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GraphSHINE: Training Shift-Robust Graph Neural Networks with
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ABSTRACT

Graph neural networks (GNNs) have achieved remarkable perfor-
mance across predictive tasks on graph-structured data. However,
a critical issue gaining increasing attention is their performance
degradation when faced with out-of-distribution (OOD) testing
nodes. This challenge is exacerbated by the fact that distribution
shifts on graphs involve intricate interconnections between nodes,
and the environment labels are often absent in data. In this paper,
we adopt a bottom-up data-generative perspective and reveal a
key observation that the crux of GNNs’ failure in OOD general-
ization lies in the latent confounding bias from the environment.
The latter misguides the model to leverage environment-sensitive
correlations between ego-graph features and target nodes’ labels,
resulting in undesirable generalization on new unseen nodes. Build-
ing upon this analysis, we introduce a novel, provably generalizable
approach for training robust GNNs under node-level distribution
shifts, without prior knowledge of environment labels. Our method
resorts to a new learning objective that coordinates two key com-
ponents: 1) an environment estimator that infers pseudo environ-
ment labels, and 2) a mixture-of-expert GNN predictor with feature
propagation units conditioned on the pseudo environments. We
show that the new approach can counteract the confounding bias
in training data and facilitate learning shift-robust predictive re-
lations. Extensive experiment demonstrates that our model can
effectively enhance generalization with various types of distribu-
tion shifts and yield up to 27.4% accuracy improvement over other
graph OOD generalization methods. Source codes are available at
https://anonymous.4open.science/r/GraphSHINE-A463/.

KEYWORDS

Graph Neural Networks, Distribution Shifts

1 INTRODUCTION

Graph neural networks (GNNs) [11, 13, 13, 16, 31, 37] have emerged
as a de facto class of encoder backbones for modeling interdepen-
dent data and efficiently computing node representations that can
be readily adapted to diverse graph-based applications, including
social network analysis [35], drug discovery [9], knowledge reason-
ing [27], traffic control [12], anomaly detection [43], etc.

Despite great advances in the expressivity and representational
power of GNNs, most of existing models focus on improving the
performance on in-distribution data, i.e., the testing nodes gener-
ated from an identical distribution as the training ones. However,
recent evidence [2, 20–22, 40, 46] suggests that GNNs tend to per-
form unsatisfactorily on out-of-distribution (OOD) nodes where
the data-generating distributions exhibit differences from training
observations. We illustrate such an issue through a typical example
for node property prediction with GNNs, as shown in Fig. 1. Let us
consider a social network where the nodes correspond to users and
the goal is to predict whether a user likes playing basketball. In gen-
eral, if a user’s friends love sports, then the conditional probability

for the user liking basketball would be high, which can be treated as
a stable (or interchangeably, environment-insensitive) relation from
the ego-graph feature (the GNN model actually processes as input
of each node) to the label of the target node. Yet, there also exists
positive correlation between "a user’s friends are young" and "the
user likes basketball" on condition that the social network is formed
in a university where the marginal probability for "a user’s friends
are young" and "a user likes playing basketball" are both high. The
relation from such an ego-graph feature to the label is unstable (or
interchangeably, environment-sensitive), since this correlation does
not hold elsewhere like LinkedIn where the marginal distributions
for user’s ages and hobbies have considerable diversity. The pre-
diction relying on the latter unstable relation would fail once the
environment changes from universities to LinkedIn, which causes
distribution shifts. The deficiency of GNNs for OOD generalization
urges us to build a shift-robust model for graph representations.

Nevertheless, the challenge is that distribution shifts on graphs
are associated with the inter-connecting nature of data generation,
which requires the model to accommodate the structural features
among neighbored nodes for OOD generalization. Second, unlike
image data [1, 18, 19] where the dataset often contains the context
for each image instance that serves as environment labels indicat-
ing the source distribution of each instance, in the graph learning
problem, the environment labels for nodes are often unavailable.
This poses an obstacle for inferring useful environment information
from observed data which can properly guide the model to learn
generalizable patterns for prediction.

In this paper, we adopt a bottom-up data-generative perspective
for investigating the learning behaviors of GNNs in node prop-
erty prediction under distribution shifts. We reveal that the crux of
GNNs’ deficiency for OOD generalization lies in the latent environ-
ment confounder that leads to the confounding bias and over-fitting
on the environment-sensitive relations. On top of the analysis, we
propose a provably effective approach, dubbed as Graph SHIft-
robust learNing with Environment inference (GraphSHINE), for guid-
ing the GNN to learn stable predictive relations from training data,
without prior knowledge of environment labels.We introduce a new
learning objective that collaboratively trains an environment esti-
mator and a mixture-of-expert GNN predictor. The former aims to
infer pseudo environment labels based on input ego-graphs to par-
tition nodes in the graph into clusters from disparate distributions.
The GNN predictor resorts ot mixture-of-expert propagation net-
works dynamically selected by the pseudo environments. We prove
that the new objective can contribute to alleviating the confounding
bias in training data and capturing the environment-insensitive
predictive relations that are generalizable across environments.

To evaluate the approach, we conduct experiments on six datasets
for node property prediction with various types of distribution
shifts. The results manifest that the proposed approach can 1) sig-
nificantly improve the generalization performance of different GNN
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Figure 1: An illustration based on a social network example for solving node property prediction by GNNs. (a) The task aims at

predicting the (target) node’s label 𝑦𝑣 based on its ego-graph features G𝑣 , i.e., what the GNN model processes as input. (b) Two

relations existing in social networks trigger different generalization effects for GNNs trained with observed data. (c) A causal

graph describing the dependence among ego-graph features 𝐺 , node label 𝑌 and the unobserved environment 𝐸. The latter is a

latent confounder, the common cause for 𝐺 and 𝑌 in the data generation.

models when distribution shifts occur, 2) yield up to 27.4% per-
formance improvements over the state-of-the-art approaches for
handling OOD in node property prediction, and 3) still guaran-
tees competitive performance on in-distribution testing data. We
summarize the contributions as follows.

i) We analyze the generalization ability of GNNs under node-
level distribution shifts from a data-generative perspective, and
identify that GNNs trained with maximum likelihood estimation
would capture the unstable relations from ego-graph features to
labels due to the confounding bias of unobserved environments.

ii)We propose a new approach for training GNNs under node-
level distribution shifts. The model resorts to a novel learning ob-
jective that facilitates the GNN to capture environment-insensitive
predictive patterns, by means of an environment estimator that
infers pseudo environments to eliminate the confounding bias.

iii) We apply our model to various datasets with different types
of distribution shifts from training to testing nodes. The results
consistently demonstrate the superiority of our model in node
property prediction over other graph OOD generalization methods.

2 PROBLEM FORMULATION

In this section, we introduce notations and the problem setup. All
the vectors are column vectors by default and denoted by bold
lowercase letters. We adopt bold capital letters to denote matrices
and small capital letters to denote random variables. We use 𝑝
to represent the data distribution (𝑝𝑡𝑟 /𝑝𝑡𝑒 is used for specifying
training/testing data) while 𝑝𝜃 denotes the predictive distribution
induced by the model with parameterization 𝜃 . Besides, 𝑞 and 𝑞𝜙
denote other distributions, typically the variational distributions.

Node Proprety Prediction on Graphs. We focus on node-
level prediction tasks over graphs. Assume a graph G = (V, E)
with 𝑁 nodes, where V and E denote the node set and edge set,
respectively. Besides, X = [x𝑣]𝑣∈V ∈ R𝑁×𝐷 denotes the node
feature matrix, where 𝐷 is the input feature dimension, and A =

[𝑎𝑣𝑢 ]𝑣,𝑢∈V ∈ {0, 1}𝑁×𝑁 denotes the adjacency matrix. If there
exists an edge between node 𝑢 and 𝑣 , then 𝑎𝑢𝑣 = 1, and otherwise 0.
Each node corresponds to a label, denoted by a one-hot vector y𝑣 ∈
{0, 1}𝐶 where 𝐶 is the number of classes. The node classification
problem can be defined as: given labels {y𝑣}𝑣∈V𝑡𝑟

for training
nodesV𝑡𝑟 , one aims to predict labels {y𝑣}𝑣∈V𝑡𝑒

for testing nodes
V𝑡𝑒 = V \V𝑡𝑟 with node features X and graph adjacency A.

From a data-generating perspective, the input graph G can be
seen as a collection of (overlapping) pieces of ego-networks [22, 40].

For node 𝑣 , its 𝐿-hop ego-graph is denoted as G (𝐿)𝑣 = (X(𝐿)𝑣 ,A(𝐿)𝑣 )
where X(𝐿)𝑣 and A(𝐿)𝑣 are the node feature matrix and the adjacency
matrix induced by nodes in 𝑣 ’s 𝐿-hop neighborhood. To keep no-
tations clean, we omit the superscript and use G𝑣 to represent the
ego-graph of 𝑣 unless otherwise specified for emphasizing the order.
Furthermore, we define 𝐺 as a random variable of ego-graphs G𝑣 ’s
and 𝑌 as a random variable for node labels y𝑣 ’s.

Distribution Shifts on Graphs. The node-level distribution
shifts induce that 𝑝𝑡𝑟 (𝐺,𝑌 ) ≠ 𝑝𝑡𝑒 (𝐺,𝑌 ), i.e. the data distributions
that generate the ego-graphs and labels of training and testing
nodes are different. A crucial concept in OOD generalization is the
environment1 that serves as the direct cause for the data-generating
distribution. In node property prediction, the environment can be
a general reflection for where or when the nodes in a graph are
generated. For example, as shown by the social network example in
Section 1, the environment is where the graph is collected ("univer-
sity" or "LinkedIn"). In protein networks [47], the environment can
be the species that the protein belongs to. In citation networks [15],
the environment can be when the paper is published (e.g., "before
2010" or "from 2010 to 2015"). The specific physical meanings for
environments depend on particular datasets. Without loss of gener-
ality, define 𝐸 as the random variable of environments and 𝑒 as its
realization, and the data-generating distribution can be character-
ized by 𝑃 (𝐺,𝑌 |𝐸) = 𝑃 (𝐺 |𝐸)𝑃 (𝑌 |𝐺, 𝐸), i.e., 𝐸 impacts the generation
process of 𝐺 and 𝑌 . Fig. 1(c) illustrates the dependence of three
random variables through a causal diagram which highlights that
the environment 𝐸 is the common cause for 𝐺 and 𝑌 .

3 PROPOSED MODEL

We next present our analysis and proposed method. In Section 3.1,
we first analyze the generalization behaviors of common GNNs in
node property prediction under distribution shifts and reveal what
causes the deficiency of GNNs w.r.t. out-of-distribution data. Based
on the analysis, in Section 3.2 and 3.3, we introduce the formulation
and instantiations for our proposed model, respectively.

3.1 Dissecting the Confounding Bias for GNNs

with Node-Level Distribution Shifts

To understand the generalization behaviors of GNNs, we present a
proof-of-concept causal analysis on the dependence among vari-
ables of interest regarding node property prediction. The results

1In OOD generalization literature [5, 10, 28], environment and domain are interchange-
ably used and refer to an indicator of which distribution a sample is generated from.
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attribute the failure of common GNNmodels for out-of-distribution
(OOD) generalization to the confounding bias of unobserved envi-
ronments.

Causal Analysis for Graph Neural Networks. Common GNN
models take a graph G as input, iteratively update node representa-
tions through aggregating neighbored nodes’ features and output
the estimated label for each node. Specifically, assume z(𝑙 )𝑣 as the
representation of node 𝑣 at the 𝑙-th layer and the updating rule of
common GNNs can be written as

z(𝑙+1)𝑣 = 𝜎

(
Conv(𝑙 )

(
{z(𝑙 )𝑢 |𝑢 ∈ N𝑣 ∪ {𝑣}}

))
, (1)

where N𝑣 is the set of nodes connected with 𝑣 in the graph and
Conv(𝑙 ) is a graph convolution operator over node representations.
For example, in vanilla GCN [16], Conv(𝑙 ) is instantiated as a pa-
rameterized linear transformation of node representations and a
normalized aggregation. Also, the initial node embeddings are often
computed by the node features z(1)𝑣 = 𝜙𝑖𝑛 (x𝑣) and the predicted
labels are given by the last-layer embeddings ŷ𝑣 = 𝜙𝑜𝑢𝑡 (z(𝐿+1)𝑣 ) if
using 𝐿 layers of propagation. Here 𝜙𝑖𝑛 and 𝜙𝑜𝑢𝑡 can be shallow
neural networks. Notice that, for each node 𝑣 , what the GNN model
actually processes as input for prediction is its ego-graph G𝑣 (in
particular, for an 𝐿-layer GNN, G𝑣 consists of all the 𝐿-hop neigh-
bored nodes centered at 𝑣). Therefore, the prediction for node 𝑣
can be denoted by ŷ𝑣 = 𝑓𝜃 (G𝑣) where 𝑓𝜃 denotes the GNN model
with trainable parameter set 𝜃 . We define 𝑌 as a random variable
for predicted node labels ŷ𝑣 ’s and 𝑝𝜃 (𝑌 |𝐺) denotes the predictive
distribution induced by the model 𝑓𝜃 .

The common practice is to adopt maximum likelihood estimation
(MLE) as the training objective which maximizes the likelihood
𝑝𝜃 (𝑌 |𝐺). For node property prediction, the negative log-likelihood
that is minimized as training objective is the cross-entropy loss:

𝜃∗ = argmin
𝜃
− 1
|V𝑡𝑟 |

∑︁
𝑣∈V𝑡𝑟

y⊤𝑣 log 𝑓𝜃 (G𝑣) . (2)

Based on the above illustration of the GNN’s modeling and learn-
ing on graphs, the dependence among the (input) ego-graph𝐺 , the
predicted label𝑌 and the latent environment 𝐸 can be characterized
by another causal diagram as shown in Fig. 2(a). We next illustrate
the rationales behind each dependence edge shown in Fig. 2(a).
• 𝑮 → �̂� . The dependence is given by the feed-forward computa-
tion of GNN model ŷ𝑣 = 𝑓𝜃 (G𝑣), i.e., the model predictive distribu-
tion 𝑝𝜃 (𝑌 |𝐺). The relation between𝐺 and 𝑌 becomes deterministic
if given fixed model parameter 𝜃 .
• 𝑬 → 𝑮 . This dependence is given by 𝑝 (𝐺 |𝐸) in data generation.
• 𝑬 → �̂� . This relation is embodied through the learning process.
Since 𝐸 affects the distribution for observed data via 𝑝 (𝐺,𝑌 |𝐸) =
𝑝 (𝐺 |𝐸)𝑝 (𝑌 |𝐺, 𝐸), if we denote by 𝑝𝑡𝑟 (𝐸) the distribution for (unob-
served) training environments, the learning algorithm yields

𝜃∗ = argmin
𝜃
E𝑒∼𝑝𝑡𝑟 (𝐸 ),(G𝑣 ,y𝑣 )∼𝑝 (𝐺,𝑌 |𝐸=𝑒 ) [−y

⊤
𝑣 log 𝑓𝜃 (G𝑣)] . (3)

This suggests that the well-trainedmodel parameter 𝜃∗ is dependent
on the distribution of 𝐸, leading to the dependence of 𝑌 on 𝐸. Such
a causal relation can also be interpreted intuitively with two facts:
1) 𝐸 affects the generation of data used for training the GNN model,
and 2) 𝑌 is the output of the trained model.

Interpretations for Harmful Effects. From Fig. 2(a) and the
above illumination, we can see that if we optimize the likelihood
𝑝𝜃 (𝑌 |𝐺), the confounding effect of 𝐸 on 𝐺 and 𝑌 will mislead the
GNN model to capture the shortcut predictive relation between the
ego-graph G𝑣 and the label 𝑦𝑣 , i.e., the existing correlation that is
induced by certain 𝑒’s in training data (e.g., "G𝑣 : a user’s friends
are young" and "𝑦𝑣 : the user likes playing basketball" are both with
high probability due to the unobserved environment 𝑒 "university"
in social networks). Therefore, the training process would incline
to purely increase the training accuracy by exploiting such easy-
to-capture yet unreliable correlation (e.g., the predictive relation
from "G𝑣 : a user’s friends are young" to "𝑦𝑣 : the user likes playing
basketball") in observational data. The issue, however, is that this
kind of correlation is non-stable and sensitive to distribution shifts:
for testing data that has distinct environment context, i.e., 𝑃𝑡𝑒 (𝐸) ≠
𝑃𝑡𝑟 (𝐸) (e.g., testing users are from another environment "LinkedIn"),
the above-mentioned correlation does not necessarily hold. The
model that mistakenly over-fits the environment-sensitive relations
in training data would suffer from failures or undesired prediction
on out-of-distribution data in testing stage.

Implications for Potential Solutions. The analysis enlightens
one potential solution for improving the OOD generalization ability
of GNNs in node property prediction: one can guide the model to
uncover the stable predictive relations behind data, particularly the
ones insensitive to environment variation (e.g., the relation from
"G𝑣 : a user’s friends love sports" to "𝑦𝑣 : the user likes playing bas-
ketball"). Formally speaking, we can train the model by optimizing
𝑝𝜃 (𝑌 |𝑑𝑜 (𝐺)), where in causal literature the 𝑑𝑜-operation means
removing the dependence from other variables on the target, to
cancel out the effect of 𝐸 on 𝐺 such that the unstable correlation
between G𝑣 and 𝑦𝑣 will no longer be captured by the model. Com-
pared with 𝑝𝜃 (𝑌 |𝐺) where the condition is on a given observation
G𝑣 of 𝐺 , the 𝑑𝑜-operation in 𝑝𝜃 (𝑌 |𝑑𝑜 (𝐺)) enforces the condition
that intervenes the value of 𝐺 as G𝑣 and removes the effects from
other variables on 𝐺 (i.e., 𝐸 in our case), as conceptually shown by
Fig. 2(b). We next discuss how to put this general idea into practice.

3.2 Model Formulation: A Treatment by

Environment Inference

An ideal way for exactly computing 𝑝𝜃 (𝑌 |𝑑𝑜 (𝐺)) is to physically
intervene 𝐺 , e.g., by randomized controlled trial (RCT) [25] where
data is recollected from a prohibitively large quantity of random
samples. The randomized experiments gather new data that re-
moves the bias from the environment by enumerating any possible
environment context in a physical scene, based on which the model
can learn stable relations from 𝐺 to 𝑌 and generalize well to new
distributions. Nevertheless, this can be intractable due to limited re-
sources in practice. We thereby resort to an approximation strategy
based on observational data (i.e., G𝑣 ’s and 𝑦𝑣 ’s).

Approximated Intervention with Pseudo Environments.

Though we have known that the latent environment plays an im-
portant role in data generation and impact the generalizability of
GNNs, the actual meaning or form of environments is often un-
known. Even for cases where the environment information could be
partially reflected by certain node features (e.g., publication years
of papers in citation networks or species groups of proteins in PPI

3
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(b) Causal diagram (left) and data pipeline (right) for GraphSHINE
Figure 2: Causal diagrams and data pipelines for (a) stan-

dard GNNs’ learning process and (b) our proposed approach

GraphSHINE’s. The training of common GNNs is affected by

the latent confounder 𝐸 that misguides the model to rely on

environment-insensitive correlation between 𝐺 and 𝑌 and

leads to unsatisfactory OOD generalization. In contrast, our

approach resorts to a new learning objective that essentially

cuts off the dependence between 𝐸 and 𝐺 . This is accom-

plished with an environment estimator that aims to generate

pseudo environments independent of observed data to re-

move the confounding bias from latent environments.

networks), the environment labels may not be informative enough
for guiding GNNs to learn stable relations with distribution shifts,
as will be verified in our experiments. To build a model that can
handle the confounding effects of unobserved environments, our
basic idea is to generate pseudo environment labels as latent vari-
ables (agnostic of specific actual environments) that are regularized
to be independent of the ego-graph features and guide the model
to capture stable relations between 𝐺 and 𝑌 . To implement this
idea, we consider collaborative learning of two models: i) an envi-
ronment estimator 𝑞𝜙 (𝐸 |𝐺) with parameterization 𝜙 that takes the
ego-graph features G𝑣 as input to infer the pseudo environment
𝑒𝑣 for node 𝑣 ; ii) a GNN predictor 𝑝𝜃 (𝑌 |𝐺, 𝐸) whose prediction is
based on input ego-graph G𝑣 and the inferred pseudo environment
𝑒𝑣 . Overall, the learning process needs to pursue two goals that can
guarantee a valid solution in OOD generalization:
• Environment Informativeness: The pseudo environments inferred
by 𝑞𝜙 (𝐸 |𝐺) for different ego-graphs should have enough diversity.
This property prevents 𝑒𝑣 from collapsing to a trivial state, i.e., 𝑒𝑣
remains a constant regardless of different ego-graphs as inputs.
• Prediction Stability: The GNN model 𝑝𝜃 (𝑌 |𝐺, 𝐸) trained with
inferred pseudo environments captures the stable correlation be-
tween ego-graphs and labels. This property enforces the original
goal that the model’s prediction is primarily based on environment-
insensitive patterns in 𝐺 and robust to distribution shifts.

TrainingObjectivewithGuarantees. To facilitate the learning
process towards the above two high-level goals, we propose a new
objective for model training:

E𝑞𝜙 (𝐸 |𝐺 ) [− log 𝑝𝜃 (𝑌 |𝐺, 𝐸)]︸                              ︷︷                              ︸
L𝑠𝑢𝑝

+𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝0 (𝐸))︸                    ︷︷                    ︸
L𝑟𝑒𝑔

, (4)

where 𝑝0 (𝐸) can be a pre-defined prior distribution of pseudo envi-
ronments, e.g., a trivial one such as uniform distribution. Intuitively,
the first loss term can optimize the predictive power of the GNN
and the second term regularizes that the pseudo environments
should be independent of ego-graphs. Furthermore, we can prove
two inherent effects of the objective (4) as formally presented in
the following propositions.

Theorem 3.1. Assume 𝑞𝜙 can exploit arbitrary distributions of 𝐸,
then for any given GNN model 𝑝𝜃 (𝑌 |𝐺, 𝐸), the optimal solution for
𝑞𝜙 is 𝑞∗

𝜙
(𝐸 |𝐺) = 𝑝𝜃 (𝐸 |𝑌,𝐺), i.e., the posterior of 𝐸.

The proof is based on variational inference technique by treating
𝑞𝜙 as a variational distribution, which is deferred to Appendix A.
In particularly, Theorem 3.1 suggests that the optimal distribution
of pseudo environments produced by the objective (4) aligns with
the posterior that absorbs the information from the predicted labels.
In other words, the optimal solution of pseudo environments is
well-posed and will not collapse to trivial constants which deviate
from the optimization direction of the objective. Another result
below guarantees the prediction stability of the learning objective.

Theorem 3.2. If 𝑞𝜙 is optimized with (4) and fixed, then the min-
imization of (4) over 𝑝𝜃 will essentially maximize the ideal objective
𝑝𝜃 (𝑌 |𝑑𝑜 (𝐺)), i.e., facilitating the GNN to learn stable relations be-
tween 𝐺 and 𝑌 that is insensitive to the change of 𝐸.

The proof of this theorem is based on some basic properties of𝑑𝑜-
calculus in causal inference [25], which is presented in Appendix A.
Theorem 3.2 indicates that the new objective (4) can enforce the
goal of prediction stability, i.e., cutting off the dependence from
𝐸 to 𝐺 as shown in Fig. 2(b) and guiding the GNN model to learn
environment-insensitive relations between 𝐺 and 𝑌 .

The results of Theorem 3.1 and 3.2 imply that the new objective
(4) is a reasonable one which can promote learning valid pseudo
environments and desired GNN predictor that can in principle
generalize to out-of-distribution nodes. In the next section, we
will go into details for instantiations of the environment estimator
𝑞𝜙 (𝐸 |𝐺) and the GNN predictor 𝑝𝜃 (𝑌 |𝐺, 𝐸).

3.3 Model Instantiations

Notice again that we do not require environment labels in data or
any prior knowledge of the physical meaning of unobserved envi-
ronments, and neither require that the pseudo environments should
reflect the actual contextual information. Therefore, we assume the
pseudo environments as latent variables represented by numerical
vectors for each node 𝑣 . Nevertheless, we expect the representation
of the pseudo environments to be informative enough, on top of
which the model can learn useful patterns from observed data to
benefit learning stable relations for better generalization. As men-
tioned in Section 1, one observation is that the distribution shifts on
graphs often involve inter-connection of nodes, i.e., the structural
features of ego-graphs can be informative and contain the desired
stable patterns. Therefore, for better capacity, we generalize the
notion of pseudo environments to a series of vector representations
pertaining to each layer of the GNN model, as illustrated in Fig. 3
with details described below.

Pseudo Environment Estimator 𝑞𝜙 (𝐸 |𝐺).We assume e(𝑙 )𝑣 ∈
R𝐾 as the inferred pseudo environment for node 𝑣 at the 𝑙-th layer
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Figure 3: Illustration for the proposed model GraphSHINE

whose layer-wise computation entails a layer-specific envi-

ronment estimator and a special feature propagation layer

conditioned on the inferred pseudo environment.

of feature aggregation. Here e(𝑙 )𝑣 is a 𝐾-dimensional numerical
vector and can be modeled by a categorical distributionM(𝝅 (𝑙 )𝑣 )
where e(𝑙 )𝑣 is sampled. We model the probabilities 𝝅 (𝑙 )𝑣 conditioned
on the node representations {z(𝑙 )𝑣 } at the current layer:

𝝅 (𝑙 )𝑣 = Softmax(W(𝑙 )
𝑆

z(𝑙 )𝑣 ), (5)

where W(𝑙 )
𝑆
∈ R𝐻×𝐾 is a trainable weight matrix and 𝐻 is the hid-

den dimension of z(𝑙 )𝑣 . Since sampling e(𝑙 )𝑣 fromM(𝝅 (𝑙 )𝑣 ) would
result in non-differentiability, to enable back-propagation for train-
ing, we adopt the Gumbel-Softmax trick [23] which specifically
gives (for 𝑘 = 1, · · · , 𝐾 )

𝑒
(𝑙 )
𝑣𝑘

=

exp
((
𝜋
(𝑙 )
𝑣𝑘
+ 𝑔𝑘

)
/𝜏

)
∑
𝑘 exp((𝜋

(𝑙 )
𝑣𝑘
+ 𝑔𝑘 )/𝜏)

, 𝑔𝑘 ∼ Gumbel(0, 1), (6)

where𝑔𝑘 is a noise sampled fromGumbel distribution and 𝜏 controls
the closeness of the result to discrete samples. Since in our case we
do not require that the pseudo environment should be a categorical
variable, we can still use moderate value for 𝜏 (e.g., 𝜏 = 1 which we
found works smoothly in practice).

Mixture-of-Expert GNN Predictor 𝑝𝜃 (𝑌 |𝐺, 𝐸). The GNN pre-
dictor aims to encode input ego-graph G𝑣 conditioned on the in-
ferred pseudo environment 𝑒𝑣 given by 𝑞𝜙 (𝐸 |𝐺). To accommodate
the layer-specific environment inference, we consider layer-wise
updating controlled by 𝐾 mixture-of-expert (MoE) propagation
units, instantiated by two models. The first model implements a
GCN-like MoE architecture with layer-wise updating rule:

z(𝑙+1)𝑢 = 𝜎

(
𝐾∑︁
𝑘=1

𝑒
(𝑙 )
𝑢,𝑘

∑︁
𝑣,𝑎𝑢𝑣=1

1
√
𝑑𝑢𝑑𝑣

W(𝑙,𝑘 )
𝐷

z(𝑙 )𝑣

)
, (7)

where 𝑑𝑢 denotes the degree of node 𝑢,W(𝑙,𝑘 )
𝐷
∈ R𝐻×𝐻 is a train-

able weight matrix for the 𝑘-th branch at the 𝑙-th layer, and 𝜎
denotes activation function (e.g., ReLU). We call this model imple-
mentation GraphSHINE-GCN that can be seen as a generalized
implementation of Graph Convolution Networks [16], where e(𝑙 )𝑢
dynamically selects convolution filters among 𝐾 candidates in each
layer for propagation. In the second model, we further harness an
attention network for each branch to model the adaptive pairwise

influence between connected nodes:

z(𝑙+1)𝑢 = 𝜎

(
𝐾∑︁
𝑘=1

𝑒
(𝑙 )
𝑢,𝑘

∑︁
𝑣,𝑎𝑢𝑣=1

𝑤
(𝑙,𝑘 )
𝑢𝑣 W(𝑙,𝑘 )

𝐷
z(𝑙 )𝑣

)
, (8)

𝑤
(𝑙,𝑘 )
𝑢𝑣 =

LeakyReLU((b(𝑙,𝑘 ) )⊤ [W(𝑙,𝑘 )
𝐴

z(𝑙 )𝑢 ∥W
(𝑙,𝑘 )
𝐴

z(𝑙 )𝑣 ])∑𝑁
𝑤=1 LeakyReLU(b(𝑙,𝑘 ) )⊤ [W

(𝑙,𝑘 )
𝐴

z(𝑙 )𝑢 ∥W
(𝑙,𝑘 )
𝐴

z(𝑙 )𝑤 ])
,

(9)
whereW(𝑙,𝑘 )

𝐴
∈ R𝐻×𝐻 and b(𝑙,𝑘 ) ∈ R2𝐻 are trainable parameters.

The model which we call GraphSHINE-GAT can be seen as a gener-
alized version of Graph Attention Networks [37] with 𝐾 attention
networks in each layer selected by e(𝑙 )𝑢 for attentive propagation.

With 𝐿-layer propagation, the model (with instantiation (7) or
(8)) outputs z(𝐿+1)𝑢 that is further transformed by a fully-connected
layer into node-wise prediction ŷ𝑣 . The above models extend the
notion of environments for each node 𝑣 to a series of layer-specific
vectors {e(𝑙 )𝑣 }𝐿𝑙=1 that control the propagation network in each GNN
layer. Such a design allows sufficient interactions between two mod-
ules: 1) the GNN’s message passing helps to combine neighbored
information in G𝑣 conditioned on layer-specific environment infer-
ence (as given by (5)); 2) the inferred pseudo environments endow
the GNN predictor with adaptive feature propagation w.r.t. different
contexts (as defined by (7) and (8)). This guides each layer of the
GNN predictor to extract stable relations from ego-graph features,
particularly the complex structural patterns that are informative
for prediction and insensitive to distribution shifts.

Optimization and Algorithm. For model training, we adopt
gradient-based optimization for 𝑞𝜙 and 𝑝𝜃 with the objective (4).
We assume 𝑝0 (𝐷) for pseudo environments as a trivial uniform
distribution (with equal probabilities for 𝐾 possible choices) and
the loss function induced by (4) can be written as

− 1
|V𝑡𝑟 |

∑︁
𝑣∈V𝑡𝑟

[
y⊤𝑣 log ŷ𝑣 +

1
𝐿

𝐿∑︁
𝑙=1

𝐾∑︁
𝑘=1

[
𝑒
(𝑙 )
𝑣𝑘

log𝜋 (𝑙 )
𝑘
+ 𝑒 (𝑙 )

𝑣𝑘
log𝐾

] ]
.

(10)
Alg. 1 in the appendix presents the model’s feed-forward and train-
ing. The complexity of our model is O(𝐿𝐾 |E |), where |E | denotes
the number of edges in the graph.

4 EXPERIMENTS

We apply our model to various node property prediction datasets
that involve distribution shifts of different types to evaluate its
generalization capability. Overall, we aim to answer the questions:
• (R1) How does GraphSHINE perform compared to state-of-the-
art models for handling distribution shifts on graphs?
• (R2) Are the proposed components of GraphSHINE effective for
OOD generalization?
• (R3) What is the sensitivity of GraphSHINE w.r.t. the number of
MoE branches (𝐾 ) and the Gumbel-Softmax temperature (𝜏)?
• (R4) Do different propagation branches learn different patterns?

4.1 Experiment Setup

Datasets. We adopt six node property prediction datasets of differ-
ent sizes and properties, including Cora, Citeseer, Pubmed, Twitch,
Arxiv and Elliptic. Following [40], we consider different ways to
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Table 1: Test (mean±standard deviation) Accuracy (%) for citation networks on out-of-distribution (OOD) and in-distribution (ID)

data. The distribution shifts are introduced by generating different node features (OOD-Feat) and graph structures (OOD-Struct).

OOM indicates out-of-memory error on a GPU with 16GB memory.

Backbone Method

Cora Citeseer Pubmed
OOD-Feat OOD-Struct ID OOD-Feat OOD-Struct ID OOD-Feat OOD-Struct ID

GCN

ERM 72.49 ± 1.51 78.30 ± 2.66 94.83 ± 0.25 79.35 ± 2.15 77.21 ± 2.21 85.76 ± 0.26 80.19 ± 2.79 81.36 ± 1.78 92.76 ± 0.10

IRM 81.39 ± 1.34 79.19 ± 2.60 94.88 ± 0.18 74.98 ± 1.86 72.23 ± 1.24 85.34 ± 0.46 76.49 ± 2.31 81.14 ± 1.72 92.80 ± 0.12

Coral 84.39 ± 1.93 78.26 ± 2.28 94.89 ± 0.18 81.31 ± 2.08 72.11 ± 1.98 85.64 ± 0.28 78.01 ± 1.94 81.56 ± 2.35 92.78 ± 0.11

DANN 83.21 ± 1.69 79.09 ± 3.24 95.03 ± 0.16 80.29 ± 2.11 75.21 ± 1.38 85.75 ± 0.49 79.42 ± 2.91 80.77 ± 1.43 93.20 ± 0.42

GroupDRO 78.24 ± 2.21 74.25 ± 2.61 94.87 ± 0.25 79.25 ± 2.35 80.21 ± 2.22 85.33 ± 0.36 80.31 ± 1.91 81.07 ± 1.89 92.76 ± 0.08

Mixup 75.52 ± 2.03 92.77 ± 1.27 94.84 ± 0.30 74.95 ± 1.93 79.49 ± 3.11 85.00 ± 0.50 80.42 ± 1.01 79.76 ± 4.44 92.68 ± 0.13

SRGNN 87.20 ± 1.64 87.31 ± 2.64 95.09 ± 0.32 78.30 ± 1.66 77.23 ± 2.08 85.84 ± 0.37 82.42 ± 2.01 84.75 ± 2.38 93.52 ± 0.31

EERM 92.31 ± 1.02 89.10 ± 0.99 95.17 ± 0.23 82.41 ± 1.32 80.35 ± 1.21 85.81 ± 0.17 86.91 ± 1.21 OOM OOM
FLOOD 91.23 ± 1.42 90.14 ± 1.42 95.14 ± 0.31 82.81 ± 1.31 81.01 ± 1.03 85.92 ± 0.11 84.21 ± 2.91 85.16 ± 1.43 94.13 ± 0.21

GraphSHINE 95.60 ± 1.23 94.47 ± 1,15 95.87 ± 0.23 85.13 ± 1.42 85.43 ± 0.64 86.50 ± 0.23 89.21 ± 2.21 89.50 ± 1.88 94.42 ± 0.08

GAT

ERM 75.51 ± 2.42 91.10 ± 2.26 95.57 ± 0.40 77.35 ± 2.45 82.60 ± 0.51 89.02 ± 0.32 80.52 ± 2.10 84.80 ± 1.47 93.98 ± 0.24

IRM 82.75 ± 2.34 91.63 ± 1.27 95.72 ± 0.31 73.19 ± 2.81 82.73 ± 0.37 89.11 ± 0.36 79.63 ± 2.23 84.95 ± 1.06 93.89 ± 0.26

Coral 83.97 ± 1.93 91.82 ± 1.30 95.74 ± 0.39 76.41 ± 2.31 82.44 ± 0.58 89.05 ± 0.37 80.31 ± 1.96 85.07 ± 0.95 94.05 ± 0.23

DANN 81.99 ± 2.14 92.40 ± 2.05 95.66 ± 0.28 80.19 ± 2.29 84.49 ± 0.67 89.02 ± 0.31 78.52 ± 1.64 83.94 ± 0.84 93.46 ± 0.31

GroupDRO 80.49 ± 2.54 90.54 ± 0.94 95.38 ± 0.23 79.31 ± 2.34 80.64 ± 0.61 89.13 ± 0.27 79.83 ± 2.36 85.17 ± 0.86 94.00 ± 0.18

Mixup 79.11 ± 2.31 92.94 ± 1.21 94.66 ± 0.10 78.45 ± 2.22 82.77 ± 0.30 89.05 ± 0.05 84.56 ± 1.35 81.58 ± 0.65 92.79 ± 0.18

SRGNN 88.13 ± 1.98 93.17 ± 1.03 95.36 ± 0.24 82.81 ± 1.88 83.72 ± 0.35 89.10 ± 0.15 83.21 ± 1.16 83.40 ± 0.67 93.21 ± 0.29

EERM 91.34 ± 1.35 91.80 ± 0.73 95.37 ± 0.30 83.18 ± 2.23 79.07 ± 0.75 89.53 ± 0.56 84.11 ± 1.19 OOM OOM
FLOOD 90.84 ± 1.31 90.21 ± 0.67 95.17 ± 0.23 82.51 ± 2.10 83.76 ± 1.15 88.81 ± 0.17 85.32 ± 1.53 86.32 ± 1.53 95.13 ± 0.23

GraphSHINE 94.91 ± 1.28 95.70 ± 0.35 95.90 ± 0.42 86.31 ± 2.57 87.99 ± 0.34 89.58 ± 0.65 88.21 ± 2.31 89.29 ± 1.82 95.09 ± 0.14

construct an in-distribution (ID) portion and an out-of-distribution
(OOD) portion for each dataset. For Cora, Citeseer and Pubmed [33],
we keep the original node labels and synthetically create node fea-
tures and graph structures to introduce distribution shifts, and
we call the OOD data as OOD-Feat (with shifts in node features)
and OOD-Struct (with shifts in graph structures), respectively. For
Arxiv [15], we use publication years for data splits: papers pub-
lished within 2005-2014 as ID data and after 2014 as OOD data. For
Twitch [29], we consider subgraph-level data splits: nodes in the
subgraph DE, PT and RU as ID data, and nodes in ES, FR and EN
as OOD data. For Elliptic [24], we use the first five graph snap-
shots as ID data and the remaining as OOD data. We summarize
the dataset information in Table 2, with detailed descriptions and
preprocessing presented in Appendix B.

Table 2: Statistics for experimental datasets.

Datasets #Nodes #Edges #Classes #Features Shift Types

Cora 2708 5429 7 1433 feature/structure
Citeseer 3327 4732 6 3703 feature/structure
Pubmed 19717 44338 3 500 feature/structure
Twitch 34120 892346 2 2545 disconnected subgraphs
Arxiv 169343 1166243 40 128 time attributes
Elliptic 203769 234355 2 165 dynamic snapshots

Evaluation Protocol. For each dataset, the nodes of ID data
are further randomly split into training/validation/testing with the
ratio 50%/25%/25%. We use the training data for model training
and the performance on validation data for model selection and
early stopping. We test the model with the performance on both the
testing data within the ID portion and the OOD data, respectively,
where the latter quantifying the OOD generalization capabilities is
our major focus. We follow the common practice, and use Accuracy
as the metric for Cora, Citeseer, Pubmed and Arxiv, ROC-AUC for
Twitch, and macro F1 score for Elliptic. We run the experiment
for each case with five trails using different initializations and report
the means and standard deviations for the metric.

Competitors. We basically compare with empirical risk min-
imization (ERM) that trains the model with standard supervised

loss. We adopt GCN and GAT as the backbone to compare with
GraphSHINE-GCN and GraphSHINE-GAT, respectively. Besides,
we consider two sets of competitors that are agnostic to encoder
backbones. The first line of models are designed for OOD gener-
alization in general settings (where the instances, e.g., images, are
assumed to be independent), including IRM [1], DeepCoral [34],
DANN [7], GroupDRO [30] and Mixup [45]. Another line of works
focus on learning with distribution shifts and out-of-distribution
generalization on graphs, including the state-of-the-art models SR-
GNN [46], EERM [40] and FLOOD [21]. For all the competitors, we
use GCN and GAT as their encoder backbones, respectively. Details
for implementation and competitors are deferred to Appendix C.

4.2 Comparative Results (R1)

Distribution Shifts on Synthetic Data. We report the testing
accuracy on Cora, Citeseer and Pubmed in Table 1. We found that
using either GCN or GAT as the backbone, GraphSHINE consis-
tently outperforms the corresponding competitors by a significant
margin on the OOD data across two types of distribution shifts
and three datasets, and yield highly competitive results on the ID
data. This demonstrates the effectiveness of our proposed model
for OOD generalization with a guarantee of decent performance
on the ID data. Apart from the relative improvement over the com-
petitors, we observed that on Cora and Citeseer, the absolute
performance of GraphSHINE on the OOD data is very close to
that on ID data. These results show that our model can effectively
handle distribution shifts w.r.t. node features and graph structures.

Distribution Shifts on Temporal Graphs. In Table 3 we re-
port the testing accuracy on Arxiv where we further divide the
out-of-distribution data into three-fold according to the publication
years of papers: we use papers published within 2014-2016 as OOD
1, 2016-2018 as OOD 2, and 2018-2020 as OOD 3. As the time gap
between training and testing data goes large, the distribution shift
becomes more significant as observed by [40], and we found that
the performance of all the models exhibits a more or less degra-
dation. In contrast with other models, however, the performance
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Table 3: Test (mean±standard deviation) Accuracy (%) for Arxiv and ROC-AUC (%) for Twitch on different subsets of out-of-

distribution data. We use publication years and subgraphs for data splits on Arxiv and Twitch, respectively.

Backbone Method

Arxiv Twitch
OOD 1 OOD 2 OOD 3 ID OOD 1 OOD 2 OOD 3 ID

GCN

ERM 56.33 ± 0.17 53.53 ± 0.44 45.83 ± 0.47 59.94 ± 0.45 66.07 ± 0.14 52.62 ± 0.01 63.15 ± 0.08 75.40 ± 0.01

IRM 55.92 ± 0.24 53.25 ± 0.49 45.66 ± 0.83 60.28 ± 0.23 66.95 ± 0.27 52.53 ± 0.02 62.91 ± 0.08 74.88 ± 0.02

Coral 56.42 ± 0.26 53.53 ± 0.54 45.92 ± 0.52 60.16 ± 0.12 66.15 ± 0.14 52.67 ± 0.02 63.18 ± 0.03 75.40 ± 0.01

DANN 56.35 ± 0.11 53.81 ± 0.33 45.89 ± 0.37 60.22 ± 0.29 66.15 ± 0.13 52.66 ± 0.02 63.20 ± 0.06 75.40 ± 0.02

GroupDRO 56.52 ± 0.27 53.40 ± 0.29 45.76 ± 0.59 60.35 ± 0.27 66.82 ± 0.26 52.69 ± 0.02 62.95 ± 0.11 75.03 ± 0.01

Mixup 56.67 ± 0.46 54.02 ± 0.51 46.09 ± 0.58 60.09 ± 0.15 65.76 ± 0.30 52.78 ± 0.04 63.15 ± 0.08 75.47 ± 0.06

SRGNN 56.79 ± 1.35 54.33 ± 1.78 46.24 ± 1.90 60.02 ± 0.52 65.83 ± 0.45 52.47 ± 0.06 62.74 ± 0.23 75.75 ± 0.09

EERM OOM OOM OOM OOM 67.50 ± 0.74 51.88 ± 0.07 62.56 ± 0.02 74.85 ± 0.05

FLOOD 57.23 ± 1.13 54.01 ± 1.23 49.31 ± 1.82 61.19 ± 0.04 66.71 ± 0.43 52.31 ± 0.09 62.49 ± 0.28 75.15 ± 0.03

GraphSHINE 60.32 ± 0.35 56.88 ± 0.70 56.27 ± 1.21 61.42 ± 0.10 67.47 ± 0.32 53.59 ± 0.19 64.24 ± 0.18 75.10 ± 0.08

GAT

ERM 57.15 ± 0.25 55.07 ± 0.58 46.22 ± 0.82 59.72 ± 0.35 65.67 ± 0.02 52.00 ± 0.10 61.85 ± 0.05 75.75 ± 0.15

IRM 56.55 ± 0.18 54.53 ± 0.32 46.01 ± 0.33 59.94 ± 0.18 67.27 ± 0.19 52.85 ± 0.15 62.40 ± 0.24 75.30 ± 0.09

Coral 57.40 ± 0.51 55.14 ± 0.71 46.71 ± 0.61 60.59 ± 0.30 67.12 ± 0.03 52.61 ± 0.01 63.41 ± 0.01 75.20 ± 0.01

DANN 57.23 ± 0.18 55.13 ± 0.46 46.61 ± 0.57 59.72 ± 0.14 66.59 ± 0.38 52.88 ± 0.12 62.47 ± 0.32 75.82 ± 0.27

GroupDRO 56.69 ± 0.27 54.51 ± 0.49 46.00 ± 0.59 60.03 ± 0.32 67.41 ± 0.04 52.99 ± 0.08 62.29 ± 0.03 75.74 ± 0.02

Mixup 57.17 ± 0.33 55.33 ± 0.37 47.17 ± 0.84 59.84 ± 0.50 65.58 ± 0.13 52.04 ± 0.04 61.75 ± 0.13 75.72 ± 0.07

SRGNN 56.69 ± 0.38 55.01 ± 0.55 46.88 ± 0.58 59.39 ± 0.17 66.17 ± 0.03 52.84 ± 0.04 62.07 ± 0.04 75.45 ± 0.03

EERM OOM OOM OOM OOM 66.80 ± 0.46 52.39 ± 0.20 62.07 ± 0.68 75.19 ± 0.50

FLOOD 57.91 ± 0.48 56.13 ± 0.31 46.41 ± 0.39 62.98 ± 0.04 66.31 ± 0.07 53.01 ± 0.03 62.21 ± 0.09 76.01 ± 0.03

GraphSHINE 61.00 ± 0.27 59.65 ± 0.52 60.09 ± 0.82 62.91 ± 0.35 68.08 ± 0.19 53.49 ± 0.14 63.76 ± 0.17 76.14 ± 0.07

drop of GraphSHINE is much less severe, and our two model ver-
sions outperform the corresponding competitors by a large margin
on the most difficult 2018-2020 testing set, with 14.1% and 27.4%
improvements over the runner-up, respectively.

Distribution Shifts across Subgraphs. Table 3 also presents
the testing ROC-AUC on Twitch where we compare the perfor-
mance on three OOD subgraphs separately (here OOD 1/2/3 refers
to the subgraph ES/FR/EN). This dataset is challenging for general-
ization, since the nodes in different subgraphs are disconnected and
the model needs to generalize to nodes in new unseen graphs col-
lected with different context (i.e., regions). We found GraphSHINE
achieves overall superior performance over the competitors. This
demonstrates the efficacy of our model for tackling OOD general-
ization across graphs in inductive learning.

Distribution Shifts across Dynamic Graph Snapshots.We
report the macro F1 score of testing data on Elliptic in Fig. 4.
Since the out-of-distribution data contains snapshots of a long time
span, we chronologically split these testing snapshots into eight
subsets with an equal size. Overall, we found that GraphSHINE
can yield consistently better performance than other competitors,
with average 12.16% improvement over the runner-ups. Notably,
the performance gap between GraphSHINE and the runner-ups
that differ in each subset is significantly larger than the margin
among other competitors. These results can be strong evidence that
verifies the superiority of our model for generalizing to previously
unseen graph snapshots in the future.

4.3 Ablation Studies (R2)

Ablation Study on Regularization Loss.We remove the regu-
larization loss term in Eqn. 4 and only use the supervised loss for
training. We compare the learning curves (training accuracy and
testing accuracy on OOD-Struct) of our model and its simplified
variant on Cora in Fig. 5(a). We found that the regularization loss
can indeed help to improve generalization to OOD testing data. In
Fig. 5(b), we further report the OOD testing accuracy on Arxiv after
removing the regularization loss (w/o Reg Loss) and replacing the

trivial prior distribution 𝑝0 (𝐸) with a complex one (w/ VPrior Reg),
i.e., using the generated results from random inputs to estimate the
probability as is done by [36]. The results again verify the effective-
ness of the regularization loss for generalization, and further show
that using trivial uniform distribution for 𝑝0 (𝐸) works better than
the complex one since it can push the model to equally attend on
each pseudo environment candidate as an effective regularization
for facilitating generalization.

Ablation Study on Environment Inference.We further re-
place the pseudo environment representation e(𝑙 )𝑢 for each layer
by a single one e𝑢 that is shared across all layers. In such a case,
the model degrades to a simplified variant (called w/o Layer Env
where the global pseudo environment estimation controls the prop-
agation in each layer. Moreover, we further replace the trainable
environment estimator with a non-parametric mean pooling over
𝐾 propagation branches at each layer (we call this variant w/o Para
Env). Fig. 5(b) presents the results of these two simplified variants
on Arxiv where we can see clear performance drop in both cases,
which validates the effectiveness of the layer-dependent environ-
ment inference that can provide better capacity to capture complex
structural patterns useful for generalization.

4.4 Hyper-parameter Analysis (R3)

Impact of 𝐾 .We study the impact of the number of pseudo envi-
ronments 𝐾 and present the results in Fig. 6(a) and 6(b) where we
increase𝐾 from 2 to 7 on Arxiv and Twitch, respectively. We found
that the model performance on OOD data is overall not sensitive to
the value of 𝐾 on Twitch. On Arxiv, different 𝐾 ’s have negligible
impact on the performance on the testing set OOD 1 and affect
the performance on the other two testing sets to a certain degree.
The possible reason is that the distribution shifts of the latter are
more significant than the former and the generalization would be
more challenging. In such cases, smaller 𝐾 may not be expressive
for learning informative pseudo environments and larger 𝐾 may
lead to potential redundancy and over-fitting.
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Figure 4: Macro F1 score on eight testing sets (by chronologi-

cally grouping the testing snapshots) of Elliptic.
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w/o regularization loss. (b) Ablation results on Arxiv.

Impact of 𝜏 . We next investigate into the impact of the tem-
perature coefficient 𝜏 in the Gumbel-Softmax. In Fig. 6(c) and 6(d)
we present the performance on different OOD sets of Arxiv and
Twitch, respectively, w.r.t. the variation of 𝜏 . We found that a mod-
erate value of 𝜏 (e.g., 𝜏 = 1) contributes to the best performance.
Overall, smaller 𝜏 can yield stably good performance, while larger 𝜏
would cause performance drop. The reason could be that 𝜏 controls
the sharpness of the sampled results, and excessively large 𝜏 tends
to over-smooth the output, thereby causing samples to converge
towards an uninformative uniform distribution.

4.5 Visualization (R4)

We visualize the weights W(𝑙,𝑘 )
𝐷

of different branches (𝐾 = 3) at
the first and the last layers on Arxiv and Twitch in Fig. 7, 8, 9 and
10 (located in the appendix), respectively. We found the weights of
different branches exhibit clear differences, which suggests that the
𝐾 branches in the MoE architecture transform node embeddings in
different manners and indeed learn distinct patterns from observed
data. In fact, each branch corresponds to one pseudo environment,
and this gives rise to an expressive model that helps to exploit
predictive relations useful for generalization.

5 RELATEDWORKS

We compare with related works to properly position this work.
Graph Neural Networks. GNNs come into the spotlight due

to their impressive effectiveness for learning node representations
from graph data [6, 13, 14, 16, 17, 26, 37, 39, 41].While GNNs’ expres-
siveness and representational power have been extensively studied,
their generalization capability has remained largely an open ques-
tion. Some existing works concentrate on analyzing the general-
ization error for GNNs in node property prediction [8, 32, 38], yet
they mostly focus on in-distribution generalization, i.e., assuming
that training and testing data are sampled from an identical distri-
bution. In contrast, the out-of-distribution generalization capability
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Figure 6: Model performance with different 𝐾 ’s and 𝜏 ’s.

of GNNs remains under-explored, though it has much practical
significance, since in real scenarios the training data often con-
tains limited observations and the trained models are supposed
to handle previously unseen data from new domains with distinct
distributions [2, 15, 18]. The analysis in this paper reveals that the
crux of the node-level OOD generalization lies in the unobserved
environments as a latent confounder, built upon which we propose
a provably effective model for addressing this challenge.

Out-of-Distribution Generalization on Graphs. Learning
with distribution shifts on graphs has aroused increasing inter-
est in the graph learning community. Some recent works explore
size generalization of GNNs under specific data-generative assump-
tions [3, 42]. However, their discussions focus on graph classifica-
tion where each graph itself is an instance with a label to predict,
which is different from node property predictionwhere each node in
the graph has a label and node instances are inter-dependent [15].
For node-level distribution shifts, recent works propose to use
multi-view consistency [4, 46], invariant learning [40, 44] and self-
supervised training [21] as effective means for OOD generalization
in node property prediction. Different from these works, we ex-
plore a new approach rooted on deconfounded learning which aims
to alleviate the confounding bias from unobserved environments
and facilitate learning stable predictive relations insensitive across
different environments.

6 CONCLUSION

In this paper, we focus on the generalization of graph neural net-
works w.r.t. node-level distribution shifts which require the model
to deal with out-of-distribution nodes from testing set. Our method-
ology is built on causal analysis for the learning behaviors of GNNs
trained withMLE loss on observed data, on top of which we propose
a new learning objective that is provably effective for capturing
environment-insensitive predictive relations between ego-graph
features and node labels. Extensive empirical results verify the ef-
fectiveness of the proposed model for handling various distribution
shifts in graph-based node property prediction.
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A PROOFS FOR THEORETICAL RESULTS

A.1 Proof for Theorem 3.1

To prove the result in the maintext, we begin by showing that

E𝑞𝜙 (𝐸 |𝐺 ) [− log𝑝𝜃 (𝑌 |𝐺, 𝐸)] + 𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝0 (𝐸))

=E𝑞𝜙 (𝐸 |𝐺 ) [− log𝑝𝜃 (𝑌 |𝐺, 𝐸)] + E𝑞𝜙 (𝐸 |𝐺 ) [log𝑞𝜙 (𝐸 |𝐺) − log𝑝0 (𝐸)]

=E𝑞𝜙 (𝐸 |𝐺 ) [− log𝑝𝜃 (𝑌 |𝐺, 𝐸)] + E𝑞𝜙 (𝐸 |𝐺 ) [log𝑞𝜙 (𝐸 |𝐺) − log𝑝0 (𝐸)
+ log 𝑝0 (𝐸 |𝐺) − log𝑝0 (𝐸 |𝐺)] .

(11)

According to the Bayes theorem, we have

𝑝𝜃 (𝑌 |𝐺, 𝐸) =
𝑝𝜃 (𝑌 |𝐺)𝑝𝜃 (𝐸 |𝑌,𝐺)

𝑝0 (𝐸 |𝐺)
. (12)

Therefore, we can further derive the result
E𝑞𝜙 (𝐸 |𝐺 ) [− log 𝑝𝜃 (𝑌 |𝐺, 𝐸)] + E𝑞𝜙 (𝐸 |𝐺 ) [log𝑞𝜙 (𝐸 |𝐺) − log 𝑝0 (𝐸)
+ log 𝑝0 (𝐸 |𝐺) − log 𝑝0 (𝐸 |𝐺)] .
=E𝑞𝜙 (𝐸 |𝐺 ) [− log 𝑝𝜃 (𝑌 |𝐺) − log 𝑝𝜃 (𝐸 |𝑌,𝐺) + log𝑝0 (𝐸 |𝐺)]
+E𝑞𝜙 (𝐸 |𝐺 ) [log𝑞𝜙 (𝐸 |𝐺) − log𝑝0 (𝐸) + log𝑝0 (𝐸 |𝐺) − log𝑝0 (𝐸 |𝐺)]

=E𝑞𝜙 (𝐸 |𝐺 ) [− log 𝑝𝜃 (𝑌 |𝐺)] + E𝑞𝜙 (𝐸 |𝐺 ) [log𝑝0 (𝐸 |𝐺) − log𝑝0 (𝐸)]

+E𝑞𝜙 (𝐸 |𝐺 ) [log𝑞𝜙 (𝐸 |𝐺) − log𝑝𝜃 (𝐸 |𝑌,𝐺)]

= − log𝑝𝜃 (𝑌 |𝐺) + 𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝𝜃 (𝐸 |𝑌,𝐺)) + 𝑐𝑜𝑛𝑠𝑡,
(13)

where the last step is due to that 𝑝0 (𝐸 |𝐺) and 𝑝0 (𝐸) are both trivial
prior distributions for environments. Based on (11) and (13), we
have the fact that

argmin
𝑞𝜙
E𝑞𝜙 (𝐸 |𝐺 ) [− log𝑝𝜃 (𝑌 |𝐺, 𝐸)] + 𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝0 (𝐸))

= argmin
𝑞𝜙
− log 𝑝𝜃 (𝑌 |𝐺) + 𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝𝜃 (𝐸 |𝑌,𝐺))

(14)

And, from (14) one can see that for any givenGNNmodel𝑝𝜃 (𝑌 |𝐺, 𝐸),
the optimal solution for 𝑞𝜙 that minimizes the objective (4) would
be 𝑞∗

𝜙
(𝐸 |𝐺) = 𝑝𝜃 (𝐸 |𝑌,𝐺). In particularly, the variational distribu-

tion induced by the environment estimator matches the posterior
distribution of environments given by the GNN’s predictive dis-
tribution. This suggests that the optimal environment estimator
learned by the new objective would pursue informative pseudo
environments. We thereby conclude the proof for the theorem.

A.2 Proof for Theorem 3.2

We are to establish the equivalence between the objective (4) and
log 𝑝𝜃 (𝑌 |𝑑𝑜 (𝐺)). Before the proof, we first introduce two funda-
mental rules of 𝑑𝑜-calculus [25] which will be used as the building
blocks later. Consider a causal directed acyclic graph A with three
nodes: 𝐵, 𝐷 and 𝐸. We denote A

𝐵
as the intervened causal graph

by cutting off all arrows coming into 𝐵, and A𝐵 as the graph by
cutting off all arrows going out from 𝐵. For any interventional dis-
tribution compatible withA, the 𝑑𝑜-calculus induces the following
two fundamental rules.

i) Action/observation exchange:

𝑃 (𝑑 |𝑑𝑜 (𝑏), 𝑑𝑜 (𝑒)) = 𝑃 (𝑑 |𝑑𝑜 (𝑏), 𝑒), if (𝐷 ⊥⊥ 𝐸 |𝐵)A
𝐵𝐸
.

ii) Insertion/deletion of actions:

𝑃 (𝑑 |𝑑𝑜 (𝑏), 𝑑𝑜 (𝑒)) = 𝑃 (𝑑 |𝑑𝑜 (𝑏)), if (𝐷 ⊥⊥ 𝐸 |𝐵)A
𝐵𝐸
.

Back to our case where we have a causal graph with three vari-
ables 𝐸,𝐺,𝑌 whose dependence relationships are shown in Fig. 2(b).
We have

𝑃 (𝑌 |𝑑𝑜 (𝐺)) =
∑︁
𝑒

𝑃 (𝑌 |𝑑𝑜 (𝐺), 𝐸 = 𝑒)𝑃 (𝐸 = 𝑒 |𝑑𝑜 (𝐺))

=
∑︁
𝑒

𝑃 (𝑌 |𝐺, 𝐸 = 𝑒)𝑃 (𝐸 = 𝑒 |𝑑𝑜 (𝐺))

=
∑︁
𝑒

𝑃 (𝑌 |𝐺, 𝐸 = 𝑒)𝑃 (𝐸 = 𝑒),

(15)

where the first step is given by the law of total probability, the
second step is according to the first rule (since 𝑌 ⊥⊥ 𝐺 |𝐸 in A𝐺 ),
and the third step is due to the second rule (since we have 𝐸 ⊥
⊥ 𝐺 in A

𝐺
). The above derivation shows that 𝑝𝜃 (𝑌 |𝑑𝑜 (𝐺)) =

E𝑝0 (𝐸 ) [𝑝𝜃 (𝑌 |𝐺, 𝐸)] where 𝑝0 is the prior distribution of environ-
ments.

Besides, based on the result of (13), we notice that

E𝑞𝜙 (𝐸 |𝐺 ) [− log𝑝𝜃 (𝑌 |𝐺, 𝐸)] + 𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝0 (𝐸))

= − log𝑝𝜃 (𝑌 |𝐺) + 𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝𝜃 (𝐸 |𝑌,𝐺)) + 𝑐𝑜𝑛𝑠𝑡
=E𝑞𝜙 (𝐸 |𝐺 ) [− log𝑝𝜃 (𝑌 |𝐺)] + E𝑞𝜙 (𝐸 |𝐺 ) [log𝑝0 (𝐸 |𝐺) − log 𝑝0 (𝐸)]

+𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝𝜃 (𝐸 |𝑌,𝐺))

=E𝑞𝜙 (𝐸 |𝐺 ) [− log
∑︁
𝑒

𝑝𝜃 (𝑌 |𝐺, 𝐸)𝑝0 (𝐸 |𝐺) + log𝑝0 (𝐸 |𝐺) − log 𝑝0 (𝐸)]]

+𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝𝜃 (𝐸 |𝑌,𝐺))

=E𝑞𝜙 (𝐸 |𝐺 ) [− log
∑︁
𝑒

𝑝𝜃 (𝑌 |𝐺, 𝐸 = 𝑒)𝑝0 (𝐸 = 𝑒 |𝐺) + log 𝑝0 (𝐸 |𝐺)]]

+E𝑞𝜙 (𝐸 |𝐺 ) [− log 𝑝0 (𝐸)] + 𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝𝜃 (𝐸 |𝑌,𝐺))

=E𝑞𝜙 (𝐸 |𝐺 ) [− log
∑︁
𝑒

𝑝𝜃 (𝑌 |𝐺, 𝐸 = 𝑒)𝑝0 (𝐸 = 𝑒)]

+𝐾𝐿(𝑞𝜙 (𝐸 |𝐺)∥𝑝𝜃 (𝐸 |𝑌,𝐺)),
(16)

where the last step is due to that the prior distribution is often a
trivial one, e.g., uniform distribution that assigns equal probability
to each pseudo environment. And, for optimal 𝑞∗

𝜙
we know that

𝐾𝐿(𝑞∗
𝜙
(𝐸 |𝐺)∥𝑝𝜃 (𝐸 |𝑌,𝐺)) = 0 which gives that

argmin
𝑝𝜃
E𝑞∗

𝜙
(𝐸 |𝐺 ) [− log𝑝𝜃 (𝑌 |𝐺, 𝐸)] + 𝐾𝐿(𝑞∗𝜙 (𝐸 |𝐺)∥𝑝0 (𝐸))

= argmin
𝑝𝜃
E𝑞∗

𝜙
(𝐸 |𝐺 ) [− log

∑︁
𝑒

𝑝𝜃 (𝑌 |𝐺, 𝐸 = 𝑒)𝑝0 (𝐸 = 𝑒)] .

(17)

Combining the result of (17) and (15) we conclude the proof.

B DATASET INFORMATION

◦ Cora, Citeseer and Pubmed are three commonly used citation
networks [33] for node property prediction. Since there is no ex-
plicit information that can be used to partition the nodes from
distinct distributions, we consider two synthetic ways that modify
the node features and graph structures, respectively, for introduc-
ing distribution shifts. Specifically, for each dataset, we keep the
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Algorithm 1 Feed-forward and Training for GraphSHINE.
1: Input: Input node features X = [x𝑣 ]𝑣∈V , adjacency matrix A. Initial-

ized GNN predictor parameter 𝜃 , initialized environment estimator
parameter 𝜙 . 𝛼1, learning rate for 𝜙 . 𝛼2, learning rate for 𝜃 . 𝛽1 = 0.9,
𝛽2 = 0.999, Adam parameters.

2: while not converged do

3: Compute initial node embeddings z(1)𝑣 = 𝜙𝑖𝑛 (x𝑣 ) ;
4: for 𝑙 = 1 to 𝐿 do

5: Estimate pseudo environment distribution 𝝅 (𝑙 )𝑣 via (5) for 𝑣 ∈ V;
6: Obtain inferred pseudo environment e(𝑙 )𝑣 through (6) for 𝑣 ∈ V;
7: if use the propagation of GraphSHINE-GCN then

8: Update node embeddings z(𝑙+1)𝑣 with (7);
9: end if

10: if use the propagation of GraphSHINE-GAT then

11: Update node embeddings z(𝑙+1)𝑣 with (8);
12: end if

13: end for

14: Compute predicted labels ŷ𝑣 = 𝜙𝑜𝑢𝑡 (z(𝐿+1)𝑣 ) ;
15: Compute loss L based on (10);
16: Update the environment estimator 𝜙 ← Adam(L, 𝜙, 𝛼1, 𝛽1, 𝛽2 )
17: Update the GNN predictor 𝜃 ← Adam(L, 𝜃, 𝛼2, 𝛽1, 𝛽2 )
18: end while

19: Output: Trained model parameters 𝜃∗, 𝜙∗.

original node labels in the dataset and synthetically create node
features and graph structures to generate graphs from multiple
domains (with id 𝑖 = 1, 2, 3, 4) that involve distribution shifts.

• For creating domain-specific node features, we consider a
randomly initialized GCN network: it takes the node label
y𝑣 and domain id 𝑖 to generate spurious node features x̃(𝑖 )𝑣
for the 𝑖-th domain. Then we concatenate the generated
features with the original one x(𝑖 )𝑣 = [x𝑣 ∥x̃(𝑖 )𝑣 ] as the node
features X(𝑖 ) = [x(𝑖 )𝑣 ]𝑣∈V of the 𝑖-th domain.

• For creating domain-specific graph structures, we use a
stochastic block model with edge probabilities, denoted by
p𝑖 , to generate the graph adjacency matrix A(𝑖 ) for the 𝑖-
th domain. We use different p𝑖 ’s to introduce distribution
shifts.

Then we use the graph with node features and graph adjacency
(X(1) ,A(1) ) as ID data. For OOD-Struct, the OOD data is com-
prised of three graphs with node features and graph adjacency
(X(1) ,A(2) ), (X(1) ,A(3) ) and (X(1) ,A(4) ), respectively. For OOD-
Feat, the OOD data consists of three graphs with node features
and graph adjacency (X(2) ,A(1) ), (X(3) ,A(1) ) and (X(4) ,A(1) ),
respectively. These synthetic datasets can be used for evaluating
the efficacy of the model when generalizing to OOD testing data
with distribution shifts w.r.t. node features and graph structures.
◦ Twitch is a multi-graph dataset [29] where each subgraph is

a social network from a particular region. We use the nodes in dif-
ferent subgraphs for splitting the data, since these subgraphs have
different sizes, densities and degree distributions [40]. In specific,
we use the nodes from subgraphs DE, PT, RU as in-distribution data
and the nodes from subgraphs ES, FR, EN as out-of-distribution
data.
◦ Arxiv is a temporal citation network [? ] where each node, a

paper, has a time label indicating the publication year. The papers
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Figure 7: Visualization of the model weights of different

branches (𝐾 = 3) at the first layer on Arxiv.
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Figure 8: Visualization of the model weights of different

branches (𝐾 = 3) at the last layer on Arxiv.
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Figure 9: Visualization of the model weights of different

branches (𝐾 = 3) at the first layer on Twitch.
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Figure 10: Visualization of the model weights of different

branches (𝐾 = 3) at the last layer on Twitch.

published in different years can be seen as samples from different
distributions, and the distribution shift becomes more significant
when the time gap between training and testing is enlarged. We use
the papers published between 2005 and 2014 as in-distribution data,
and the papers published after 2014 as out-of-distribution data.
◦ Elliptic is a dynamic graph for bitcoin transaction records [24]

that comprise a sequence of graph snapshots where each snapshot
is generated at one time. We can naturally treat nodes in differ-
ent snapshots as samples from different distributions since the
underlying mechanism behind transactions is heavily dependent
on the time and market. We use the first five graph snapshots as in-
distribution data and the remaining snapshots as out-of-distribution
data.
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C IMPLEMENTATION DETAILS

Our implementation is based on PyTorch 1.9.0 and PyTorch Geo-
metric 2.0.3. All of our experiments are run on a Tesla V100 with 16
GB memory. We adopt Adamwith weight decay for training and set
a fixed training budget with 500 epochs. The testing performance
achieved by the epoch where the model gives the best performance
on validation data is reported.

C.1 Hyper-parameter Settings

We instantiate 𝜙𝑖𝑛 and 𝜙𝑜𝑢𝑡 as a fully-connected layer. The detailed
architecture of GraphSHINE is decribed as follows. The model
architecture consists of the following modules in sequential order:
• A fully-connected layer with hidden size 𝐷 × 𝐻 (transforming
𝐷-dim input raw features into 𝐻 -dim embeddings).
• 𝐿-layer GNN network with hidden size𝐻×𝐻 (each layer contains
𝐾 branches that have independent parameterization), based on the
two instantiations in Sec. 3.3.
• A fully-connected layer with hidden size 𝐻 ×𝐶 (mapping 𝐻 -dim
embeddings to 𝐶 classes).

In each layer, we use ReLU activation, dropout and residual link.
For model hyper-parameters, we search them for each dataset with
grid search on the validation set. The searching spaces for all the
hyper-parameters are as follows.
• Number of GNN layers 𝐿: [2,3,4,5].
• Hidden dimension 𝐻 : [32, 64, 128].
• Dropout ratio: [0.0, 0.2, 0.5].
• Learning rate: [0.001, 0.005, 0.01, 0.02].
• Weight decay: [0, 5e-5, 5e-4, 5e-3].
• Number of pseudo environments 𝐾 : [3,5,10].
• Gumbel-Softmax temperature 𝜏 : [1, 3, 5, 10].

C.2 Competitors

For competitors, we use their public implementation. We also use
the validation set to tune the hyper-parameters (GNN layers, hid-
den dimension, dropout ratio and learning rate) using the same
searching space as ours. For other hyper-parameters that differ
in each model, we refer to their default settings reported by the
original paper. We present more information for these competitors
below.

The first line of competitors is designed for handling out-of-
distribution generalization in the general setting, e.g., image data,
where the samples are assumed to be independent. The competi-
tors include IRM [1], DeepCoral [34], DANN [7], GroupDRO [30]
and Mixup [45]. These approaches resort to different strategies to
improve the generalization of the model. Mixup aims to augment
the training data by interpolation of the observed samples, while
other four methods propose robust learning algorithms that can
guide the model to learn stable predictive relations against distribu-
tion shifts. For accommodating the structural information and data
interdependence, We use GCN and GAT as the encoder backbone
for computing node representation and predicting node labels.

Another line of works concentrates on out-of-distribution gener-
alization with graph data, where the observed samples (i.e., nodes)
are inter-connected, including three recently proposed models SR-
GNN [46], EERM [40] and FLOOD [21]. SR-GNN proposes a reg-
ularization loss for enhancing the generalization of the model to

new data. EERM leverages the invariance principle to develop an
adversarial training approach for environment exploration. FLOOD
combines the merits of invariant learning and self-supervised learn-
ing for OOD generalization on graphs. These models are agnostic
to encoder backbones. For fair comparison, we use GCN and GAT
as their encoder backbones.
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