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Abstract

Global geolocation, the task of predicting the exact location of street-view images,1

is crucial for applications like security surveillance. Existing retrieval and classifi-2

cation methods, along with current Multimodal Large Language Models (MLLMs),3

suffer from limitations such as database dependence, lack of interpretability, and4

a significant gap in geographic knowledge due to insufficient datasets. To ad-5

dress these issues, we introduce MG-Geo, the first comprehensive, high-quality6

Multi-modal Global Geolocation dataset. Comprising five million instances of7

geographic dialogue data across 210 countries, MG-Geo provides detailed geo-8

graphic element cues (e.g., road markings, vegetation, language), significantly9

surpassing existing datasets like OSV-5M and Google Landmark V2 in richness10

and granularity. Leveraging MG-Geo, we develop GaGA (Global Geo-location11

Assistant), a novel MLLM specifically designed for geolocation. Experimen-12

tal results demonstrate that GaGA not only significantly outperforms existing13

MLLMs but also surpasses the state-of-the-art model OSV-5M-Baseline in admin-14

istrative boundary prediction (achieving improvements of 4.57% at the country15

and 2.92% at the city levels). Furthermore, GaGA exhibits remarkable interac-16

tive refinement capabilities, improving localization accuracy with effective user17

guidance. This work highlights the critical role of the MG-Geo dataset in foster-18

ing improved geographic understanding of MLLM. Our dataset is accessible via:19

https://huggingface.co/datasets/kendouvg/MG-Geo.20

1 Introduction21

Global geolocation aims to predict the exact location of any street-view image, with wide applications22

in security surveillance, emergency response, disease outbreak prediction, environmental monitoring,23

and tourism navigation [49, 50, 37, 40]. This task requires integrating visual cues, such as road signs,24

architectural styles, climate, and vegetation, with geographic knowledge to accurately predict GPS25

coordinates or location labels. For images with landmarks or distinctive architecture, the location can26

be inferred by combining visual features with contextual knowledge. However, geolocation becomes27

more challenging in homogenous environments, such as highways or natural landscapes, where subtle28

geographic clues like road markings, license plate types, and signage must be relied upon.29

The existing street-view localization methods are generally categorized into retrieval-based and30

classification-based approaches. The retrieval-based methods [48, 51] match input images with31

similar ones from a geotagged database but are constrained by the diversity and completeness of32

the database. The classification-based methods [38, 43] classify images into predefined regions33

based on visual features, but they lack interpretability and fail to provide explicit visual cues.34

Additionally, several studies have explored leveraging text content [15, 1, 20, 36, 23] and social35
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What does the architectural 

style and outdoor setting 

suggest about the location's 

cultural region? <img>

The blend of preserved older 
buildings with modern structures 
points to Northern Europe, likely 
Northern Germany. The river and 
outdoor seating reflect...typical of 
European cities...

Vehicles

What do the vehicles' presence and condition 

suggest about the location's economic status 

or regional traits? <img>

The older European car models imply a region with 
moderate wealth, where luxury vehicles are 
rare..suggests an area like Eastern Europe, where 
older, functional cars are commonly retained.

Road marking

Considering the road marking 

in the image, what can you 

infer about this place? <img>

The presence of a well-

maintained two-lane road, 

complete with road marking, 

alongside utility poles 

suggests a well-established 

infrastructure indicative of a 

suburban area...

Language

What do the storefront 

signs and visible text tell 

us about the local 

language influences 

present?<img>

The storefront signage shows characteristics 

of a Slavic language...languages are common 

in Central Europe...Slavic language, combined 

with the building styles, suggests...

Vegetation

Analyzing the terrain and vegetation visible around the 

structure, how can this information help further narrow 

down the location? <img>

The surrounding vegetation, consisting of low shrubs and 

sparse trees, suggests a semi-arid climate, often 

characteristic of the Mediterranean landscapes. This type of 

environment supports the theory of the location being in 

eastern Spain.

History

Based on the religious building's 

architectural style, which 

historical region is known for 

such structures? <img>

Ireland, with its rich ecclesiastical 

heritage, has numerous examples 

of Gothic Revival...early-Christian 

and medieval ecclesiastical 

architecture and its 19th-century 

revival efforts point...

Traffic

What can you infer about 

the driving practices and 

possibly the organization 

of traffic in this location? 

<img>

The vehicles in the image are positioned for 

right-hand traffic...commonly found in many 

parts of Europe and the world. The organized 

lane markings and modern traffic lights 

suggest...

Clothing

What era and region do 

the clothing and 

architecture 

suggest?<img>

The clothing, particularly the military uniforms 

with distinctive helmets, suggests a European 

military aesthetic that was typical prior to or 

around the time of WWII. The architecture...

Figure 1: Illustration of MG-Geo. Featuring diverse geographic scenes and visual cues, these images
demonstrate the utility for training MLLMs to connect visual content with geographic locations and
enrich their understanding of global environments.

network relationships [5, 26, 35] for geolocation by analyzing user-generated content and social36

interactions.37

In practical scenarios, geolocation is rarely a one-time, static process; it involves integrating and38

refining multiple sources of information iteratively through continuous interaction. Traditional geolo-39

cation models directly regress geographic labels or coordinates, inherently lacking interpretability40

and flexibility. Multimodal large language models (MLLMs), such as [29, 9, 32], are renowned41

for their ability to integrate multimodal information and are capable of using this knowledge for42

interpretative reasoning, which is especially important for applications like geolocation. However,43

the existing MLLMs encounter substantial challenges in global geolocation, particularly due to the44

geographic knowledge gap within their LLMs [37] and inability to establish associations between45

visual features of geographic elements and their corresponding locations. A primary factor underlying46

this observation is that existing MLLMs datasets, such as those presented in [7, 17, 27], omit critical47

granularities including administrative boundaries and precise geographic coordinates.48

To address these challenges, we introduce the first Multi-modal Global Geolocation (MG-Geo) dataset.49

In contrast to existing geolocation datasets such as OpenStreetView-5M (OSV-5M) [4] and Google50

Landmark V2 [46], which provide only basic descriptors (e.g., latitude, longitude, country, region,51

and city) lacking detailed geographic information, MG-Geo is a comprehensive, high-quality dataset52

comprising five million instances of geographic dialogue data. As illustrated in Figure 1, MG-Geo53

comprises a diverse array of geographic element cues, encompassing road markings, vegetation, and54

language, among others. With content spanning 210 countries, the dataset demonstrates notable55

richness and high quality.56

Leveraging this dataset, we develop the Global Geo-location Assistant (GaGA), a novel MLLM57

designed to overcome the limitations of the geographic localization tasks’ poor explainability and58

low insight. We train GaGA in two phases: In the first phase, we pretrain the projector of an MLLM59

using a large image-location dataset to inject geographic knowledge to enhance its ability to classify60

geographic locations. In the second phase, we finetune the model with a curated subset of image-clue61

and multi-turn QA pairs data to improve the models’s capacity for interaction and reasoning. The62

experimental results demonstrate that GaGA not only significantly outperforms similar MLLMs on63

the GWS15k dataset but also surpasses the current state-of-the-art model, OSV-5M-Baseline, in64
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Table 1: Comparison between MG-Geo and existing datasets. MG-Geo is the first large-scale
multimodal dataset curated for the domain of geolocation.
Dataset Size Open-access Source Type Scope QA Pairs Chain of Thought

Im2GPS3k[21] 3k ✓ Web-scraped Biased ✗ ✗
YFCC4K[44] 4k ✓ Web-scraped Biased ✗ ✗
MP-16[42] 4.7M ✓ Web-scraped Biased ✗ ✗

GWS15k[10] 15k ✗ Street-view Global ✗ ✗
OSV-5M[4] 5M ✓ Street-view Global ✗ ✗
Google Landmark V2[46] 5M ✓ Landmark Global ✗ ✗

MG-Geo (ours) 5M ✓ Street-view and landmark Global ✓ ✓

predicting the administrative boundaries with improvements of 4.57% and 2.92% at the country and65

city levels, respectively. Notably, GaGA possesses the capability to refine its responses in interactive66

scenarios. When users provide effective guidance or correct priors, GaGA’s localization accuracy67

improves substantially.68

2 Related work69

2.1 Geolocation Datasets70

In the domain of geolocation, the localizability of images within datasets is of paramount importance.71

Though composed of a wealth of geotagged images, the existing datasets, such as Im2GPS3k [21],72

YFCC4K [44] and MP-16 [42], though composed of a wealth of geotagged images, contain many73

unlocatable images and exhibit distribution biases. GWS15k [10] mitigates distribution differences,74

and ensures that the images are authentic, localizable street views; however, this dataset is not75

open-source. OSV-5M [4] is the largest open-source collection of planet-scale, localizable street76

view images. The Google Landmark V2 [46] dataset contains globally distributed human-made and77

natural landmarks and showcase iconic landscapes.78

We propose MG-Geo, the first multimodal geolocation dataset designed to enhance the perception79

and interactivity of MLLMs in geolocation tasks. Curated from OSV-5M and Google Landmark80

V2, MG-Geo offers a clean, evenly distributed resource. It also incorporates well-structured global81

language knowledge, providing a dataset that better reflects the complexity and diversity of real-world82

geolocation challenges.83

2.2 Geolocation Models84

Mainstream geolocation methods can be broadly categorized into two approaches: image-based85

retrieval and classification-based methods. Image-to-image retrieval techniques rely on dense image86

retrieval libraries, which perform well for localization tasks within small areas. However the cost87

of constructing such retrieval libraries on a global scale is prohibitively high. When geolocation is88

treated as a classification task, categories can be defined based on administrative regions, divided89

into geocells according to specific rules, or discretized into latitude and longitude coordinates.90

TransLocator [47] employs images and semantic segmentation maps as inputs, facilitating interaction91

between two parallel branches after each Transformer layer and enabling multitask geolocation and92

scene recognition. GeoCLIP [43] introduces a location encoder and applies random Fourier feature93

representations to latitude and longitude coordinates. It utilizes the pretrained CLIP [34] visual94

encoder to represent images and aligns them with the corresponding location features for localization.95

Pigeon [19] is a method that classifies within self-created geocell and retrieves locations within96

clusters.97

In recent years, some works have begun to explore the potential of natural language in geolocation98

tasks. G3 [30] predicts the country of an image by automatically extracting clues from human-written99

guidebooks. StreetCLIP [18] employs captions containing geolocation information for contrastive100

learning, allowing the use of natural language to ground CLIP in the context of image geolocalization.101

GeoReasoner [28] is the first work to fine-tune a Multimodal Large Language Model (MLLM) for102

street view image localization. Unlike GeoReasoner, our model is trained on a planet scale and103

multimodal dataset of localizable images, which is not confined to narrow distributions and proposes104

an interactive approach to accomplish the localization task.105
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Figure 2: An illustration of our pipeline for data curation. (a) We construct the Clue Part by
leveraging guidance clues from online geolocation game communities and employing an MLLM. (b)
We generate location-agnostic, multi-turn reasoning QA pairs and high-quality dialog data for the
Dialog Part, applying the Interactive Reasoning CoT method to activate CoT Deduction and CoT
Introspection tasks.

3 MG-Geo Dataset106

In this paper, we introduce MG-Geo, a novel dataset encompassing a diverse array of geographic107

element cues, including architecture, environment, landmarks, and climate across various countries.108

The dataset is structured into three distinct components: the Meta Part, the Clue Part, and the Dialog109

Part, designed to accommodate disparate training objectives. We leverage structured geographic110

knowledge, elicited from expert GeoGuessr players, and human-guided interactions with powerful111

MLLMs to facilitate the construction of this dataset. MG-Geo not only addresses the existing gap112

in geographic knowledge within LLMs but also enhances their perception of geographic cues,113

enabling interpretable reasoning for geolocation prediction. Furthermore, the improved geographic114

understanding fostered by this dataset has the potential to pave the way for future research in115

applications such as navigation and place retrieval.116

3.1 Meta Part117

In the Meta Part, images and meta-geographic information are taken from the OSV-5M [3], which118

inherits its characteristics of good distribution, wide scope, and high quality. After removing a small119

number of samples with incomplete location annotations, we organize each sample into JSON format120

using three levels of administrative boundaries—country, region, and city. This results in a total of121

4.87 million entries, covering 70k cities, 2.7k regions, and 210 countries.122

3.2 Clue Part123

We design our model to generate textual clues from geographical features in images to enhance output124

interpretability. Users can assess and correct these clues during interaction and provide additional125

information to improve the model’s accuracy. We design an automatic multimodal QA generation126

paradigm to convert source-cued annotations into different forms of QAs. Figure 2(a) shows an127

automated pipeline for generating high-correlated image-text clues pairs.128

3.2.1 MLLM Based Refinement129

Note that although the 3,000 guidance clues crawled from the GeoGuessr game and Tuxun game130

manual contain rich geographic localization information, directly inputting these text-based clues131

into GaGA for learning may not allow it to fully utilize the data. It is because pure text lacks132

the supporting image features that provide the necessary contextual information for the reasoning133

process. To overcome this issue, we leverage MLLMs’ multimodal input advantage. MLLMs excel134

at processing image and text data by matching each clue with its corresponding image representation,135

empowering GaGA and enhancing its reasoning ability with the clues.136

To ensure the image representations’ general applicability across various contexts, we follow the137

sampling method in [10] and select 70k globally distributed samples from the OSV-5M dataset138
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for clue matching. We divide the clue matching process into two main steps: constructing of the139

country-specific clue repository and matching of image-clue pairs.140

The construction of the country-specific clue repository is a manual classification process in which,141

each clue is categorized based on its associated country or region, ensuring that each country/region142

has a set of specific clues (e.g., United States: [Clue 1], [Clue 2], . . . ,[Clue N].) On this basis,143

matching image-clue pairs involves associating street-view images with specific clues from the144

country-specific repository to generate image-text clue pairs. We use a MLLM [8], which generates145

natural language descriptions (∗), and its corresponding geographic clues (e.g., <image>[Clue 1,146

Clue 3, Clue M]∗.) for each image. The core of this process is to guide the model in selecting and147

summarizing geographic clues that are helpful for location identification. The process is complete148

only when the selected clues are validated by the recognizable features within the image, ensuring149

that the final output contains accurate geographic clues for each sample.150

3.2.2 Human verficication151

Some ambiguity (e.g., upside-down images, low resolution, or missing street views) and errors are152

still inevitable despite the use of manually annotated data sources, clues from the geolocation game,153

and carefully designed quality assurance methods. During the Clue Part construction process, we154

implement a manual validation protocol: when evaluators flag ambiguous or erroneous image-clue155

pairs, we trace the source of the errors and either remove problematic data samples or modify the156

metadata accordingly to adjust, the image or clue descriptions. This manual validation step ensures157

that the natural language descriptions of the clues accurately correspond to the intended target.158

3.3 Dialog Part159

As shown in Figure 2(b), we begin the Dialog Part construction process by standardizing a well-160

annotated subset of the Google Landmark V2 into a unified metadata structure, ensuring the generation161

of multi-turn reasoning QA pairs that are location-agnostic. In order to enhance GaGA’s reasoning162

depth and conversational ability by supporting the analysis of images from multiple perspectives and163

inferring specific locations, we select 73K samples from Google Landmark V2 with rich information164

such as architecture, vegetation, cultural elements, and climate. Then, with the assistance of GPT-4V,165

we generate QA pairs using the Interactive Reasoning CoT method.166

3.3.1 Question-Answer Generation167

We intend to create image descriptions that thoroughly capture visible appearance and attributes,168

integrating relevant knowledge, climatic characteristics, architectural styles, and even historical169

context. This all-encompassing strategy ensures the dataset’s robust support for a broad spectrum of170

real-world applications by providing enriched and contextually rich data. For example, an image of a171

typical suburban house in Chicago might reveal the following features: Cold Climate: A steep gable172

roof, designed to handle snowfall reflects the typical cold climate typical of the northern regions of173

North America; Distinct Seasons. The use of stone, wood...174

The generation of multi-turn QAs mainly relies on providing unified metadata and carefully designed175

prompts to MLLMs, specifically GPT-4V. Through this process, GPT-4V engages in multi-turn176

self-questioning based on the image, gradually guiding the model to reason through and uncover the177

geographical information. Each set of multi-turn QAs includes the following key attributes: question178

ID, source dataset, image path, three geo-questions w/ reasoning process, and one loc-question w/179

ultimate answer. This structure ensures the logical coherence of the multi-turn QAs and clearly180

presents the progression from question to reasoning process to the final answer.181

Prompting techniques improve LLMs’ reasoning and problem solving abilities across diverse tasks182

[22, 24, 41, 45]. We integrate the images’ unified metadata format to generate high-quality dialog183

data. Using the Interactive Reasoning CoT method, we activate two tasks: CoT Deduction and CoT184

Introspection. In the next part, we elaborate on the implementation details of these two tasks.185

3.3.2 CoT Deduction186

To extract the reasoning chain behind the geographic location predictions from GPT-4V as the training187

data, we explicitly extract the reasoning chain supporting the model’s QA process. Specifically,188
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we draw on the concept of interactive reasoning from reinforcement learning and propose the CoT189

Deduction method to handle the geographic location prediction task.190

The CoT Deduction consists of three parts: Role Setting, Reasoning QA, and Coordinate Prediction.191

• Role Setting. In CoT Deduction, we set up two roles: Geo-Guessr player and questioner. The192

questioner and player interact, with the questioner asking questions and the player responding193

based on the image clues and existing knowledge. The interactive reasoning model in reinforcement194

learning allows the model to interact with the environment, continuously adjusting the reasoning195

process through repeated trials and feedback. Thus, the questioner and player jointly advance the196

reasoning process in CoT Deduction.197

• Reasoning QA. We aim to explicitly extract the internal principles of geographic location reasoning198

to construct MG-Geo’s Dialog Part. For each question from the questioner, the Geo-Guessr player199

gradually deduces the geographic location based on various aspects embedded in the image, such200

as the environment and climate, architecture and landmarks, language and culture, and people’s201

appearance. Each QA round (i.e., Q1A1, Q2A2, and Q3A3) helps the player narrow down the202

possibilities, gradually approaching the correct answer.203

• Coordinate Prediction. After a series of reasoning steps, the player needs to provide a specific204

geographic coordinate and briefly explain their choice (Q4A4).205

During the process, the temperature and GPT-4V’s top-p and top-k parameters are set to 1, 1, and206

NONE, respectively, to ensure the stability and accuracy of the generation process. After CoT207

Deduction generates the predicted coordinates, we initiate a Decision Criterion to evaluate the208

predicted coordinates’ accuracy. Specifically, we calculate the Haversine distance between the209

predicted coordinates and the unified metadata. If the distance between the predicted and true210

coordinates is greater than 25km, the CoT Introspection process is triggered.211

3.3.3 CoT Introspection212

After activating the CoT Introspection process, we input the prompt [Your prediction is incorrect] and213

provide the actual geographic coordinates and corresponding location as a reference. It encourages214

GPT-4V to reexamine the image and reflect on the reasoning generated during the CoT Deduction215

process. Meanwhile, the model must identify and correct any errors in the reasoning, as well as fill in216

any key information and clues that are previously overlooked.217

The purpose of providing the real coordinates is to ensure that the reflection process leads to more218

accurate and reliable reasoning. It is important to note that the model parameters, question setup,219

and dialog structure during the CoT Introspection process remain consistent with those of the CoT220

Deduction process, ensuring that the reflection results can seamlessly replace the incorrect answers221

from CoT Deduction to generate a complete and correct reasoning dataset.222

4 GaGA223

Capitalizing on the introduced MG-Geo dataset, we present a novel MLLM termed GaGA. In contrast224

to the prevalent “black box" nature of existing geolocation models that yield predictions devoid of225

explanatory context, GaGA integrates robust geolocation capabilities with the capacity to associate226

and leverage extensive world knowledge, thereby enabling dynamic and context-aware predictions227

during user interaction. Specifically, when a user queries a geographic feature or provides pertinent228

prior information, GaGA can effectively fuse this input with its internal knowledge base to generate229

more informed and nuanced predictions.230

4.1 Model Setting231

GaGA uses the same model architecture and training objectives as LLaVA [29], which consists of232

a vision encoder fVM for extracting features fv from street view images, a projector layer fP for233

feature mapping, a Large Language Model (LLM) fL ,such as Llama3 [2], and a text tokenizer fT .234

We select the pretrained Llama3-8B as fL because it excels in mapping coordinates to geographic235

names among publicly available LLMs. Implementation details can be found in the Appendix.236

6



4.2 Training Framework237

The training process of GaGA is divided into two distinct stages: pretraining and finetuning, each238

with specific objectives and methodologies designed to progressively refine the model’s capabilities.239

Pretraining. The primary objective during the pretraining phase is to enable the model to develop240

a basic and intuitive understanding of images from a variety of regions. At this stage, the vision241

encoder and LLM parameters remain fixed, and only the projector’s parameters are updated. We train242

the model, using data from the Meta Part of MG-Geo, which contains diverse image-text pairs that243

cover a broad range of geographic contexts.244

Finetuning. Following pretraining, the finetuning stage focuses on adapting the model to effectively245

analyze geographical images and engage in interactive dialogues with users, which is critical for246

specialized tasks in GaGA. The projector’s parameters are fixed, which ensures that the model does247

not deviate from the fundamental visual understanding it has developed. Instead, the focus shifts248

to finetuning the LLM to enhance its ability to interpret and interact with the geographical content.249

The finetuning dataset is a combination of carefully curated subsets of three parts of MG-Geo. These250

datasets provide a comprehensive training foundation for the model’s specialized capabilities. The251

final finetuning dataset consists of 240k image-text pairs, ensuring a diverse and well-rounded input252

for the LLM adaptation.253

5 Expriment254

To demonstrate the efficacy of our dataset in addressing the geographic knowledge gap in existing255

models and to showcase its potential in downstream geolocation tasks, we conducted a comprehensive256

suite of experiments, the primary findings of which are presented in this section. Numerous additional257

experiments and further details are provided in the Appendix for thoroughness.258

5.1 Experimental Setup259

Benchmark. GWS15k is a high-quality benchmark with well-distributed global coverage. However,260

since it is not an open source, we have reproduced it in this study. We use the test set of OSV-5M as261

the database and collect evenly distributed imagery based on 43K cities and the surface area of each262

country. The pseudocode is shown in appendx.263

Metrics. We employ three metrics to evaluate the geolocation model’s prediction accuracy:264

• Accuracy of predicted geographical names at various administrative levels: country, region and265

city.266

• Accuracy of predicted coordinates within various distance thresholds: 1km, 25km, 200km, 750km,267

and 2500km, calculated as the haversine distance between the model’s predicted GPS coordinates268

and the ground truth.269

• Geoscore: it is defined as 5000exp(−δ/1492.7) based on the famous Geo-Guessr game. δ repre-270

sents the Haversine distance between predicted and ground truth image locations.271

Evaluation Mode. We employ two evaluation modes, hierarchical (HIER) and direct (DIRE).272

The “HIER” mode is primarily applied in the following scenario: for MLLMs that have not been273

finetuned on MG-Geo, we provide candidate administrative boundary names at each level to constrain274

their representation of administrative boundaries. In “DIRE” mode, the model directly predicts the275

location without constraints or hierarchical guidance. In Tables 5.2, 8 and 9, we use the “DIRE”276

mode as the default setting.277

5.2 Geolocation Performance278

The results of the administrative boundary prediction accuracy are shown in the left side of Table 5.2.279

To be clear, there is no guarantee that MLLM-based methods will consistently provide relevant280

answers. Therefore, we use recall rates to measure the proportion of valid answers in a large281

language model. GaGA demonstrates outstanding performance, surpassing the current state-of-the-art282

model—OSV-5M-Baseline—with a lead of 4.57% at the country level and 2.92% at the city level. It283

also achieves performance comparable to the best-performing models at the region level. Additionally,284
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Table 2: Administrative-Level Accuracy and Coordinates Accuracy of GaGA and Open-Source
Models on GWS15K Bench. Left: Administrative-Level. † indicates MLLM with comparable
parameter counts. We use bold to indicate the best performance, ‘ ’ for the second-best, and ‘

:::
’

for the third-best, respectively. Right: Coordinates Accuracy. ⋆ represents the model evaluated on
GWS15k reproduced in this paper.

Method Evaluation
Mode Recall Admin-Level Accuracy

Country Region City

LLaVA-Llama3† HIER 0.99 1.76 0.26 0.02
InternVL2† HIER 0.96 24.74 4.20 0.48
Qwen-VL† HIER 0.98 34.20 8.19 1.45
GeoReasoner† HIER 1

::::
40.63 9.57 1.11

StreetCLIP HIER 1 40.11
:::::
10.75

::::
3.02

OSV-5M-Baseline DIRE 1 58.49 29.58 3.36
GaGA† DIRE 1 63.06 27.95 6.28

Method Coordinates Accuracy (% @ km) Geoscore
1km 25km 200km 750km 2500km

ISNs 0.05 0.6 4.2 15.5 38.5 -
Translocator

::
0.5 1.1 8 25.5 48.3 -

GeoDecoder 0.7 1.5 8.7 26.9 50.5 -
GeoCLIP⋆ 0.2 3.1 15.4 40.3 71.2

::::::
2345.2

PIGEON 0.7 9.2
::::
31.2 65.7 85.1 -

OSV-5M-Baseline⋆ 0.08 14.9 39.3
::::
56.2

:::
74.4 2944.9

GaGA⋆ 0.1
:::
8.5 33.9 60.6 82.2 3113.0

we compare GaGA with advanced MLLM, such as LLaVA-Llama3, Qwen-VL [6], InternVL2 [8]285

and GeoReasoner [28]. LLaVA-Llama3 serves as our baseline model, which adopts the LLaVA [29]286

architecture with Llama3 [2] as its language backbone. Due to the limited size of its train set, its287

performance on geolocation is significantly poor. For GeoReasoner, we use the Clue Part (73k288

samples) of MG-Geo and the SFT data (2k samples)3 provided by the GeoReasoner’s authors for289

“Reasoning Tuning", along with 100k samples from the Meta Part of MG-Geo for “Location Tuning".290

The results show that GaGA outperforms these state-of-the-art MLLMs in terms of location accuracy.291

GaGA also outperforms StreetCLIP [18], a model based on the CLIP architecture and finetuned on292

street-view text data, on the GWS15k dataset.293

The Right side of Table 5.2 presents the performance comparison of GaGA with ISNs [31], Translo-294

cator [47], GeoDecoder [33], GeoCLIP [43], PIGEON [19], and OSV-5M-Baseline. GaGA performs295

relatively well in geolocation prediction, achieving the second-best performance across the 200km to296

2500km threshold range and the third-best performance at 25km. We evaluate the performance of297

OSV-5M-Baseline and GeoCLIP on the GWS15k dataset as reproduced in this work to provide a fairer298

comparison. GaGA outperforms OSV-5M-Baseline at the 1km, 750km, and 2500km granularities,299

and significantly outperforms GeoCLIP across the 25km to 2500km range. It is worth to notify that300

GaGA achieves the highest Geoscore among the three models, a metric that strikes a balance by301

rewarding precise predictions while mitigating the impact of large but infrequent errors. Since the302

remaining works cannot be reproduced, we are unable to obtain the corresponding Geoscore for them.303

Regarding output mechanisms, conventional LLMs exhibit inherent limitations in predicting long304

floating-point numbers like latitude and longitude [39, 25]. The sequential nature of next-token305

prediction often necessitates splitting these numbers into multiple tokens, potentially degrading306

the precision of the resulting floating-point value. Consequently, GaGA’s performance at the 1km307

and 25km thresholds underperforms expectations, underscoring the necessity for improvements in308

processing high-precision numerical outputs.309

5.3 Interactive Geolocation Analysis310

To further evaluate GaGA’s performance in interactive geolocation tasks, we curated a set of 547311

images encompassing both cultural and natural landscapes, each paired with meticulously annotated312

question-answer dialogues. We ensured that questions are closely related to the visible geographical313

elements without directly providing visual details to guide only location prediction. For example:314

“Considering the architectural design, what region of the world would you think displays such forms315

and why?”316

Table 3 shows the performance of different MLLMs under various questioning modes, including317

direct inquiry, providing a guiding question (+Q), and a question-answer pair (+QA). By comparing318

GaGA’s performance with its base model—LLaVA-Llama3, on the one hand, we observe that when a319

guiding question is provided, GaGA shows greater improvement at the region and city levels, except320

the country level; when an effective geographic prior information is provided, GaGA exhibits a greater321

performance increase across all levels. That indicates that GaGA has a distinct advantage in generating322

geographic knowledge related to the question and understanding and integrating prior content to323

refine its predictions.On the other hand, the decline in GaGA’s country-level localization performance324

3https://github.com/lingli1996/GeoReasoner
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Figure 3: Illustrations of GaGA’s dialogues in various scenarios. On the left, we demonstrate how
GaGA successfully incorporates external knowledge with human guidance; on the right, we showcase
the model’s predictive outcomes when given relevant prior information.

under guided questioning is primarily due to the multiple valid responses to geographical feature325

questions. For example, similar architectural styles across European countries can confuse GaGA326

at the country level after answering such questions. Conversely, LLaVA-Llama3, with inherently327

lower country recognition accuracy, benefits from external knowledge, improving the performance328

by roughly adjusting the prediction range. Additionally, Figure 3 illustrates examples of GaGA’s329

dialogues in different scenarios.330

Table 3: Performances of MLLMs with Direct Inquiry, Guiding Question (+ Q), and both question
and effective answer (+QA)

Method Evaluation
Mode Prompt Recall Admin-Level Accuracy

Country Region City

GaGA DIRE

Direct inquiry 1 64.89 27.97 7.67

+ Q 1 61.24 29.25 8.22
-3.65 +1.28 +0.55

+ QA 1 74.77 34.73 9.87
+9.88 +6.76 +2.2

LLaVA-LlaMA3 HIER

Direct inquiry 0.99 2.92 0.54 0

+ Q 0.99 4.38 0.54 0.05
+1.46 0 +0.05

+ QA 0.96 12.79 2.92 0.36
+9.87 +2.38 +0.36

6 Conclusion331

In this work, we tackled the challenges in global geolocation, particularly the lack of comprehensive332

geographic data for MLLMs and the limitations of existing methods. We introduced MG-Geo, the first333

large-scale, high-quality multimodal dataset rich in geographic element cues, specifically designed334

to bridge the geographic knowledge gap for MLLMs. Leveraging MG-Geo, we developed GaGA, a335

novel MLLM demonstrating superior performance over existing models and state-of-the-art baselines336

in predicting administrative boundaries. Crucially, GaGA’s interactive capability allows for refined337

and more accurate localization based on user input. This research emphasizes the importance of338

domain-specific high-quality datasets in advancing MLLM capabilities for complex geographical339

tasks (such as global geolocation), and paves the way for more geographic downstream tasks.340
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A Experimental Implementation Details486

All experiments are conducted using the XTuner platform [12], facilitating efficient multimodal487

model tuning and deployment. For reasoning tasks, we employed LMDeploy [11], a toolkit designed488

for compressing, deploying, and serving LLMs to optimize inference speed and memory efficiency,489

ensuring real time performance. We conduct all the experimetns are on 8 × RTX4090 GPUs.490

Pretraining. The projector is initialized using the ShareGPT4V [7] data, which provides pre-existing491

embeddings that facilitate the mapping of image features to textual descriptions.492

Finetuning. To optimize the LLM for its task-specific behavior, we apply Quantized Low-Rank493

Adaptation(QLoRA)[13] to finetune the language model. This technique enables efficient adaptation494

of the LLM to the specifics of geographical analysis and user interaction without requiring exhaustive495

retraining of the entire model.496

The settings for hyperparameters used throughout the training process include configurations for497

both pretraining and finetuning stages, along with specifications for the QLoRA and deployment498

settings. Table 4 and Table 5summarizes the detailed settings we use for pretraining and finetuning.499

Parameters not mentioned in the finetuning phase are the same as those in the pretraining phase.

Table 4: Pretraining Settings
Configuration Value

Dataset Meta Part of MG-Geo
Training Epochs 1
Total Batch Size 16
Optimizer AdamW
LR 2×10−4

LR Schedule CosineAnnealing
Weight Decay 0
Warmup Ratio 0.03
Adam Beta1 0.9
Adam Beta2 0.999
Image Resolution 336×336
Max Text Token Length 1472

Table 5: Fine-tuning Settings
Configuration Value

Dataset Mix240k of MG-Geo
Training Epochs 1
Total Batch Size 16
Optimizer AdamW
LR 2×10−5

Quantization Type BitsAndBytesConfig
Quantization Bits 4-bit
4-bit Quant Type nf
4-bit Compute Dtype torch.float16
lora Alpha 16
Low-Rank Matrix Rank 64
LoRA Dropout 0.05

500

B Model Architecture501

Dialog Part: What can you infer 
from the type of vegetation...

Different types of corpus

Visual Tokens

   Large Language Model     

Textual Tokens

   

Projector

Vision Enc.

    Tokenizer

Clue Part: There are rolling hills 
across much of Austria and ...

Meta Part:{ "city": xx;"country": xx; 
"latitude": xx; "longitude": xx }

  

    

  

Figure 4: The architecture of GaGA.

As shown in Figure 4, for the input images Xv , we502

employ the pretrained CLIP vision encoder fV , ef-503

fectively extracting high-level visual features from504

geographic images. The encoder utilizes the Vi-505

sion Transformer (ViT) architecture [14], allow-506

ing for robust representation of complex visual507

patterns within the images. Once the visual fea-508

tures are extracted, the projector layer fP is used509

to map these representations into the LLM’s word510

embedding space. Specifically, the visual features511

are encoded into visual tokens EV . The above512

process is formulated as:513

Ev = fP (fVM (Xv)) (1)
During the training phase, various types of corpus are encoded into textual tokens Et = fT (Xt),514

which are then concatenated with the visual tokens EV . This interaction facilitates a cross-modal515

exchange between the visual and textual modalities, enabling the model to learn richer, more coherent516

representations across both domains. Next, all the tokens are fed into the LLM to generate a517

corresponding output R, which is then processed further to produce the final response:518

R = fL [EV , ET ] (2)
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C Performances of Advanced MLLMs in Dialog519

As shown in the table 6, we evaluate InternVL2 [? ] and Qwen-VL [6] in geolocalization under520

interaction design for performance improvement.Qwen-VL performs poorly under the direct inquiry521

prompt setting, but its performance at the country level significantly improves after incorporating522

a guiding question. Similarly, InternVL2, after engaging in dialoge, uncovers more useful clues,523

leading to performance improvements across the country, region, and city levels, demonstrating the524

effectiveness of interaction.525

Table 6: Performance of advanced MLLMs with different types of prompt inputs.

Method Evaluation
Mode Prompt Recall Admin-Level Accuracy

Country Region City

GaGA DIRE
Direct inquiry 1 64.89 27.97 7.67

+ Q 1 61.24 29.25 8.22
-3.65 +1.28 +0.55

Qwen-VL HIER
Direct inquiry 0.96 13.89 6.03 2.01

+ Q 0.92 21.38 6.94 1.82
+7.49 +0.91 -0.19

InternVL2 HIER
Direct inquiry 0.96 54.11 19.19 3.29

+ Q 0.97 55.02 19.19 4.57
+0.91 0 +1.28

D Evaluation of Generated Dialogs526

As shown in Table 7, we use pairwise ratings (Win, Tie, Lose) against GPT-4V to evaluate GaGA’s527

dialogs on Fluency, Relevance, Informativeness, and Accuracy. “K" represents the Fleiss’ Kappa528

value [16], which is a robust statistical metric that quantifies the degree of agreement among multiple529

raters who classify items into a fixed set of categories. Three experts have assessed 50 samples and530

conducted 50 rounds of comparison. In all four evaluation metrics, GaGA consistently outperforms531

GPT-4V, and the ratings provided by the experts demonstrate a high degree of consistency.

Table 7: Evaluation of GaGA’s Dialog on Fluency, Relevance, Informativeness, and Accuracy with
Pairwise Ratings Against GPT-4V.

Metrics Win Loss Tie K
Fluency 31 3 16 0.55
Relevance 33 5 22 0.74
Informativeness 26 7 17 0.64
Accuracy 22 18 10 0.91

532

E Geolocation Performance on Open-Source Bench533

Im2GPS3k [44] datasets contain many non-localizable images (e.g., 35% in Im2gps3k lack geolo-534

cation), like selfies and indoor photos. Testing on these images could introduce unreliable errors535

or favor methods that exploit memory training biases in the distribution [3]. For consistency, we536

report GaGA’s performance on and Im2GPS3k, as shown in Table 8. While GaGA achieves a537

comparable performance to these state-of-the-art models, we believe that the more evenly distributed538

and challenging GWS15k dataset, as discussed in Section 5.2, provides a more accurate reflection of539

GaGA’s actual localization performance.540

F Ablation Experiments541

In Section 5.2, GWS15k is used as a subset of OSV-5M-test. To address any distribution differences542

from the sampling strategy, we evaluate the entire OSV-5M test set and report GaGA’s performance.543
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Table 8: Performances on Im2GPS3k Bench.

Benchmark Method Coordinates Accuracy (% @ km)
1km 25km 200km 750km 2500km

Im2GPS3k

PlaNet 8.5 24.8 34.3 48.4 64.6
CPlaNet 10.2 26.5 34.6 48.6 64.6
ISNs 10.5 28.0 36.6 49.7 66.0
Translocator 11.8 31.1

::::
46.7 58.9

:::
80.1

GeoDecoder 12.8 33.5 45.9
::::
61.0 76.1

PIGEON 11.3 36.7 53.8 72.4 85.3
GaGA

::::
11.7

:::
33.0 48.0 67.1 82.1

The entire test set consists of 210,122 images, which are well distributed globally and have excellent544

diversity. As shown in Table 9, the performance difference between GaGA and OSV-5M-Baseline545

aligns with Section 5.2’s findings. GaGA excels in coordinate prediction accuracy within the 750 km546

and 2500 km thresholds and leads in administrative boundary classification accuracy at the country547

and city levels.548

Table 9: Comparison of coordinates and administrative-level accuracy between OSV-5M-Baseline
and GaGA.

Model Coordinates Accuracy Admin-Level Accuracy
1km 25km 200km 750km 2500km Country Region City

OSV-5M-Baseline 0.10 17.05 47.60 66.27 81.18 67.43 39.31 6.07
GaGA 0.06 8.02 40.06 67.98 85.39 71.49 37.86 7.46

Furthermore, as shown in Table 10, we evaluate the impact of the training framework on the GaGA’s549

performance. Since our baseline model—LLaVA-Llama3—cannot produce valid coordinate outputs,550

the accuracy of coordinate predictions is not reported in this part. It can be observed that after551

pretraining, the GaGA-pretraining model achieves the highest accuracy in localization, though552

lacking flexible conversational abilities. The finetuning stage, which incorporates dialog data, slightly553

reduces localization accuracy but enables the model to flexibly integrate user-provided knowledge554

and analyze geographical features. Ultimately, we strike a balance between localization performance555

and conversational ability.556

Table 10: Impact of Training Framework on GaGA’s performance.

Method Evaluation
Mode Recall Admin-Level Accuracy

Country Region City

LLaVA-Llama3 HIER 0.99 1.76 0.26 0.02
GaGA-pretraining DIRE 0.99 63.38 28.84 6.47
GaGA-finetuning DIRE 1.00 63.06 27.95 6.28

G Discussion557

Integrating MLLM into image-based geographic localization enhances interpretability, interactiv-558

ity, and accuracy, benefiting applications like emergency response and environmental monitoring.559

However, there are still many scenarios in this field that deserve further explorations:560

Failure Cases. GaGA still faces limitations in distinguishing locations with similar scenes. For561

instance, when dealing with European countries with similar architectural styles, GaGA may confuse562

them, as evidenced by the results in Table 3. Furthermore, if users are unable to provide effective563

guidance, the model’s performance can deteriorate. These issues highlight the necessity of further re-564

search into knowledge extraction based on MLLMs to achieve more complex geographic localization565

capabilities. Simultaneously, it is also important to design effective evaluation mechanisms during566

interactions to retain and update correct information. To improve GaGA’s localization accuracy,567

researcher should focus on enhancing the model’s self-correction and adjustment mechanisms to568
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better adapt to complex and dynamic geographic environments while optimizing localization results569

through effective user guidance.570

Multimodal Integration for Enhanced Localization. Looking toward the future, the integration571

of additional modalities beyond visual and textual data offers the potential to further enrich the572

representation of geographic images, leading to improved localization performance and interactive573

capabilities. For example, future research may consider incorporating auditory data, such as ambient574

sounds from street view images. Similarly, the inclusion of temporal data, such as time-of-day575

or seasonal variations, could enable the model to interpret geographic images more accurately by576

recognizing how certain locations change over time. Furthermore, combining data from various577

sensors, like satellite images, weather patterns, and traffic data, could create a more comprehensive578

and context-aware system for geographic localization. By incorporating these diverse modalities,579

MLLMs can improve their ability to discern fine-grained details of a location, facilitating more580

dynamic and responsive interactions with users.581

Privacy Risks and Responsible Deployment. The use of MLLMs faces significant ethical challenges,582

particularly concerning privacy risks associated with sensitive location data. As these models583

process large volumes of geospatial data, including potentially personal or private information,584

concerns about user privacy and data security arise, especially if data is collected without explicit585

consent or shared in violation of privacy regulations. To mitigate these risks, researchers should586

protect sensitive information, ensure transparency in data usage, and implement safeguards against587

misuse. Additionally, while MLLMs offer substantial benefits in improving geographic localization,588

their deployment must be carefully managed. Responsible deployment involves addressing model589

limitations, managing biases in training data, ensuring transparency in data handling, and prioritizing590

user privacy. By balancing technological advancement with ethical considerations, MLLMs can serve591

society effectively while safeguarding stakeholders’ rights and interests.592

H Reproduction of Validation Set GWS15k593

To collect evenly distributed imagery, we used a database of 43,000 cities and each country’s surface594

area. We first sampled countries/regions based on their proportion of Earth’s surface area, then595

randomly selected a city within each and GPS coordinates within a 5 km radius of that city’s center to596

sample from OSV5M-Test. Figure 5 presents the global distribution of our test dataset, GWS15k. As597

depicted in the figure, the sampling points are uniformly distributed across the globe. This uniform598

distribution ensures that our dataset encompasses a wide range of geographical variations, providing599

a comprehensive basis for the robust evaluation and generalization of our proposed methods. We600

provide the pseudo-code for the reproduction of GWS15k.

Figure 5: Distribution of GWS15k.

601
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Algorithm 1 Reproduction of GWS15k
0: Input:
0: C (Cities dataset), Co (Countries dataset), Coord (GPS coordinates)
0: Nmax (Max valid locations), R (Radius: 5 km)
0: Output:
0: V (Valid locations)
0:
0: function COMPUTEPROB(Co,Atotal)
0: for each c ∈ Co do
0: Pbase[c]← Area[c]

Atotal
, Padj [c]← 0.5× Pbase[c] +

0.5
|Co|

0: end for
0: return Padj

0: end function
0:
0: function GENVALIDLOC(C,Co,Coord, Padj , Nmax, R)
0: V ← ∅
0: while |V | < Nmax do
0: Normalize Padj

0: cs ← sample from Co with Padj

0: S ← {city ∈ C | city.country = cs}
0: ss ← sample from S
0: coordc ← ss.coordinates
0: for each coord ∈ Coord do
0: d← haversine(coordc, coord)
0: if d ≤ R and coord /∈ V then
0: Add coord to V
0: end if
0: end for
0: end while
0: return V
0: end function=0

I Prompts Employed in the Clue Part Generation602

To ensure question variety, we design multiple templates for each question type following the approach603

outlined in [29]. These templates provide variation while maintaining focus on the geolocalization604

task. For example, the following are some templates we use in the Clue Part:605

• Analyze the given image for clues that help in geolocation and606

combine these clues to localize the image. Output the answer in607

JSON format.608

• Can you identify the place where this image was taken? Analyze609

the street view image from multiple angles to infer its geographic610

location and output the results and clues in JSON format.611

• Where was this image taken? Analyze the image in conjunction with612

the geographic clues in the image. Outputs localization results and613

inference clues in JSON format.614

J Prompts Employed in the Dialog Part Generation615

The CoT Deduction prompt that guides the model through the steps of reasoning and prediction is as616

follows:617
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CoT Deduction Prompt

[Role Setting]
You are an excellent GeoGusser player and questioner. The player deduces the location step
by step from clues like environment, climate, buildings, culture, and appearance, while the
questioner guides deeper analysis to uncover more clues.

[Reasoning QA]
1. Based on the image provided to you; please conduct THREE rounds of QAs (Q1A1,
Q2A2, and Q3A3) between the questioner and the player.
2. Questions should be sufficiently challenging and closely related to the visual elements but
NOT actively provide visual details to the player.
3. Only include questions that guide position prediction and require the player to utilize
complex reasoning, world knowledge, and interpretive answers to gradually deduce the
location. When answering complex questions, provide detailed reasoning steps for clarity
and persuasiveness.

[Coordinate Prediction]
1. After the reasoning, the questioner should ask about the geographic coordinates and request
an answer from the player, denoted as Q4A4.
2. Based on previous rationale and analysis, the player makes the best prediction and
briefly explains the choice. The player MUST provide reasonable coordinates regardless of
uncertainty. Please use Decimal Degrees for coordinates and STRICTLY follow this JSON
format: {(latitude, longitude)}

618

The CoT Introspection prompt that encourages GPT-4V to reexamine the image and reflect on the619

reasoning generated during the CoT Deduction process is as follows:620

CoT Introspection Prompt

[Attention]
Your prediction is incorrect!

[Reflecting]
The actual geographic coordinates are {(X, Y)}. Please revise your answers (A1-A4) base on
this. You should correct the wrong deduction and supplement overlooked clues.

[Request]
1. Use a reasoning tone.
2. The correct coordinates MUST be given in A4.
3. Keep the questions (i.e., Q1 to Q4) consistent and include them in your response.
Please use Decimal Degrees for coordinates and STRICTLY follow this JSON format:
{(latitude, longitude)}

621

K Additional Qualitative Results622

Additional Qualitative results of GaGA are shown in Figure 6 and Figure 7.623
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Figure 6: Qualitative results of GaGA on rural images.

Figure 7: Qualitative results of GaGA on rural images.
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NeurIPS Paper Checklist624

1. Claims625

Question: Do the main claims made in the abstract and introduction accurately reflect the626

paper’s contributions and scope?627

Answer: [Yes]628

Justification: The abstract and introduction provide a comprehensive overview of the629

background and the motivation of this study, efficiently outlining its main contributions,630

thus accurately reflecting the paper’s scope and significance.631

Guidelines:632

• The answer NA means that the abstract and introduction do not include the claims633

made in the paper.634

• The abstract and/or introduction should clearly state the claims made, including the635

contributions made in the paper and important assumptions and limitations. A No or636

NA answer to this question will not be perceived well by the reviewers.637

• The claims made should match theoretical and experimental results, and reflect how638

much the results can be expected to generalize to other settings.639

• It is fine to include aspirational goals as motivation as long as it is clear that these goals640

are not attained by the paper.641

2. Limitations642

Question: Does the paper discuss the limitations of the work performed by the authors?643

Answer: [Yes]644

Justification: The paper provides the limitation discussion in Appendix G645

Guidelines:646

• The answer NA means that the paper has no limitation while the answer No means that647

the paper has limitations, but those are not discussed in the paper.648

• The authors are encouraged to create a separate "Limitations" section in their paper.649

• The paper should point out any strong assumptions and how robust the results are to650

violations of these assumptions (e.g., independence assumptions, noiseless settings,651

model well-specification, asymptotic approximations only holding locally). The authors652

should reflect on how these assumptions might be violated in practice and what the653

implications would be.654

• The authors should reflect on the scope of the claims made, e.g., if the approach was655

only tested on a few datasets or with a few runs. In general, empirical results often656

depend on implicit assumptions, which should be articulated.657

• The authors should reflect on the factors that influence the performance of the approach.658

For example, a facial recognition algorithm may perform poorly when image resolution659

is low or images are taken in low lighting. Or a speech-to-text system might not be660

used reliably to provide closed captions for online lectures because it fails to handle661

technical jargon.662

• The authors should discuss the computational efficiency of the proposed algorithms663

and how they scale with dataset size.664

• If applicable, the authors should discuss possible limitations of their approach to665

address problems of privacy and fairness.666

• While the authors might fear that complete honesty about limitations might be used by667

reviewers as grounds for rejection, a worse outcome might be that reviewers discover668

limitations that aren’t acknowledged in the paper. The authors should use their best669

judgment and recognize that individual actions in favor of transparency play an impor-670

tant role in developing norms that preserve the integrity of the community. Reviewers671

will be specifically instructed to not penalize honesty concerning limitations.672

3. Theory assumptions and proofs673

Question: For each theoretical result, does the paper provide the full set of assumptions and674

a complete (and correct) proof?675
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Answer: [Yes]676

Justification: The method in this article includes theoretical formulation. Moreover, it covers677

detailed ablative studies and qualitative studies, ensuring completeness and accuracy in the678

theoretical presentation.679

Guidelines:680

• The answer NA means that the paper does not include theoretical results.681

• All the theorems, formulas, and proofs in the paper should be numbered and cross-682

referenced.683

• All assumptions should be clearly stated or referenced in the statement of any theorems.684

• The proofs can either appear in the main paper or the supplemental material, but if685

they appear in the supplemental material, the authors are encouraged to provide a short686

proof sketch to provide intuition.687

• Inversely, any informal proof provided in the core of the paper should be complemented688

by formal proofs provided in appendix or supplemental material.689

• Theorems and Lemmas that the proof relies upon should be properly referenced.690

4. Experimental result reproducibility691

Question: Does the paper fully disclose all the information needed to reproduce the main ex-692

perimental results of the paper to the extent that it affects the main claims and/or conclusions693

of the paper (regardless of whether the code and data are provided or not)?694

Answer: [Yes]695

Justification: We have provided a detailed description of our proposed benchmark and696

metric, experimental settings and dataset description for reproduction.697

Guidelines:698

• The answer NA means that the paper does not include experiments.699

• If the paper includes experiments, a No answer to this question will not be perceived700

well by the reviewers: Making the paper reproducible is important, regardless of701

whether the code and data are provided or not.702

• If the contribution is a dataset and/or model, the authors should describe the steps taken703

to make their results reproducible or verifiable.704

• Depending on the contribution, reproducibility can be accomplished in various ways.705

For example, if the contribution is a novel architecture, describing the architecture fully706

might suffice, or if the contribution is a specific model and empirical evaluation, it may707

be necessary to either make it possible for others to replicate the model with the same708

dataset, or provide access to the model. In general. releasing code and data is often709

one good way to accomplish this, but reproducibility can also be provided via detailed710

instructions for how to replicate the results, access to a hosted model (e.g., in the case711

of a large language model), releasing of a model checkpoint, or other means that are712

appropriate to the research performed.713

• While NeurIPS does not require releasing code, the conference does require all submis-714

sions to provide some reasonable avenue for reproducibility, which may depend on the715

nature of the contribution. For example716

(a) If the contribution is primarily a new algorithm, the paper should make it clear how717

to reproduce that algorithm.718

(b) If the contribution is primarily a new model architecture, the paper should describe719

the architecture clearly and fully.720

(c) If the contribution is a new model (e.g., a large language model), then there should721

either be a way to access this model for reproducing the results or a way to reproduce722

the model (e.g., with an open-source dataset or instructions for how to construct723

the dataset).724

(d) We recognize that reproducibility may be tricky in some cases, in which case725

authors are welcome to describe the particular way they provide for reproducibility.726

In the case of closed-source models, it may be that access to the model is limited in727

some way (e.g., to registered users), but it should be possible for other researchers728

to have some path to reproducing or verifying the results.729
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5. Open access to data and code730

Question: Does the paper provide open access to the data and code, with sufficient instruc-731

tions to faithfully reproduce the main experimental results, as described in supplemental732

material?733

Answer: [Yes]734

Justification: We provide the URLs in our paper to provide the codes and datasets in the735

reviewing period. Our codes are publicly available now.736

Guidelines:737

• The answer NA means that paper does not include experiments requiring code.738

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/739

public/guides/CodeSubmissionPolicy) for more details.740

• While we encourage the release of code and data, we understand that this might not be741

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not742

including code, unless this is central to the contribution (e.g., for a new open-source743

benchmark).744

• The instructions should contain the exact command and environment needed to run to745

reproduce the results. See the NeurIPS code and data submission guidelines (https:746

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.747

• The authors should provide instructions on data access and preparation, including how748

to access the raw data, preprocessed data, intermediate data, and generated data, etc.749

• The authors should provide scripts to reproduce all experimental results for the new750

proposed method and baselines. If only a subset of experiments are reproducible, they751

should state which ones are omitted from the script and why.752

• At submission time, to preserve anonymity, the authors should release anonymized753

versions (if applicable).754

• Providing as much information as possible in supplemental material (appended to the755

paper) is recommended, but including URLs to data and code is permitted.756

6. Experimental setting/details757

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-758

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the759

results?760

Answer: [Yes]761

Justification: We give the experimental settings in Section 5.1 and Appendix A762

Guidelines:763

• The answer NA means that the paper does not include experiments.764

• The experimental setting should be presented in the core of the paper to a level of detail765

that is necessary to appreciate the results and make sense of them.766

• The full details can be provided either with the code, in appendix, or as supplemental767

material.768

7. Experiment statistical significance769

Question: Does the paper report error bars suitably and correctly defined or other appropriate770

information about the statistical significance of the experiments?771

Answer: [No]772

Justification: Generally, papers in our field do not include error bars, and we found that the773

model evaluating is stable with the little variation across multiple runs.774

Guidelines:775

• The answer NA means that the paper does not include experiments.776

• The authors should answer "Yes" if the results are accompanied by error bars, confi-777

dence intervals, or statistical significance tests, at least for the experiments that support778

the main claims of the paper.779
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• The factors of variability that the error bars are capturing should be clearly stated (for780

example, train/test split, initialization, random drawing of some parameter, or overall781

run with given experimental conditions).782

• The method for calculating the error bars should be explained (closed form formula,783

call to a library function, bootstrap, etc.)784

• The assumptions made should be given (e.g., Normally distributed errors).785

• It should be clear whether the error bar is the standard deviation or the standard error786

of the mean.787

• It is OK to report 1-sigma error bars, but one should state it. The authors should788

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis789

of Normality of errors is not verified.790

• For asymmetric distributions, the authors should be careful not to show in tables or791

figures symmetric error bars that would yield results that are out of range (e.g., negative792

error rates).793

• If error bars are reported in tables or plots, The authors should explain in the text how794

they were calculated and reference the corresponding figures or tables in the text.795

8. Experiments compute resources796

Question: For each experiment, does the paper provide sufficient information on the com-797

puter resources (type of compute workers, memory, time of execution) needed to reproduce798

the experiments?799

Answer: [NA]800

Justification: We give the information that all the experimetns are conducted on 8 ×801

RTX4090 GPUs but do not give more details of memory, training time and compute802

resources.803

Guidelines:804

• The answer NA means that the paper does not include experiments.805

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,806

or cloud provider, including relevant memory and storage.807

• The paper should provide the amount of compute required for each of the individual808

experimental runs as well as estimate the total compute.809

• The paper should disclose whether the full research project required more compute810

than the experiments reported in the paper (e.g., preliminary or failed experiments that811

didn’t make it into the paper).812

9. Code of ethics813

Question: Does the research conducted in the paper conform, in every respect, with the814

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?815

Answer: [Yes]816

Justification: After carefully reviewing the referenced document, we certify that we comply817

with the Code of Ethics.818

Guidelines:819

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.820

• If the authors answer No, they should explain the special circumstances that require a821

deviation from the Code of Ethics.822

• The authors should make sure to preserve anonymity (e.g., if there is a special consider-823

ation due to laws or regulations in their jurisdiction).824

10. Broader impacts825

Question: Does the paper discuss both potential positive societal impacts and negative826

societal impacts of the work performed?827

Answer: [Yes]828

Justification: We discuss both potential positice societal impacts and negative societal829

impacts of the work performed in Appendix G830
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Guidelines:831

• The answer NA means that there is no societal impact of the work performed.832

• If the authors answer NA or No, they should explain why their work has no societal833

impact or why the paper does not address societal impact.834

• Examples of negative societal impacts include potential malicious or unintended uses835

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations836

(e.g., deployment of technologies that could make decisions that unfairly impact specific837

groups), privacy considerations, and security considerations.838

• The conference expects that many papers will be foundational research and not tied839

to particular applications, let alone deployments. However, if there is a direct path to840

any negative applications, the authors should point it out. For example, it is legitimate841

to point out that an improvement in the quality of generative models could be used to842

generate deepfakes for disinformation. On the other hand, it is not needed to point out843

that a generic algorithm for optimizing neural networks could enable people to train844

models that generate Deepfakes faster.845

• The authors should consider possible harms that could arise when the technology is846

being used as intended and functioning correctly, harms that could arise when the847

technology is being used as intended but gives incorrect results, and harms following848

from (intentional or unintentional) misuse of the technology.849

• If there are negative societal impacts, the authors could also discuss possible mitigation850

strategies (e.g., gated release of models, providing defenses in addition to attacks,851

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from852

feedback over time, improving the efficiency and accessibility of ML).853

11. Safeguards854

Question: Does the paper describe safeguards that have been put in place for responsible855

release of data or models that have a high risk for misuse (e.g., pretrained language models,856

image generators, or scraped datasets)?857

Answer: [NA]858

Justification: The proposed dataset are constructed on public datasets such OSV5M and859

Google Landmark V2. These datasets have been extensively used in the community and860

have undergone comprehensive safety risk assessments.861

Guidelines:862

• The answer NA means that the paper poses no such risks.863

• Released models that have a high risk for misuse or dual-use should be released with864

necessary safeguards to allow for controlled use of the model, for example by requiring865

that users adhere to usage guidelines or restrictions to access the model or implementing866

safety filters.867

• Datasets that have been scraped from the Internet could pose safety risks. The authors868

should describe how they avoided releasing unsafe images.869

• We recognize that providing effective safeguards is challenging, and many papers do870

not require this, but we encourage authors to take this into account and make a best871

faith effort.872

12. Licenses for existing assets873

Question: Are the creators or original owners of assets (e.g., code, data, models), used in874

the paper, properly credited and are the license and terms of use explicitly mentioned and875

properly respected?876

Answer: [Yes]877

Justification: In this paper, we clearly specified the datasets and code sources used, and878

provided appropriate citations in the reference section.879

Guidelines:880

• The answer NA means that the paper does not use existing assets.881

• The authors should cite the original paper that produced the code package or dataset.882
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• The authors should state which version of the asset is used and, if possible, include a883

URL.884

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.885

• For scraped data from a particular source (e.g., website), the copyright and terms of886

service of that source should be provided.887

• If assets are released, the license, copyright information, and terms of use in the888

package should be provided. For popular datasets, paperswithcode.com/datasets889

has curated licenses for some datasets. Their licensing guide can help determine the890

license of a dataset.891

• For existing datasets that are re-packaged, both the original license and the license of892

the derived asset (if it has changed) should be provided.893

• If this information is not available online, the authors are encouraged to reach out to894

the asset’s creators.895

13. New assets896

Question: Are new assets introduced in the paper well documented and is the documentation897

provided alongside the assets?898

Answer: [Yes]899

Justification: We have provided the URLs of the code and data, along with detailed us-900

age instructions in our paper. We have made the code and data publicly available to the901

community.902

Guidelines:903

• The answer NA means that the paper does not release new assets.904

• Researchers should communicate the details of the dataset/code/model as part of their905

submissions via structured templates. This includes details about training, license,906

limitations, etc.907

• The paper should discuss whether and how consent was obtained from people whose908

asset is used.909

• At submission time, remember to anonymize your assets (if applicable). You can either910

create an anonymized URL or include an anonymized zip file.911

14. Crowdsourcing and research with human subjects912

Question: For crowdsourcing experiments and research with human subjects, does the paper913

include the full text of instructions given to participants and screenshots, if applicable, as914

well as details about compensation (if any)?915

Answer: [No]916

Justification: This research does not involve any crowdsourcing experiments or studies with917

human subjects.918

Guidelines:919

• The answer NA means that the paper does not involve crowdsourcing nor research with920

human subjects.921

• Including this information in the supplemental material is fine, but if the main contribu-922

tion of the paper involves human subjects, then as much detail as possible should be923

included in the main paper.924

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,925

or other labor should be paid at least the minimum wage in the country of the data926

collector.927

15. Institutional review board (IRB) approvals or equivalent for research with human928

subjects929

Question: Does the paper describe potential risks incurred by study participants, whether930

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)931

approvals (or an equivalent approval/review based on the requirements of your country or932

institution) were obtained?933

Answer: [NA]934
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Justification: No crowdsourceing experiments or research with human subjects were involved935

in this study. All experiments were conducted using codes and GPU servers.936

Guidelines:937

• The answer NA means that the paper does not involve crowdsourcing nor research with938

human subjects.939

• Depending on the country in which research is conducted, IRB approval (or equivalent)940

may be required for any human subjects research. If you obtained IRB approval, you941

should clearly state this in the paper.942

• We recognize that the procedures for this may vary significantly between institutions943

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the944

guidelines for their institution.945

• For initial submissions, do not include any information that would break anonymity (if946

applicable), such as the institution conducting the review.947

16. Declaration of LLM usage948

Question: Does the paper describe the usage of LLMs if it is an important, original, or949

non-standard component of the core methods in this research? Note that if the LLM is used950

only for writing, editing, or formatting purposes and does not impact the core methodology,951

scientific rigorousness, or originality of the research, declaration is not required.952

Answer: [Yes]953

Justification: In the process of creating our benchmark, we called LLM API to help us954

generate and filter data. These are all detailed in Section 3955

Guidelines:956

• The answer NA means that the core method development in this research does not957

involve LLMs as any important, original, or non-standard components.958

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)959

for what should or should not be described.960
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