fully transparent open-087

source SLMs, which would facilitate a deeper un-088

derstanding of their capabilities and limitations and089

spur innovation by allowing broader community ac-090

cess to their architecture and reproducible training091

methodologies. We argue that bridging this gap is092

crucial for democratizing access to collaborative ad-093

vancement for SLMs. Therefore, we investigate the094

problem of designing accurate yet efficient SLMs095

from scratch with the intention to provide full trans-096

parency in the form of access to entire training data097

pipeline and code, model weights, more than 300098

checkpoints along with evaluation codes.099

When designing a SLM from scratch it is de-100

sired that the resulting model is accurate, while101

maintaining efficiency in terms of pre-training and102

deployment. A straightforward way is to scale-103

down a larger LLM design to the desired model104

size (e.g., 0.5B) by reducing either the size of the105

hidden dimension layers or the number of layers.106

We empirically observe both these design strategies107

to provide inferior performance. This motivates us108

to look into an alternative way of designing a SLM109

from scratch that is accurate yet maintains the effi-110

ciency, while offering full transparency.111

Contributions: We introduce a SLM framework,112

named MobiLlama, with an aim to develop accurate113

SLMs by alleviating the redundancy in the trans-114

former blocks. Different to the conventional SLM115

design where dedicated feed forward layers (FFN)116

are typically allocated to each transformer block,117

we propose to employ a shared FFN design for all118

the transformer blocks within SLM. Our MobiL-119

lama leveraging a shared FFN-based SLM design120

is accurate and maintains efficiency, while offering121

full transparency in terms of data pipeline, training122

code, model weights and extensive intermediate123

checkpoints along with evaluation codes.124

We empirically show that our MobiLlama per-125

forms favorably compared to conventional SLMs126

design schemes when performing pre-training from127

scratch. Our MobiLlama 0.5B model outperforms128

existing SLMs of similar size on nine different129

benchmarks. MobiLlama 0.5B achieves a gain130

of 2.4% in terms of average performance on nine131

benchmarks, compared to the best existing 0.5B132

SLM in the literature. We further develop a 0.8B133

SLM that originates from our 0.5B model by uti-134

Figure 1: Comparison of our MobiLlama 0.5B and 0.8B
models with recent OLMo-1.17B (Groeneveld et al.,
2024) and TinyLlama-1.1B (Zhang et al., 2024a) in
terms of pre-training tokens, pre-training time and mem-
ory, model parameters, overall accuracy across nine
benchmarks and on-device efficiency (average battery
consumption and average token/second on a PC with
RTX2080Ti). Our MobiLlama achieves comparable ac-
curacy while requiring significantly fewer pre-training
data (1.2T tokens vs. 3T tokens), lesser pre-training
time and GPU memory along with being efficient in
terms of deployment on a resource constrained device.

lizing a wider shared-FFN scheme in transformer 135

blocks, achieving top performance among existing 136

SLMs falling under less than 1B parameters cate- 137

gory. Lastly, we build multimodal models on top of 138

our SLM to showcase visual perception and reason- 139

ing capabilities. Fig. 1 shows a comparison of our 140

MobiLlama with recent fully transparent relatively 141

larger SLMs in terms of accuracy, pre-training com- 142

plexity and on-board deployment cost. 143

2 Related Work 144

While LLMs have gained tremendous popular- 145

ity (Zhao et al., 2023), one of their key limitations 146

is the size and computational requirements both 147

during pre-training and deployment. Another issue 148

is limited availability of fully transparent opens- 149

source LLMs that provide complete access to data 150

pipeline, training code along with checkpoints and 151

evaluation protocols. Prior works explore making 152

several components of LLM framework efficient 153

such as, attention mechanism (Dao, 2023) and opti- 154

mization strategies (Loshchilov and Hutter, 2017). 155

Further, existing efforts also include exploring post- 156

training sparsification schemes (Ashkboos et al., 157

2024) or quantization (Hoefler et al., 2021; Zhu 158

et al., 2023; Xiao et al., 2023) of computationally 159

expensive LLM. In several cases, such a post-hoc 160

sparsification can reduce the performance of LLMs 161

with more on-device memory consumption, com- 162

2



Model #Params Training Time GPU Hours GPU memory No. of layers Hidden dim size

baseline1 0.54B 7.5 days 28.8K 3.2 GB 22 1024
baseline2 0.52B 7 days 26.9K 3 GB 8 2048
large-base 1.2B 12 days 46.1K 6 GB 22 2048
MobiLlama 0.52B 7 days 26.6K 3 GB 22 2048

Table 1: Comparison of our MobiLlama with the two baselines and the large-base model. We show the comparison
in terms of total number of parameters, training time, total GPU hours, GPU memory, number of transformer layers
and the hidden dimension size in each layer. The numbers are computed on A100 GPUs with 80 GB memory each.
Compared to large-base, our MobiLlama reduces the GPU training hours by 42% along with a significant reduction
in GPU memory with the same design configuration (number of layers and hidden dimension size etc.). Further,
our MobiLlama possesses increased model capacity in terms of number of layers and hidden dimension size while
maintaining comparable training cost and parameters, compared to baseline1 and baseline2.

pared to a SLM trained from scratch. Further, these163

techniques typically employ LLMs with limited164

transparency and accessibility.165

Recently, designing SLMs from scratch have166

gained attention (Biderman et al., 2023; Wu et al.,167

2023; Zhang et al., 2024a; Li et al., 2023a; Lin168

et al., 2021b; Shoeybi et al., 2019; Zhang et al.,169

2022). SLMs have shown potential as an alterna-170

tive especially in case of limited pre-training com-171

pute as well as deployment in resource-constrained172

environments (e.g., edge devices). Further, SLMs173

can support on-device processing which in turn174

can enhance security, privacy, response efficiency,175

and personalization. Here, we strive to construct176

fully transparent accurate yet computationally effi-177

cient SLMs by maintaining the model’s capacity to178

capture complex patterns and relationships in data179

while reducing the redundancy often present in the180

parameters of SLMs. Prior works (Frantar et al.,181

2022; Gholami et al., 2022; Pires et al., 2023; Pan182

et al., 2023; Bhojanapalli et al., 2021) exploring183

alleviating redundancy in transformer design either184

focusing on the attention mechanism or on the sin-185

gle feed-forward layer in BERT style architectures.186

Different from these approaches, we explore alle-187

viating the redundancy in the SLM architectures188

with an LLM objective function by focusing on the189

sharing mechanism of MLP blocks having multiple190

feed-forward network (FFN) layers.191

3 Method192

3.1 Baseline SLM Design193

We first describe our baseline 0.5B SLM architec-194

ture that is adapted from recent TinyLlama (Zhang195

et al., 2024a) and Llama-2 (Touvron et al., 2023).196

The baseline architecture comprises N layers,197

where each layer consists of hidden dimensions198

of M and intermediate size (MLPs) of 5632. The199

vocabulary size is 32K and max. context length is200

C. We consider two different design choices when 201

constructing a 0.5B model from scratch. In first de- 202

sign choice, named baseline1, the number of layer 203

is set to N = 22 and hidden size of each layer is 204

set to M = 1024. In second design choice, named 205

baseline2, we set the number of layer to N = 8 206

and hidden size of each layer is set to M = 2048. 207

We note that both the aforementioned base- 208

line designs struggle to strike an optimal balance 209

between accuracy and efficiency. While a re- 210

duced size of hidden dimensions (1024) in case 211

of baseline1 aids in computational efficiency, it 212

can likely hamper the model’s capacity to capture 213

complex patterns within the data. Such a reduction 214

in dimension can potentially lead to a bottleneck ef- 215

fect, where the model’s ability to represent intricate 216

relationships and nuances in the data is constrained, 217

thereby affecting the overall accuracy. On the other 218

hand, reducing the number of hidden layers (22 to 219

8), as in the baseline2, affects the model’s depth 220

that in turn hampers its ability to learn hierarchi- 221

cal representations of the language. Achieving 222

superior performance on tasks requiring deeper 223

linguistic comprehension and contextual analysis 224

likely requires combining the advantages of the two 225

aforementioned baselines. However, increasing the 226

model capacity of baseline1 and baseline2 into a 227

single model (22 layers and hidden dimension size 228

of 2048) results in a significantly larger parame- 229

terized model of 1.2B with increased training cost 230

(see Tab. 1). We name this larger model as large- 231

base. Next, we present our proposed MobiLlama 232

0.5B model design that does not reduce hidden di- 233

mension size in each layer (baseline1) or the total 234

number of layers (baseline2), while maintaining a 235

comparable training efficiency (see Tab. 1). 236

3.2 Proposed SLM Design: MobiLlama 237

The proposed approach, MobiLlama, constructs a 238

SLM of desired sizes (e.g., 0.5B model) by first 239
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(self_attn1):LlamaAttention(q,k,v,o,rotary_embd)

(mlp1): LlamaMLP(
(gate_proj): Linear(in_feat=1024, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=1024)
(up_proj): Linear(in_feat=1024, out_feat=5632)
(act_fn): NewGELUActivation() )

(self_attn22): LlamaAttention(q,k,v,o,rotary_embd)

(mlp22): LlamaMLP(
(gate_proj): Linear(in_feat=1024, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=1024)
(up_proj): Linear(in_feat=1024, out_feat=5632)
(act_fn): NewGELUActivation() )

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1(n_layers=22, hidden_dims=1024)

(self_attn1):LlamaAttention(q,k,v,o,rotary_embd)

(mlp1): LlamaMLP(
(gate_proj): Linear(in_feat=2048, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=2048)
(up_proj): Linear(in_feat=2048, out_feat=5632)
(act_fn): NewGELUActivation() )

(self_attn8): LlamaAttention(q,k,v,o,rotary_embd)

(mlp8): LlamaMLP(
(gate_proj): Linear(in_feat=2048, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=2048)
(up_proj): Linear(in_feat=2048, out_feat=5632)
(act_fn): NewGELUActivation() )

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒2(n_layers=8, hidden_dims=2048)

(self_attn1):LlamaAttention(q,k,v,o,rotary_embd)

(mlp): LlamaMLP(
(gate_proj): Linear(in_feat=2048, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=2048)
(up_proj): Linear(in_feat=2048, out_feat=5632)
(act_fn): NewGELUActivation() )

(self_attn22): LlamaAttention(q,k,v,o,rotary_embd)

(mlp): LlamaMLP(
(gate_proj): Linear(in_feat=2048, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=2048)
(up_proj): Linear(in_feat=2048, out_feat=5632)
(act_fn): NewGELUActivation() )

𝑴𝒐𝒃𝒊𝑳𝒍𝒂𝒎𝒂(n_layers=22, hidden_dims=2048)

Figure 2: Illustrative comparison of our MobiLlama with the two baselines. For each case, we show two transformer
blocks denoted by different self-attention layers. In the case of both baseline1 and baseline2, a dedicated MLP
block comprising three FFN layers is utilized for each transformer layer. In contrast, our MobiLlama utilizes a
single MLP block (highlighted by the same color) that is shared across different transformer layers. This enables to
increase the capacity of the network in terms of layers and hidden dimension size without any significant increase in
the total number of trainable parameters.

initiating from a larger model size design, large-240

base. Then, we employ a careful parameter sharing241

scheme to reduce the model size to a pre-defined242

model configuration, thereby significantly reducing243

the training cost. Generally, both SLMs and LLMs244

typically utilize a dedicated multilayer perceptron245

(MLP) block comprising multiple feed forward net-246

work (FFN) layers within each transformer block.247

In such a configuration (e.g., large-base), the FFN248

layers account for a substantial 65% of the total249

trainable parameters, with attention mechanisms250

and heads contributing 30% and 5%, respectively.251

As a consequence, a significant number of parame-252

ters are concentrated within the FFN layers, thereby253

posing challenges during pre-training with respect254

to computational cost and the model’s ability to255

achieve faster convergence. To address these issues,256

we propose to use a sharing scheme where the FFN257

parameters are shared across all transformer layers258

within the SLM. This enables us to significantly259

reduce the overall trainable parameters by 60% in260

our MobiLlama, compared to the large-base. Such261

a significant parameter reduction also enables us262

to increase the model capacity in terms of number263

of layers and hidden dimension size without any264

substantial increase in the training cost (see Tab. 1).265

Fig. 2 compares our architecture design with two266

baselines. In case of both baselines, a dedicated267

MLP block that consists of multiple FFN layers268

is used in each transformer layer. Instead, our ef-269

ficient MobiLlama design utilizes a single MLP270

block which is shared across different layers of271

transformer within the SLM. This helps in increas-272

ing the model capacity without any increase in the 273

total number of trainable parameters in the model. 274

3.3 Towards Fully Transparent MobiLlama 275

As discussed earlier, fully transparent open-source 276

SLM development is desired to foster a more inclu- 277

sive, data/model provenance, and reproducible col- 278

laborative SLM research development environment. 279

To this end, we present here pre-training dataset 280

and processing details, architecture design configu- 281

ration with training details, evaluation benchmarks 282

and metrics. In addition, we will publicly release 283

complete training and evaluation codes along with 284

intermediate model checkpoints. 285

Pre-training Dataset and Processing: For pre- 286

training, we use 1.2T tokens from LLM360 Amber 287

dataset (Liu et al., 2023b). The Amber dataset pro- 288

vides a rich and varied linguistic landscape having 289

different text types, topics, and styles. 290

Arxiv (30 Billion Tokens) subset is drawn from 291

the repository of scientific papers, provides com- 292

plex, domain-specific language and technical termi- 293

nology, enriching the understanding of academic 294

prose. Book (28.9 Billion Tokens) subset comprises 295

tokens from a broad range of literature with di- 296

verse narrative styles, cultural contexts, and rich 297

vocabulary, deepening the grasp of storytelling and 298

language nuances. C4 (197.7 Billion Tokens) is the 299

Colossal Clean Crawled Corpus (C4) that offers a 300

vast and cleaned selection of web text, providing 301

a broad linguistic foundation that includes various 302

registers, styles, and topics. Refined-Web (665 Bil- 303

lion Tokens) subset is a curated web crawl and of- 304
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Model Name #Params HellaSwag Truthfulqa MMLU Arc_C CrowsPairs piqa race siqa winogrande Average

gpt-neo-125m 0.15B 30.26 45.58 25.97 22.95 61.55 62.46 27.56 40.33 51.78 40.93
tiny-starcoder 0.17B 28.17 47.68 26.79 20.99 49.68 52.55 25.45 38.28 51.22 37.86
cerebras-gpt-256m 0.26B 28.99 45.98 26.83 22.01 60.52 61.42 27.46 40.53 52.49 40.69
opt-350m 0.35b 36.73 40.83 26.02 23.55 64.12 64.74 29.85 41.55 52.64 42.22
megatron-gpt2-345m 0.38B 39.18 41.51 24.32 24.23 64.82 66.87 31.19 40.28 52.96 42.81
LiteLlama 0.46B 38.47 41.59 26.17 24.91 62.90 67.73 28.42 40.27 49.88 42.26
gpt-sw3-356m 0.47B 37.05 42.55 25.93 23.63 61.59 64.85 32.15 41.56 53.04 42.48
pythia-410m 0.51B 40.85 41.22 27.25 26.19 64.20 67.19 30.71 41.40 53.12 43.57
xglm-564m 0.56B 34.64 40.43 25.18 24.57 62.25 64.85 29.28 42.68 53.03 41.87
Lamini-GPT-LM 0.59B 31.55 40.72 25.53 24.23 63.09 63.87 29.95 40.78 47.75 40.83
MobiLlama (Ours) 0.5B 52.52 38.05 26.45 29.52 64.03 72.03 33.68 40.22 57.53 46.00

Lamini-GPT-LM 0.77B 43.83 40.25 26.24 27.55 66.12 69.31 37.12 42.47 56.59 45.49
MobiLlama (Ours) 0.8B 54.09 38.48 26.92 30.20 64.82 73.17 33.37 41.60 57.45 46.67

Table 2: State-of-the-art comparisons with existing < 1B params models on nine benchmarks. In case of around
0.5B model series, our MobiLlama achieves a substantial gain of 2.4% in terms of average performance on nine
benchmarks. Further, our MobiLlama 0.8B model achieves an average score of 46.67.

fers the model exposure to contemporary, informal,305

and varied internet language, enhancing the rele-306

vance and applicability to modern communication.307

StarCoder (291.9 Billion Tokens) subset is a vast308

collection used for code understanding featuring309

783GB of code across 86 programming languages.310

It includes GitHub issues, Jupyter notebooks, and311

commits, totaling approximately 250 billion tokens.312

These are meticulously cleaned and de-duplicated313

for training efficiency. StackExchange (21.8 Bil-314

lion Tokens) is from the network of Q&A websites,315

this subset aids the model in learning question-316

answering formats and technical discussions across317

diverse topics. Wikipedia (23.9 Billion Tokens) is318

an encyclopedia collection, it offers well-structured319

and factual content that helps the model to learn320

encyclopedic knowledge and formal writing styles.321

From the above-mentioned subsets, Arxiv, Book,322

C4, StackExchange and Wikipedia are sourced323

from RedPajama-v1 (Computer, 2023). The Amber324

dataset uses RefinedWeb (Penedo et al., 2023) data325

to replace common_crawl subset of RedPajama-v1.326

These subsets amount to 1259.13 billion tokens.327

Initially, raw data sourced from the above328

sources is tokenized using Huggingface LLaMA to-329

kenizer (Touvron et al., 2023). Subsequently, these330

tokens are organized into sequences with each con-331

taining 2048 tokens. To manage data, these se-332

quences are merged to the token sequences and333

divided the amalgamated dataset into 360 distinct334

segments. Each data segment, structured as a jsonl335

file, carries an array of token IDs along with a336

source identifier that denotes the originating dataset.337

Each data sample is designed to have 2049 tokens.338

Architecture Design: Our MobiLlama 0.5B com-339

prises a hidden size of 2048, an intermediate size340

of 5632 in its MLPs, and operates with 32 atten- 341

tion heads across 22 hidden layers. It is designed 342

to handle sequences up to 2048 tokens long, sup- 343

ported by a vocabulary size of 32,000. The preci- 344

sion in normalization is ensured by an RMSNorm 345

epsilon of 1e−6 to obtain a more stable training. We 346

utilize RoPE (Rotary Positional Embedding) (Su 347

et al., 2024) to encode positional information in our 348

MobiLlama. Similar to (Zhang et al., 2024a), we 349

employ a combination of Swish and Gated Linear 350

Units together as activation functions. We also de- 351

rive a 0.8B version from our MobiLlama by widen- 352

ing the shared FFN design. Compared to the 0.5B 353

model, our 0.8B design increases the hidden di- 354

mension size to 2532 and the intermediate size to 355

11,080 while the rest of the configuration is same. 356

For pre-training of our MobiLlama, we use a 357

public cluster having 20 GPU nodes each equipped 358

with 8 NVIDIA A100 GPUs with 80 GB mem- 359

ory each and 800 Gbps interconnect for model 360

training. Each GPU is interconnected through 8 361

NVLink links, complemented by a cross-node con- 362

nection configuration of 2 port 200 Gb/sec (4× 363

HDR) InfiniBand, optimizing the model’s training 364

process. To further enhance the training efficiency, 365

we employ flash-attention mechanism and follow 366

the pre-training hyper-parameters established by 367

the LLaMA (Touvron et al., 2023) model. Our 368

MobiLlama model’s training is performed using 369

the AdamW optimizer, leveraging hyperparameters 370

β1 = 0.9, β2 = 0.95, with an initial learning rate 371

of η = 3e−4. This rate follows a cosine learning 372

rate schedule, tapering to a final rate of η = 3e−5. 373

We further incorporate a weight decay of 0.1 and 374

apply gradient clipping at 1.0 with a warm-up pe- 375

riod over 2, 000 steps. Adapting to our hardware 376
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configuration of 20 GPU nodes, we optimize the377

pre-training batch size to 800 (160× 5), achieving378

a throughput of approximately 14k-15k tokens per379

second on a single GPU. During our model pre-380

training, we save intermediate checkpoints after381

every 3.3B tokens which will be publicly released.382

Evaluation Benchmarks and Metrics: For a com-383

prehensive performance evaluation, we use nine384

different benchmarks from the Open LLM Leader-385

board1. HellaSwag (Zellers et al., 2019) assesses386

the model’s ability to predict the correct ending387

to a scenario from a set of possible continuations,388

thereby testing common sense reasoning. Truth-389

fulQA (Lin et al., 2021a) evaluates the model to390

provide truthful answers, focusing on its under-391

standing of facts and its ability to avoid decep-392

tion. MMLU (Hendrycks et al., 2020) measures393

the model’s broad knowledge across numerous sub-394

jects such as, humanities, science, technology, engi-395

neering and management. ARC_Challenge (Clark396

et al., 2018) tests complex reasoning with science397

questions. CrowsPairs (Nangia et al., 2020) evalu-398

ates the model’s biases by comparing sentences that399

differ only by the demographic group mentioned,400

aiming for fairness. PIQA (Bisk et al., 2020) eval-401

uates the model’s physical commonsense knowl-402

edge, requiring understanding of everyday physical403

processes. Race (Lai et al., 2017) assesses read-404

ing comprehension through multiple-choice ques-405

tions based on passages. SIQA (Sap et al., 2019)406

focuses on the model’s social commonsense rea-407

soning and its understanding of social dynamics.408

Winogrande (Sakaguchi et al., 2021) evaluates the409

model’s ability to resolve ambiguities in text, test-410

ing its commonsense reasoning.411

Following the Analysis-360 framework (Liu412

et al., 2023b) that is built on llm-harness (Gao et al.,413

2023), we conduct extensive evaluations under the414

standard settings with varying shots for detailed415

assessments, validating the model’s robustness and416

adaptability across diverse linguistic tasks. Follow-417

ing the standard evaluation protocol, our evaluation418

setting consists of 10, 25, 5 and 5 shot evaluation419

for Hellaswag, ARC_Challenge, Winogrande and420

MMLU, while zero-shot for rest of the benchmarks.421

4 Results422

Baseline Comparison: We first present a com-423

parison with the two baselines in Tab. 3) for 0.5B424

model series. For the baseline evaluation, we pre-425

1
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Model HellaSwag Truthfulqa MMLU Arc_C Average

baseline1 42.44 38.16 25.12 26.18 32.97
baseline2 43.66 38.54 25.76 26.32 33.57
MobiLlama 48.42 39.36 26.56 27.88 35.55

Table 3: Baseline comparison on four benchmarks.
Here, both the baselines and our MobiLlama comprise
the same parameters (0.5B) and are pre-trained on 120B
tokens from Amber. Our MobiLlama achieves favorable
performance compared to the two baselines, while oper-
ating on a similar training budget.

train all the models on the same 120B tokens from 426

the Amber dataset and report the results on four 427

benchmarks: HellaSwag, TruthfulQA, MMLU, and 428

Arc_C. Our MobiLlama achieves favourable per- 429

formance compared to the two baselines by achiev- 430

ing an average score of 34.4 over the four bench- 431

marks. We note that this performance improvement 432

is achieved without any significant increase in the 433

training cost (see Tab. 1), highlighting the merits 434

of the proposed SLM design. 435

State-of-the-art Comparison: We compare our 436

MobiLlama 0.5B and 0.8B with existing SLMs 437

having comparable (less than 1B) parameters: gpt- 438

neo (Black et al., 2021), tiny-starcoder (Li et al., 439

2023a), cerebras-gpt (Dey et al., 2023), opt (Zhang 440

et al., 2022), megatron-gpt-2 (Shoeybi et al., 2019), 441

LiteLlama, gpt-sw3, pythia (Biderman et al., 2023), 442

xglm (Lin et al., 2021b), Lamini-LM (Wu et al., 443

2023). Among existing methods falling around 444

0.5B model series category, pythia-410m achieves 445

an average score of 43.57. Our MobiLlama 0.5B 446

model achieves superior performance with an av- 447

erage score of 46.0, outperforming pythia-410m 448

by 2.4% in terms of average performance on nine 449

benchmarks. Notably, MobiLlama achieves su- 450

perior performance on the HellaSwag benchmark 451

which is designed to evaluate the model’s capabili- 452

ties in the NLP text completion task. Further, Mo- 453

biLlama also performs favorably on commonsense 454

reasoning tasks with superior results on piqa and 455

winogrande benchmarks. Further, our MobiLlama 456

0.8B model achieves an average score of 49.06. 457

Efficiency Comparison: We present the compar- 458

ison of our model in terms of efficiency and re- 459

source consumption on various low-end hardware 460

platforms: a PC with RTX-2080Ti GPU, a laptop 461

with i7 CPU, and a smartphone with Snapdragon- 462

685 processor. Tab. 4 shows the comparison of our 463

MobiLlama 0.5B with large-base 1.2B, Llama2- 464

7B (Touvron et al., 2023) and Phi2-2.7B (Li et al., 465

2023b) model, in terms of the average processing 466

speed in tokens per second (Average Tokens/Sec), 467
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Platform Model
#Params

Precision
Avg Tokens/Sec Avg Memory Avg Battery Consumption CPU

(↓) (↑) Consumption (↓) /1k Tokens (↓) Utilization (↓)
R

T
X

20
80

Ti

Llama2 7B bf16 14.85 27793 MB 135.51 mAH 31.62%
Phi2 2.7B bf16 32.19 12071 MB 59.13 mAH 24.73%
large-base 1.2B bf16 50.61 6254 MB 18.91 mAH 18.25%
MobiLlama 0.5B bf16 63.38 3046 MB 8.19 mAH 14.79%

C
PU

-i
7

Llama2 7B 4bit 5.96 4188 MB 73.5 mAH 49.16%
Phi2 2.7B 4bit 22.14 1972 MB 27.36 mAH 34.92%
large-base 1.2B 4bit 29.23 1163 MB 10.81 mAH 30.84%
MobiLlama 0.5B 4bit 36.32 799 MB 4.86 mAH 24.64%

Sn
ap

dr
ag

on
-6

85 Llama2 7B 4bit 1.193 4287 MB 10.07 mAH 77.41%
Phi2 2.7B 4bit 2.882 1893 MB 14.61 mAH 56.82%
large-base 1.2B 4bit 6.687 780 MB 6.00 mAH 17.15%
MobiLlama 0.5B 4bit 7.021 770 MB 5.32 mAH 13.02%

Table 4: Comparison in terms of efficiency and resource consumption on different low-end hardware devices. We
show the comparison on: a PC with RTX-2080Ti GPU, a laptop with i7 CPU and a smartphone with Snapdragon-685
processor. In addition to our large-base model, we also present the comparison with Llama2 7B and Phi2 2.7B. In
case of CPU and smartphone, we use 4-bit GGUF format of the corresponding models, whereas the original models
are deployed and tested on PC with RTX-2080Ti GPU. The different metrics measure the model’s operational
efficiency, model’s footprint in the device’s RAM and the energy efficiency of processing 1,000 tokens. Our
MobiLlama performs favorably in terms of efficiency on these low-end hardware devices. We note that both Phi2
and Llama2 are not fully transparent in that the complete data pipeline for pre-training is not publicly available.

Model #Slice #Params HellaS Arc_C piqa wino Average

OPT-1.3B 30% 0.91B 39.81 25.77 60.77 54.7 45.26
OPT-6.7B 30% 4.69B 54.56 29.01 68.61 60.69 53.21
Llama-2-7B 30% 4.9B 49.62 31.23 63.55 61.33 51.43
Phi2-2.7B 30% 1.89B 47.56 30.29 65.94 63.14 51.73

Dense 0.5B 52.52 29.52 72.03 57.53 52.90MobiLlama
Dense 0.8B 54.09 30.20 73.17 57.45 53.72

Table 5: Comparison on 4 open LLM benchmarks when
parameters are sliced down to 30% using Wiki2Text
dataset, following (Ashkboos et al., 2024).

Model GQA SQA TextQA MME

MobiLlama-V 58.5 53.1 41.4 1191.9

Table 6: Quantitative performance of our multimodal
design, MobiLlama-V 0.8B, on different benchmarks.

average memory consumption (Avg Memory Con-468

sumption) in megabytes (MB), and the average469

battery consumption (Average Battery Consump-470

tion/1000 Tokens) in milliampere-hours (mAH).471

Our MobiLlama performs favorably in terms of472

efficiency across different hardware platforms.473

We further perform an efficiency comparison to474

a recent post-training sparsification scheme (Ashk-475

boos et al., 2024), where each weight matrix is sub-476

stituted with a smaller (dense) matrix, thereby re-477

ducing dimensions of the embeddings in the model.478

In such a scheme, the parameters of the original479

LLM are reduced significantly up to 70% followed480

by post-slicing fine-tuning using a dataset such as481

WikiText-2 (Merity et al., 2016). Tab. 5 shows the482

comparison of our MobiLlama with existing LLMs483

(e.g., Llama-2-7B, OPT-6.7B) on four benchmarks 484

following (Ashkboos et al., 2024). Our MobiL- 485

lama 0.5B and 0.8B models perform favorably 486

against representative LLMs, with an average score 487

of 53.72 computed over four benchmarks. These re- 488

sults highlight the potential of designing new fully 489

transparent SLMs that can achieve comparable ca- 490

pabilities of their larger sliced model counterparts. 491

Multimodal MobiLlama: We further build a mul- 492

timodal model on top of our MobiLlama by combin- 493

ing it with a vision encoder to develop a general- 494

purpose visual assistant having visual reasoning 495

capabilities. Our multimodal model, MobiLlama- 496

V , is trained by bridging the visual encoder of 497

CLIP (Radford et al., 2021) with the language 498

decoder of our MobiLlama, and fine-tuning it in 499

an end-to-end fashion on a 665k vision-language 500

instruction set (Liu et al., 2023a). We conduct 501

evaluation on GQA (Hudson and Manning, 2019), 502

SQA (Lu et al., 2022), TextQA (Singh et al., 2019), 503

and MME (Fu et al., 2023). Tab. 6 shows the per- 504

formance of MobiLlama-V 0.8B model. 505

Evaluating Large-base Model: As discussed ear- 506

lier, we strive to develop fully transparent mod- 507

els for democratization of SLMs and fostering fu- 508

ture research. To this end, we compare our large- 509

base 1.2B with existing fully transparent SLMs 510

falling within the less than 2B category. These 511

existing SLMs are: Boomer, pythia (Biderman 512

et al., 2023), Falcon-RW (Penedo et al., 2023), 513
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Model #Params HellaSwag Truthfulqa MMLU Arc_C CrowsPairs piqa race siqa winogrande Average

Boomer 1B 31.62 39.42 25.42 22.26 61.26 57.99 28.99 40.32 50.98 39.80
Pythia-Dedup 1B 49.63 38.92 24.29 29.09 67.11 70.23 32.44 42.63 53.98 45.36
Falcon-RW 1B 63.12 35.96 25.36 35.06 69.04 74.10 36.07 40.23 61.88 48.98
TinyLlama 1.1B 60.22 37.59 26.11 33.61 70.60 73.28 36.45 41.65 59.18 48.74
OLMo 1.2B 62.50 32.94 25.86 34.45 69.59 73.70 36.74 41.14 58.90 48.42
Cerebras-GPT 1.3B 38.51 42.70 26.66 26.10 63.67 66.75 30.33 42.42 53.59 43.41
Lamini 1.3B 38.05 36.43 28.47 26.62 64.62 67.89 33.39 43.19 50.59 43.25
OPT 1.3B 54.50 38.67 24.63 29.6 70.70 72.47 34.16 42.47 59.74 47.43
GPT-NEO 1.3B 48.49 39.61 24.82 31.31 65.67 71.05 34.06 41.81 57.06 45.98
Pythia-Deduped 1.4B 55.00 38.63 25.45 32.59 67.33 72.68 34.64 42.68 56.90 47.32
large-base 1.2B 62.99 35.90 24.79 34.55 68.49 75.57 35.31 41.96 62.03 49.06

Table 7: Comprehensive comparisons with existing < 2B params fully open-source LLM models on 9 benchmarks.
Our 1.2B large-base model pre-trained on 1.2T tokens achieves superior performance compared to both the recent
OLMo 1.17B model (Groeneveld et al., 2024) and TinyLlama 1.1B model (Zhang et al., 2024a), which are pre-
trained on a substantially larger data of 3T tokens.

Model Load (ms) Init (ms) Forward-Pass (ms)

large-base 52 1896 15.7
MobiLlama-0.5B 27 642 9.3

Table 8: Latency analysis of our MobiLlama-0.5B
vs. large-base using a profiler at inference time on
RTX2080Ti.

TinyLlama (Zhang et al., 2024b), OLMo (Groen-514

eveld et al., 2024), cerebras-gpt (Dey et al., 2023),515

Lamini-LM (Wu et al., 2023), opt (Zhang et al.,516

2022) and gpt-neo (Black et al., 2021). Tab. 7517

shows that compared to recent OLMo and TinyL-518

lama that are pre-trained on a larger dataset of 3T519

tokens, our large-base 1.2B model pre-trained on520

1.2T tokens achieves favourable results with an av-521

erage score of 49.06 over nine benchmarks. We522

hope that our large-base model will serve as a solid523

baseline and help ease future research in SLM de-524

velopment.525

Inference against large-base: Within the LLM de-526

sign, the FFN layers typically account for two-third527

of model parameters and reusing the FFN layer528

significantly reduces unique trainable parameters.529

We note that the proposed MobiLlama-0.5B is ef-530

ficient due to its shared-FFN design compared to531

its large-base 1.2B counterpart. As recommended,532

we further analyze the efficiency by debugging533

the inference of both the models (our MobiLlama-534

0.5B and large-base 1.2B) using profiler and the535

results are shown in Tab. 8. Our MobiLlama-0.5B536

achieves improved latency compared to its large-537

base in terms of loading, initialization and forward538

pass likely due to having lesser unique parame-539

ters. During inference in case of large-base 1.2B,540

as the forward pass progresses between consecu-541

tive layers the CPU process responsible for matrix-542

multiplication between input and the FFN layer543

parameters needs to load new parameters when 544

moving from layer N to N+1. This is not the case 545

for our shared-FFN design based MobiLlama-0.5B, 546

thereby making it faster at inference in terms av- 547

erage tokens/sec and average battery consumption 548

(see Tab. 6 in our main paper). 549

5 Conclusion 550

We present a fully transparent SLM, MobiLlama, 551

that alleviates redundancy in the transformer block. 552

Within MobiLlama, we propose to utilize a shared 553

FFN design for all the blocks within the SLM. Our 554

MobiLlama is accurate yet efficient in terms of 555

training cost, on-device memory and storage effi- 556

ciency. We evaluate MobiLlama on nine bench- 557

marks, achieving favourable results compared to 558

existing methods falling under less than 1B cate- 559

gory. We also build a multimodal model on top 560

of MobiLlama SLM to demonstrate visual reason- 561

ing capabilities. We hope that our MobiLlama will 562

help accelerate research efforts towards building 563

fully-transparent, accurate yet efficient SLMs that 564

bridge the gap with their resource hungry LLM 565

counterparts. 566

Limitation and Future Direction: A potential 567

direction is to further improve MobiLlama for en- 568

hanced context comprehension and understanding 569

subtlety of linguistic nuances. Domain-specific 570

expertise of the model can also be explored (e.g., 571

healthcare). While MobiLlama offers a fully trans- 572

parent SLM framework, a follow-up study to under- 573

stand any misrepresentations and biases is desired 574

to improve model’s robustness. While MobiLlama 575

marks a significant stride in the development of 576

lightweight, efficient language models, it is not 577

without limitations. 578
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A Appendix 838

Subset Tokens (Billion)

Arxiv 30.00
Book 28.86
C4 197.67
Refined-Web 665.01
StarCoder 291.92
StackExchange 21.75
Wikipedia 23.90

Total 1259.13

Table 9: Data mix in Amber-Dataset.

Hyperparameter Value

Number Parameters 0.5B
Hidden Size 2048
Intermediate Size (in MLPs) 5632
Number of Attention Heads 32
Number of Hidden Layers 22
RMSNorm ϵ 1e−6

Max Seq Length 2048
Vocab Size 32000

Table 10: MobiLlama architecture & hyperparameters.

Qualitative Analysis: Fig. 3 shows example re- 839

sponses obtained when interacting with MobiLlama 840

0.5B with conversation capabilities. We show ex- 841

amples covering different tasks such as, text com- 842

pletion, code generation and conversation capabil- 843

ities. Our model generates faithful responses to 844

these diverse interactions such as, asking to gener- 845

ate specific code snippet, cooking recipe and gen- 846

erating a poem about a specific topic (e.g., climate 847

change). Fig. 4 shows examples demonstrating 848

visual reasoning capabilities of our multimodal 849

MobiLlama-V . For instance, MobiLlama-V ac- 850

curately describes the atypical aspects of the image 851

when asked to describe the given image. 852

Experimental Comparisons:: Our work strives 853

towards achieving two objectives: (i) improved 854

accuracy while maintaining similar pre-training 855

cost (pre-training time, GPU hours and GPU mem- 856

ory), (ii) better trade-off at inference/deployment in 857

terms of accuracy and speed. To achieve the first ob- 858

jective, we empirically show in Tab. 3 that the pro- 859

posed MobiLLama 0.5B model achieves superior 860

accuracy compared to the two baseline 0.5B models 861

of similar parameters under identical pre-training 862

settings in terms of pre-training data (120B tokens), 863

number of iterations, and hyper-parameters. Fur- 864

ther, Tab. 1 in our paper shows that the proposed 865

MobiLLama 0.5B model requires comparable pre- 866
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On a bright sunny day ...

10 years ago, I was standing in the
middle of my backyard with an empty
beer bottle and some old magazines. I
had just finished reading “The Artist’s
Way” by Julia Cameron when she said
something that stuck to me for many
months afterward: The artist is not
always right; he or her may even have
been wrong at one time but has since
changed his mind about .....

Write a Python function that calculates 
the factorial of a given number.

Sure, here's a Python function that
calculates the factorial of a given
number:
```python
def factorial(n):

if n == 0:
return 1

else:
return n * factorial(n-1)

```

Explain the economic factors contributing 
to the rise or fall of a country's currency.

Some of the factors that contribute to 
the rise or fall of a country's currency 
includes : 
1. Interest rates: The interest rates in 

a country's currency can affect …….
2. Exchange rates: The exchange 

rates between the currency of a …..
3. Central Bank policies: The policies 

of the central …..
4. Political instability: Political 

instability can ……

Write steps on how to cook a pizza?

Sure! Here are the steps:
1. Preheat the oven to 400°F (200°C) 
and line a baking sheet with parchment 
paper.
2. Spread the pizza dough with a thin 
layer of tomato sauce, mozzarella 
cheese, and basil.
3. Bake the pizza for 10-12 minutes, or 
until the cheese is melted and the crust 
is golden brown. ……..

Figure 3: Example responses from our MobiLlama across a variety of tasks, including creative storytelling, coding
exercises, economic analysis, and cooking instructions. The responses highlight the models’ ability to engage with
both abstract concepts and practical, step-by-step processes, demonstrating its broad applicability and sophisticated
language processing capabilities.

Input 
Image

Human : Describe this image in detail.

MobiLlama :

The image depicts a group of people walking
through a rocky, hilly terrain, likely on a mountain
trail. There are at least 13 people in the scene,
with some of them carrying backpacks. The group
is spread out along the trail, with some people
walking closer to the camera and others further in
the background. The people appear to be
enjoying their walk, possibly exploring the area or
taking a break from their journey.

Input 
Image

Human : What does the provided image contain ?

MobiLlama :
The image shows a tray with a variety of food
items, including a sandwich, fruit, vegetables,
and a sauce. There are also napkins and a plate
with a small meal.

Input 
Image

Human : What are people in image doing ?

MobiLlama :
These people in the image are performing a trick
where they are in mid-air, balancing on their
toes. They are all jumping together, showcasing
their athleticism and skill in balancing and
performing tricks. They are all in the air, with
their feet hanging off the ground, demonstrating
their ability to maintain balance and control
during the performance.

Input 
Image

Human : Write a suitable poem for this scene.

MobiLlama :

As the night falls,
The bridge stands tall,

A medieval wonder,
A sight to behold,

In the midst of the forest,
A bridge that holds the heart,

Of those who pass by,
And those who walk on it,
A bridge that transcends,
The world, and the time.

Human : How to prepare the food shown in an 
image ?
MobiLLama :
To make this food, you would need to prepare a
sandwich, which typically involves spreading a
sauce on …..

Figure 4: Example responses of MobiLlama-V in responding to visual stimuli across a range of scenarios. From
describing a group’s mountainous trek to poetic reflections on a scene, MobiLlama demonstrates a nuanced
understanding of both the physical and emotive layers present in images. These qualitative responses highlight
MobiLlama’s capacity for detailed observation, creative interpretation, and generating contextually relevant textual
content, affirming its potential in bridging the gap between visual perception and linguistic expression..

training cost compared to the two baseline 0.5B867

models. The comparable pre-training time between868

our MobiLLama 0.5B and the two baseline 0.5B869

models is likely due to identical unique trainable870

parameters. In the table below, we summarize the871

comparison between our MobiLLama 0.5B and the872

two baseline 0.5B models in terms of pre-training873

cost and accuracy under identical pre-training set-874

tings.875
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