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Abstract
This paper studies meta-reinforcement learning
with adaptation from human feedback. It aims to
pre-train a meta-model that can achieve few-shot
adaptation for new tasks from human preference
queries without relying on reward signals. To
solve the problem, we propose the framework
adaptation via Preference-Order-preserving EM-
bedding (POEM). In the meta-training, the frame-
work learns a task encoder, which maps tasks
to a preference-order-preserving task embedding
space, and a decoder, which maps the embed-
dings to the task-specific policies. In the adap-
tation from human feedback, the task encoder
facilitates efficient task embedding inference for
new tasks from the preference queries and then
obtains the task-specific policy. We provide a
theoretical guarantee for the convergence of the
adaptation process to the task-specific optimal pol-
icy and experimentally demonstrate its state-of-
the-art performance with substantial improvement
over baseline methods.

1. Introduction
Reinforcement learning (RL) has achieved significant suc-
cess in various sequential decision-making tasks, including
video games (Mnih et al., 2015; Silver et al., 2016; Lee
et al., 2018), robotics (Levine et al., 2016; Lee et al., 2020;
Margolis et al., 2021; 2024), and quantitative finance (Liu
et al., 2021). However, when applied to real-world prob-
lems, conventional RL methods encounter the difficulty of
designing a proper reward function (Kaufmann et al., 2023).
In RL, an agent seeks to identify the optimal policy that
maximizes an accumulative reward function using reward
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signals. The reward function needs to be properly chosen
such that the agent’s state-action pairs align well with the
task’s goal. However, designing such a reward function can
be difficult, especially for tasks where the goals are too am-
biguous to be directly mapped to specific state-action pairs
(Christiano et al., 2017; Bai et al., 2022), such as a robot
cleaning a room or preparing a meal. Moreover, agents may
be required to offer personalized services tailored to human
users. Due to lack of domain knowledge, it is hard for the
human users to design a reward function that reflects their
objective. To address the challenge, RL from human feed-
back (RLHF) (Casper et al., 2023; Kaufmann et al., 2023)
aims to solve RL using human feedback, e.g., the binary
trajectory comparisons or trajectory rankings, instead of
reward signals. Specifically, RLHF learns a reward function
by aligning the reward signals along trajectories with human
preferences and then optimizes the policy by off-the-shelf
RL algorithms under the learned reward function. RLHF
has achieved state-of-the-art results in large language model
(LLM) fine-tuning (Ouyang et al., 2022) and preference
optimization of text-to-image generation (Lee et al., 2023).

Although it addresses the challenge of reward design, RLHF
faces the challenge of data inefficiency. First, the large
state-action space necessitates substantial preference data
to avoid overfitting the learned reward function. However,
due to the limitation in annotators’ expertise, capabilities,
and attention, collecting high-quality human feedback data
incurs significant costs and takes considerable time (Casper
et al., 2023). Furthermore, optimizing the policy in RLHF
relies on conventional RL algorithms, which require exten-
sive environment exploration, often amounting to millions
of state transition data.

Meta-reinforcement learning (meta-RL) (Finn et al., 2017;
Beck et al., 2023) aims to acquire transferable knowledge by
identifying common structures across multiple prior tasks
during meta-training. At meta-test time, this knowledge
enables the adaptation to unseen tasks using a small amount
of data, thereby accelerating the training process and im-
proving the data efficiency of RL algorithms. Incorporat-
ing meta-RL into human-in-the-loop adaptation (Ren et al.,
2022; Joey Hejna, 2023) facilitates few-shot adaptation from
preference queries without relying on reward signals, and
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Table 1. Available data for meta-RL and meta-RL with adaptation from human feedback

Meta-RL Meta-RL with adaptation from human feedback

Meta-training Trajectories with rewards Trajectories with rewards

Meta-test Few trajectories with rewards Few trajectories, few preference queries of trajectories

therefore offers a promising solution to the data inefficiency
problem in RLHF. Paper (Joey Hejna, 2023) applies a super-
vised meta-learning approach, MAML (Finn et al., 2017),
to train a meta-reward model, and adapts it to a task-specific
reward model with few-shot human preference data during
the meta-test. However, the meta-test still needs to solve
the RL problem to obtain the policy under the learned task-
specific reward model, which requires a large amount of
state transition data. ANOLE (Ren et al., 2022) adopts the
context-based meta-RL method (Rakelly et al., 2019). Dur-
ing the meta-training, ANOLE uses reward signals to learn
a task encoder, which maps tasks to the task embeddings,
and a decoder, which maps the task embeddings to the task-
specific policies. The meta-test infers the task embedding of
a new task from its human preference data and then derives
its policy. Notice that ANOLE uses the reward signals for
the meta-training and the preference data for the meta-test.
The mismatch of data types prevents the task encoder from
capturing preference-related information across tasks, and
therefore degrades the performance of task-specific policies.

Main contribution. In this paper, we propose the frame-
work adaptation via Preference-Order-preserving EMbed-
ding (POEM) for meta-RL with adaptation from human
feedback. During meta-training, a task encoder is trained
with preference data to ensure that the task embedding space
maintains the preference-order-preserving property, i.e., the
optimal policy for one task is preferred under another task if
the embeddings of the two tasks have high similarity. Dur-
ing the adaptation from human feedback, when a new task
is given by a human, all task embeddings that do not align
with the human’s preference orders are rejected. Among
all the remaining task embeddings, the one with the low-
est preference loss on the preference order data is selected
to derive the task-specific policy. Our contributions are
three-fold. From the algorithm perspective, this paper is
the first to propose the preference-order-preserving task en-
coder for context-based meta-RL training, which establishes
a connection between task embeddings and human prefer-
ences. This connection facilitates the efficient inference
of task embeddings for new tasks during the adaptation
from human feedback. From the experiment perspective,
we conduct experiments on nine continuous control envi-
ronments in Mujoco and MetaWorld. The proposed POEM,
using few-shot human preference queries, achieves a perfor-
mance comparable to meta-RL oracle (using reward signals)
and demonstrates state-of-the-art results with 20%-50% per-

formance improvement. From the theory perspective, we
derive a theoretical result for POEM based on the preference-
order-preserving property of the embedding space, which
guarantees the convergence of the policy distribution gener-
ated by POEM to the optimal task-specific policy.

Related works. Due to the space limit, related works are
included in Appendix A.

2. Problem Statement
MDP and RL task. A Markov decision process (MDP)
M ≜ {S,A, γ, ρ, P, r} is defined by the state space S,
the action space A, the discount factor γ, the initial state
distribution ρ over S, the transition probability P (s′|s, a)
: S ×A×S → [0, 1], and the reward function r : S ×A →
[0, rmax]. A stochastic policy π : S → P(A) is a map
from states to probability distributions over actions, and
π(a|s) denotes the probability of selecting action a in
state s. The accumulated reward function is defined as
J(π) ≜ Es0∼ρ[

∑∞
t=0 γ

tr(st, at, st+1)|π]. An RL task is to
identify the optimal policy that can maximize the accumu-
lated reward function i.e., π∗ ≜ argmaxπ J(π).

RL task distribution. Consider a space of RL tasks Γ,
where each task T ∈ Γ is modeled by an MDPMT ≜ {S,
A, γ, ρ, PT , rT }, where PT and rT condition on the task
T . For task T , the accumulated reward function is denoted
as JT (π), and the optimal policy is denoted as π∗

T . Assume
the RL tasks follow a task probability distribution P(Γ).

Meta-RL with adaptation from human feedback aims to
learn a meta-model from the task distribution P(Γ), which
can be adapted to an unseen task Tnew ∼ P(Γ) using few-
shot human-preference data and few-shot state transition
data without the reward signals.

During the meta-training, a set of tasks {Tj}Nj=1 are sampled
from P(Γ), and the tasks’ MDPs {MTj

}Nj=1 are explored
to generate trajectories. Note that, the reward function rTj

of each meta-training task Tj is accessible. Consequently,
trajectories with rewards defined as {(st, at , st+1, rt)}Ht=0

can be obtained for each task Tj .

During the meta-test, a new task Tnew is given by a human,
and the MDPMTnew can be explored by the agent to obtain
trajectories τ = {(st, at, st+1)}Ht=0. However, the rewards
along the trajectories cannot be returned. The preference
order of a pair of trajectories (τ1, τ2) can be queried. For
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any given query trajectory pair (τ1, τ2), the preference ora-
cle (human) would return τ1 ≻Tnew τ2 if the oracle prefers
τ1 over τ2 under T ; otherwise, τ1 ≺Tnew τ2 is returned. If
the preference oracle does not distinguish τ1 and τ2, any of
τ1 ≻Tnew

τ2 and τ1 ≺Tnew
τ2 can be returned. Note that,

during meta-testing, both the numbers of sampled trajecto-
ries and human preference queries are small. A comparison
of available data in conventional meta-RL (Finn et al., 2017;
Beck et al., 2023) and meta-RL with adaptation from human
feedback is shown in Table 1.

Figure 1. Overview of meta-RL with adaptation from human feed-
back via preference-order-preserving embedding (POEM)

3. Method Overview
This section presents an overview of our method, adaptation
via Preference-Order-preserving EMbedding (POEM), to
solve the meta-RL with adaptation from human feedback.
We introduce the preference-order-preserving embedding
and design two modules for POEM: (i) meta-training with
preference-order-preserving embedding and (ii) adapta-
tion from human feedback by task embedding inference.
The structure of the two modules is shown in Figure 1.

The preference-order-preserving embedding is to encode
each task T to a task embedding zT , where the embed-
dings adhere to the preference-order-preserving property.
The preference-order-preserving property refers to that, if
the optimal policy of a task T1, denoted as π∗

T1
, is pre-

ferred over that of another task T2, denoted as π∗
T2

, under
a task T0, this preference order should be reflected by the
similarity order of the task embeddings, i.e., the similarity
(inverse measure of vector distance) between the task embed-
ding vectors zT0 and zT1 , denoted as S(zT0 , zT1), is higher
than the similarity S(zT0 , zT2) between zT0 and zT2 . For-
mally, S(zT0 , zT1) ≥ S(zT0 , zT2) holds if τT0(π∗

T1
) ≻T0

τT0(π∗
T2
), where τT0(π) denotes the trajectory sampled by

policy π on task T0. The property is further illustrated by
Figure 2. With the preference-order-preserving property,
the preference order of the task-specific optimal policies
can be directly derived from the task embeddings. More im-
portantly, when a task is unknown but the preference order
under the task is available from a human, the information

about the task embeddings can be inferred.

In the module of meta-training, we train a preference-order-
preserving task encoder and a policy decoder. Specifically,
the encoder qϕ(zT |cT ) encodes the task-specific trajecto-
ries with rewards (referred to as context cT ) into a task
embedding vector zT for each training task T , and the
decoder policy πθ(a|s, zT ) conditions on the task embed-
ding zT to obtain the task-specific policy for task T . Two
goals are expected for training qϕ and πθ: the preference-
order-preserving property holds for the encoder qϕ and the
conditional policy πθ(, z

T ) is close to the optimal policy
of task T . We incorporate both the preference data and the
reward signals to the meta-training to achieve the two goals.

In the module of adaptation from human feedback, for a
given new task Tnew, we sample the trajectory pairs (τ1, τ2),
query the preference oracle to generate the preference or-
der of (τ1, τ2), and then infer the task embedding zTnew to
obtain the task-specific policy πθ(·|·, zTnew). In particular,
for the task embedding inference, we first sample a set of
task embedding candidates. Based on the preference-order-
preserving property, we identify the preference order of the
trajectories (τ1, τ2) under each embedding candidate, and
remove all embeddings that do not align with the queried
preference orders on the new task Tnew. Among all the
remaining task embeddings, the one with the lowest prefer-
ence loss on the preference query data is selected to derive
the task-specific policy.

Figure 2. An example to illustrate the insights of the preference-
order-preserving task embedding. Consider three RL tasks T0, T1

and T2 as steering the robot moving forward with 4 m/s, 5 m/s,
and 1m/s, respectively. The task embedding zT0 is more similar
to zT1 than zT2 , and π∗

T1
performs better than π∗

T2
on task T0.

Note that the encoder-decoder structure in the meta-training
of Figure 1 is inspired by the context-based meta-RL meth-
ods (Rakelly et al., 2019; Zintgraf et al., 2020; Raileanu
et al., 2020). As shown in Table 1, the task context (trajec-
tories with rewards) can be obtained for both meta-training
and meta-test tasks in meta-RL. Then, in both meta-training
and adaptation (meta-test) of context-based meta-RL meth-
ods, the encoder-decoder structure (the blue box) in Figure 1
is applied to encode tasks and decode task-specific policies.
However, for meta-RL with adaptation from human feed-
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back, reward signals are not available and only preference
data can be accessed during the meta-test. ANOLE (Ren
et al., 2022) simply borrows the encoder-decoder from the
context-based meta-RL methods and resorts to training an
extra reward decoder which generates reward signals during
the meta-test. In particular, during the meta-training, the
task encoder maps the task-specific trajectory with reward
signals to a task embedding, and the task embedding is
decoded to both the task-specific policy and reward func-
tion by a policy decoder and a reward decoder. However,
the task encoder cannot capture preference-related features
across tasks, and therefore degrades the performance. In
contrast, we design the novel task encoder, which extracts
task features incorporating preference order information,
enabling efficient inference of task embeddings from human
preference.

4. Preference-Order-Preserving Embedding
As mentioned in Section 3, the preference-order-preserving
task embedding connects the relations over the task em-
beddings with human preference feedback. The design is
motivated by the following two insights.

Insight 1. The similarity between tasks should be reflected
in the similarity of their embeddings. In specific, if task
T0 is more similar to T1 than T2, the similarity between the
embedding vectors of T0 and T1, denoted as S(zT0 , zT1),
should be higher than S(zT0 , zT2), and vice versa. Formally,

T0 is more (or equally) similar to T1 than to T2

⇐⇒ S(zT0 , zT1) ≥ S(zT0 , zT2) .

This insight is illustrated on the top side of Figure 2 and is
widely applied in the design of representation learning meth-
ods for images and natural language, such as contrastive
learning (Chen et al., 2020; Radford et al., 2021).

Insight 2. The second insight comes from an intuition of
task similarity: if two tasks are similar, the optimal policy of
one task can also perform relatively well on the other task.
In specific, consider the optimal policies π∗

T1
of T1 and π∗

T2

of T2. If T0 is more similar to T1 than to T2, the optimal
policy π∗

T0
for task T0 should be closer to π∗

T1
than to π∗

T2
,

then π∗
T1

should achieve better performance on T0 than π∗
T2

,
i.e., the total reward JT0

(π∗
T1
) > JT0

(π∗
T2
). Formally,

T0 is more (or equally) similar to T1 than to T2

⇐⇒ JT0(π
∗
T1

) ≥ JT0(π
∗
T2

) .

This insight is illustrated at the bottom of Figure 2.

Starting from Insights 1 and 2, we can derive the property
for the preference-order-preserving embedding. Specifically,
combining Insights 1 and 2, for any tasks T0, T1, and T2,

S(zT0 , zT1) ≥ S(zT0 , zT2) ⇐⇒ JT0(π
∗
T1
) ≥ JT0(π

∗
T2
). (1)

Next, following most existing works of RLHF (Wirth et al.,
2017; Kaufmann et al., 2023), the preference order between
two trajectories τ1 and τ2 is modeled as the order of the
received (discounted) total rewards, i.e., τ1 ≻T τ2 implies
the total reward

∑H
t=0 γ

t rT (s
(1)
t , a

(1)
t , s

(1)
t+1) received from

τ1 is larger than (or equal to)
∑H

t=0 γ
t rT (s

(2)
t , a

(2)
t , s

(2)
t+1)

received from τ2. Then, we approximate the expected total
reward JT0

(π∗
T ) in (1) by the average total reward of multi-

ple sampled trajectories generated from π∗
T under T0, i.e.,

approximately we have

JT0
(π∗

T1
) ≥ JT0

(π∗
T2
)⇐⇒ τT0(π∗

T1
) ≻T0

τT0(π∗
T2
), (2)

where τT0(π∗
T1
) is the concatenation of multiple trajectories

generated by π∗
T1

, and τT0(π∗
T2
) is that generated by π∗

T2
.

Replacing the right-hand side of (1) by that of (2), we obtain
the following preference-order-preserving property.
Property 1. For any tasks T0, T1, T2 with their embeddings
zT0 , zT1 , zT2 , we have

S(zT0 , zT1) ≥ S(zT0 , zT2) ⇐⇒ τT0(π∗
T1
) ≻T0

τT0(π∗
T2
).

From Property 1, the similarity ordering of task embedding
pairs is expected to align with human preference order, i.e.,
a task with a more similar embedding is preferred. Lever-
aging this property, the preference-order-preserving task
embedding space establishes a clear relationship between
task embeddings and human preference feedback.

Finally, we select the similarity metric S used for Property
1. A common selection of the similarity metric between
two embeddings is their inner product (cosine similarity),
i.e., S(zT1 , zT2) ≜ ⟨zT1 , zT2⟩. However, if we adopt this
similarity metric in this problem, we can prove that it is
possible that a task embedding space that satisfies (1) does
not exist. The formal statement is shown as Proposition 1 in
Appendix B.1.1. In contrast, in the following theorem, we
provide a similarity metric that guarantees the existence of
the task embedding space that adheres to (1). Then, Property
1 holds when using the approximation stated in (2).
Theorem 1. For any task space Γ, there exists task encoder
mappings fr and fπ : Γ → Rd, such that for any T0, T1
and T2 ∈ Γ, the property in (1) holds when S(zTi , zTj )

= ⟨zTi
r , z

Tj
π ⟩, zTi

r = fr(Ti) and zTi
π = fπ(Ti) for i, j =

0, 1 and 2. In addition, for any task T ∈ Γ, fr(T ) only
depends on rT and fπ(T ) only depends on π∗

T and PT .

The proof of Theorem 1 is shown in Appendix B.1.2. As
stated in Theorem 1, the task embedding vector zT can be
separated to two vectors: zT ≜ [zTπ , zTr ] and the similarity
between zT1 and zT2 is defined as

S(zT1 , zT2) ≜ ⟨zT1
r , zT2

π ⟩. (3)

As indicated in Theorem 1, the embedding zTr represents
the features of the task-specific reward function rT and zTπ
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represents the features of the task-specific optimal policy
π∗
T and the transition function PT . So we denote zTπ as the

policy embedding and zTr as the reward embedding of task
T . Based on Theorem 1, when the similarity metric is se-
lected as (3), the task embedding space with the property (1)
exists. Note that, the similarity metric in (3) is asymmetric,
i.e., S(zT1 , zT2) ̸= S(zT2 , zT1). To achieve the property in
(1), we design S(zT1 , zT2) in (3) to reflect the fitness of π∗

T2

to task T1. In particular, (3) employs the cosine similarity
between the reward embedding zT1

r (represents the reward
rT1

of T1) and the policy embedding zT2
π (represents the

optimal policy π∗
T2

of T2) to represent the fitness of π∗
T2

to
T1 i.e., JT1

(π∗
T2
). Then, the equivalence in (1) can be estab-

lished. As a result, the fitness of π∗
T2

to T1 may be different
from that of π∗

T1
to T2, which lead to the asymmetry.

5. Meta-Training with Preference-Order-
Preserving Task Embedding

The section introduces the meta-training with the preference-
order-preserving task embedding. Section 5.1 introduces
the network structure of module (i) in Figure 1 for the meta-
training, which includes the preference-order-preserving
encoder and the policy network conditional on the task
embeddings. Section 5.2 presents the composition of the
task context. Section 5.3 introduces the recursive sampling
and training procedure for the meta-training.

5.1. Encoder-Decoder

As stated in Section 3, during the meta-training, we aim
to train an encoder to map the context cT into the task
embedding zT and train a decoder from zT to the task-
specific policy, i.e., a policy πθ(·|zT ) that conditions on zT .
Moreover, the embedding space is expected to be preference-
order-preserving, i.e., it should satisfy Property 1 shown in
Section 4. In this section, we design a network to achieve
this goal, which holds a structure shown in Figure 3.

Figure 3. Encoder-decoder network and imposed loss functions,
where using the KL divergence loss DKL for enforcing the pos-
terior distribution qϕ(·|cT ) to N (0, I), the reward reconstruction
loss Lr for recovering the true reward rT by rθr (·, zTr ), the policy
loss Lπ for recovering optimal policies by πθπ (·, zTπ ), and the
preference loss Lpre for enforcing zT to satisfy Property 1.

We build the encoder based on the variational auto-encoder
(VAE) (Kingma & Welling, 2013; Rezende et al., 2014;
Alemi et al., 2016), which is primarily designed for genera-
tive models and has been widely used in context-based meta-
RL methods (Rakelly et al., 2019; Zintgraf et al., 2020).
Specifically, we train an inference network qϕ, parameter-
ized by ϕ, to encode the context cT to a distribution within
the embedding space qϕ(·|cT ). The task embedding zT is
sampled from the distribution qϕ(·|cT ) and then is mapped
to the preference-order-preserving task embedding space
by two networks fϕr

and fϕπ
, parameterized by ϕr and ϕπ ,

where the reward embedding zTr = fϕr
(zT ) and the policy

embedding zTπ = fϕπ
(zT ). The reward embedding zTr is

used in the conditional reward function rθr (·|zTr ) to recon-
struct the reward function rT and the policy embedding
zTπ is used in the conditional policy πθπ (·|zTπ ) to recover
the task-specific optimal policy π∗

T , while zTr and zTπ are
expected to satisfy Property 1 for any task T .

To achieve the above goal, we design the following opti-
mization problem to train the networks in Figure 3 with
parameters Φ = [ϕ, ϕr, ϕπ, θr, θπ]:

min
Φ

ET ,T1,T2∼P(Γ)[DKL(qϕ(·|cT )∥N (0, I)) + βrLr(Φ, T )

+ βπLπ(Φ, T ) + βpreLpre(Φ, T , T1, T2)].

The objective function includes four loss terms. (i) The KL
divergence loss DKL(qϕ(·|cT ) ∥N (0, I)) enables the prior
distribution on the embedding space, the normal distribution
N (0, I) to approximate the posterior distribution qϕ(·|cT ),
as used in VAE. (ii) The reward reconstruction loss aims
to reconstruct the true reward function rT by the reword
network rθr under the task reward embedding zTr , which is
defined as Lr(Φ, T ) ≜

EzT ∼qϕ(·|cT ),(s,a)∼cT [(rT (s, a)− rθr (s, a|zTr ))2] (4)

with zTr = fϕr (z
T ); (iii) The policy reconstruction loss

aims to reconstruct the task-specific optimal policy π∗
T by

the policy network πθπ under the task policy embedding zTπ ,
which is defined as

Lπ(Φ, T ) ≜ EzT ∼qϕ(·|cT )[DKL(πθπ (·|zTπ )||π∗
T )] (5)

with zTπ = fϕπ (z
T ); (iv) The preference loss enforces zT

to satisfy Property 1 and defined as Lpre(Φ, T , T1, T2) ≜

EzT ,zT1 ,zT2∼qϕ(·|cT ),qϕ(·|cT1 ),qϕ(·|cT2 )

[
DKL

(
I[τT (π∗

T1
)

≻T τT (π∗
T2
)] ∥ Pr[S(zT , zT1) > S(zT , zT2)]

)]
, (6)

where τT (π∗
T1
) and τT (π∗

T2
) are trajectories generated by

π∗
T1

and π∗
T2

on T . Here, I[τT (π∗
T1
) ≻T τT (π∗

T2
)] is the

ground-truth preference and Pr[S(zT , zT1) > S(zT , zT2)]
is the preference prediction based on Property 1. Following
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the Bradley-Terry model (Bradley & Terry, 1952), we use
the predicted probability

Pr[S(zT , zT1) > S(zT , zT2)]

=
exp

(
S(zT , zT1)

)
exp (S(zT , zT1)) + exp (S(zT , zT2))

.
(7)

So, (6) minimizes the distance between the true preference
and the preference predictor to achieve Property 1.

5.2. Context design

In this section, we introduce the composition of the task
context cT , which is subsequently encoded to the task em-
bedding zT . As discussed in Section 5.1 and Figure 3, the
task embedding zT is used to recover both the reward func-
tion and the optimal policy. Therefore, we expect the context
cT to include two key pieces of information: (i) the map-
ping from the state transition to the reward, i.e., (s(t) , a(t),
s(t+1))→ r

(t)
T , (ii) the optimal policy, i.e., s(t) → π∗

T (s
(t)).

Accordingly, we consider the task context as

cT = {(s(t), â(t), s(t+1), r
(t)
T , Q

π∗
T

T (s(t), â(t))}Ht=1 (8)

where â(t) ∼ π∗
T (·|s(t)) and Q

π∗
T

T (s(t), â(t)) is the optimal
value on (s(t), â(t)). Then, the information about the opti-
mal policy is incorporated in â(t) and Q

π∗
T

T .

In existing context-based meta-RL methods, such as PEARL
(Rakelly et al., 2019), the context of PEARL is defined as
cT = {(s(t), a(t), s(t+1), r

(t)
T )}Ht=1 where a(t) is not sam-

pled from the optimal policy π∗
T (·|s(t)). As a result, it does

not include information about the optimal policy and thus
performs worse than (8) (As tested in Section 7). More im-
portantly, the task context in (8) is particularly designed for
the meta-RL with adaptation from human feedback. Specif-
ically, (8) cannot be used to meta-RL, because the optimal
action â(t) and the optimal value Q

π∗
T

T (s(t), â(t)) cannot be
obtained for a new given task and therefore cannot be en-
coded to zT . In contrast, as indicated in Figure 1, after the
meta-training stage of the proposed method POEM, i.e., the
training of the networks in Figure 3 is done, the encoder
qϕ and the context cT will be not used during the meta-test
phase. Instead, the human feedback data is used to infer
the task embedding zT to obtain the policy. Therefore, we
can use the context in (8) to be as informative as possible to
train a well-structured embedding space.

5.3. Recursive sampling and training procedure

When using the network structure and the loss functions
in Section 5.1 and the context in Section 5.2 for the meta-
training, an issue is that the task-specific optimal policy
π∗
T in (5), (6) and (8) is not available. To address this

issue, we employ a recursive sampling and training pro-

cedure. In specific, we first replace the policy recon-
structive loss in (5) with the policy optimization loss, i.e.,
Lπ(Φ, T ) ≜ EzT ∼qϕ(·|cT )[−JT (πθπ (·|zTπ ))], such that the
conditional policy network πθπ (·, zTπ ) can be gradually op-
timized toward the task-specific optimal policy π∗

T . Next,
as illustrated in Figure 4, at epoch n of the meta-training,
we replace the optimal policy π∗

T in the preference loss
(6) and the context (8) by the policy π

θ
(n−1)
π

(·, zTπ,(n−1)),
where both the policy network π

θ
(n−1)
π

and the embedding
zTπ,(n−1) are obtained from the last epoch n− 1.

Figure 4. Recursive sampling and training procedure.

The recursive procedure continuously optimizes the policy,
while using the current policy as the approximation for the
optimal policy to train the encoder and sample the context.
When the conditional policy network πθπ (·, zTπ ) converges
to the task-specific optimal policy π∗

T , the sampled con-
text cT is the optimal trajectory in (8) and the employed
preference loss is exactly (6).

Finally, we summarize the meta-training algorithm in this
section as Algorithm 1. In Algorithm 1, we apply the re-
cursive sampling (line 16) and training (lines 4-14) for the
meta-training. Following the suggestion in context-based
meta-RL methods (Rakelly et al., 2019; Fu et al., 2021;
Yu et al., 2024), we employ the soft actor-critic (Haarnoja
et al., 2018) for policy optimization. For the encoder qϕ,
we employ the permutation-invariant probabilistic network
architecture used in PEARL (Rakelly et al., 2019).

6. Adaptation from Human Feedback by Task
Embedding Inference

In this section, we introduce the adaptation from human
feedback algorithm, which is applied after the meta-training
described in Section 5.

After the preference-order-preserving task embedding en-
coder qϕ, fϕr

, fϕπ
and the policy network πθπ that are

shown in Section 5 are trained, for a given task Tnew ∈ P(Γ),
if we can obtain its task embedding zTnew , the task-specific
policy can be derived as πθπ (·, zTnew

π ). As a result, the adap-
tation from human feedback is to obtain zTnew . More im-
portantly, the task embedding zTnew should satisfy Property

6
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Algorithm 1 Meta-training algorithm
Require: Training tasks {Ti}Ti=1 from P(Γ); initial net-

work parameters Φ(0) = {ϕ(0), ϕ
(0)
r , ϕ

(0)
π , θ

(0)
r , θ

(0)
π }

1: Initialize replay buffers Bi for each training task Ti
2: Sample a set of data (s, a, s′, r,Q(s, a)) by the initial

policy π
θ
(0)
π

(·|zTi,(0)
π ), where zTi,(0) ∼ N (0, I) and

Q(s, a) is set to 0, and add them to Bi for each Ti
3: for epoch n = 1, · · · , N do
4: for step m = 1, · · · ,M do
5: for each Ti do
6: Sample context cTi,(n) ∼ Bi
7: Sample zTi,(n) ∼ qϕ(n)(·|cTi,(n))
8: Sample RL batch bi ∼ Bi
9: LKL(Ti) = DKL

(
qϕ(n)(·|cTi,(n))||N (0, I)

)
10: Set Lπ(Ti) as the policy optimization loss of

SAC under the policy π
θ
(n)
π

(·|zTi,(n)
π ) on bi

11: Set Lr(Ti) as (4) under the embedding zTi,(n)

12: Sample tasks T ′
i , T ′′

i , and set Lpre(Ti, T ′
i , T ′′

i )

as (6) under the embeddings zTi,(n), zT
′
i ,(n),

zT
′′
i ,(n)

13: end for
14: Optimize Φ(n) by minimizing

∑
i LKL(Ti)+

βrLr(Ti)+ βπLπ(Ti)+ βpreLpre(Ti, T ′
i , T ′′

i )
15: end for
16: Clear Bi and sample a set of data (s, a, s′, r,Q(s, a))

by π
θ
(n)
π

(·|zTi,(n)
π ) and add them to Bi for each Ti

17: Φ(n+1) ← Φ(n)

18: end for

1, i.e., for the task Tnew, the task-specific policy πθπ (·, zTπ )
of T is preferred if the similarity between zTnew and zT is
higher. Leveraging this property, we deploy two policies
πθπ (·, zT1

π ) and πθπ (·, zT2
π ) on Tnew, query the preference

oracle to obtain the preference ranking, and thereby deter-
mine whether zTnew is more similar to zT1 or zT2 , which
positions zTnew in a half-space. Repeat the above procedure
with different policy pairs, we can progressively position
the zTnew more precisely in the task embedding space. The
algorithm of inferring the task embedding zTnew is stated in
Algorithm 2.

In Algorithm 2, we continuously query the preference oracle
on Tnew then add the preference query set Qk (lines 11-16).
Simultaneously, in lines 4-9, we sample the task embedding
z from N (0, I), and only keep the task embedding candi-
dates that align with all preference queries in the query set,
i.e., z with S(z, z′) > S(z, z′′) for that the policy on z′ is
preferred than the policy on z′′. Note that the human pref-
erence queries during the adaptation from human feedback
may include errors, and Property 1 may not be strictly sat-
isfied for the learned preference-order-preserving encoder,
especially when two query policies are similar. So, we relax

Algorithm 2 Adaptation from human feedback
Require: Learned parameters Φ = {ϕ, ϕr, ϕπ, θr, θπ},

maximal preference queries K, error tolerance model ϵ
defined in (9).

1: Preference query set Q0 ← ∅
2: for k = 1, · · · ,K do
3: The candidate embedding set Zk ← ∅
4: while |Zk| ≤ Nz do
5: Sample z ∼ N (0, I)
6: if S(z, z′) >ϵ S(z, z

′′) for all (z′, z′′) ∈ Qk then
7: Add z to Zk

8: end if
9: end while

10: Select (ẑ′, ẑ′′) from Zk by (10)
11: Query the preference oracle on the new task Tnew

for trajectories τ ′ = τTnew(πθπ (·|ẑ′π)) and τ ′′ =
τTnew(πθπ (·|ẑ′′π))

12: if τ ′ ≻Tnew τ ′′ then
13: Qk = Qk−1 ∪ (ẑ′, ẑ′′)
14: else
15: Qk = Qk−1 ∪ (ẑ′′, ẑ′)
16: end if
17: Compute the policy πθπ (·|zkπ) for task Tnew where

zk = argmaxz∈Zk

∑
(z′,z′′)∈Qk

log Pr[S(z, z′) >

S(z, z′′)].
18: end for

Property 1 to incorporate a preference error tolerance model
ϵ. Specifically, if the policy on z′ is preferred than the policy
on z′′, then S(z, z′) >ϵ S(z, z

′′), which is defined as

exp (S(z, z′))

exp (S(z, z′)) + exp (S(z, z′′))
≥ 1

2
− ϵ. (9)

The condition in (9) includes all z with S(z, z′) > S(z, z′′)
and z with that S(z, z′) is close to S(z, z′′). It can be seen as
the preference probability defined in (7), Pr[S(zT , zT1) >
S(zT , zT2)] ≥ 1

2 − ϵ. In line 17, we apply the maximum
likelihood over all the embedding candidates to determine
the output task embedding zk and policy πθπ (·|zkπ).

Before querying the preference oracle, we need to decide
which two trajectories are queried. In line 11, to maximize
the query efficiency, we select the query trajectory pairs that
can eliminate the task embeddings as many as possible, i.e.,

(ẑ′, ẑ′′) = argminz′,z′′∈Zk
(max{|Z(1)|, |Z(2)|}), (10)

where Z(1) = {z ∈ Zk : S(z, z′) >ϵ S(z, z′′)} and Z(2)

= {z ∈ Zk : S(z, z′′) >ϵ S(z, z′)}. Here, Z(1) is the set
of remaining embeddings when z′ is preferred and Z(2) is
that when z′′ is preferred. Considering the worse case, i.e.,
one of Z(1) and Z(2) with the larger size will be remaining,
(10) first takes the set max{|Z(1)|, |Z(2)|} to pick the larger
set in Z(1) and Z(2), and then minimizes its size.
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Figure 5. Performance on HalfCheetah-Vel, Ant-Vel, Humanoid-Dir, and MetaWorld-ML10. Average accumulated reward on test tasks v.s.
samples collected during meta-training (Top) and during adaptation from human feedback (Bottom). “Oracle” denotes the performance
when the reward signals are available during the meta-test.

Theorem 2. Assume that (i) the task encoder f : Γ →
Rd holds that, for T ∼ P(Γ), zT = f(T ) follows the
normal distribution N (0, I); (ii) fr and fπ : Rd → Rd

are mappings such that zTr = fr(z
T ) and zTπ = fπ(z

T )
satisfy Property 1; (iii) the policy network with θπ is optimal,
i.e., πθπ (·|zTπ ) = π∗

T . Suppose the preference oracle in
Algorithm 2 on task Tnew holds the error at most ϵ, i.e., the
condition in (9) is satisfied. Let Zk be the random variable
sampled as same as Zk in Algorithm 2. Let Z be a random
variable following N (0, I). Under certain mild conditions
on the mappings fr and fπ , we have

(a) The probability density function (PDF) of Zk at zTnew

has P (Zk = zTnew) ≥ P (Z=zTnew )

C1·( 1
2 )

k
+C2 log( 1+2ϵ

1−2ϵ )
;

(b) When ϵ = 0, Zk
d−→ zTnew , i.e., Zk converges to zTnew

in distribution, i.e.,

Here, C1 and C2 are the constants, and zTnew is the embed-
ding of Tnew such that JTnew(πθπ (·|zTnew

π )) = JTnew(π
∗
T ).

The full statements of the assumption on fr and fπ , the con-
stants C1 and C2 in Theorem 2, and the proofs of Theorem
2 are provided in Appendix B.2. In Theorem 2, we derive
the performance guarantee for Algorithm 2. Theorem 2 first
assumes the encoder-decoder network shown in Figure 3 is
well-trained. Specifically, (i) states that the posterior distri-
bution is the normal distribution; (ii) requires that Property 1
holds, and (iii) ensures that the optimal policy is accurately
reconstructed. Theorem 2 defines the candidate embedding
distribution Zk, from which the candidate embedding set
Zk in Algorithm 2 is sampled, i.e., Zk ∼ Zk. It is shown

that the probability density of Zk on zTnew increases mono-
tonically. If the preference oracle has no error, i.e., ϵ = 0,
then P (Zk = zTnew) = O(2k), which increases exponen-
tially, and the candidate distribution Zk converges to zTnew

in distribution. To the best of our knowledge, Theorem 2
is the first to provide a performance guarantee for meta-RL
with adaptation from human feedback.

7. Experiment
In the experiments, we evaluate the performance of the
proposed approach, POEM, by addressing the following re-
search questions: (i) How does POEM perform compared to
baseline methods of meta-RL with adaptation from human
feedback? (ii) Can POEM effectively handle errors in the
preference oracle? (iii) How do individual components of
PEOM impact its performance?

Experiment settings. We conduct experiments on nine
scenarios in two benchmarks centered around robotic con-
tinuous control tasks. The first benchmark is MuJoCo,
involving robotic locomotion tasks simulated by the Mu-
JoCo physics engine (Todorov et al., 2012), which is a
widely adopted platform in meta-RL works (Finn et al.,
2017; Rothfuss et al., 2019; Rajeswaran et al., 2019) to test
the performance of few-shot policy adaptation. The sec-
ond is MetaWorld (Yu et al., 2020), a benchmark suite for
robotic tabletop manipulation, which includes a diverse set
of motion patterns for robotic arms and is recognized as a
more challenging benchmark for meta-RL. Detailed descrip-
tions for the two benchmarks can be found in Appendix C.1.
Across the nine scenarios, each scenario consists of a task
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Figure 6. Performance evaluation under a noisy preference oracle. Average accumulated reward on test tasks v.s. samples collected during
meta-training on HalfCheetah-Vel, Ant-Vel, Humanoid-Dir, and MetaWorld-ML10. “Oracle” denotes the performance when the reward
signals are available during the meta-test.

family, where each task within the family is characterized
by its dynamic system and reward function. The details of
the task settings can be found in Appendix C.2.

Baseline algorithms. We compare our method, POEM,
with four state-of-the-art baseline methods for meta-RL
with adaptation from human feedback: (a) probabilistic
context-based meta-RL with three strategies for the adapta-
tion from human feedback: ANOLE, Greedy Binary Search,
and Random Query, which are introduced in (Ren et al.,
2022); and (b) MAML-reward (Joey Hejna, 2023), which
applies MAML (Finn et al., 2017) to train a meta reward
model to adapt the task-specific reward model. Moreover,
we also compare with (c) oracle, which is obtained when
the reward signals are available during the adaptation. Since
MAML-reward only trains the reward model during the
meta-training, there is no performance curve for the meta-
training policies. To ensure a fair comparison, the data
requirements for all the methods are the same during both
the meta-training and the adaptation from human feedback.
More details of the experimental settings are introduced in
Appendix C.3.

Performance evaluation. Figure 5 compares the perfor-
mance of POEM with the baseline methods under an accu-
rate preference oracle on four scenarios. The results for the
remaining five scenarios are shown in Appendix C.5. It is
shown that the proposed method, POEM, significantly out-
performs all the baseline methods, i.e. 20%-50% improve-
ment over the best baselines in terms of the accumulated
rewards during both the meta-training and the meta-test.
More detailed comparisons between POEM and the base-
lines are shown in Appendix C.5.

Performance under noisy preference oracle. We evaluate
POEM when the preference oracle holds noises during the
adaptation from human feedback. We use the Boltzmann
model, introduced in (Lee et al., 2021a), to model the human
preference errors. Figure 6 illustrates the performance of
POEM under a noisy preference oracle across four scenar-
ios. The results indicate that POEM achieves performance

comparable to that observed with an accurate preference
oracle, as shown in Figure 5, highlighting its robustness to
preference errors. Notably, (Ren et al., 2022) has demon-
strated ANOLE’s strong performance in handling preference
noises, and the proposed method significantly outperforms
ANOLE in these scenarios. Detailed descriptions of the
reward model, comparison results for more scenarios, and
detailed analysis are shown in Appendix C.5.
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Figure 7. Ablation studies on Halfchehta-Vel.

Ablation studies. We conduct ablation studies to test the
impact of components designed for POEM, including (i) the
two-encoder structure, i.e., the policy/reward embedding
encoders, with distance metric in (3) (Section 5.1) and (ii)
the context design (Section 5.2). Detailed descriptions of the
comparisons between the components designed for POEM
and those used in previous works are shown in Appendix
C.7. Figures 7, 12, and 13 demonstrate the effectiveness of
the components (i) and (ii) designed for POEM.

8. Conclusion
In this paper, we propose a novel meta-RL algorithm, adap-
tation via preference-order-preserving embedding (POEM)
for meta-RL with adaptation from human feedback. The key
idea of POEM is to train a task encoder such that the task em-
bedding space holds the preference-order-preserving prop-
erty. We provide a theoretical analysis regarding the conver-
gence of the adaptation process and empirically demonstrate
its superior effectiveness.
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Appendix for ”Meta-Reinforcement Learning with Adaptation from Human
Feedback via Preference-Order-Preserving Task Embedding”

A. Related works
From RLHF to meta-RL with adaptation from human feedback. RL from human feedback (RLHF) (Wirth et al.,
2017; Kaufmann et al., 2023; Casper et al., 2023) has been extensively studied to align the objective of an RL task with
human intentions, while the reward function of the task is not directly accessible. A mainstream of the existing methods
continuously inquires humans to obtain human feedback data, e.g., the binary trajectory comparisons or trajectory rankings,
and use the data to infer the reward function, then optimize the policy based on the inferred reward function (Christiano
et al., 2017; Ibarz et al., 2018; Xu et al., 2020; Chakraborty et al., 2024). Several methods have been developed to improve
the efficiency of data utilization, including optimizing the query selections (Biyik & Sadigh, 2018; Biyik et al., 2020;
Chakraborty et al., 2024), initializing with a better policy (Ibarz et al., 2018; Lee et al., 2021b), and improving exploration
efficiency (Liang et al., 2022). Although these methods enhance data efficiency, the number of feedback queries remains
substantial, often ranging from 1k to 10k (Liang et al., 2022). This paper addresses the data inefficiency issue in RLHF
through meta-RL with adaptation from human feedback. Specifically, we propose pre-training a meta-model by extracting
knowledge from multiple existing RL tasks. This enables the meta-model to leverage few-shot human preference data from
a new task to derive a high-quality policy. By utilizing knowledge from the pre-training tasks, the number of required
feedback queries for a new task can be significantly reduced to as few as 5 to 10.

Categorization of meta-RL. Meta-RL methods can be generally categorized into (i) optimization-based, (ii) black-box,
and (iii) context-based methods (Beck et al., 2023). (i) The optimization-based meta-RL, including MAML (Finn et al.,
2017) and its variants (Stadie et al., 2018; Liu et al., 2019; Xu & Zhu, 2024; 2022), has a bilevel optimization (Ji et al., 2021;
Xu & Zhu, 2023) structure. In the lower-level optimization, the task-specific policy is adapted from a shared meta-policy
using a policy optimization algorithm (e.g., one-step policy gradient in MAML). In the upper-level optimization, the
meta-policy is optimized to maximize the performance of the adapted policy starting from the meta-policy over training
tasks. (ii) Black-box meta-RL (Duan et al., 2017; Wang et al., 2016) learn an end-to-end neural network model. The
model has fixed parameters during the policy adaptation, and takes the history samples of the task as the input and the
task-specific policy as the output. (iii) Context-based meta-RL (Rakelly et al., 2019; Raileanu et al., 2020; Zintgraf et al.,
2020) encode the samples of the tasks to the task embedding vector and decode the embedding vector to the task-specific
policy. In meta-RL with adaptation from human feedback, the reward is non-accessible. However, it is indispensable in
policy optimization algorithms and also provides important information within the history samples of a task. Therefore, the
optimization-based and black-box methods cannot be directly applied in this setting. In contrast, in context-based meta-RL,
although the encoding process is disrupted due to missing reward signals, the task embedding vector can be inferred from
human preference data. Both ANOLE (Ren et al., 2022) and this paper belong to this category. However, ANOLE borrows
the task embedding encoder from an existing context-based meta-RL model, and the task embedding space is not designed
for preference data. In this paper, we derive a preference-ordering-preserving embedding space mapped from the task space,
which is more suitable for task embedding inference from human preference data.

Comparisons of methods for meta-RL with adaptation from human feedback. Paper (Joey Hejna, 2023) applies a
supervised meta-learning approach, MAML (Finn et al., 2017), to train a meta-reward model, and adapt it to the task-specific
reward model with few-shot human preference data during the meta-test. However, the method still needs to solve the RL
problem to obtain the task-specific policy under the learned task-specific reward model, which requires a large amount of
data from environmental exploration. To address scenarios of the meta-RL where both human feedback data and environment
exploration data are few-shot, ANOLE (Ren et al., 2022) infers the embedding vector of the task from the human preference
data and derives the task-specific policy from a well-trained context-based meta-RL model. In particular, ANOLE first
employs a context-based meta-RL model trained by PEARL (Rakelly et al., 2019), which provides an encoder that maps the
task space to a task embedding vector space and a decoder that maps the embedding vectors to the task-specific policies.
Next, ANOLE trains a conditional reward model that takes the task embedding vector as the input and the task-specific
reward as the output. During the meta-test, ANOLE matches the human preference queries and the conditional reward model
to infer the task embedding vector, and then decodes the vector to obtain the task-specific policy. An issue of ANOLE is that
the meta-training and meta-test data for the task embedding decoder are inconsistent. Specifically, During the meta-training
of PEARL, task-specific samples with reward signals are used to encode tasks to embedding vectors. However, human
preference data is used to infer the embeddings during the meta-test, but is not involved during the meta-training. As a result,
the task embedding space is not specifically designed for preference data, which may lead to sub-optimal performance. In
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contrast, the proposed method, POEM, trains a preference-ordering-preserving task embedding encoder, which establishes a
connection between the task embeddings and preference data. During the meta-test, the few-shot preference comparisons on
the new task can be directly used to obtain the task embedding.

B. Analysis and Proof
B.1. Selection of similarity metric

B.1.1. INEFFECTIVENESS OF THE SIMPLE SIMILARITY METRIC

As claimed in Section 4, the similarity metric S(zT1 , zT2) ≜ ⟨zT1 , zT2⟩ is not valid for the preference-ordering-preserving
embedding space. The formal statement is shown in Proposition 1.
Proposition 1. Consider S(zT1 , zT2) ≜ ⟨zT1 , zT2⟩. There exists a task space Γ such that, for any task encoder mapping f ,
there exist tasks T0, T1, and T2 ∈ Γ along their embeddings zT0 = f(T0), zT1 = f(T1), and zT2 = f(T2) with that both (1)
and Property 1 are violated, i.e. the following property is violated:

S(zT0 , zT1) ≥ S(zT0 , zT2) ⇐⇒ τT0(π∗
T1
) ≻T0

τT0(π∗
T2
).

Proof. Assume that given any task space Γ such that, for any task encoder mapping f , for any tasks T0, T1, and T2 ∈ Γ
along their embeddings zT0 = f(T0), zT1 = f(T1), and zT2 = f(T2) where the following property is satisfied:

⟨f(T0), f(T1)⟩ ≥ ⟨f(T0), f(T2)⟩ ⇐⇒ τT0(π∗
T1
) ≻T0

τT0(π∗
T2
).

Consider the task distribution Γ that, for any tasks T0, T1, and T2 ∈ Γ with that (i) the initial states of T0, T1, and T2 is fixed,
(ii) the optimal policy π∗

T0
, π∗

T1
, π∗

T2
for T0, T1, and T2 ∈ Γ are deterministic. Then, we have

⟨f(T0), f(T1)⟩ ≥ ⟨f(T0), f(T2)⟩ ⇐⇒ JT0(π
∗
T1
) ≥ JT0(π

∗
T2
) for any T0, T1, and T2 ∈ Γ.

Also, we have

⟨f(T0), f(T1)⟩ ≤ ⟨f(T0), f(T2)⟩ ⇐⇒ JT0(π
∗
T1
) ≤ JT0(π

∗
T2
) for any T0, T1, and T2 ∈ Γ.

They imply that

⟨f(T0), f(T1)⟩ = ⟨f(T0), f(T2)⟩ ⇐⇒ JT0(π
∗
T1
) = JT0(π

∗
T2
) for any T0, T1, and T2 ∈ Γ.

If tasks T ′
1 and T ′

2 have that the reward function rT ′
1
̸= rT ′

2
but π∗

T ′
1
= π∗

T ′
2

. Then, we have

JT0
(π∗

T ′
1
) = JT0

(π∗
T ′
2
) for any T0 ∈ Γ.

Then,
⟨f(T0), f(T ′

1 )⟩ = ⟨f(T0), f(T ′
2 )⟩ for any T0 ∈ Γ.

Consider task T0 = T ′
1 , then ||f(T ′

1 )||22 = ⟨f(T1′), f(T2′)⟩, then we have f(T1′) = f(T2′).

Next, consider the optimal policies of tasks T0 and T ′
0 are evaluated under tasks T ′

1 and T ′
2 , we have

⟨f(T ′
0 ), f(T ′

1 )⟩ ≥ ⟨f(T0), f(T ′
1 )⟩ ⇐⇒ JT ′

1
(π∗

T ′
0
) ≥ JT ′

1
(π∗

T0
) for any T0, T ′

0 ∈ Γ.

⟨f(T ′
0 ), f(T ′

2 )⟩ ≥ ⟨f(T0), f(T ′
2 )⟩ ⇐⇒ JT ′

2
(π∗

T ′
0
) ≥ JT ′

2
(π∗

T0
) for any T0, T ′

0 ∈ Γ.

Since f(T1′) = f(T2′), we have

⟨f(T ′
0 ), f(T ′

1 )⟩ ≥ ⟨f(T0), f(T ′
1 )⟩ ⇐⇒ ⟨f(T ′

0 ), f(T ′
2 )⟩ ≥ ⟨f(T0), f(T ′

2 )⟩.

Then, we have
JT ′

1
(π∗

T ′
0
) ≥ JT ′

1
(π∗

T0
) ⇐⇒ JT ′

2
(π∗

T ′
0
) ≥ JT ′

2
(π∗

T0
) for any T0, T ′

0 ∈ Γ.

However, when the reward function rT ′
1
̸= rT ′

2
, we can easily to find tasks T0 and T ′

0 such that the above statement is
violated.
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B.1.2. EFFECTIVENESS OF THE PROPOSED SIMILARITY METRIC

In this subsection, we prove Theorem 1.

Proof. Consider the mapping fr with that

fr(T ) = [rT (s1, a1), rT (s1, a2), · · · , rT (s1, a|A|), rT (s2, a1), · · · , rT (s|S|, a|A|)],

and the mapping fπ with that

fπ(T ) = [ν
π∗
T

T (s1)π
∗
T (a1|s1), ν

π∗
T

T (s1)π
∗
T (a2|s1), · · · , ν

π∗
T

T (s1)π
∗
T (a|A||s1)), · · · , ν

π∗
T

T (s|S|)π
∗
T (a|A||s|S|))].

Then, we have that, for any tasks T0 and T1, we have

⟨fr(T0), fπ(T1)⟩ = JT0(π
∗
T1
).

Then we have
⟨zT0

r , zT1
π ⟩ ≥ ⟨zT0

r , zT2
π ⟩ ⇐⇒ JT0

(π∗
T1
) ≥ JT0

(π∗
T2
),

where zTi
r = fr(Ti) and zTi

π = fπ(Ti) for i = 0, 1 and 2.

B.2. Performance guarantee

We first show and justify the complete assumptions for Theorem 2.

Assumption 1. Assume that the following networks are applied in Algorithm 2.

(i) The task encoder f : Γ→ Rd holds that, for T ∼ P(Γ), zT = f(T ) follows the normal distribution N (0, I).
(ii) The following properties hold for the mappings fr and fπ : Rd → Rd:

(ii.a) When zTr = fr(z
T ) and zTπ = fπ(z

T ), Property 1 hold for Γ.
(ii.b) The mapping fr is a bijection from Rd to Rd, and f−1

r is Lr-Lipschitz continuous.
(ii.c) The mapping fπ is Lπ-Lipschitz continuous.

(iii) the policy network with θπ is optimal, i.e., πθπ (·|zTπ ) = π∗
T .

Assumption 2. Assume the preference oracle on task Tnew used in Algorithm 2 holds the error at most ϵ, i.e., the condition
in (9) is satisfied.

In Assumption 1, we assume the encoder-decoder network shown in Figure 3 is well-trained. Specifically, assumption (i)
states that the posterior distribution is a normal distribution, which is enforced by the KL divergence loss DKL; assumption
(ii) requires that Property 1 holds, which is encouraged by the preference loss Lpre; and assumption (iii) ensures that
the optimal policy is accurately reconstructed, as enforced by the policy loss Lπ. Moreover, we require the continuity
property for the mappings fr and fπ. Note that, for different tasks, the reward functions are different, and vice versa. So,
a well-trained mapping fr is a bijection, and then f−1

r exists. In Assumption 1, we assume the maximum error of the
preference oracle on task Tnew is ϵ.

Next, we provide the complete statement of Theorem 2, which is shown in Theorem 3.

Theorem 3. Suppose Assumptions 1 and 2 hold for Algorithm 2. Let Zk be the random variable sampled as same as Zk in
Algorithm 2. Let Z be a random variable following N (0, I). Under mild conditions on fr and fπ , we have

(a) The probability density function (PDF) of Zk at zTnew has

P (Zk = zTnew) ≥ P (Z = zTnew)(
1−

√
2Lr√
π

log
(

1+2ϵ
1−2ϵ

))
·
(
1
2

)k
+

√
2Lr√
π

log
(

1+2ϵ
1−2ϵ

) .
(b) When ϵ = 0, Zk converges to zTnew in distribution, i.e., Zk

d−→ zTnew .

Here, zTnew is the embedding of Tnew such that JTnew(πθπ (·|zTnew
π )) = JTnew(π

∗
T ).
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Proof of (a). Consider the space of z define by:

exp (S(z, z′))

exp (S(z, z′)) + exp (S(z, z′′))
≥ 1

2
− ϵ.

the space of z can be simplified as

S(z, z′)− S(z, z′′) ≥ log

(
1 + 2ϵ

1− 2ϵ

)
.

Consider the distance metric is S(z′, z′′) = ⟨z′r, z′′π⟩, we can derive the space for the task reward embedding zr as a
half-space specified by the following linear inequality:

⟨zr, z′′π − z′π⟩ ≥ log

(
1 + 2ϵ

1− 2ϵ

)
. (11)

We denote the half-space specified in (11) with z′π , z′′π , and ϵ as H(z′π, z
′′
π , ϵ).

Let Zr = fr(Z) where Z is a random variable following N (0, I). Define the function g(z′π, z
′′
π) = Pr[Zr ∈ H(z′π, z

′′
π , 0)].

Since f−1
r is Lipschitz continuous and the probability density of Z on any point is finite, then the probability density of Zr

on any point is finite, then g(z′π, z
′′
π) is continuous.

Next, we have g(z′π, z
′′
π) = 1 − g(z′′π , z

′
π), 0 ≤ g(z′π, z

′′
π) ≤ 1, and 0 ≤ g(z′′π , z

′
π) ≤ 1. Without loss of generality, we

assume that g(z′π, z
′′
π) ≥ 1

2 and g(z′′π , z
′
π) ≤ 1

2 . From the mean value theorem, since g(z′π, z
′′
π) is continuous, there exists a

pair (z̄′π, z̄
′′
π) such that g(z̄′π, z̄

′′
π) =

1
2 and g(z̄′′π , z̄

′
π) =

1
2 . We choose (z̄′π, z̄

′′
π) to generate the half-space H(z̄′π, z̄

′′
π , ϵ), and

aim to derive the upper bound for Pr[Zr ∈ H(z̄′π, z̄
′′
π , ϵ)] and Pr[Zr ∈ H(z̄′′π , z̄

′
π, ϵ)].

Since the mapping f−1
r is Lr-Lipschitz continuous and Z is a random variable following N (0, I), we have

Pr[Zr ∈ H(z̄′π, z̄
′′
π , ϵ)/H(z̄′π, z̄

′′
π , 0)] ≤

Lr√
2π

log

(
1 + 2ϵ

1− 2ϵ

)
.

Then,

Pr[Zr ∈ H(z̄′π, z̄
′′
π , ϵ)] ≤

1

2
+

Lr√
2π

log

(
1 + 2ϵ

1− 2ϵ

)
.

Similarly, we have

Pr[Zr ∈ H(z̄′′π , z̄
′
π, ϵ)] ≤

1

2
+

Lr√
2π

log

(
1 + 2ϵ

1− 2ϵ

)
.

Therefore,

max{Pr[Zr ∈ H(z̄′π, z̄
′′
π , ϵ)],Pr[Zr ∈ H(z̄′′π , z̄

′
π, ϵ)]} ≤

1

2
+

Lr√
2π

log

(
1 + 2ϵ

1− 2ϵ

)
.

In Algorithm 2, the pair (ẑ′, ẑ′′) is generated by the following optimization problem,

(ẑ′, ẑ′′) = argminz′,z′′∈Zk
(max{|Z(1)|, |Z(2)|}),

where Z(1) = {z ∈ Zk : S(z, z′) >ϵ S(z, z
′′)} and Z(2) = {z ∈ Zk : S(z, z′′) >ϵ S(z, z

′)}. This means that

(ẑ′, ẑ′′) = argminz′,z′′∈Zk
(max{Pr[Zr ∈ H(z′π, z

′′
π , ϵ)],Pr[Zr ∈ H(z′′π , z

′
π, ϵ)]}).

Therefore, we have

max{Pr[Zr ∈ H(ẑ′π, ẑ
′′
π , ϵ)],Pr[Zr ∈ H(ẑ′′π , ẑ

′
π, ϵ)]} ≤

1

2
+

Lr√
2π

log

(
1 + 2ϵ

1− 2ϵ

)
.

Therefore, after we generate the pair (ẑ′, ẑ′′) for one time to sampleZ1, there is at least probability of 1
2−

Lr√
2π

log
(

1+2ϵ
1−2ϵ

)
is

eliminated. From Assumption 2, the zTnew
r will be included in H(ẑ′π, ẑ

′′
π , ϵ) when ẑ′ is preferred and included in H(ẑ′′π , ẑ

′
π, ϵ)

when ẑ′′ is preferred. Therefore, zTnew
r will not be eliminated.
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Denote the left probability as Pk, then P0 = 1 and P1 ≤ 1
2 + Lr√

2π
log
(

1+2ϵ
1−2ϵ

)
. Repeat the above procedure to sample Z2,

Z3, · · · , Zk, we have

Pk ≤
1

2
Pk−1 +

Lr√
2π

log

(
1 + 2ϵ

1− 2ϵ

)
.

Then, we have

Pk ≤

(
1−
√
2Lr√
π

log

(
1 + 2ϵ

1− 2ϵ

))
·
(
1

2

)k

+

√
2Lr√
π

log

(
1 + 2ϵ

1− 2ϵ

)
Then,

P (Zk = zTnew) ≥ P (Z = zTnew)(
1−

√
2Lr√
π

log
(

1+2ϵ
1−2ϵ

))
·
(
1
2

)k
+

√
2Lr√
π

log
(

1+2ϵ
1−2ϵ

) .

Proof of (b). Consider ϵ = 0. Consider any embedding zδ such that zδ ̸= zTnew , i.e., JTnew(πθπ (·|zδπ)) < JTnew(π
∗
T ).

Assume that the angle between the vectors zTnew
r and zδr is δ, then δ > 0.

Consider that the pair (ẑ′, ẑ′′) generated in Algorithm 2, the probability of generating (ẑ′, ẑ′′) such that

⟨zTnew
r , z′′π − z′π⟩ ≥ 0 and ⟨zδr , z′′π − z′π⟩ ≤ 0

is non-zero, until zδ is eliminated from the candidate space. Therefore, we have that, if zδ ̸= zTnew , then

lim
k→∞

P
(
Zk = zδ

)
= 0.

Therefore, for any closed set S, if zTnew
r ∈ S, limk→∞ P (Zk ∈ S) = 1; else limk→∞ P (Zk ∈ S) = 0. Then, Zk

converges to zTnew in distribution, i.e., Zk
d−→ zTnew .

C. Experimental Supplements
All experiments are executed on a computer with a 5.20 GHz Intel Core i12 CPU and an NVIDIA RTX 4090 GPU.

C.1. Benchmarks

MuJoCo. The first benchmark is the robotic locomotion benchmarks simulated using the MuJoCo simulator (Todorov
et al., 2012). The benchmarks are created by (Finn et al., 2017; Rothfuss et al., 2019) and are a widely adopted platform
in meta-RL (Rajeswaran et al., 2019; Raileanu et al., 2020; Xu & Zhu, 2024; Liu & Zhu, 2023b; Liu & Zhu; 2023a) and
meta-RL with adaptation from human feedback (Joey Hejna, 2023; Ren et al., 2022) to test the performance of few-shot
policy adaptation. Visualizations of the benchmark is shown at the top of Figure 8.

MetaWorld. The second benchmark is MetaWorld (Yu et al., 2020), a benchmark suite for robotic tabletop manipulation.
MetaWorld includes a diverse set of motion patterns and interactions with different objects for robotic arms and is recognized
as a more challenging benchmark for the few-shot policy adaptation in meta-RL. Visualizations of the benchmark is shown
at the bottom of Figure 8.

C.2. Task settings

We conduct experiments on totally nine scenarios in two benchmarks centered around robotic continuous control tasks.

We consider seven scenarios on the benchmark of MuJoCo. The dynamic systems of the agents in the seven scenarios include
three different robots: HalfCheetah, Ant, and Humanoid. Visualizations of these agents in their respective environments are
provided at the top of Figure 8, where Half-Cheetah (Figure 8.a) has a 17-dimensional state space and a 6-dimensional action
space; Humanoid (Figure 8.b) has a 376-dimensional observation space and a 17-dimensional action space; Ant (Figure 8.c)
has a 27-dimensional observation space and an 8-dimensional action space. The task settings include forward/backward
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(a) Half-Cheetah (b) Humanoid (c) Ant

(d) MetaWorld

Figure 8. Visualization of robotic locomotion environments. including Half-Cheetah, Humanoid, and Ant, simulated by Mujoco and the
MetaWorld environments.

motion (-Fwd-Back), various target velocities (-Vel), various target directions (-Dir-2D), and various target positions (-Goal).
We show the detailed setting of the seven scenarios as follows.

Half-Cheetah-Vel. In the experiment of Half-Cheetah-Vel, the agent is Half-Cheetah, and the reward is the negative
absolute value between the agent’s current velocity and a goal velocity, where the goal velocity characterizes the task. The
task distribution is defined by the distribution of the goal velocity, which is a uniform distribution from 0.0 to 3.0.

Half-Cheetah-Fwd-Back. In the experiment of Half-Cheetah-Fwd-Back, the agent is Half-Cheetah, and the task family
includes two tasks. The reward in the first task is the agent’s current velocity. The reward in the second task is the negative
of the agent’s current velocity.

Ant-Vel. In the experiment of Ant-Vel, the agent is Ant, and the reward is the negative absolute value between the agent’s
current velocity and a goal velocity, where the goal velocity characterizes the task. The task distribution is defined by the
distribution of the goal velocity, which is a uniform distribution from 0.0 to 3.0.

Ant-Fwd-Back. In the experiment of Ant-Fwd-Back, the agent is Ant, and the task family includes two tasks. The reward
in the first task is the agent’s current velocity. The reward in the second task is the negative of the agent’s current velocity.

Ant-Dir-2D. In the experiment of Ant-Dir-2D, the agent is Ant, and the reward is set as vy sin θ+ vx cos θ, where vx and vy
are the velocities along the x-axis and y-axis, and θ is the walking direction of the humanoid. So the reward is the velocity
along the direction θ. The task is characterized by the walking direction θ, which is sampled uniformly from −π/2 to π/2.

Ant-Goal. In the experiment of Ant-Goal, the agent is Ant, and the reward is set as the negative absolute value between the
agent’s current location and a goal, where the goal characterizes the task. The task distribution is defined by the distribution
of the goal location, which is a uniform distribution from a circle with a radius of 3.0.

Humanoid-Dir-2D. In the experiment of Ant-Dir-2D, the agent is Humanoid, and the reward is set as vy sin θ + vx cos θ,
where vx and vy are the velocities along the x-axis and y-axis, and θ is the walking direction of the humanoid. So the reward
is the velocity along the direction θ. The task is characterized by the walking direction θ, which is sampled uniformly from
−π/2 to π/2.

Two scenarios are conducted on MetaWorld. The scenarios in MetaWorld include task families that hold different
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manipulation types (ML10) and varying operation positions (ML1). We show the detailed setting of the seven scenarios as
follows.

MetaWorld-ML1. In the experiment of MetaWorld-ML1, the tasks family has a single type of manipulation task with
varying target operation positions.

MetaWorld-ML10. In the experiment of MetaWorld-ML10, the task is characterized by the type of manipulation, which is
shown in (d) of 8. The tasks family has 10 types of manipulation tasks where each type of manipulation task has varying
target operation positions. Note that the state transition functions in different types of manipulation tasks are different.

C.3. Experimental setting

We sample 120 training tasks for the meta-training of scenarios including Half-Cheetah-Vel, Ant-Vel, Ant-Dir-2D, Ant-Goal,
Humanoid-Dir-2D, MetaWorld-ML1, MetaWorld-ML10; and sample 2 tasks for the meta-training of Half-Cheetah-Fwd-
Back and Ant-Fwd-Back. We simulate the preference oracle by comparing the ground-truth trajectory return from the
environments. The adaptation cannot observe the environmental rewards during meta-test and can only query the preference
oracle. At the meta-test time, the meta-policy is adapted by at most 10 preference queries for each task and at most 20
trajectories without reward signals (two trajectories for a single preference query). The performance of the adapted policy is
tested on 30 tasks and we evaluated 10 episodes in each task. To ensure a fair comparison, we keep all the above settings the
same for all the methods during both the meta-training and the adaptation from human feedback.

C.4. Hyper-parameters

We summarize major hyper-parameters in the following table. We use this set of hyper-parameters for all POEM’s
experiments. The hyper-parameters in Table 2 can be divided into two parts. The first part includes the hyper-parameters
that follow the existing meta-RL (Rakelly et al., 2019) and RL (Haarnoja et al., 2018) algorithms. So we directly use the
hyper-parameters in these works in our proposed method. The second part is new and specific to the proposed method,
including the coefficients of the three loss terms and the error tolerance constant ϵ. We select the coefficients such that
all these three loss terms have similar scales. For the error tolerance constant ϵ, we tune ϵ to deal with the noise of the
preference oracle while not deteriorating the performance of POEM when the preference oracle is accurate. We show the
ablation study on the hyperparameter, the error tolerance constant ϵ, in Section C.7.
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Table 2. Default Hyper-Parameters and Configurations
Hyper-Parameter Default Configuration

Dimension of latent embedding d 5
Discount factor γ 0.99

Optimizer (all losses) Adam (Kingma & Ba, 2014)
Learning rate of policy network 1 · 10−4

Learning rate of Q function 1 · 10−4

Learning rate of Value function 3 · 10−4

Learning rate of encoder 1 · 10−4

Adam-(β1, β2, ϵ) (0.9, 0.999, 10−8)
βr: coefficient of reward loss Lr 0.2

βpre: coefficient of preference loss Lpre 6.0
βπ: coefficient of policy loss Lπ 0.5

Error tolerance constant ϵ 0.1
# Gradient steps per environment step 1/5

# Gradient steps per target update 1
# Transitions in replay buffer (for each task T ) 1e5

# Tasks in each mini-batch for training SAC 32
# Transitions in each task batch for training SAC 256

# Trajectories in each task of each mini-batch 10
# Transitions in each context 128

# Preference queries K 10
# Sample embeddings Nz 100

# Trajectory horizon 200
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Table 3. Comparison of average accumulated reward ± standard deviation between POEM and baseline methods in the adaptation from
human feedback (after querying 1, 5, and 10 times preference oracle, respectively) on MuJoCo and MetaWorld.

HalfCheetah-Vel HalfCheetah-Fwd-Back

1 query 5 queries 10 queries 1 query 5 queries 10 queries

MAML-reward -201±13 -193±11 -182±11 -120±130 -40±138 -4±142
ANOLE -173±12 -120±10 -112±14 503±149 1012±121 1198±89

ANOLE-random -172±14 -125±13 -115±13 1236±203 1419±108 1483±45
ANOLE-greedy -169±12 -128±18 -115±12 1367±155 1482±91 1493±89

POEM -65±10 -50±8 -46±6 1689±54 1684±32 1709±23

Ant-Goal Ant-Fwd-Back

1 query 5 queries 10 queries 1 query 5 queries 10 queries

MAML-reward -610±81 -603±85 -602±89 101±11 105±12 105±11
ANOLE -550±21 -405±29 -380±19 618±60 830±20 802±38

ANOLE-random -551±22 -419±26 -378±16 808±38 810±22 812±29
ANOLE-greedy -560±25 -412±38 -401±51 788±39 806±23 820±32

POEM -351±9 -203±12 -202±7 1030±12 1013±56 1015±48

Ant-Dir-2D Ant-Vel

1 query 5 queries 10 queries 1 query 5 queries 10 queries

Meta-reward 102±20 101±23 112±30 -3±9 -1±10 6±8
ANOLE 308±45 515±78 588±67 36±5 80±10 83±7

ANOLE-random 181±30 432±45 498±35 20±5 60±10 100±6
ANOLE-greedy 172±20 443±30 414±25 30±5 70±10 110±5

POEM 671±15 732±45 749±40 95±5 108±8 112±4

Humanoid-Dir-2D MetaWorld-ML10

1 query 5 queries 10 queries 1 query 5 queries 10 queries

MAML-reward 504±52 529±56 523±58 153±18 164±19 166±15
ANOLE 754±59 703±55 722±62 238±31 192±42 240±21

ANOLE-random 232±54 780±64 796±58 242±31 192±39 229±29
ANOLE-greedy 231±30 781±59 798±54 239±34 175±26 183±13

POEM 812±45 1462±14 1451±67 326±17 324±13 349±7

MetaWorld-ML1

1 query 5 queries 10 queries

MAML-reward 680±36 691±40 692±49
ANOLE 1086±t67 1042±70 1018±82

ANOLE-random 1117±64 1045±80 1145±52
ANOLE-greedy 1091±47 1011±67 1122±76

POEM 1435±12 1588±32 1601±13
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Figure 9. Performance on MetaWolrd-ML1. Left: Average accumulated reward on test tasks v.s. samples collected during meta-training.
Right: Average accumulated reward on test tasks v.s. preference queries during adaptation from human feedback. “Oracle” denotes the
performance when the reward signals are available during the meta-test.
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Figure 10. Performance on HalfCheetah-Fwd-Back, Ant-Fwd-Back, Ant-Dir-2D, and Ant-Goal. Top: Average accumulated reward on
test tasks v.s. samples collected during meta-training. Bottom: Average accumulated reward on test tasks v.s. preference queries during
adaptation from human feedback. “Oracle” denotes the performance when the reward signals are available during the meta-test.

C.5. Supplemental results for performance evaluation

Figures 9 and 10 show the performance evaluation of POEM and baseline methods with an accurate preference oracle on
MetaWolrd-ML1, HalfCheetah-Fwd-Back, Ant-Fwd-Back, Ant-Dir-2D, and Ant-Vel. It is shown that the proposed method,
POEM, significantly outperforms all the baseline methods during both the meta-training and the meta-test.

We further compare the proposed method POEM with the baseline methods in Table 3. It is shown that the proposed method,
POEM, significantly outperforms all the baseline methods. Moreover, a single query for the adaptation from human feedback
can achieve the best performance on HalfCheetah-Fwd-Back and Ant-Fwd-Back, because these two scenarios are simple
and each scenario only includes two tasks, and a single query is sufficient to distinguish the task embedding of a given new
task. In the other seven scenarios, 5 queries for the adaptation from human feedback almost achieve the best performance.
Moreover, in these harder scenarios, the proposed method, POEM, exhibits greater performance advantages over baseline
methods compared to that in the two simpler scenarios.
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C.6. Supplemental results under noisy preference oracle

We evaluate POEM when the preference oracle holds noises during the adaptation from human feedback. We use the
Boltzmann model to model the human preference errors. In particular, the oracle answers τ (1) ≻ τ (2) with the probability

exp
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β · Return

(
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))
exp

(
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(
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))
+ exp
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where β denotes the temperature parameter. This error mode is commonly considered by recent preference-based RL
works (Ren et al., 2022; Lee et al., 2021a). To normalize the total reward, we select the temperature parameter β =

1

|
∑

t r
(1)
t |+|

∑
t r

(2)
t |

.

Figure 11 illustrates the performance of POEM under a noisy preference oracle on MetaWolrd-ML1, HalfCheetah-Fwd-Back,
Ant-Fwd-Back, Ant-Dir-2D, and Ant-Vel. The results indicate that POEM achieves performance comparable to that observed
with an accurate preference oracle, as shown in Figures 9 and 10, highlighting its robustness to preference errors. Notably,
while (Ren et al., 2022) has demonstrated ANOLE’s strong performance in handling preference noises, the proposed method
significantly outperforms ANOLE in these scenarios.
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Figure 11. Performance evaluation under a noisy preference oracle. Average accumulated reward on test tasks v.s. samples collected
during meta-training on HalfCheetah-Fwd-Back, Ant-Fwd-Back, Ant-Goal, Ant-Dir-2D, and MetaWorld-ML1.

C.7. Supplemental results for ablation studies

We conduct ablation studies to test the impact of the individual design components in POEM, including (i) two-encoder
structure, i.e., the policy/reward embedding encoders (Section 5.1) and (ii) context design (Section 5.2).

Two-encoder structure with the new distance metric. We first consider the impact of the two-encoder structure. In
Section 5.1 and Figure 3, we employ an embedding encoder to map the task context cT to the task embedding zT , and then
employ two mappings the task embedding zT to the task-specific policy embedding zTπ (by fϕπ

) and task-specific reward
embedding zTr (by fϕr

). Moreover, we consider the distance metric S(zT1 , zT2) ≜ ⟨zT1
r , zT2

π ⟩, where zTπ = fϕπ
(zT ) and

zTr = fϕr
(zT ). Here, we consider a naive option to define the task embedding and the distance metric, i.e. employing

a single embedding encoder to map the task context cT to the task embedding zT and then define the distance metric
S(zT1 , zT2) ≜ ⟨zT1 , zT2⟩. In Proposition 1 of Appendix B.1.1, we theoretically show the ineffectiveness of the naive
distance metric. Here, we experimentally compare the performance between the two designs.
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Figure 12 shows the performance comparison between the two-encoder structure with the distance metric in 3 designed
for POEM and the single encoder with naive distance metric. It is shown that using the single encoder with naive distance
metric hurts performance.
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Figure 12. Ablation studies on the encoder structures in Ant-Dir-2D, Ant-Goal, and Humanoid-Dir. Average accumulated reward on test
tasks v.s. samples collected during meta-training.

Context design and recursive training. We examine our choice of context, i.e., the input of the encoder. As introduced in
Section 5.2, we consider the task context as cT = {(s(t), â(t), s(t+1), r

(t)
T , Q

π∗
T

T (s(t), â(t))}Ht=1, where â(t) ∼ π∗
T (·|s(t)) and

Q
π∗
T

T (s(t), â(t)) is the optimal value on (s(t), â(t)). As discussed in Section 5.3, since the optimal policy π∗
T is not available

during the meta-training, we approximate the optimal policy π∗
T by the policy π

θ
(n−1)
π

(·, zTπ,(n−1)), where both the policy
network π

θ
(n−1)
π

and the embedding zTπ,(n−1) are obtained from the last epoch n− 1. Then, we use the recursive training to

update the parameters of the policy network θ
(n)
π and the embedding zTπ,(n) in each epoch n.

In PEARL (Rakelly et al., 2019), the context is cT = {(s(t), a(t), s(t+1), r
(t)
T }Ht=1, where a(t) is sampled by posterior

sampling. This enables the trajectory sampling for the new task during the meta-test. However, in the meta-RL with
adaptation from human feedback, the trajectory with reward signals is not available for the new task, and the proposed
method does not need to sample the trajectory for the context. Therefore, we do not need to use the posterior sampling in
PEARL. Instead, we design the context which incorporates more information about the optimal policy in â(t) and Q

π∗
T

T .

We experimentally verify the benefits of the context design in POEM over that in PEARL. Figure 12 shows the performance
comparison between the context design in POEM and that designed for PEARL. It is shown that using the context designed
for PEARL holds certain performance loss. This could be attributed to the fact that the optimal policy-related information
embedded within the designed context aids the encoder in learning more informative and effective task embeddings.
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Figure 13. Ablation studies on the context design in Ant-Dir-2D, Ant-Goal, and Humanoid-Dir. Average accumulated reward on test tasks
v.s. samples collected during meta-training.

Ablation study on selecting the error tolerance constant ϵ. We conduct the ablation study on the hyperparameter, the
error tolerance constant ϵ, under the preference oracle and the preference oracle with noise set as Appendix C.6. Figure
14 shows the results of different error tolerance constants ϵ in the adaptation from human feedback (meta-test) under the
preference oracle. Figure 15 shows the results of different error tolerance constants ϵ in the adaptation from human feedback
(meta-test) under the noisy preference oracle.
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Figure 14. Ablation studies on selecting the error tolerance constant ϵ, in Ant-Dir-2D, Ant-Goal, and Humanoid-Dir. Average accumulated
reward on test tasks v.s. samples collected during meta-training. The human feedback is the oracle.
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Figure 15. Ablation studies on selecting the error tolerance constant ϵ, in Ant-Dir-2D, Ant-Goal, and Humanoid-Dir. Average accumulated
reward on test tasks v.s. samples collected during meta-training. The human feedback is a noisy oracle.
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