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Abstract

Global geolocation, the task of predicting the exact location of street-view images,
is crucial for applications like security surveillance. Existing retrieval and classifi-
cation methods, along with current Multimodal Large Language Models (MLLMs),
suffer from limitations such as database dependence, lack of interpretability, and
a significant gap in geographic knowledge due to insufficient datasets. To ad-
dress these issues, we introduce MG-Geo, the first comprehensive, high-quality
Multi-modal Global Geolocation dataset. Comprising five million instances of
geographic dialogue data across 210 countries, MG-Geo provides detailed geo-
graphic element cues (e.g., road markings, vegetation, language), significantly
surpassing existing datasets like OSV-5M and Google Landmark V2 in richness
and granularity. Leveraging MG-Geo, we develop GaGA (Global Geo-location
Assistant), a novel MLLM specifically designed for geolocation. Experimen-
tal results demonstrate that GaGA not only significantly outperforms existing
MLLMs but also surpasses the state-of-the-art model OSV-5M-Baseline in admin-
istrative boundary prediction (achieving improvements of 4.57% at the country
and 2.92% at the city levels). Furthermore, GaGA exhibits remarkable interac-
tive refinement capabilities, improving localization accuracy with effective user
guidance. This work highlights the critical role of the MG-Geo dataset in foster-
ing improved geographic understanding of MLLM. Our dataset is accessible via:
https://huggingface.co/datasets/kendouvg/MG-Geo.

1 Introduction

Global geolocation aims to predict the exact location of any street-view image, with wide applications
in security surveillance, emergency response, disease outbreak prediction, environmental monitoring,
and tourism navigation [49, |50} 37, 140]. This task requires integrating visual cues, such as road signs,
architectural styles, climate, and vegetation, with geographic knowledge to accurately predict GPS
coordinates or location labels. For images with landmarks or distinctive architecture, the location can
be inferred by combining visual features with contextual knowledge. However, geolocation becomes
more challenging in homogenous environments, such as highways or natural landscapes, where subtle
geographic clues like road markings, license plate types, and signage must be relied upon.

The existing street-view localization methods are generally categorized into retrieval-based and
classification-based approaches. The retrieval-based methods [48| 51] match input images with
similar ones from a geotagged database but are constrained by the diversity and completeness of
the database. The classification-based methods [38} 43] classify images into predefined regions
based on visual features, but they lack interpretability and fail to provide explicit visual cues.
Additionally, several studies have explored leveraging text content [[15} |1} 20, |36} 23] and social
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Architectural

What does the architectural
style and outdoor setting
suggest about the location's
cultural region? <img>

The blend of preserved older
buildings with modern structures
points to Northern Europe, likely
Northern Germany. The river and
outdoor seating reflect...typical of
European cities...

Road marking

Considering the road marking
in the image, what can you
infer about this place? <img>

The presence of a well-
maintained two-lane road,
complete with road marking,
alongside utility poles
suggests a well-established
infrastructure indicative of a
suburban area...

Language

What do the storefront
signs and visible text tell
us about the local
language influences
present?<img>

The storefront signage shows characteristics
of a Slavic language...languages are common
in Central Europe...Slavic language, combined

Vehicles

What do the vehicles' presence and condition
suggest about the location's economic status
or regional traits? <img>

/

The older European car models imply a region with
moderate wealth, where luxury vehicles are
rare..suggests an area like Eastern Europe, where
older, functional cars are commonly retained.
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Vegetation

Analyzing the terrain and vegetation visible around the
structure, how can this information help further narrow
down the location? <img>

The surrounding vegetation, consisting of low shrubs and
sparse trees, suggests a semi-arid climate, often

istic of the i This type of
environment supports the theory of the location being in

History

Based on the religious building's ¢
architectural style, which
historical region is known for
such structures? <img>

Ireland, with its rich ecclesiastical
heritage, has numerous examples
of Gothic Revival...early-Christian
and medieval ecclesiastical
architecture and its 19th-century
revival efforts point...

Traffic

What can you infer about
the driving practices and
possibly the organization
of traffic in this location?
<img>

The vehicles in the image are positioned for
right-hand traffic...commonly found in many
parts of Europe and the world. The organized
lane markings and modern traffic lights
architecture

suggest...

suggest?<img> |

The clothing, particularly the military uniforms
with distinctive helmets, suggests a European

military aesthetic that was typical prior to or
around the time of WWII. The architecture...

What era and region do
the clothing and

with the building styles, suggests... eastern Spain.

Figure 1: Illustration of MG-Geo. Featuring diverse geographic scenes and visual cues, these images
demonstrate the utility for training MLLMs to connect visual content with geographic locations and
enrich their understanding of global environments.

network relationships [3}, 26), [35] for geolocation by analyzing user-generated content and social
interactions.

In practical scenarios, geolocation is rarely a one-time, static process; it involves integrating and
refining multiple sources of information iteratively through continuous interaction. Traditional geolo-
cation models directly regress geographic labels or coordinates, inherently lacking interpretability
and flexibility. Multimodal large language models (MLLMs), such as [29, 9, [32], are renowned
for their ability to integrate multimodal information and are capable of using this knowledge for
interpretative reasoning, which is especially important for applications like geolocation. However,
the existing MLLMs encounter substantial challenges in global geolocation, particularly due to the
geographic knowledge gap within their LLMs and inability to establish associations between
visual features of geographic elements and their corresponding locations. A primary factor underlying
this observation is that existing MLLMs datasets, such as those presented in [7, [27]], omit critical
granularities including administrative boundaries and precise geographic coordinates.

To address these challenges, we introduce the first Multi-modal Global Geolocation (MG-Geo) dataset.
In contrast to existing geolocation datasets such as OpenStreetView-5M (OSV-5M) [4] and Google
Landmark V2 [46]], which provide only basic descriptors (e.g., latitude, longitude, country, region,
and city) lacking detailed geographic information, MG-Geo is a comprehensive, high-quality dataset
comprising five million instances of geographic dialogue data. As illustrated in Figure I} MG-Geo
comprises a diverse array of geographic element cues, encompassing road markings, vegetation, and
language, among others. With content spanning 210 countries, the dataset demonstrates notable
richness and high quality.

Leveraging this dataset, we develop the Global Geo-location Assistant (GaGA), a novel MLLM
designed to overcome the limitations of the geographic localization tasks’ poor explainability and
low insight. We train GaGA in two phases: In the first phase, we pretrain the projector of an MLLM
using a large image-location dataset to inject geographic knowledge to enhance its ability to classify
geographic locations. In the second phase, we finetune the model with a curated subset of image-clue
and multi-turn QA pairs data to improve the models’s capacity for interaction and reasoning. The
experimental results demonstrate that GaGA not only significantly outperforms similar MLLMs on
the GWS15k dataset but also surpasses the current state-of-the-art model, OSV-5M-Baseline, in
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Table 1: Comparison between MG-Geo and existing datasets. MG-Geo is the first large-scale
multimodal dataset curated for the domain of geolocation.

Dataset \ Size  Open-access Source Type \ Scope QA Pairs Chain of Thought
Im2GPS3k[21] 3k v Web-scraped Biased X X
YFCC4K[44]) 4k v Web-scraped Biased X X
MP-16[42] 4.TM v Web-scraped Biased X X
GWSI15k[10] 15k X Street-view Global X X
OSV-5M[4] M v Street-view Global X X
Google Landmark V2[46] | 5M v Landmark Global X X
MG-Geo (ours) | 5M v Street-view and landmark | Global v v

predicting the administrative boundaries with improvements of 4.57% and 2.92% at the country and
city levels, respectively. Notably, GaGA possesses the capability to refine its responses in interactive
scenarios. When users provide effective guidance or correct priors, GaGA’s localization accuracy
improves substantially.

2 Related work

2.1 Geolocation Datasets

In the domain of geolocation, the localizability of images within datasets is of paramount importance.
Though composed of a wealth of geotagged images, the existing datasets, such as Im2GPS3k [21]],
YFCC4K [44] and MP-16 [42], though composed of a wealth of geotagged images, contain many
unlocatable images and exhibit distribution biases. GWS15k [[10] mitigates distribution differences,
and ensures that the images are authentic, localizable street views; however, this dataset is not
open-source. OSV-5M [4] is the largest open-source collection of planet-scale, localizable street
view images. The Google Landmark V2 [46] dataset contains globally distributed human-made and
natural landmarks and showcase iconic landscapes.

We propose MG-Geo, the first multimodal geolocation dataset designed to enhance the perception
and interactivity of MLLMs in geolocation tasks. Curated from OSV-5M and Google Landmark
V2, MG-Geo offers a clean, evenly distributed resource. It also incorporates well-structured global
language knowledge, providing a dataset that better reflects the complexity and diversity of real-world
geolocation challenges.

2.2 Geolocation Models

Mainstream geolocation methods can be broadly categorized into two approaches: image-based
retrieval and classification-based methods. Image-to-image retrieval techniques rely on dense image
retrieval libraries, which perform well for localization tasks within small areas. However the cost
of constructing such retrieval libraries on a global scale is prohibitively high. When geolocation is
treated as a classification task, categories can be defined based on administrative regions, divided
into geocells according to specific rules, or discretized into latitude and longitude coordinates.
TransLocator [47] employs images and semantic segmentation maps as inputs, facilitating interaction
between two parallel branches after each Transformer layer and enabling multitask geolocation and
scene recognition. GeoCLIP [43] introduces a location encoder and applies random Fourier feature
representations to latitude and longitude coordinates. It utilizes the pretrained CLIP [34] visual
encoder to represent images and aligns them with the corresponding location features for localization.
Pigeon [19] is a method that classifies within self-created geocell and retrieves locations within
clusters.

In recent years, some works have begun to explore the potential of natural language in geolocation
tasks. G3 [30] predicts the country of an image by automatically extracting clues from human-written
guidebooks. StreetCLIP [18] employs captions containing geolocation information for contrastive
learning, allowing the use of natural language to ground CLIP in the context of image geolocalization.
GeoReasoner [28]] is the first work to fine-tune a Multimodal Large Language Model (MLLM) for
street view image localization. Unlike GeoReasoner, our model is trained on a planet scale and
multimodal dataset of localizable images, which is not confined to narrow distributions and proposes
an interactive approach to accomplish the localization task.
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Figure 2: An illustration of our pipeline for data curation. (a) We construct the Clue Part by
leveraging guidance clues from online geolocation game communities and employing an MLLM. (b)
We generate location-agnostic, multi-turn reasoning QA pairs and high-quality dialog data for the
Dialog Part, applying the Interactive Reasoning CoT method to activate CoT Deduction and CoT
Introspection tasks.

3 MG-Geo Dataset

In this paper, we introduce MG-Geo, a novel dataset encompassing a diverse array of geographic
element cues, including architecture, environment, landmarks, and climate across various countries.
The dataset is structured into three distinct components: the Meta Part, the Clue Part, and the Dialog
Fart, designed to accommodate disparate training objectives. We leverage structured geographic
knowledge, elicited from expert GeoGuessr players, and human-guided interactions with powerful
MLLMs to facilitate the construction of this dataset. MG-Geo not only addresses the existing gap
in geographic knowledge within LLMs but also enhances their perception of geographic cues,
enabling interpretable reasoning for geolocation prediction. Furthermore, the improved geographic
understanding fostered by this dataset has the potential to pave the way for future research in
applications such as navigation and place retrieval.

3.1 Meta Part

In the Meta Part, images and meta-geographic information are taken from the OSV-5M [3]], which
inherits its characteristics of good distribution, wide scope, and high quality. After removing a small
number of samples with incomplete location annotations, we organize each sample into JSON format
using three levels of administrative boundaries—country, region, and city. This results in a total of
4.87 million entries, covering 70k cities, 2.7k regions, and 210 countries.

3.2 Clue Part

We design our model to generate textual clues from geographical features in images to enhance output
interpretability. Users can assess and correct these clues during interaction and provide additional
information to improve the model’s accuracy. We design an automatic multimodal QA generation
paradigm to convert source-cued annotations into different forms of QAs. Figure 2[a) shows an
automated pipeline for generating high-correlated image-text clues pairs.

3.2.1 MLLM Based Refinement

Note that although the 3,000 guidance clues crawled from the GeoGuessr game and Tuxun game
manual contain rich geographic localization information, directly inputting these text-based clues
into GaGA for learning may not allow it to fully utilize the data. It is because pure text lacks
the supporting image features that provide the necessary contextual information for the reasoning
process. To overcome this issue, we leverage MLLMs’ multimodal input advantage. MLLMs excel
at processing image and text data by matching each clue with its corresponding image representation,
empowering GaGA and enhancing its reasoning ability with the clues.

To ensure the image representations’ general applicability across various contexts, we follow the
sampling method in [[10] and select 70k globally distributed samples from the OSV-5M dataset
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for clue matching. We divide the clue matching process into two main steps: constructing of the
country-specific clue repository and matching of image-clue pairs.

The construction of the country-specific clue repository is a manual classification process in which,
each clue is categorized based on its associated country or region, ensuring that each country/region
has a set of specific clues (e.g., United States: [Clue 1], [Clue 2], ... ,[Clue N].) On this basis,
matching image-clue pairs involves associating street-view images with specific clues from the
country-specific repository to generate image-text clue pairs. We use a MLLM [8]], which generates
natural language descriptions (*), and its corresponding geographic clues (e.g., <image>[Clue 1,
Clue 3, Clue M]*.) for each image. The core of this process is to guide the model in selecting and
summarizing geographic clues that are helpful for location identification. The process is complete
only when the selected clues are validated by the recognizable features within the image, ensuring
that the final output contains accurate geographic clues for each sample.

3.2.2 Human verficication

Some ambiguity (e.g., upside-down images, low resolution, or missing street views) and errors are
still inevitable despite the use of manually annotated data sources, clues from the geolocation game,
and carefully designed quality assurance methods. During the Clue Part construction process, we
implement a manual validation protocol: when evaluators flag ambiguous or erroneous image-clue
pairs, we trace the source of the errors and either remove problematic data samples or modify the
metadata accordingly to adjust, the image or clue descriptions. This manual validation step ensures
that the natural language descriptions of the clues accurately correspond to the intended target.

3.3 Dialog Part

As shown in Figure [2b), we begin the Dialog Part construction process by standardizing a well-
annotated subset of the Google Landmark V2 into a unified metadata structure, ensuring the generation
of multi-turn reasoning QA pairs that are location-agnostic. In order to enhance GaGA’s reasoning
depth and conversational ability by supporting the analysis of images from multiple perspectives and
inferring specific locations, we select 73K samples from Google Landmark V2 with rich information
such as architecture, vegetation, cultural elements, and climate. Then, with the assistance of GPT-4V,
we generate QA pairs using the Interactive Reasoning CoT method.

3.3.1 Question-Answer Generation

We intend to create image descriptions that thoroughly capture visible appearance and attributes,
integrating relevant knowledge, climatic characteristics, architectural styles, and even historical
context. This all-encompassing strategy ensures the dataset’s robust support for a broad spectrum of
real-world applications by providing enriched and contextually rich data. For example, an image of a
typical suburban house in Chicago might reveal the following features: Cold Climate: A steep gable
roof, designed to handle snowfall reflects the typical cold climate typical of the northern regions of
North America; Distinct Seasons. The use of stone, wood...

The generation of multi-turn QAs mainly relies on providing unified metadata and carefully designed
prompts to MLLMs, specifically GPT-4V. Through this process, GPT-4V engages in multi-turn
self-questioning based on the image, gradually guiding the model to reason through and uncover the
geographical information. Each set of multi-turn QAs includes the following key attributes: question
ID, source dataset, image path, three geo-questions w/ reasoning process, and one loc-question w/
ultimate answer. This structure ensures the logical coherence of the multi-turn QAs and clearly
presents the progression from question to reasoning process to the final answer.

Prompting techniques improve LLMs’ reasoning and problem solving abilities across diverse tasks
[22,24] 141, 145]]. We integrate the images’ unified metadata format to generate high-quality dialog
data. Using the Interactive Reasoning CoT method, we activate two tasks: CoT Deduction and CoT
Introspection. In the next part, we elaborate on the implementation details of these two tasks.

3.3.2 CoT Deduction

To extract the reasoning chain behind the geographic location predictions from GPT-4V as the training
data, we explicitly extract the reasoning chain supporting the model’s QA process. Specifically,
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we draw on the concept of interactive reasoning from reinforcement learning and propose the CoT
Deduction method to handle the geographic location prediction task.

The CoT Deduction consists of three parts: Role Setting, Reasoning QA, and Coordinate Prediction.

* Role Setting. In CoT Deduction, we set up two roles: Geo-Guessr player and questioner. The
questioner and player interact, with the questioner asking questions and the player responding
based on the image clues and existing knowledge. The interactive reasoning model in reinforcement
learning allows the model to interact with the environment, continuously adjusting the reasoning
process through repeated trials and feedback. Thus, the questioner and player jointly advance the
reasoning process in CoT Deduction.

* Reasoning QA. We aim to explicitly extract the internal principles of geographic location reasoning
to construct MG-Geo’s Dialog Part. For each question from the questioner, the Geo-Guessr player
gradually deduces the geographic location based on various aspects embedded in the image, such
as the environment and climate, architecture and landmarks, language and culture, and people’s
appearance. Each QA round (i.e., Q1A1l, Q2A2, and Q3A3) helps the player narrow down the
possibilities, gradually approaching the correct answer.

* Coordinate Prediction. After a series of reasoning steps, the player needs to provide a specific
geographic coordinate and briefly explain their choice (Q4A4).

During the process, the temperature and GPT-4V’s top-p and top-k parameters are set to 1, 1, and
NONE, respectively, to ensure the stability and accuracy of the generation process. After CoT
Deduction generates the predicted coordinates, we initiate a Decision Criterion to evaluate the
predicted coordinates’ accuracy. Specifically, we calculate the Haversine distance between the
predicted coordinates and the unified metadata. If the distance between the predicted and true
coordinates is greater than 25km, the CoT Introspection process is triggered.

3.3.3 CoT Introspection

After activating the CoT Introspection process, we input the prompt [Your prediction is incorrect] and
provide the actual geographic coordinates and corresponding location as a reference. It encourages
GPT-4V to reexamine the image and reflect on the reasoning generated during the CoT Deduction
process. Meanwhile, the model must identify and correct any errors in the reasoning, as well as fill in
any key information and clues that are previously overlooked.

The purpose of providing the real coordinates is to ensure that the reflection process leads to more
accurate and reliable reasoning. It is important to note that the model parameters, question setup,
and dialog structure during the CoT Introspection process remain consistent with those of the CoT
Deduction process, ensuring that the reflection results can seamlessly replace the incorrect answers
from CoT Deduction to generate a complete and correct reasoning dataset.

4 GaGA

Capitalizing on the introduced MG-Geo dataset, we present a novel MLLM termed GaGA. In contrast
to the prevalent “black box" nature of existing geolocation models that yield predictions devoid of
explanatory context, GaGA integrates robust geolocation capabilities with the capacity to associate
and leverage extensive world knowledge, thereby enabling dynamic and context-aware predictions
during user interaction. Specifically, when a user queries a geographic feature or provides pertinent
prior information, GaGA can effectively fuse this input with its internal knowledge base to generate
more informed and nuanced predictions.

4.1 Model Setting

GaGA uses the same model architecture and training objectives as LLaVA [29], which consists of
a vision encoder fy s for extracting features f, from street view images, a projector layer fp for
feature mapping, a Large Language Model (LLM) f7, ,such as Llama3 [2], and a text tokenizer fr.
We select the pretrained Llama3-8B as f7, because it excels in mapping coordinates to geographic
names among publicly available LLMs. Implementation details can be found in the Appendix.
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4.2 Training Framework

The training process of GaGA is divided into two distinct stages: pretraining and finetuning, each
with specific objectives and methodologies designed to progressively refine the model’s capabilities.

Pretraining. The primary objective during the pretraining phase is to enable the model to develop
a basic and intuitive understanding of images from a variety of regions. At this stage, the vision
encoder and LLM parameters remain fixed, and only the projector’s parameters are updated. We train
the model, using data from the Meta Part of MG-Geo, which contains diverse image-text pairs that
cover a broad range of geographic contexts.

Finetuning. Following pretraining, the finetuning stage focuses on adapting the model to effectively
analyze geographical images and engage in interactive dialogues with users, which is critical for
specialized tasks in GaGA. The projector’s parameters are fixed, which ensures that the model does
not deviate from the fundamental visual understanding it has developed. Instead, the focus shifts
to finetuning the LLM to enhance its ability to interpret and interact with the geographical content.
The finetuning dataset is a combination of carefully curated subsets of three parts of MG-Geo. These
datasets provide a comprehensive training foundation for the model’s specialized capabilities. The
final finetuning dataset consists of 240k image-text pairs, ensuring a diverse and well-rounded input
for the LLM adaptation.

5 Expriment

To demonstrate the efficacy of our dataset in addressing the geographic knowledge gap in existing
models and to showcase its potential in downstream geolocation tasks, we conducted a comprehensive
suite of experiments, the primary findings of which are presented in this section. Numerous additional
experiments and further details are provided in the Appendix for thoroughness.

5.1 Experimental Setup

Benchmark. GWS15k is a high-quality benchmark with well-distributed global coverage. However,
since it is not an open source, we have reproduced it in this study. We use the test set of OSV-5M as
the database and collect evenly distributed imagery based on 43K cities and the surface area of each
country. The pseudocode is shown in appendx.

Metrics. We employ three metrics to evaluate the geolocation model’s prediction accuracy:

* Accuracy of predicted geographical names at various administrative levels: country, region and
city.
* Accuracy of predicted coordinates within various distance thresholds: 1km, 25km, 200km, 750km,

and 2500km, calculated as the haversine distance between the model’s predicted GPS coordinates
and the ground truth.

* Geoscore: it is defined as 5000exp(—§,/1492.7) based on the famous Geo-Guessr game. ¢ repre-
sents the Haversine distance between predicted and ground truth image locations.

Evaluation Mode. We employ two evaluation modes, hierarchical (HIER) and direct (DIRE).
The “HIER” mode is primarily applied in the following scenario: for MLLMs that have not been
finetuned on MG-Geo, we provide candidate administrative boundary names at each level to constrain
their representation of administrative boundaries. In “DIRE” mode, the model directly predicts the
location without constraints or hierarchical guidance. In Tables[5.2] [§|and 0] we use the “DIRE”
mode as the default setting.

5.2 Geolocation Performance

The results of the administrative boundary prediction accuracy are shown in the left side of Table[5.2]
To be clear, there is no guarantee that MLLM-based methods will consistently provide relevant
answers. Therefore, we use recall rates to measure the proportion of valid answers in a large
language model. GaGA demonstrates outstanding performance, surpassing the current state-of-the-art
model—OSV-5M-Baseline—with a lead of 4.57% at the country level and 2.92% at the city level. It
also achieves performance comparable to the best-performing models at the region level. Additionally,



286
287
288
289
290
291
292
293

294
295
296
297
298
299
300
301
302
303

304
305
306
307
308
309

310

311
312
313
314
315
316

317
318
319
320
321
322
323
324

Table 2: Administrative-Level Accuracy and Coordinates Accuracy of GaGA and Open-Source
Models on GWS15K Bench. Left: Administrative-Level. T indicates MLLM with comparable
parameter counts. We use bold to indicate the best performance, °___’ for the second-best, and *__ °
for the third-best, respectively. Right: Coordinates Accuracy. * represents the model evaluated on
GWS15k reproduced in this paper.

Evaluation Admin-Level Accuracy Coordinates Accuracy (% @ km)
Method Mode | R4/ o0 ntry Region City Method lkm 25km  200km 7y50km 2500km | Geoscore
LLaVA-Llama3* HIER 0.99 1.76 026  0.02 ISNs 0.05 0.6 42 155 385
InternVL2F HIER 0.96 | 2474 420 048 Translocator 0.5 1.1 8 25.5 48.3
Qwen-VL! HIER 098 | 3420 819 145 GeoDecoder 0.7 1.5 8.7 26.9 50.5 -
GeoReasoner! HIER 1| 4063 957 LIl GeoCLIP* 02 3.1 154 403 712 | 23452
StreetCLIP HIER 1 40.11 1075 3.02 PIGEON 07 92 312 65.7 85.1 -
OSV-5M-Baseline| DIRE 1 5849 29.58 3.36 OSV-5M-Baseline* | 0.08 14.9 39.3 562 74.4 2944.9
GaGA' DIRE 1 63.06 2795 6.28 GaGA* 0.1 8.5 339 60.6 822 3113.0

we compare GaGA with advanced MLLM, such as LLaVA-Llama3, Qwen-VL [6], InternVL2 [§]]
and GeoReasoner [28]]. LLaVA-Llama3 serves as our baseline model, which adopts the LLaVA [29]
architecture with Llama3 [2f] as its language backbone. Due to the limited size of its train set, its
performance on geolocation is significantly poor. For GeoReasoner, we use the Clue Part (73k
samples) of MG-Geo and the SFT data (2k samplesﬂ provided by the GeoReasoner’s authors for
“Reasoning Tuning", along with 100k samples from the Meta Part of MG-Geo for “Location Tuning".
The results show that GaGA outperforms these state-of-the-art MLLMs in terms of location accuracy.
GaGA also outperforms StreetCLIP [18]], a model based on the CLIP architecture and finetuned on
street-view text data, on the GWS15k dataset.

The Right side of Table|5.2| presents the performance comparison of GaGA with ISNs [31], Translo-
cator [47], GeoDecoder [33], GeoCLIP [43], PIGEON [19], and OSV-5M-Baseline. GaGA performs
relatively well in geolocation prediction, achieving the second-best performance across the 200km to
2500km threshold range and the third-best performance at 25km. We evaluate the performance of
OSV-5M-Baseline and GeoCLIP on the GWS 15k dataset as reproduced in this work to provide a fairer
comparison. GaGA outperforms OSV-5M-Baseline at the 1km, 750km, and 2500km granularities,
and significantly outperforms GeoCLIP across the 25km to 2500km range. It is worth to notify that
GaGA achieves the highest Geoscore among the three models, a metric that strikes a balance by
rewarding precise predictions while mitigating the impact of large but infrequent errors. Since the
remaining works cannot be reproduced, we are unable to obtain the corresponding Geoscore for them.

Regarding output mechanisms, conventional LLMs exhibit inherent limitations in predicting long
floating-point numbers like latitude and longitude [39, 25]]. The sequential nature of next-token
prediction often necessitates splitting these numbers into multiple tokens, potentially degrading
the precision of the resulting floating-point value. Consequently, GaGA’s performance at the 1km
and 25km thresholds underperforms expectations, underscoring the necessity for improvements in
processing high-precision numerical outputs.

5.3 Interactive Geolocation Analysis

To further evaluate GaGA’s performance in interactive geolocation tasks, we curated a set of 547
images encompassing both cultural and natural landscapes, each paired with meticulously annotated
question-answer dialogues. We ensured that questions are closely related to the visible geographical
elements without directly providing visual details to guide only location prediction. For example:
“Considering the architectural design, what region of the world would you think displays such forms
and why?”

Table [3] shows the performance of different MLLMs under various questioning modes, including
direct inquiry, providing a guiding question (+Q), and a question-answer pair (+QA). By comparing
GaGA’s performance with its base model—LLaVA-Llama3, on the one hand, we observe that when a
guiding question is provided, GaGA shows greater improvement at the region and city levels, except
the country level; when an effective geographic prior information is provided, GaGA exhibits a greater
performance increase across all levels. That indicates that GaGA has a distinct advantage in generating
geographic knowledge related to the question and understanding and integrating prior content to
refine its predictions.On the other hand, the decline in GaGA’s country-level localization performance

*https://github.com/lingli1996/GeoReasoner
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GT: United Kingdom, England, London

<img>Considering a nighttime city scene
where historical and modern architectural

are known for this blend?

GT: Denmark , Capital Region, Kongens Lyngby

<img>Considering the climate implications
of the lush greenery visible in the
background, how does this assist us in
narrowing down the geographical location
further?

This city has a rich history dating back to Roman times ... of its
},, have been ... into the landscape. ...
. European cities, but London stands out for its

The lush greenery in the background indicates a climate that
supports a wide variety of plant life, which is characteristic of a
2. temperate climate zone ... in Central Europe, where the

~=I== summers are warm and the winters are cold enough...

Observing the vehicles and general city layout, if we were guessing
within Europe, what specific features might suggest a Northern
European city?

I am not agree with you ... greenery suggests a climate that supports
vigorous plant growth for most of the year, typical of the oceanic
and continental climate zones found in Northern Europe.

The double-decker bus and the style of the cars suggest a
s Northern European city...The layout of the street, with its narrow
) roads and , is typical ... have a history
=z . of dense urban development. The presence of a double-decker
= bus is a strong indicator of a UK city, as they are a common mode

of public transportation in the UK.

e

Yes, the climate indicated by the lush greenery is indeed typical
o%a, Of the oceanic and continental climate zones found in Northern
Europe. The combination of cold winters and mild to warm
summers supports the growth of such vegetation, which is often
seen in Scandinavian countries. This type of climate is ...
Denmark

Based on the architectural, vehicular, determine the geographical
location of the image. Provide the output in JSON format, including
country, region, city, latitude, and longitude.

@

Determine the geographical location of the image. Provide the output
in JSON format, including country, region, city, latitude, and
longitude.

{"country":"Denmark","region":"Zealand","city":"Roskilde",
"latitude":"55.634", "longitude":"12.082"}

=] "city":"London", "latitude":"51.5074", "longitude":"-0.0929"} -
=== (Error: 31.7443km)

@78y ("country":"United Kingdom","region":"England", 2280
H (Error: 2.3153km)

Figure 3: Illustrations of GaGA’s dialogues in various scenarios. On the left, we demonstrate how
GaGA successfully incorporates external knowledge with human guidance; on the right, we showcase
the model’s predictive outcomes when given relevant prior information.

under guided questioning is primarily due to the multiple valid responses to geographical feature
questions. For example, similar architectural styles across European countries can confuse GaGA
at the country level after answering such questions. Conversely, LLaVA-Llama3, with inherently
lower country recognition accuracy, benefits from external knowledge, improving the performance
by roughly adjusting the prediction range. Additionally, Figure [3]illustrates examples of GaGA’s
dialogues in different scenarios.

Table 3: Performances of MLLMs with Direct Inquiry, Guiding Question (+ Q), and both question
and effective answer (+QA)

Evaluation Admin-Level Accuracy
Method ‘ Mode Prompt ‘ Recall ‘ Country Region  City
Direct inquiry 1 64.89 27.97 7.67
+Q 1 61.24 29.25 8.22
GaGA DIRE -3.65
+QA | 74.77 3473 9.87
Direct inquiry | 0.99 292 0.54 0
4.38 0.54 0.05
LLaVA-LlaMA3 |  HIER *Q 0-99
+QA 0.96 12.79 2.92 0.36

6 Conclusion

In this work, we tackled the challenges in global geolocation, particularly the lack of comprehensive
geographic data for MLLMs and the limitations of existing methods. We introduced MG-Geo, the first
large-scale, high-quality multimodal dataset rich in geographic element cues, specifically designed
to bridge the geographic knowledge gap for MLLMs. Leveraging MG-Geo, we developed GaGA, a
novel MLLM demonstrating superior performance over existing models and state-of-the-art baselines
in predicting administrative boundaries. Crucially, GaGA’s interactive capability allows for refined
and more accurate localization based on user input. This research emphasizes the importance of
domain-specific high-quality datasets in advancing MLLM capabilities for complex geographical
tasks (such as global geolocation), and paves the way for more geographic downstream tasks.
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A Experimental Implementation Details

All experiments are conducted using the XTuner platform [12]], facilitating efficient multimodal
model tuning and deployment. For reasoning tasks, we employed LMDeploy [11], a toolkit designed
for compressing, deploying, and serving LLMs to optimize inference speed and memory efficiency,
ensuring real time performance. We conduct all the experimetns are on 8 x RTX4090 GPUs.

Pretraining. The projector is initialized using the ShareGPT4V [7]] data, which provides pre-existing
embeddings that facilitate the mapping of image features to textual descriptions.

Finetuning. To optimize the LLM for its task-specific behavior, we apply Quantized Low-Rank
Adaptation(QLoRA)[13] to finetune the language model. This technique enables efficient adaptation
of the LLM to the specifics of geographical analysis and user interaction without requiring exhaustive
retraining of the entire model.

The settings for hyperparameters used throughout the training process include configurations for
both pretraining and finetuning stages, along with specifications for the QLoRA and deployment
settings. Table ) and Table [Ssummarizes the detailed settings we use for pretraining and finetuning.
Parameters not mentioned in the finetuning phase are the same as those in the pretraining phase.

Table 4: Pretraining Settings Table 5: Fine-tuning Settings

Configuration Value Configuration Value

Dataset Meta Part of MG-Geo Dataset Mix240k of MG-Geo
Training Epochs 1 Training Epochs 1

Total Batch Size 16 Total Batch Size 16

Optimizer AdamW Optimizer AdamW

LR 2x107* LR 2x107°

LR Schedule CosineAnnealing Quantization Type BitsAndBytesConfig
Weight Decay 0 Quantization Bits 4-bit

Warmup Ratio 0.03 4-bit Quant Type nf

Adam Betal 0.9 4-bit Compute Dtype torch.float16

Adam Beta2 0.999 lora Alpha 16

Image Resolution 336x336 Low-Rank Matrix Rank 64

Max Text Token Length 1472 LoRA Dropout 0.05

B Model Architecture

As shown in Figure[d] for the input images X, we
employ the pretrained CLIP vision encoder fy, ef-
fectively extracting high-level visual features from
geographic images. The encoder utilizes the Vi-
sion Transformer (ViT) architecture [14], allow-
ing for robust representation of complex visual
patterns within the images. Once the visual fea-
tures are extracted, the projector layer fp is used

age Model f}

Textual Tokens ET

fr i

[ Projector fp] [ Tokenizer fT]

Vision Enc. fve

Visual Tokens Ey

Different types of corpus Xﬂ

Meta Part:{ "city": xx;"country": xx;

"latitude": xx; "longitude": xx }

Clue Part: There are rolling hills
across much of Austria and ...

Dialog Part: What can you infer

to map these representations into the LLM’s word
embedding space. Specifically, the visual features
are encoded into visual tokens Ey . The above
process is formulated as:

from the type of vegetation...

Figure 4: The architecture of GaGA. Ey = fp(fvm (Xv)) (H
During the training phase, various types of corpus are encoded into textual tokens F; = fr(X,),
which are then concatenated with the visual tokens Ey,. This interaction facilitates a cross-modal
exchange between the visual and textual modalities, enabling the model to learn richer, more coherent
representations across both domains. Next, all the tokens are fed into the LLM to generate a
corresponding output R, which is then processed further to produce the final response:

R = fr[Ev, Er] ()
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C Performances of Advanced MLLM:s in Dialog

As shown in the table @ we evaluate InternVL2 [? ] and Qwen-VL [6] in geolocalization under
interaction design for performance improvement.Qwen-VL performs poorly under the direct inquiry
prompt setting, but its performance at the country level significantly improves after incorporating
a guiding question. Similarly, InternVL2, after engaging in dialoge, uncovers more useful clues,
leading to performance improvements across the country, region, and city levels, demonstrating the
effectiveness of interaction.

Table 6: Performance of advanced MLLMs with different types of prompt inputs.

Evaluation Admin-Level Accuracy

Method Mode Prompt Recall Country Region  City
Direct inquiry 1 64.89 2797  7.67
GaGA DIRE 61.24 29.25 822
+Q 1
-3.65
Direct inquiry | 0.96 13.89 6.03 2.01
Qwen-VL HIER +Q 092 21.38 6.94 1.82
-0.19
Direct inquiry | 0.96 54.11 19.19  3.29
InternVL2 HIER 55.02 19.19 457
+Q 0.97

D Evaluation of Generated Dialogs

As shown in Table[7] we use pairwise ratings (Win, Tie, Lose) against GPT-4V to evaluate GaGA’s
dialogs on Fluency, Relevance, Informativeness, and Accuracy. “K" represents the Fleiss’ Kappa
value [16], which is a robust statistical metric that quantifies the degree of agreement among multiple
raters who classify items into a fixed set of categories. Three experts have assessed 50 samples and
conducted 50 rounds of comparison. In all four evaluation metrics, GaGA consistently outperforms
GPT-4V, and the ratings provided by the experts demonstrate a high degree of consistency.

Table 7: Evaluation of GaGA’s Dialog on Fluency, Relevance, Informativeness, and Accuracy with
Pairwise Ratings Against GPT-4V.

Metrics | Win Loss Tie K

Fluency 31 3 16 0.55
Relevance 33 5 22 0.74
Informativeness 26 7 17  0.64
Accuracy 22 18 10 0091

E Geolocation Performance on Open-Source Bench

Im2GPS3k [44] datasets contain many non-localizable images (e.g., 35% in Im2gps3k lack geolo-
cation), like selfies and indoor photos. Testing on these images could introduce unreliable errors
or favor methods that exploit memory training biases in the distribution [3]]. For consistency, we
report GaGA’s performance on and Im2GPS3k, as shown in Table [§] While GaGA achieves a
comparable performance to these state-of-the-art models, we believe that the more evenly distributed
and challenging GWS15k dataset, as discussed in Section [5.2] provides a more accurate reflection of
GaGA’s actual localization performance.

F Ablation Experiments

In Section[5.2] GWS15k is used as a subset of OSV-5M-test. To address any distribution differences
from the sampling strategy, we evaluate the entire OSV-5M test set and report GaGA’s performance.
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Table 8: Performances on Im2GPS3k Bench.

Coordinates Accuracy (% @ km)

Benchmark | Method Ikm 25km  200km 750km  2500km

PlaNet 85 248 343 48.4 64.6
CPlaNet 10.2 265 34.6 48.6 64.6
ISNs 10.5  28.0 36.6 49.7 66.0

Im2GPS3k Translocator | 11.8  31.1 46.7 58.9 80.1
GeoDecoder | 12.8 33.5 45.9 61.0 76.1
PIGEON 11.3  36.7 53.8 72.4 85.3
GaGA 117 330 48.0 67.1 82.1

The entire test set consists of 210,122 images, which are well distributed globally and have excellent
diversity. As shown in Table[9] the performance difference between GaGA and OSV-5M-Baseline
aligns with Section[5.2]s findings. GaGA excels in coordinate prediction accuracy within the 750 km
and 2500 km thresholds and leads in administrative boundary classification accuracy at the country
and city levels.

Table 9: Comparison of coordinates and administrative-level accuracy between OSV-5M-Baseline
and GaGA.

Model ‘ Coordinates Accuracy Admin-Level Accuracy

lkm 25km 200km 750km 2500km | Country Region City
0.10 17.05 47.60 66.27 81.18 ‘ 67.43 3931  6.07

OSV-5M-Baseline
GaGA

0.06 8.02 40.06 67.98 85.39 71.49 37.86  7.46

Furthermore, as shown in Table [T0} we evaluate the impact of the training framework on the GaGA’s
performance. Since our baseline model—LLaVA-Llama3—cannot produce valid coordinate outputs,
the accuracy of coordinate predictions is not reported in this part. It can be observed that after
pretraining, the GaGA-pretraining model achieves the highest accuracy in localization, though
lacking flexible conversational abilities. The finetuning stage, which incorporates dialog data, slightly
reduces localization accuracy but enables the model to flexibly integrate user-provided knowledge
and analyze geographical features. Ultimately, we strike a balance between localization performance
and conversational ability.

Table 10: Impact of Training Framework on GaGA’s performance.

Method ‘ Evaluation

Mode
HIER 0.99 1.76 0.26 0.02

Recall Admin-Level Accuracy
Country Region City

LLaVA-Llama3
GaGA-pretraining
GaGA-finetuning

DIRE 0.99 63.38 28.84 647
DIRE 1.00 63.06 2795 6.28

G Discussion

Integrating MLLM into image-based geographic localization enhances interpretability, interactiv-
ity, and accuracy, benefiting applications like emergency response and environmental monitoring.
However, there are still many scenarios in this field that deserve further explorations:

Failure Cases. GaGA still faces limitations in distinguishing locations with similar scenes. For
instance, when dealing with European countries with similar architectural styles, GaGA may confuse
them, as evidenced by the results in TableE} Furthermore, if users are unable to provide effective
guidance, the model’s performance can deteriorate. These issues highlight the necessity of further re-
search into knowledge extraction based on MLLMs to achieve more complex geographic localization
capabilities. Simultaneously, it is also important to design effective evaluation mechanisms during
interactions to retain and update correct information. To improve GaGA’s localization accuracy,
researcher should focus on enhancing the model’s self-correction and adjustment mechanisms to
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better adapt to complex and dynamic geographic environments while optimizing localization results
through effective user guidance.

Multimodal Integration for Enhanced Localization. Looking toward the future, the integration
of additional modalities beyond visual and textual data offers the potential to further enrich the
representation of geographic images, leading to improved localization performance and interactive
capabilities. For example, future research may consider incorporating auditory data, such as ambient
sounds from street view images. Similarly, the inclusion of temporal data, such as time-of-day
or seasonal variations, could enable the model to interpret geographic images more accurately by
recognizing how certain locations change over time. Furthermore, combining data from various
sensors, like satellite images, weather patterns, and traffic data, could create a more comprehensive
and context-aware system for geographic localization. By incorporating these diverse modalities,
MLLMs can improve their ability to discern fine-grained details of a location, facilitating more
dynamic and responsive interactions with users.

Privacy Risks and Responsible Deployment. The use of MLLM:s faces significant ethical challenges,
particularly concerning privacy risks associated with sensitive location data. As these models
process large volumes of geospatial data, including potentially personal or private information,
concerns about user privacy and data security arise, especially if data is collected without explicit
consent or shared in violation of privacy regulations. To mitigate these risks, researchers should
protect sensitive information, ensure transparency in data usage, and implement safeguards against
misuse. Additionally, while MLLMs offer substantial benefits in improving geographic localization,
their deployment must be carefully managed. Responsible deployment involves addressing model
limitations, managing biases in training data, ensuring transparency in data handling, and prioritizing
user privacy. By balancing technological advancement with ethical considerations, MLLMs can serve
society effectively while safeguarding stakeholders’ rights and interests.

H Reproduction of Validation Set GWS15k

To collect evenly distributed imagery, we used a database of 43,000 cities and each country’s surface
area. We first sampled countries/regions based on their proportion of Earth’s surface area, then
randomly selected a city within each and GPS coordinates within a 5 km radius of that city’s center to
sample from OSV5M-Test. Figure[5]presents the global distribution of our test dataset, GWS15k. As
depicted in the figure, the sampling points are uniformly distributed across the globe. This uniform
distribution ensures that our dataset encompasses a wide range of geographical variations, providing
a comprehensive basis for the robust evaluation and generalization of our proposed methods. We
provide the pseudo-code for the reproduction of GWS15k.

Figure 5: Distribution of GWS15k.
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Algorithm 1 Reproduction of GWS15k

=]

SRR LR

: Input:

C (Cities dataset), Co (Countries dataset), C'oord (GPS coordinates)
Npar (Max valid locations), R (Radius: 5 km)

: Output:

V' (Valid locations)

: function COMPUTEPROB(Co0, A¢otar)
for each c € Co do

Poasele] < 220, Pogjle] <= 0.5 X Poaselc] + 122

end for
return P
end function

. function GENVALIDLOC(C, Co, Coord, Pag;, Ny, R)
V0
while |V| < N,,q. do

Normalize P,q;
¢ < sample from Co with P,g;
S « {city € C | city.country = ¢y}
ss ¢ sample from S
coord, < sg.coordinates
for each coord € Coord do
d < haversine(coord,, coord)
if d < R and coord ¢ V then
Add coordto V
end if
end for

end while
return V'
end function=0

I Prompts Employed in the Clue Part Generation

To ensure question variety, we design multiple templates for each question type following the approach
outlined in [29]. These templates provide variation while maintaining focus on the geolocalization
task. For example, the following are some templates we use in the Clue Part:

* Analyze the given image for clues that help in geolocation and

combine these clues to localize the image. Output the answer in
JSON format.

Can you identify the place where this image was taken? Analyze
the street view image from multiple angles to infer its geographic
location and output the results and clues in JSON format.

* Where was this image taken? Analyze the image in conjunction with

the geographic clues in the image. OQOutputs localization results and
inference clues in JSON format.

J Prompts Employed in the Dialog Part Generation

The CoT Deduction prompt that guides the model through the steps of reasoning and prediction is as

follows:

17



CoT Deduction Prompt

[Role Setting]

You are an excellent GeoGusser player and questioner. The player deduces the location step
by step from clues like environment, climate, buildings, culture, and appearance, while the
questioner guides deeper analysis to uncover more clues.

[Reasoning QA]

1. Based on the image provided to you; please conduct THREE rounds of QAs (Q1Al,
Q2A2, and Q3A3) between the questioner and the player.

2. Questions should be sufficiently challenging and closely related to the visual elements but
NOT actively provide visual details to the player.

3. Only include questions that guide position prediction and require the player to utilize
complex reasoning, world knowledge, and interpretive answers to gradually deduce the
location. When answering complex questions, provide detailed reasoning steps for clarity
and persuasiveness.

[Coordinate Prediction]

1. After the reasoning, the questioner should ask about the geographic coordinates and request
an answer from the player, denoted as Q4A4.

2. Based on previous rationale and analysis, the player makes the best prediction and
briefly explains the choice. The player MUST provide reasonable coordinates regardless of
uncertainty. Please use Decimal Degrees for coordinates and STRICTLY follow this JSON
format: {(latitude, longitude)}

618

619 The CoT Introspection prompt that encourages GPT-4V to reexamine the image and reflect on the
620 reasoning generated during the CoT Deduction process is as follows:

CoT Introspection Prompt

[Attention]
Your prediction is incorrect!

[Reflecting]
The actual geographic coordinates are {(X, Y)}. Please revise your answers (A1-A4) base on
this. You should correct the wrong deduction and supplement overlooked clues.

[Request]

1. Use a reasoning tone.

2. The correct coordinates MUST be given in A4.

3. Keep the questions (i.e., Q1 to Q4) consistent and include them in your response.

Please use Decimal Degrees for coordinates and STRICTLY follow this JSON format:
{(latitude, longitude)}

621

s22 K Additional Qualitative Results

623 Additional Qualitative results of GaGA are shown in Figure[6]and Figure|[7]
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GT: Saint Lucia,Gros-Islet Quarter, Gros Isletw

( GT: Solomon Islands , Malaita, Auki\

What can you infer about the climate and geographical location considering
the vegetation and sky conditions?

F——

The lush greenery and the presence of a clear sky with a hint of blue
suggest a tropical climate, likely in a region with high humidity and
abundant rainfall. The vegetation is dense and vibrant, indicating a
location that experiences a warm and humid climate, possibly near the
equator.

How might the architecture and road conditions inform us about the
region or level of development?

The architecture of the houses, which appear to be simple and made
of wood, suggests a tropical setting where such materials are readily
available and suitable for the climate. The road, which appears to be
unpaved and possibly dirt, indicates a less developed area, possibly in
a region where such infrastructure is not as extensive or well-
maintained. This could suggest a more rural or remote area within a
country that is developing its infrastructure.

Considering all clues, what languages might be prevalent in this area, and
how might that help pinpoint the location?

The lush greenery and tropical climate suggest a location near the
equator, possibly in a region with a high level of rainfall. The
architecture and road conditions indicate a less developed area,
possibly in a country that is still developing its infrastructure. Given
the tropical setting and the type of houses, it is likely that the
primary language spoken in this area is a local dialect of a language
commonly spoken in tropical regions. This could be a dialect of a
language such as Creole, which is often spoken in Caribbean islands.
Therefore, the location is likely in a Caribbean island, possibly one
that is less developed and more rural.

Based on the discussion above, determine the geographical location of the
image.

aint Lucia”,"region":"Gros-Islet Quarter’

60.960")

city

Gros Islet",

/

/What environmental factors can you deduce from the vegetation visible, and
what might this suggest about the climate and region?

The vegetation in the image features lush greenery, including tall trees
and dense undergrowth, which suggests a tropical or subtropical
climate. The presence of such dense vegetation indicates a region with
high rainfall and warm temperatures, typical of areas near the equator.
The vegetation is also indicative of a region with a high level of
humidity, which is characteristic of tropical climates.

Considering the road type and infrastructure, what can we infer about the
level of urbanization and the possible continent or region?

The road in the image is a dirt road, which suggests a less developed or
rural area. This type of road is often found in regions with less
urbanization, possibly in a tropical or subtropical area where the
terrain is not conducive to paved roads. The presence of a dirt road
and the lush vegetation indicates a region that is not heavily urbanized,
possibly in a more remote or rural area. This type of infrastructure is
commonly found in regions with tropical climates, where the terrain
can be challenging to maintain due to heavy rainfall and dense
vegetation.

What can be interpreted from the cultural or structural elements present,
and how might they help pinpoint the location more precisely?

The presence of a dirt road and the lush vegetation suggests a rural
or less developed area, possibly in a tropical or subtropical region.
The vegetation is indicative of a region with high rainfall and warm
temperatures, which is typical of areas near the equator. The road
type and the vegetation suggest a less urbanized area, possibly in a
region with challenging terrain that is not conducive to paved roads.
This type of infrastructure is commonly found in tropical regions
where the terrain can be difficult to maintain due to heavy rainfall
and dense vegetation.

<ased on the discussion above, determine the geographical location of the
image.

{"country":"Solomon Islands","region":"Malaita", "city":"Auki",
8.216", "longitude":"159.933"}

Figure 6: Qualitative results of GaGA on rural images.

GT: United Kingdom, England, London ]

[GT: Denmark , Capital Region, Kongens Lyngby\

/Considering a nighttime city scene where historical and modern architectural
elements coexist, what regions of the world are known for this blend?

This city has a rich history dating back to Roman times, and many of its
older buildings have been preserved and integrated into the modern
ban landscape. This blend is characteristic of many European cities,
but London stands out for its sheer sca
m

= | urd

e and density of historical and

rn architecture

Observing the vehicles and general city layout, if we were guessing within
Europe, what specific features might suggest a Northern European city?

The double-decker bus and the style of the cars suggest a Northern

A European city, possibly in the UK. The layout of the street, with its
Y {) a P
&’10 narrow roads and closely packed buildings, is typical of many Northern

European cities, which often have a history of dense urban
development. The presence of a double-decker bus is a strong
indicator of a UK city, as they are a common mode of public
transportation in the UK.

Based on the architectural, vehicular, determine the geographical location
of the image. Provide the output in JSON format, including country, region, %ﬁ
city, latitude, and

{"country":"United Kingdom","region":"England","city":"London'
"latitude":"51.5074", "longitude":"-0.0929"} (Error: 2.3153km)

/

nonsidering the climate implications of the lush greenery visible in the
background, what type of climate zone could this region belong to, and how
does this assist us in narrowing down the geographical location further?

The lush greenery in the background indicates a climate that supports a
wide variety of plant life, which is characteristic of a temperate climate
zone. This type of climate is typical of regions in Central Europe, where
the summers are warm and the winters are cold enough to support the

growth of such vegetation.
§%
e

| am not agree with you. The abundance of greenery suggests a climate
that supports vigorous plant growth for most of the year, typical of the
oceanic and continental climate zones found in Northern Europe.

Yes, the climate indicated by the lush greenery is indeed typical of t

h
oceanic and continental climate zones found in Northern Europe. The
combination of cold winters and mild to warm summers supports the
growth of such vegetation, which is often seen in Scandinavian

countries. This type of climate is particularly prevalent in Denmark,
where the climate is known for its mild summers and cold winters,
supporting a wide variety of plant life.

2
<
b

Determine the geographical location of the image. Provide the output in
JSON format, including country, region, city, latitude, and longitude.

2| {"country":"Denmark","region":"Zealand","city":"Roskilde",

\EE;‘

7| "latitude":"55.634", "longitude":"12.082"} (Error: 31.7443km)

Figure 7: Qualitative results of GaGA on rural images.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provide a comprehensive overview of the
background and the motivation of this study, efficiently outlining its main contributions,
thus accurately reflecting the paper’s scope and significance.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper provides the limitation discussion in Appendix [G]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The method in this article includes theoretical formulation. Moreover, it covers
detailed ablative studies and qualitative studies, ensuring completeness and accuracy in the
theoretical presentation.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided a detailed description of our proposed benchmark and
metric, experimental settings and dataset description for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the URLs in our paper to provide the codes and datasets in the
reviewing period. Our codes are publicly available now.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, efc.) necessary to understand the
results?

Answer: [Yes]
Justification: We give the experimental settings in Section [5.1]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Generally, papers in our field do not include error bars, and we found that the
model evaluating is stable with the little variation across multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: We give the information that all the experimetns are conducted on 8 x
RTX4090 GPUs but do not give more details of memory, training time and compute
resources.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: After carefully reviewing the referenced document, we certify that we comply
with the Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positice societal impacts and negative societal
impacts of the work performed in Appendix
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed dataset are constructed on public datasets such OSV5M and
Google Landmark V2. These datasets have been extensively used in the community and
have undergone comprehensive safety risk assessments.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In this paper, we clearly specified the datasets and code sources used, and
provided appropriate citations in the reference section.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided the URLs of the code and data, along with detailed us-
age instructions in our paper. We have made the code and data publicly available to the
community.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: This research does not involve any crowdsourcing experiments or studies with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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935 Justification: No crowdsourceing experiments or research with human subjects were involved

936 in this study. All experiments were conducted using codes and GPU servers.

937 Guidelines:

938 * The answer NA means that the paper does not involve crowdsourcing nor research with
939 human subjects.

940 * Depending on the country in which research is conducted, IRB approval (or equivalent)
941 may be required for any human subjects research. If you obtained IRB approval, you
942 should clearly state this in the paper.

943 * We recognize that the procedures for this may vary significantly between institutions
944 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
945 guidelines for their institution.

946 * For initial submissions, do not include any information that would break anonymity (if
947 applicable), such as the institution conducting the review.

948 16. Declaration of LLM usage

949 Question: Does the paper describe the usage of LLMs if it is an important, original, or
950 non-standard component of the core methods in this research? Note that if the LLM is used
951 only for writing, editing, or formatting purposes and does not impact the core methodology,
952 scientific rigorousness, or originality of the research, declaration is not required.

953 Answer: [Yes]

954 Justification: In the process of creating our benchmark, we called LLM API to help us
955 generate and filter data. These are all detailed in Section [3]

956 Guidelines:

957 * The answer NA means that the core method development in this research does not
958 involve LLMs as any important, original, or non-standard components.

959 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
960 for what should or should not be described.
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