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1. Introduction
Current state-of-the-art molecular property pre-

diction models require labeled training data gener-
ated using expensive wet-lab experiments or ab ini-
tio calculations [1, 2, 3, 4]. Their utility is limited
by the scarcity and heterogeneity of labeled mate-
rials datasets. Foundation models (FMs) offer a so-
lution to this: they use self-supervised pre-training
strategies to leverage unlabeled datasets and learn
representations of data that can be applied to down-
stream tasks. Prior attempts to train FMs formolecu-
lar property prediction demonstrate promise; how-
ever, supervised equivariant geometric models are
still more accurate [5, 6, 7]. This can be attributed
to the fact that FM are computationally expensive
to train and difficult to interpret [8]. Our work ad-
dresses these challenges on three fronts: (1) we train
a 228M parameter molecular FM on 6B molecules
achieving state-of-the-art performance across vari-
ous tasks (2)we developBayesian neural scaling laws
enabling compute-optimal molecular FMs and (3)
we probe the model to uncover chemical concepts
learnt by it.

2. Model and Performance

MIST-228M MoLFormer [9] SELFormer [10]
QM8 ↓ Avg. MAE 0.0104± 0.0002 0.0102∗ –
QM9 ↓ Avg. MAE 2.4380± 0.0260 1.5894∗ –
Tox21 ↑ AUROC 83.90± 1.25 84.7 –
ToxCast ↑ AUROC 84.35± 0.84 – –
ClinTox ↑ AUROC 98.77± 0.99 94.8 –
BACE ↑ AUROC 87.06± 2.82 88.2 83.2
BBBP ↑ AUROC 92.60± 3.10 93.7 86.3

Table 1: MIST-228M performance on MoleculeNet
[11] compared to SOTA. ∗ indicates multiple mod-
els were used for a multitask benchmark.

MIST (Molecular Insight SMILES Transformer) is
an encoder only pre-layer norm [12] transformer
model based on the BERT architecture [13] pre-
trained using Masked Language Modeling (MLM).
The current variant model (MIST-228M) has 228M
parameters andwas trained on 6.14Bmolecules from
Enamine’s REAL Space [14]. It was trained using
data distributedparallelismon32NVIDIAA100GPUs
with a throughput of≈ 8kmolecules per second. We
used gradient accumulation to reduce communica-
tion latency resulting in large effective batch sizes.
To enable data efficient training at large batch sizes
we use the LAMB (Layerwise Adaptive Large Batch)
algorithm [15]. For tokenization we used Smirk,
a novel chemically meaningful tokenization strat-
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Fig. 1: a) Estimated penalty in loss when deviating
from the ideal η∗ learning rate. b) Bayesian neu-
ral scaling laws used to select MIST-228M hyper-
parameters (⋆).

egy developed to train MIST; Smirk improves on
the widely used “Atom-wise” tokenizers which often
mask out critical chemical information [16].

3. Bayesian Scaling Laws
Training FMs is an extremely computationally ex-

pensive endeavor. This is exacerbated when the
dataset and model size needed to achieve the de-
sired accuracy are not known. We developed neu-
ral scaling laws to guide the training of MIST and
ensure a compute-optimal trade-off between model
and dataset size [17]. Neural scaling laws for NLP
have been widely studied, however, their applica-
tion to scientific FMs is limited [18, 19]. Neural scal-
ing laws estimate the eventual loss of the model L
from the number of non-embedding parameters N ,
the dataset size D: L(N,D) =

(
A
Nα + B

Dβ + E
)∏

P .
Where A,α,B, β and E are fitted coefficients typi-
cally found via non-linear optimization[20, 17]. We
added penalty terms

∏
P to model non-optimal hy-

perparameter selection, extending the insight of
neural scaling laws beyond the data/model size
trade-off. By introducing penalty terms P (x) with
a single global minimum x∗ such that P (x∗) = 0,
we can directly model the impact of sub-optimal hy-
perparameter selection. The fitted scaling laws in-
formed the size, shape and optimizer settings for
MIST-228M (fig. 1).

4. Downstream Applications
MIST has been applied to various electrochemical

materials design problems. Mixture property pre-
diction is discussed as an example application here.
Accuratemixture property prediction is difficult due
to the complexity of mixture chemistry and data is
limited [21]. Wehave sucessfully extendedMIST’s ca-
pabilities from single molecule property prediction
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Fig. 2: MIST outperforms models designed specifi-
cally for mixture property prediction[22], some of
which use 3D molecular geometry, on both mix-
turemolar volume (a) and enthalpy (b) prediction.

tomixtures property prediction using a downstream
task network informed by chemical thermodynam-
ics. A mixture property can be decomposed into a
linear mixing and an excess term, which quantifies
the non-ideal behavior of real mixtures due to com-
ponent interactions. The excess term depends on
the mixture composition and is commonly modeled
using a Redlich-Kister (R-K) polynomial basis. In
MIST, this ismodeled by passing the hidden states to
a single component property and polynomial coeffi-
cient prediction network. The mixture property is
then calculated using the method show in section E.

5. Interpretability
Severalmolecular FMs demonstrate near state-of-

the-art performance on property prediction [23, 10,
9]; however, the vast number of non-physical param-
eters make interpretation difficult. Recent works
have explored using attentionmaps to visualize how
the model evaluates a molecule[24, 9, 25]. We ap-
ply similar methods to deduce insights from MIST’s
attention matrices (fig. A1) and embedding vectors
(fig. 4). Additionally, we propose a novel quantitative
analysis ofmodel interpretability based on synthetic
accessibility and molecular assembly index.
Practical synthesis of novel compounds is a

pertinent problem and a barrier to realizing in-
verse molecular design [26]; Synthetic Accessibil-
ity (SA) metrics estimate the difficulty of synthesis
using hand-crafted features[27, 28], retrosynthetic
planning[29] or data-driven methods[30, 31]; Unfor-
tunately, the “ease of synthesis” remains highly sub-
jective with limited agreement between chemists
[32, 27, 33]. Parallelly, the Molecular Assembly In-
dex (MA), evaluates molecular complexity from an
Assembly Theory perspective [34]. Assembly theory
proposes that molecules with a higher MA are more
difficult to compose and hence their occurrence is
less likely. We propose framing SA and MA as a
measure of a chemist’s surprise for a molecule’s ex-
istence. This framing suggests that molecular FMs
learn synthetic accessibility and the assembly index
implicitly during the pre-training process.
To validate this, we compared the log-

probabilities predicted by MIST and MoL-
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Fig. 3: R2 correlation between different metrics on
datasets for Synthetic Accessibility (a&b) and
Molecular Assembly (c). AUROC scores for each
metric evaluated on the datasets are shown in (d).

Former to three benchmark datasets for synthetic
accessibly[9, 32, 28]. We found the log-probabilities
predicted by both models are strongly correlated
with existing metrics for measuring synthetic
accessibility (fig. 3).
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Fig. 4: a) t-SNE of MIST’s pre-trained embeddings
shows ‘bands’ of aromatic and anti-aromatic
molecules. b) One t-SNE component aligns with
the number of benzene rings in the molecule.
c) UMAP of MIST’s embeddings shows concen-
tric rings differentiating between cata and peri-
condensed polybenzenoid hydrocarbons.

Additionally, we used MIST’s pre-trained embed-
dings to identify chemical rules encoded by the
model. We probed if themodel can differentiate aro-
matic from anti-aromatic molecules (figs. 4a and 4b)
and cata fromperi-condensed polybenzenoid hydro-
carbons (fig. 4c) in the COMPAS datasets [35, 36, 37].
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Appendix A. Model Architecture and Training

The MIST-228M model is based on the
RoBERTa-PreLayerNorm implementation in Hug-
gingFace [39] with absolute position embeddings,
16 attention heads, 18 hidden layers, a hidden size
of 1,024, intermediate size of 4,096 and a maximum
sequence length of 512. The DeepSpeed implemen-
tation of the FusedLAMB optimizer [40] was used to
train the model. A linear warm-up [41] and cosine
decay learning rate schedule [17] was used with
a maximum learning rate of 2.5e − 4. The learn-
ing rate was selected based on the fitted optimal
learning rate as determined our fitted Bayesian

neural-scaling laws fig. 1. During finetuning, a task
network consisting of two feedforward layers with
GeLU activations was attached to the network. All
model weights were updated during finetuning.

Appendix B. Bayesian Neural Scaling Laws

Neural scaling laws are typically fit via non-linear
optimization to L(N,D) as a function of A,α,B, β
and E [20, 17]. Once fit they can be used identify
the “compute-optimal” model size, or the model size
Nopt that minimizes L(N,D) for a given compute
budget C ≈ 6ND [17]. A “compute-optimal” Dopt

dataset size can similarly be defined.

Nopt = G

(
C

6

)a

Dopt = G−1

(
C

6

)b

(A1)

G =

(
αA

βB

) 1
α+β

a =
β

α+ β
b =

α

α+ β

2.1 Optimal Learning Rate Scaling
We model the optimal learning rate η∗(N,B) =

η0N
γBδ; where η0, γ and δ are fitted coefficients and

B is the effective batch size (Global batch size times
gradient accumulation steps). By using a Bayesian
framework, we can incorporate our prior-belief that
η∗ ≈ 1.4 × 10−4 for a batch size of ≈ 1024 [9]. As
well as our expectation that δ ≈ 0.5, corresponding
square-root scaling with batch size [42]. Prior NLP
models have recommendeddecreasing ηwithmodel
size[20, 43]; however similar recommendations are
absent from the molecular foundation model liter-
ature. We elected to use an uninformative normal
priorwithmean of 0, to reflect our uncertainty here.

Appendix C. AttentionMap Interpretability

A transformer’s attention matrix provides a distri-
bution over attended-to input units, and can be in-
terpreted as communicating the relative importance
of inputs [44]. MIST is able to capture spatial rela-
tions between atomic tokens that are not necessarily
neighbors in the SMILES sequence in it’s attention
matrices. The attention map exhibits awareness of
bond connectivity and interatomic distances in 3D
space. This suggests themodel is able to learn 3D ge-
ometric information about molecular structure not
explicitly present in SMILES strings.
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N1
C1

Fig. A1: Visualization of the learned attention
map and corresponding molecular structure
(inverse 3D distance) for a molecule in the
pre-training validation set. The mean pooled
attention (across 16 attention heads) in layer
9 of the encoder is visualized. The molecule
visualized is represented by the SMILES string
C*N1*CCN(S(=O)(=O)N2CCN(C(=O)C(=O)N3CCN
(C(=O)C(=O)N4CCOCC4)CC3)CC2)C*C1*. From
the plot we can see that the model assigns high
attention scores to pairs of Carbon and Nitrogen
atoms which appear next to each other in rings
(for e.g N1 and C1 ) even though they are far apart
in the SMILES sequence.

Appendix D. Synthetic Accessibility and Molecu-
lar Assembly

4.1 Synthetic Accessibility
We used two datasets to assess the ability of

molecular foundationmodels to predict amolecule’s
“ease of synthesis.” The first dataset (fig. 3a) con-
sists of 1,775 molecules scored on a scale of 1 - 5 as a
part of a crowdsourced evaluation of the “complex-
ity” of a molecule. Participants were asked to score
a random selection of 5 molecules on a scale of 1 to
5; participants were encouraged to evaluate multi-
ple sets. Each molecule was evaluated by 41 ± 16
chemists from Merck with an overall average score
of 2.85 ± 0.78. The authors noted that “complex-
ity” was highly subjective; on averagemolecules, the
standard deviation of a molecule’s complexity was
0.77 ± 0.14. The “Chemist” shown in fig. 3a is the
meanComplexity as reported by the dataset. We used
2.85, the average complexity score, as the threshold
for evaluating the AUROC of other metrics (fig. 3d).
That is fig. 3d, shows evaluates the ability of metrics
to predict meanComplexity > 2.85.
The second dataset (fig. 3b) of 5000 molecules

was curated by Chen et al. from multiple public
datasets and labeled as either easy or hard to synthe-
size based on the source dataset [28]. We are using
the test split, as released, as the other splits were not
released. Notable, this is the dataset used by Chen

et al. for the development of BR-SAscore, one of the
metrics shown in fig. 3. In fig. 3d, we evaluated each
metrics’ ability to discriminate “hard” from “easy” to
synthesize molecules.

4.2 Molecular Assembly
The Molecular Assembly Index (MA) is defined

as the number of steps on a recursive minimal path
to produce the molecular graph. Molecules with an
assembly index of above 15 are considered biosig-
natures [34]. For our analysis (fig. 3c), we used a
dataset on 450 molecules from Ref. [45]. The dataset
contains MA values computed using an algorithmic
search as well as values computed using experi-
mentally collected descriptors such as tandemmass
spectrometry and infrared spectroscopy. In fig. 3d,
we evaluated each metrics’ ability to correctly clas-
sify molecules as biosignatures (MA > 15). We com-
pare the algorithmically computed the MA values
calculate correlations with other metrics.

Appendix E. Mixture Property Prediction

MIST predicts properties of mixtures using a down-
stream task network informed by chemical thermo-
dynamics. The architecture of this task network is
informed by the knowledge that mixture properties
can be decomposed into a linear mixing and an ex-
cess term. The excess term quantifies the non-ideal
behavior of real mixtures due to component interac-
tions. This term is commonly modeled as a function
of mole fractions using a Redlich-Kister (R-K) poly-
nomial basis [46]. The architecture used to predicted
mixture properties using MIST is shown in fig. A2.
The mixture embeddings are constructed using the
hidden states extracted from the final hidden layer
of the transformer encoder mean-pooled across the
heads of the transformer. The hidden states are then
passed to a single component property prediction
network and polynomial coefficient prediction net-
work. The mixture property, for a binary mixture, is
then calculated using a polynomial:

x = x1 − x2 → 1− 2x2

Pmix = x1P1 + x2P2︸ ︷︷ ︸
linear mixing

+ x(1− x)

n∑
i=0

Ωi · fi(1− 2x)︸ ︷︷ ︸
excess term

where x1 and x2 are the mole fractions of the two
components in the mixture, P1 and P2 are single
component properties predicted by the network, fi
is the ith R-K, Legendre or Chebyshev polynomial
andΩi is thepredicted coefficients. WeuseLegendre
andChebyshev polynomials in addition to thewidely
used R-K polynomials to test if the prediction accu-
racy improves when a orthonormal polynomial ba-
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Fig. A2: Mixture property prediction workflow:
SMILES representations of the two molecules in
the mixture are individually passed to the pre-
trained MIST encoder in order to obtain their
embedding vectors. The individual embedding
vectors are passed to a component property
prediction network (a MLP - multi-layer percep-
tron - with two layers). This predicts individual
component properties (P1 and P2). The two em-
beddings are concatenated together and passed
to a excess property prediction network (also a
three layer MLP) which predicts the coefficients
of the polynomial (Ωi). These values are then
passed to a polynomial layer which computes
the appropriate polynomial summation based
on the order and basis type (Legendre, R-K or
Chebyshev) specified.

sis is used in the output layer [47]. However, we see
that the three polynomials perform similarly in this
case.
The model was finetuned on two excess property

datasets described in Ref [22]. The excess molar vol-
ume dataset consisted on 1069 binary mixture data
points (28 unique mixtures composed of 25 organic
chemicals with varying compositions). The excess
molar enthalpy dataset consisted on just 631 data
points (34 unique mixtures composed of 35 organic
chemicals with varying compositions). All model
weights were updated during finetuning, including
the pre-trained encoder weights. The task network
consisted of 3M learnable parameters. Finetuning
was carried out using the AdamW optimizer. The re-
sults presented in the main paper are for a polyno-
mial task heads with degree four polynomials.
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