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Abstract

With the growing use of large language mod-
els (LLMs) in social, educational, and assistive
contexts, understanding and controlling their
personality traits has become increasingly im-
portant. In this survey, we provide a compre-
hensive overview of personality modeling in
LLMs, covering methods ranging from rule-
based systems to prompt engineering, fine-
tuning, agent and retrieval techniques, as well
as approaches to multimodal setups. We ex-
amine both qualitative and quantitative eval-
uation protocols, and identify key challenges
including subjectivity, context dependence, and
limited multimodal integration. We conclude
by outlining open questions and future direc-
tions for building consistent, expressive, and
trustworthy persona-driven LLMs.

1 Introduction

Recent breakthroughs in large language models
(LLMs) have reshaped human—computer interac-
tion, enabling systems that communicate with a flu-
ency once reserved for human-to-human dialogue.
These systems now power chatbots (Touvron et al.,
2023), code assistants (Bai et al., 2023), and multi-
modal agents (Xie et al., 2024) that emulate rich,
real-world communication in purely digital settings.
Consequently, the research agenda has expanded
beyond model scaling to encompass data-efficient
training strategies (Lin et al., 2024b), rigorous eval-
uation frameworks for ensure quality and safety
(Lin and Chen, 2023; Inan et al., 2023) and investi-
gations about how to emulate human behavior in
digital environments (Jiang et al., 2024).

A subtler frontier within this evolving landscape
is the extent to perform consistent and recogniz-
able personality traits that enrich user engagement
using LLMs (Lee et al., 2025). As these mod-
els increasingly mediate social, educational, and
assistive interactions, their perceived personality
plays a critical role in shaping user trust, satisfac-
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Figure 1: Illustration of a model performing different
style-answers to the same input, based on its personality.

tion, and long-term adoption (Kroczek et al., 2024).
This emergent focus has sparked growing interest
in how personality traits arise in LLMs, whether
through pre-training data, instruction tuning, or
prompt design, and how these traits can be mea-
sured, controlled, or aligned with user expectations
and application goals.

Furthermore, the study of personality in LLMs
raises fundamental questions at the intersection of
linguistics, psychology and artificial intelligence.
Unlike traditional systems that rely on hardcoded
traits, scripted responses, or purely statistical meth-
ods such as n-gram text generation (De Novais
et al., 2010), LLMs can dynamically adapt their
tone and style based on subtle contextual cues,
achieving stable personality profiles and manifest-
ing distinct persona-like behaviours when con-
fronted with the same question or, conversely, sus-
tain a coherent persona across disparate tasks, as
illustrated in Figure 1. This has led to the develop-
ment of new methodologies for personality assess-
ment, drawing from established psycholinguistic
frameworks such as the Big Five Inventory (John
et al., 1991), as well as the creation of novel bench-
marks and evaluation protocols tailored to genera-
tive Al systems (Huang and Hadfi, 2025). Addition-
ally, since personality expression extends beyond
text, integrating multimodal signals (i.e. voice tone,
facial expressions, and gesture) remains a key chal-
lenge, calling for multidisciplinary approaches that



bridge language, vision, and speech technologies.

In light of these developments, this survey pro-
vides a comprehensive overview of the emerging
landscape of personality in LLMs. In the following
sections, we delve into a discussion of related stud-
ies, showing digital personality using traditional
methods, LLM-based approach, multimodal setup
and evaluation methods, and we summarize the
taxonomy in Figure 2. We also highlight the chal-
lenges and potential gaps of the field, paving paths
for future research.

2 Rule Based Personality Modelling

Early studies focused on the identification of per-
sonality traits and stylistic patterns through rule-
based systems with manually curated lexical re-
sources (Argamon et al., 2005), as well as hand-
engineered features such as word counts and n-
grams (Mairesse et al., 2007; Pennebaker et al.,
2001). Some approaches also leveraged distribu-
tional semantics and classical embeddings, com-
bined with traditional machine learning algorithms
(Tandera et al., 2017). However, these methods
were constrained by the limited expressiveness of
their representations and a lack of contextual un-
derstanding. Consequently, most studies remained
focused on classification tasks, rarely addressing
the dynamic and generative aspects of personality
expression in dialogue.

3 LLM-Driven Personality

The introduction of the Transformer architecture
(Vaswani et al., 2017) marked a paradigm shift in
natural language processing, giving rise to decoder-
based models capable of generating fluent and co-
herent text at scale. These models leverage massive
datasets spanning diverse domains to learn rich rep-
resentations of language, enabling generalization
across a broad range of tasks (Brown et al., 2020).

Driven by their massive parameter counts, LLMs
excel at capturing complex linguistic phenomena
such as semantics, syntax, and long-range depen-
dencies (Touvron et al., 2023), giving rise to emer-
gent human-like behaviours. Among these, model-
ing human personality within LLMs has emerged
as a promising yet underexplored direction. This
line of research seeks to design models that not
only respond coherently to input but also reflect
stable psychological traits, thereby enriching inter-
action quality and user engagement (Kroczek et al.,
2024).

Recent studies in this area have followed two
primary research directions: (1) identifying and
characterizing the intrinsic personality traits mani-
fested by LLMs, and (2) developing mechanisms
to induce specific personality traits. The first line
focuses on evaluating the implicit personality ten-
dencies exhibited by pre-trained models, often us-
ing established psychological frameworks such as
the Myers-Briggs Type Indicator (MBTI) (Myers
and McCaulley, 1988) and the Big Five personality
traits (De Raad, 2000). For instance, Pan and Zeng
(2023) and Serapio-Garcia et al. (2023) conducted
empirical analyses to assess how LLMs align with
human personality, suggesting that some traits may
emerge naturally as a byproduct of the training data
and architectural biases.

Beyond merely identifying inherent tendencies,
equipping these models with specific personality
traits presents a more complex challenge, involving
multiple stages of adaptation and control. Typi-
cally, the development of LLMs involves two main
phases: pre-training and fine-tuning. In the pre-
training stage, the model is exposed to large-scale
corpora through an unsupervised next-token pre-
diction objective (Brown et al., 2020), enabling it
to learn rich representations of language, including
grammar, semantics, and discourse patterns. Fine-
tuning then follows as a supervised process that
adapts these general capabilities to more specific
tasks or domains, often using task-specific labeled
datasets (Ziegler et al., 2024).

While supervised fine-tuning affords precise per-
sona control, its dependence on extensive, high-
quality, persona-aligned data renders it costly
and difficult to scale. To bypass these weight
updates, recent work explores in-context learn-
ing (ICL), conditioning the model at inference
with persona-defining instructions or exemplars
(Dong et al., 2024a). Intrinsic conditioning is fur-
ther complemented by extrinsic controllers, such
as agent-style planners (Park et al., 2023) and
retrieval-augmented generation (RAG) modules
(Lewis et al., 2020), that dynamically inject user
profiles, episodic memory, or affective states into
the prompt. Following, we delve into the main
strategies used to address personality in LL.Ms, out-
lining their underlying mechanisms, benefits, and
limitations.

3.1 Zero-Shot Learning

Zero-shot learning refers to the ability of large lan-
guage models to perform new tasks or exhibit spe-
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Figure 2: Taxonomy of personality modeling task on digital environments.

cific behaviors without receiving any explicit exam-
ples or task-specific training (Brown et al., 2020).
Instead, the model relies solely on its pre-trained
knowledge and the conditioning provided by a care-
fully designed prompt. In the context of personality
modeling, zero-shot approaches leverage this inher-
ent flexibility by crafting prompts that implicitly
encode the desired psychological traits, guiding the
model to generate responses aligned with specific
personality profiles.

One notable example is PersonaLLM (Jiang
et al., 2024), which investigates whether LLMs
can consistently exhibit specific Big Five person-
ality traits in a zero-shot setting. The authors em-
ployed prompts to instantiate distinct personality

profiles (e.g., high extroversion and low neuroti-
cism). These persona-conditioned models were
then evaluated via both questionnaire and open-
ended storytelling tasks. Results showed that the
simulated responses aligned with the intended per-
sonality traits both quantitatively and qualitatively,
with human raters correctly inferring some traits
from generated text.

Jiang et al. (2023b) present the Machine Person-
ality Inventory (MPI), a Big-Five multiple-choice
test that elicits LLM self-ratings in a purely zero-
shot setting. The resulting scores produce inter-
nally consistent, human-like profiles. They further
introduce Personality Prompting (P2), a chain-of-
descriptors template that reliably induces target



traits without any parameter updates.

Some other works (Ramirez et al., 2023; Lee
et al., 2024) have also investigated the use of zero-
shot prompting techniques to align the personal-
ity of large language models. However, zero-shot
methods present challenges in consistently main-
taining the intended traits across diverse conversa-
tional contexts and potential sensitivity to subtle
variations in prompt phrasing, affecting stability
and predictability of the personality outcomes.

3.2 Few-Shot Learning

Few-shot learning conditions an LLM with a hand-
ful of persona-labelled exemplars inserted directly
into the input. These in-prompt demonstrations
provide on-the-fly supervision, where no parameter
updates are required, enabling the model to inter-
nalise and generalise the target psychological style
across new topics and interaction contexts.

Zhu et al. (2024) evaluate few-shot prompting as
a baseline for inducing personality traits in LLMs.
They incorporate exemplar responses derived from
psychometric profiles, such as IPIP-NEO question-
naires (Johnson, 2014), into the prompt to simu-
late specific personality expressions. This method
allows the model to align with target traits more
reliably during interaction, serving as a behavioral
scaffold for personality instantiation.

Another notable approach is FERMI (Kim and
Yang, 2024), which proposes a few-shot per-
sonalization framework that iteratively optimizes
prompts using user profiles and a small set of prior
responses. Instead of relying solely on correct ex-
amples, the proposed method also incorporates mis-
aligned LLM outputs as additional context to guide
prompt refinement. At inference, FERMI selects
the most relevant personalized prompt based on the
test query.

Despite its advances in personality consistence
when compared to zero-shot approach, it is impor-
tant to highlight the limitations of few-shot based
methods. The performance depends heavily on the
quality and consistency of the demonstrations, and
the lack of robust generalization to unseen traits or
domains remains a challenge.

3.3 Fine-Tuning

Fine-tuning refers to the process of updating the in-
ternal parameters of a pre-trained language model
by training it on labeled datasets tailored to specific
tasks or desired behaviors. Unlike zero-shot or
few-shot methods, fine-tuning does not rely solely

on prompt manipulation during inference. Instead,
it systematically adjusts the model’s weights to
internalize the desired personality traits. This ap-
proach enables the creation of agents whose linguis-
tic style, emotional tone, and response strategies
are deeply aligned with specified psychological
profiles.

Character-LLM framework (Shao et al., 2023)
models personality through supervised fine-tuning
of LLMs on synthetic, character-specific experi-
ence data. The authors reconstruct a character’s
biography by extracting profile-based scenes and
extending them into detailed interactions. These ex-
periences are uploaded to the base model, training
it to internalize emotional, behavioral, and linguis-
tic patterns unique to historical or fictional figures.
Additionally, protective experiences are introduced
to suppress out-of-character knowledge, reinforc-
ing persona consistency. The fine-tuned agents
demonstrate improved personality alignment, mem-
ory of past events, and reduced hallucinations in
role-based simulations.

ORCA (Huang, 2024) introduces a multi-stage
fine-tuning framework for enhancing the role-
playing capabilities of large language models by in-
corporating psychologically grounded personality
traits. The authors first infer continuous Big Five
personality scores from user-generated content,
then simulate user profiles, motivations, and psy-
chological activities to construct a rich, personality-
conditioned dataset. Two fine-tuning strategies
are proposed: PTIT (using trait descriptions) and
PSIT (using interpreted trait scores), with empir-
ical results showing that the proposed approach
substantially improves personality consistency and
relevance across generated outputs, setting a new
benchmark for personalized dialogue generation in
social platforms.

Despite their promising results, fine-tuned mod-
els suffer from several limitations. First, they re-
quire large amounts of high-quality, personality-
specific training data, which is scarce and costly to
obtain. Second, the fine-tuning process can lead to
overfitting, reducing generalizability across tasks or
domains. Third, full fine-tuning is computationally
expensive and environmentally costly. Lastly, per-
sonality fine-tuning can unintentionally overwrite
general knowledge, a phenomenon often called as
Catastrophic forgetting (McCloskey and Cohen,
1989; Kirkpatrick et al., 2017).



3.4 Retrieval-Augmented Generation

Retrieval-augmented generation enriches language-
model outputs by fetching evidence from an exter-
nal knowledge base at inference time, passing the
retrieved passages to the prompt so the generator
can ground its response in verifiable facts, allow-
ing an improvement to factual accuracy, reduce
hallucinations, and facilitate rapid domain adapta-
tion across tasks (Lewis et al., 2020). The same
retrieval-and-fusion loop also offers a lightweight
pathway to persona control: by sourcing personal-
ity descriptors, dialogue history, or user-preference
records on the fly, RAG can imprint stable behav-
ioral signatures on each reply maintaining coherent
and user-aligned personality over time.

PersonaRAG (Zerhoudi and Granitzer, 2024) ex-
tends the RAG paradigm by embedding a modular
multi-agent architecture aimed at enhancing user-
aware retrieval and generation. The system dis-
tributes responsibilities across five dedicated agents
(user profile, contextual retrieval, session track-
ing, document ranking, and feedback integration),
which communicate through a global memory pool
to iteratively adapt responses to the user’s evolv-
ing needs. This framework exemplifies how RAG
can be leveraged for fine-grained personalization
without fine-tuning, since its reliance on in-context
learning.

Similarly, Huang et al. (2024) extends the
paradigm with Emotional RAG, a framework that
integrates emotional context into the retrieval pro-
cess, allowing role-playing agents to generate re-
sponses that are congruent with both the seman-
tic and emotional states of the conversation, en-
hancing the authenticity of simulated personalities.
Complementarily, PersonaAl (Kimara et al., 2025)
presents a mobile-based RAG system for generat-
ing persona-consistent responses by continuously
collect and embedded user data for retrieval, en-
abling dynamic prompt augmentation with con-
textually relevant information. These approaches
demonstrate that retrieval-based systems can sig-
nificantly enhance both the consistency and expres-
siveness of personality modeling, while offering
greater interpretability and modularity than purely
parameter-based methods.

Despite its advantages, RAG systems face no-
table limitations. Barnett et al. (2024) identify
seven failure points in RAG pipelines: missing con-
tent, missed top-ranked documents, context exclu-
sion, extraction failure, format mismatch, incorrect

specificity, and incomplete answers. These issues
reflect the complexity of coordinating retrieval and
generation, particularly under noisy, ambiguous,
or underspecified conditions. Furthermore, since
RAG relies on multiple interacting modules, valida-
tion must occur in real time, presenting a bottleneck
for system robustness and deployment.

3.5 LLM-Based Agents

LLM-based agents augment a language-model rea-
soning core with memory, tool-use, and decision
modules that track state, incorporate feedback,
and plan over multi-turn horizons, enabling au-
tonomous, goal-oriented behaviour in complex en-
vironments (Yao et al., 2022; Schick et al., 2023).
Integrating personality modelling into this architec-
ture adds a further layer of coherence: the agent
can modulate tone, affect, and response strategy
according to stable traits such as openness, con-
scientiousness, or extraversion, an ability essential
for scenarios where persona consistency directly
shapes user trust and engagement.

Recent studies have proposed agent frameworks
explicitly designed for personality conditioning.
For instance, PsyPlay (Yang et al., 2025) introduces
a multi-agent framework where LLMs engage in
role-playing dialogues while portraying predefined
traits. Agents are instantiated with role cards and
interact over realistic topics. Similarly, Zeng et al.
(2024) defines persona-driven action policies for
interactive tasks, demonstrating that agents con-
ditioned on specific personality profiles generate
consistent, relatable, and user-aligned outputs.

While agent LLM architectures enable modular-
ity and specialization, they also introduce notable
limitations. Agashe et al. (2023) shows that agents
often struggle to coordinate, failing to converge on
joint plans and adapting poorly as partners’ behav-
iors shift. Additionally, Cemri et al. (2025) high-
lights failure modes including inter-agent misalign-
ment and verification problems, which can lead to
degraded performance. These findings point to an
urgent need for stronger orchestration and commu-
nication protocols in multi-agent LLM systems.

4 Personality Modeling Beyond Text

Although textual dialogue allows to convey many
aspects of personality, finer-grained affective cues,
such as intonation, facial micro-expressions, ges-
ture, and the environment, emerge only when ad-
ditional modalities are brought into the loop. Em-



bedding LL.Ms within speech, vision, and engag-
ing interfaces therefore enriches the communica-
tive channel, supplying a denser signal space from
which stable and nuanced personality displays can
arise.

4.1 Text-Visual Personality

Audio and visual channels deliver prosodic, facial,
and contextual cues that ground personality percep-
tion in more human-like exchanges. While recent
vision—language models (VLMs) have accelerated
multimodal research (Wu et al., 2024), most stud-
ies still treat personality as a recognition problem
rather than generating responses that embody a
target persona. A representative example is Psy-
Clip (Gan et al., 2022), a zero-shot model built on
the CLIP framework (Radford et al., 2021), which
matches face images to Myers—Briggs Type Indica-
tor descriptors by aligning visual embeddings with
adjective-based textual prompts.

Similarly, Wu et al. (2025) encode text and im-
ages with modality-specific transformers, fuse the
resulting representations in a cross-modal emotion
encoder, and append an MBTI-based personality
embedding derived from dialog history. The joint
vector guides a response generator that produces
utterances which are both contextually appropri-
ate and empathetically aligned with the speaker’s
inferred personality. Nonetheless, the reliance on
coarse MBTI categories constrains stylistic breadth,
preventing the system from synthesising richer,
situation-dependent personas or fully leveraging
visual context during generation.

4.2 Audio Personality

In contrast, persona modelling through the audio
channel is still in its infancy. Recent neural speech
systems, such as VoiceX (Mertes et al., 2024),
demonstrate that prosody can be tuned to convey
stylistic personality identity, yet most studies either
reuse a single synthetic voice for every persona
(Kroczek et al., 2024) or generate speech whose
unnatural timbre masks the intended traits (Sonlu
et al., 2025). Developing high-fidelity, persona-
controllable voices therefore remains a key open
challenge for multimodal personality research.

5 Evaluating LLMs Personality Traits

The psychology of personality has long sought to
classify individual differences (Cattell and Kline,
1977), and the tight coupling between language and

personality (Pennebaker and King, 1999; Lee et al.,
2007) makes text an appealing lens for probing
LLM behaviour. Recent studies test trait stabil-
ity (Song et al., 2024), refine measurement proto-
cols (Zou et al., 2024), analyse safety implications
(Zhang et al., 2024), and tailor personas to task
requirements (Zhao et al., 2025), yet nearly all
rely on frameworks devised for humans (Vu et al.,
2024). As a result, personality evaluation in LLMs
remains hindered by subjectivity, context depen-
dence, and the absence of shared standards. The fol-
lowing sections review qualitative and quantitative
approaches, highlighting their advantages, draw-
backs, and suitability for conversational agents. 1
presents a direct comparison between different eval-
uations methods.

5.1 Qualitative Evaluation

Evaluating the personality traits of LLMs involves
complex, nuanced, and non-standardized methods
(Jiang et al., 2024). Qualitative approaches are
widely used across studies to assess these traits,
relying on subjective judgments from human eval-
uators (Molchanova et al., 2025) or, as explored
in recent works, by other LLMs serving as judges
(Zhao et al., 2025). This section briefly explains
how human evaluation and LLM-as-Judge methods
are used to assess LLM personality traits.

Human Evaluation. Human evaluation remains
the gold-standard qualitative method for assess-
ing whether an LLM’s behaviour aligns with de-
sired persona specifications (Abeysinghe and Circi,
2024; Vu et al., 2024). Annotators typically score
or classify model-generated responses (Deng et al.,
2024; Jiang et al., 2023a), sometimes contrasting
them by comparing between human and model’s
outputs (Klinkert et al., 2024). For instance, in
Molchanova et al. (2025), human evaluators scored
personality traits from LLM-generated texts sim-
ulating specific personalities from a range of -2
to +2 based on trait descriptions and guidelines,
highlighting words or phrases that influenced their
scores, assessing whether LLMs could effectively
simulate distinct personalities. Despite its widely
application use not only in text responses evalua-
tion but also to user perception studies (Kroczek
et al., 2024) and multimodal trait assessment in
embodied agents (Malatesta et al., 2007), human
evaluation reliability is challenged by subjectivity,
demographic bias (Antal and Beder, 2025), and
high cost, making it difficult to scale and reproduce
results consistently (Clark et al., 2021).



Method Type Traceable Scalable Prompt-Agnostic Context-Aware
Human Evaluation Qualitative v X v v
LLM-as-Judge Qualitative v v X v
Personality Tests Quantitative v v X X
LIWC (Word Count) Quantitative v v v X
Vector-Based Quantitative X v v v

Table 1: Comparison of evaluation methods for LLM personality traits. v indicates presence; X indicates limitation

or absence.

LLM-as-Judge. This paradigm prompts an
LLM to rate the outputs of another model against
explicit rubrics, automating evaluation and vastly
reducing annotation cost and latency (Li et al.,
2024; Dong et al., 2024b). In personality research
it has been used to translate free-form text into
numerical trait scores (Zheng et al., 2025), clas-
sify personas from single utterances (Molchanova
et al., 2025), and infer user profiles across whole
dialogues (Zhao et al., 2025; Yang et al., 2025).
Single-judge setups, however, import the evalu-
ator model’s own biases and can yield inconsis-
tent or unreliable ratings (Zheng et al., 2023b).
Huang and Hadfi (2025) mitigate this with a
Multi-observer framework in which several role-
conditioned LLMs (e.g., “friend,” “colleague”) in-
dependently score the target, improving robust-
ness through aggregated views. Nevertheless, even
multi-observer systems remain constrained by the
models’ cultural priors, limited situational under-
standing, and susceptibility to hallucination (Dong
et al., 2025; Chen et al., 2024).

5.2 Quantitative Evaluation

Quantitative evaluation methods are essential for
assessing personality traits in LLMs in a structured,
objective way (Safdari et al., 2023). These ap-
proaches include self-assessments, in which LLMs
respond to personality questionnaires to produce
numerical scores (Wang et al., 2025; Klinkert et al.,
2024), as well as objective textual analyses, such as
word count metrics (Mieleszczenko-Kowszewicz
et al., 2024) and feature extraction from text (Jiang
et al., 2024). Quantitative evaluations provide stan-
dardized, numerical outputs that reduce ambiguity
and improve consistency (Bhandari et al., 2025).
Personality Questionnaires. Personality ques-
tionnaires originally designed for human psycho-
logical assessment such as the Big Five Inventory
(BFI) (John et al., 1991) and the International Per-
sonality Item Pool (IPIP) (Goldberg et al., 2006)
are widely used to evaluate personality traits in

LLMs. In these structured assessments, LLMs
are prompted with standardized items and their
responses are scored to derive trait profiles and
response patterns (Lin et al., 2024a; Heston and
Gillette, 2025). However, standard self-report for-
mats (e.g., Likert items, true—false questions, and
forced-choice prompts) are fragile since the models
answers are mere next-token predictions instead of
relying on stable traits (Zou et al., 2024; Zheng
et al., 2025). In such cases, the order of alternatives
influence directly the model’s answer (Zheng et al.,
2023a), and scale biases mirror the distribution
of its training data (Huang and Hadfi, 2024). Al-
though scenario-based frameworks mitigates bias
and reduce reliance on self-reflection by present-
ing diverse situations and multi-order evaluations
(Lee et al., 2025), the stability of personality as-
sessments in LLLMs remains as a challenge, since
minor edits to wording or format can swing the
results, compromising reproducibility and consis-
tency (Gupta et al., 2024).

Linguistic Inquiry and Word Count (LIWC).
Pennebaker et al. (2001) analyzes text by mapping
words and phrases to a curated dictionary, catego-
rizing them into psychological, emotional, and so-
cial dimensions (Tausczik and Pennebaker, 2010).
Its latest version, LIWC-22, includes over 12,000
words and expressions across 117 categories, such
as personal pronouns, emotion-related terms, and
cognitive indicators. Widely used in psychology
(Tov et al., 2013), LIWC has also been applied
to study and classify personality traits in LLMs
(Mieleszczenko-Kowszewicz et al., 2024; Jiang
et al., 2024), mapping responses to predefined
linguistic categories and personality dimensions,
revealing subtle linguistic patterns in generated
texts and offering valuable insights into how LLMs
express and emulate personality traits. Despite
its popularity, LIWC doesn’t account for contex-
tual or semantic nuances, which is problematic
given LLMs’ reliance on broader context for mean-



ing. Additionally, Zheng et al. (2025) argues that
LIWC’s rigid categories limit its effectiveness in
evaluating dynamically generated language. Nev-
ertheless, LIWC remains widely used due to its
simplicity, accessibility, and ability to provide stan-
dardized insights into the linguistic patterns associ-
ated with personality in LLMs.

Vector-Based. Vector-based personality analy-
sis uses high-dimensional vector representations to
map textual inputs, capturing semantic meaning of
texts. These approaches identify personality traits
by analyzing latent representations (Molchanova
et al., 2025; Wang et al., 2024), ranging from basic
TF-IDF (Sparck Jones, 1972) to contextual em-
beddings (Chang and Chen, 2019). A key advan-
tage of embedding-based methods is their abil-
ity to preserve contextual relationships between
words, allowing the detection of subtle psychologi-
cal features. For instance, Zhang et al. (2023) pro-
poses PsyAttention, a transformer-based encoder
that represents psychological features as dense em-
beddings, in which the vectorized psychological
features allow the model to process abstract traits
as part of its neural architecture, enabling classifica-
tion of both human and LLM-generated text under
established psychometric frameworks. However,
while such embeddings capture subtle contextual
cues, these vector representations are not inherently
interpretable, rely heavily on feature engineering
and is weak psychometric validity, since embed-
dings may correlate with personality constructs
learned from data rather than grounded in formal
psychometric theory. Additionally, classification
typically requires a separate model after vectoriza-
tion, adding complexity and potential for error.

6 Challenges and Future Directions

Despite recent advances, personality modeling with
large language models remains limited by several
unresolved challenges. Foremost among these is
the generalization and controllability of personality
expression. Prompt-based techniques, while flexi-
ble, are inherently fragile and prone to producing
inconsistent outputs across tasks and domains. Su-
pervised fine-tuning, though more stable, remains
constrained by data scarcity, high computational
cost, and risks of overfitting or catastrophic forget-
ting. These limitations are further exacerbated in
multi-agent systems, where inconsistent persona
enactment can disrupt coordination, leading to de-
graded performance in collaborative settings.

Although personality expression is inherently
multimodal, encompassing prosody, facial expres-
sion, and gesture, current approaches rarely inte-
grate other modalities. This restricts the validity of
simulated personalities, particularly in embodied
or socially interactive contexts.

Additionally, the lack of standardized, robust
evaluation protocols remains as a barrier. Cur-
rent assessment strategies exhibit high sensitivity
to prompt phrasing, task framing, and input or-
der, undermining reproducibility and comparability
across studies. Moreover, existing methods often
assume stable, human-like personality structures,
which may not align with the dynamic and context-
dependent nature of LLM behavior.

To advance the field, several directions requires
further exploration. First, scalable personalization
techniques, such as parameter-efficient fine-tuning
and retrieval-augmented control, offer promising
paths for adapting traits across users and appli-
cations. Second, integrating multimodal capabili-
ties, including speech synthesis and visual embod-
iment, may enable more realistic and expressive
personality representations. Third, the develop-
ment of prompt-invariant, context-aware, and psy-
chometrically grounded evaluation benchmarks is
essential to establish methodological rigor. Finally,
personality-aware alignment frameworks must be
developed to ensure that trait-driven behaviors re-
main safe, coherent, and socially appropriate, par-
ticularly in high-stakes or long-term deployments.

7 Conclusion

In this paper, we present a comprehensive survey
of personality modeling in large language mod-
els, covering foundational methods, LLM-driven
techniques, multimodal approaches, and evaluation
strategies. We analyze how personality traits are
identified, induced, and evaluated, and we catego-
rize the current landscape into a structured taxon-
omy. To the best of our knowledge, this is the first
survey covering this huge massive techniques of
personality in LLMs, such as the usage of agents
and RAG to enhance personality and evaluation in
LLMs. We aim to consolidate the state of the art,
identify open challenges, and offer insights to guide
future research in building consistent, expressive,
and user-aligned LLMs.



Limitations

This survey aims to provide a comprehensive
overview of personality modeling with large lan-
guage models, spanning conditioning strategies,
multimodal architectures, and evaluation method-
ologies. Nonetheless, due to the rapidly evolving
nature of the field, it is possible that some recent
or domain-specific contributions were not included.
In particular, emerging work on personality expres-
sion in low-resource languages, cultural adaptation,
and longitudinal user studies falls beyond the scope
of this paper. Additionally, while we categorize a
range of modeling and evaluation strategies, we do
not perform empirical benchmarking or reimple-
mentation of existing methods. Our focus remains
on conceptual mapping rather than quantitative
comparison. Finally, although we discuss multi-
modal and embodied approaches, most of the cited
literature remains text-centric. A deeper analysis
of personality modeling in vision and speech-based
agents is left for future work.
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